WO2000048512A1 - Catheter a resonance magnetique utilise pour la detection de position et l'imagerie - Google Patents
Catheter a resonance magnetique utilise pour la detection de position et l'imagerie Download PDFInfo
- Publication number
- WO2000048512A1 WO2000048512A1 PCT/US2000/004561 US0004561W WO0048512A1 WO 2000048512 A1 WO2000048512 A1 WO 2000048512A1 US 0004561 W US0004561 W US 0004561W WO 0048512 A1 WO0048512 A1 WO 0048512A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- circuit
- catheter
- recited
- magnetic resonance
- imaging
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/06—Devices, other than using radiation, for detecting or locating foreign bodies ; Determining position of diagnostic devices within or on the body of the patient
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/05—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves
- A61B5/055—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
Definitions
- the present invention relates generally to medical devices for use with magnetic resonance systems, and more particularly to catheters having features for position tracking and imaging.
- Magnetic resonance systems are well known in the art, and are capable of producing high-resolution radiographic images of tissue within the patient.
- a variety of diagnostic and therapeutic procedures, treatments and applications may be conducted with a magnetic resonance system.
- a medical device can be designed to respond to the field generated by the magnetic resonance system, and can create images of the environment surrounding the medical device.
- One application of such magnetic resonance imaging systems is to make high-resolution images of blood vessel walls
- the present invention relates to a catheter including a tubular basic body with a distal and a proximal end, and a circuit for position tracking and/or imaging located close to the distal end.
- the circuit is connected to the proximal end of the catheter by a conductor, for reaction to and/or detection of a magnetic resonance field.
- a magnetic resonance imaging system may include a magnet, pulsed magnetic field gradient system, a radio frequency transmitter, a radio frequency receiver, and a control system.
- the '822 patent discloses a catheter having at least two coils, of which one is used separately for the purpose of position tracking, and signals induced in both coils together are employed for imaging.
- An object of the present invention is to provide a new simplified and more effective configuration, and consequently a useful catheter in practice.
- a catheter according to the present invention distinguishes itself as is described below, and in that the circuit comprises at least one coil and a tuning circuit, and that the circuit is sensitive to a preselected frequency range of the magnetic resonance field, such as a field having frequencies centered around the Lamor frequency.
- one single coil can suffice. Because the circuit has been sensitized by the tuning circuit to such a degree in the frequency range centered around the Lamor frequency, that both fields of action, position tracking and imaging, can be accomplished without further features. In addition, because one single coil can suffice, the minimum number of conductors required may be reduced from at least three to at least two. This considerable simplification can result in greater ease of operation, reliability, flexibility of the catheter, and more cost-effective manufacturing.
- the tuning circuit includes capacitors to adjust the sensitivity of the tuning circuit, through the formation of LC -circuits.
- the tuning circuit is arranged in, and is consequently shielded by, the material of which the basic body has been made.
- the tuning circuit may be embedded in the material of the tubular basic body.
- the material of the tubular basic body should then be an electrically insulating material, to protect the tuning circuit.
- a material other than the basic body material may be used to insulate the components of the tuning circuit, when the basic body material is not sufficiently insulating.
- the coil of the circuit is arranged around the lumen of the catheter, which ensures a very simple configuration.
- the coil has been embedded in, and is consequently shielded by, the material of which the basic body has been made.
- the catheter according to the present invention forms an instrument useful for carrying out medical treatments.
- the catheter may for instance include at least one additional lumen and a balloon close to the distal end of the catheter connected with the additional lumen.
- the circuit is arranged at a position relative to the balloon which is known in advance.
- a balloon catheter may for instance be used for the purpose of dilatation, in which case both position tracking and examination of the situation can be accomplished before and after treatment by means of imaging.
- the conductor may in that case preferably be arranged in the additional lumen, for passing on information coming from the tuning circuit with regard to position tracking and/or imaging.
- the additional lumen which may be used for expanding and emptying the balloon
- the lumen of the basic body will remain available to receive a guidewire.
- the measures with respect to electrically insulating the components of the circuit may be useful.
- Figure 1 is an external perspective view of an embodiment of a catheter arranged according to the present invention
- Figure 2 shows a partial cross-section view of the catheter illustrated in Figure 1 ;
- Figure 3 shows a schematic view of the catheter in Figure 2;
- Figure 4 is a schematic view of an alternative embodiment of a catheter according to the present invention
- Figure 5 is a partial cross-section view of the catheter of Figure 4;
- Figure 6 is a schematic view of a circuit according to Figure 4.
- Figure 1 shows an embodiment of a balloon catheter 1 according to the present invention.
- This balloon catheter 1 comprises a tubular basic body 2 with a connecting piece or hub 3 arranged at the proximal end, and a balloon 4 at the distal end.
- the tubular basic body 2 comp ⁇ ses two lumens 8 and 9, and the connecting piece 3 has been provided with two connectors 5 and 6 respectively.
- the connector 5 of the connecting piece 3 is used for the purpose of advancing a guidewire 7, and is connected with the first of the two lumens of the tubular basic body 2, which has been indicated with the reference number 8 in Figure 2.
- the second connector 6 of the connecting piece 3 is coupled with the second of the two lumens of the tubular basic body 2, which has been indicated with the reference number 9 in Figure 2.
- the connecting means 6 and the lumen 9 are used to supply and discharge expansion fluid to and from the balloon 4 respectively
- a circuit 10 which is used for position tracking and imaging in an electromagnetic field suitable for magnetic resonance imaging.
- This circuit 10 is connected via a coaxial cable 11 with a connection 12 at the proximal end of the catheter 1, which can be used to connect the circuit 10 to a magnetic resonance imaging device which has not been illustrated here.
- the supply of expansion fluid to the balloon 4 takes place via the connector 6, in the direction indicated by arrow A.
- the circuit 10 is preferably insulated to prevent short-circuiting or signals coming from the circuit 10 being affected in an undesired manner.
- the circuit 10 includes a coil, which has been formed by two segments 13 and 14, which have been wound in opposite directions.
- the segments 13 and 14 have been arranged around the central tube 15, which forms the central lumen 8 for the guidewire 7, and have been connected in se ⁇ es as has been illustrated in Figure 3.
- a capacitor 16 has been connected in parallel to the se ⁇ es connection of the segments 13 and 14.
- the value of the capacitor 16 is preferably such that the resulting LC-circuit is tuned to a frequency range that is centered around the Lamor frequency, which is important du ⁇ ng magnetic resonance imaging, and is 42.6 MHz per tesla of the electromagnetic field applied for imaging.
- a capacitor 17 has been connected in se ⁇ es with the parallel connection of the segments 13 and 14 of the coil and the capacitor 16, which serves to match the impedance of the tuned circuit with that of the cable 11.
- the cable 11 is a micro-coaxial cable, whereby the circuit 10 has been arranged between the core wire 18 and the cove ⁇ ng 19 as illustrated in Figure 3.
- the tuned circuit 10 mside the balloon 4 acts as an antenna, which is sensitive to changes in the magnetic field. Based on the reaction of the coil 13 and 14 to radio frequency fields in a magnetic resonance device, this device is capable of determining the position of the coil 13 and 14.
- the coil 13 and 14 can also be used as an antenna for receiving so-called "spin decay" signals from the surrounding tissue.
- the circuit 10 collects data for imaging from an area surrounding the balloon 4
- the information thus obtained is of an excellent quality with regard to resolution and contrast, especially because it has been collected close to the tissue to be imaged
- the segments 13 and 14 of the coil have been arranged around the internal tube 15 inside the balloon 4.
- This internal tube 15 is smaller in cross-section than the tubular basic body 2 in front of the balloon.
- a micro- coaxial cable may be used having conductors with small cross-sections (without negatively affecting the quality or Q- factor), which is independent of the DC resistance of the coaxial cable.
- a circuit with a high quality or Q-factor with the need for catheters with small outside diameters of the tubular basic body 2.
- Arranging the entire circuit 10 inside the balloon 4, whereby the components 13, 14, 16 and 17 are situated close to one another, so that the connections between them are short also contributes to a higher Q- factor.
- FIG. 4-6 An alternative embodiment of the present invention is depicted in Figures 4-6, showing a catheter 20 having a proximal hub 21 and a distal having a circuit 22.
- the circuit 22 has preferably a coil with four windings 23 in alternating directions, as well as preferably a pair of capacitors 24 and 25.
- Two opposite wound elements located close to another are more sensitive to a RF field (Signal) than a single element coil.
- the sensitivity to a RF field at a greater distance is for two elements smaller than a single element coil because the energy generated in the two elements by the spin decay signal eliminates. This results in a better signal to noise ratio, which results in higher quality images.
- the gaps determine the width and length of the sensitivity, and thus the area that can be imaged. If the gaps are very small, for instance zero, then the width increases. If the gap is made very large then the width of the sensitivity is smaller because the elements operate more independently. A big gap increases the length of the coil and thus also the length of the vessel that can be imaged at once, but decreases the width. An optimum between width and length of the sensitivity exists and is dependent of the dimension of the vessel.
- the signal is transported from the coil to the connector by a small coaxial cable.
- a coaxial cable is used because this transfers the signal with the least losses in strength.
- the coaxial cable is connected to the connector located at the hub 21 of the catheter 20
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Biomedical Technology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Radiology & Medical Imaging (AREA)
- High Energy & Nuclear Physics (AREA)
- Human Computer Interaction (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
Cette invention concerne un cathéter à résonance magnétique utilisé pour la détection de position et l'imagerie comprenant un corps tubulaire de base (2) équipé d'une extrêmité distale, d'une extrêmité proximale et d'un circuit (10) pour la detection de position et l'imagerie placé à proximité de l'extrêmité distale. Ce circuit (10) est relié à l'extrêmité proximale par un conducteur (11) et il est conçu pour réagir au champs de résonance magnétique ou le détecter. Ce circuit (10) comprend au moins une bobine (13, 14) et un circuit de résonance (16, 17). Le circuit (10) est sensible à une gamme de fréquence présélectionnée du champs de résonance magnétique tel qu'un champs dont les fréquences avoisinent la fréquence de Lamor. La bobine (13, 14) et le circuit de résonance (16, 17) sont capables de detecter la position de l'extrêmité distale du cathéter et de reconstituer l'image du tissu environnant.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| AU32411/00A AU3241100A (en) | 1999-02-22 | 2000-02-22 | Magnetic resonance catheter for position tracking and imaging |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| NL1011364 | 1999-02-22 | ||
| NL1011364A NL1011364C2 (nl) | 1999-02-22 | 1999-02-22 | Catheter met schakeling voor plaatsbepaling en beeldvorming. |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2000048512A1 true WO2000048512A1 (fr) | 2000-08-24 |
Family
ID=19768703
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2000/004561 Ceased WO2000048512A1 (fr) | 1999-02-22 | 2000-02-22 | Catheter a resonance magnetique utilise pour la detection de position et l'imagerie |
Country Status (3)
| Country | Link |
|---|---|
| AU (1) | AU3241100A (fr) |
| NL (1) | NL1011364C2 (fr) |
| WO (1) | WO2000048512A1 (fr) |
Cited By (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2002074164A1 (fr) * | 2001-03-21 | 2002-09-26 | Koninklijke Philips Electronics N.V. | Catheter utilisable dans un appareil d'imagerie a resonance magnetique |
| WO2003063955A1 (fr) * | 2002-01-29 | 2003-08-07 | Medtronic, Inc. | Piège eléctromagnetique pour fil électrique |
| WO2003063954A1 (fr) * | 2002-01-29 | 2003-08-07 | Medtronic, Inc. | Conditionnement de signaux electromagnetiques couples sur une derivation |
| WO2003063946A3 (fr) * | 2002-01-29 | 2004-03-25 | Medtronic Inc | Appareil et procede de shunt de courants induits dans une derivation electrique |
| WO2006116979A1 (fr) * | 2005-05-03 | 2006-11-09 | Medizinische Fakultät | Catheter |
| WO2013080145A1 (fr) * | 2011-12-02 | 2013-06-06 | Koninklijke Philips Electronics N.V. | Agencement de bobine pour mpi |
| US8886288B2 (en) | 2009-06-16 | 2014-11-11 | MRI Interventions, Inc. | MRI-guided devices and MRI-guided interventional systems that can track and generate dynamic visualizations of the devices in near real time |
| US9259290B2 (en) | 2009-06-08 | 2016-02-16 | MRI Interventions, Inc. | MRI-guided surgical systems with proximity alerts |
| US20190224451A1 (en) * | 2018-01-19 | 2019-07-25 | Lake Region Manufacturing, Inc. | Medical device with guidewire detection |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5050607A (en) * | 1987-03-04 | 1991-09-24 | Huntington Medical Research Institutes | High resolution magnetic resonance imaging of body cavities |
| US5447156A (en) * | 1994-04-04 | 1995-09-05 | General Electric Company | Magnetic resonance (MR) active invasive devices for the generation of selective MR angiograms |
| US5476095A (en) * | 1989-02-24 | 1995-12-19 | Medrad, Inc. | Intracavity probe and interface device for MRI imaging and spectroscopy |
| US5951472A (en) * | 1996-11-04 | 1999-09-14 | U.S. Philips Corporation | MR system and invasive device for interventional procedures |
| US5964705A (en) * | 1997-08-22 | 1999-10-12 | Image-Guided Drug Delivery System, Inc. | MR-compatible medical devices |
Family Cites Families (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE69023153T2 (de) * | 1989-02-27 | 1996-04-18 | Medrad, Inc., Pittsburgh, Pa. | Sonde für Körperhöhlen und Schnittstelleneinrichtung für Magnetresonanzdarstellung und Spektroskopie. |
| US5323778A (en) * | 1991-11-05 | 1994-06-28 | Brigham & Women's Hospital | Method and apparatus for magnetic resonance imaging and heating tissues |
| US5318025A (en) * | 1992-04-01 | 1994-06-07 | General Electric Company | Tracking system to monitor the position and orientation of a device using multiplexed magnetic resonance detection |
| US5727552A (en) * | 1996-01-11 | 1998-03-17 | Medtronic, Inc. | Catheter and electrical lead location system |
| EP0841575A3 (fr) * | 1996-11-12 | 1999-12-22 | GEC-Marconi Limited | Imagerie par résonance magnétique |
-
1999
- 1999-02-22 NL NL1011364A patent/NL1011364C2/nl not_active IP Right Cessation
-
2000
- 2000-02-22 WO PCT/US2000/004561 patent/WO2000048512A1/fr not_active Ceased
- 2000-02-22 AU AU32411/00A patent/AU3241100A/en not_active Abandoned
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5050607A (en) * | 1987-03-04 | 1991-09-24 | Huntington Medical Research Institutes | High resolution magnetic resonance imaging of body cavities |
| US5476095A (en) * | 1989-02-24 | 1995-12-19 | Medrad, Inc. | Intracavity probe and interface device for MRI imaging and spectroscopy |
| US5447156A (en) * | 1994-04-04 | 1995-09-05 | General Electric Company | Magnetic resonance (MR) active invasive devices for the generation of selective MR angiograms |
| US5951472A (en) * | 1996-11-04 | 1999-09-14 | U.S. Philips Corporation | MR system and invasive device for interventional procedures |
| US5964705A (en) * | 1997-08-22 | 1999-10-12 | Image-Guided Drug Delivery System, Inc. | MR-compatible medical devices |
Cited By (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2002074164A1 (fr) * | 2001-03-21 | 2002-09-26 | Koninklijke Philips Electronics N.V. | Catheter utilisable dans un appareil d'imagerie a resonance magnetique |
| US6944489B2 (en) | 2001-10-31 | 2005-09-13 | Medtronic, Inc. | Method and apparatus for shunting induced currents in an electrical lead |
| WO2003063955A1 (fr) * | 2002-01-29 | 2003-08-07 | Medtronic, Inc. | Piège eléctromagnetique pour fil électrique |
| WO2003063954A1 (fr) * | 2002-01-29 | 2003-08-07 | Medtronic, Inc. | Conditionnement de signaux electromagnetiques couples sur une derivation |
| WO2003063946A3 (fr) * | 2002-01-29 | 2004-03-25 | Medtronic Inc | Appareil et procede de shunt de courants induits dans une derivation electrique |
| US7013180B2 (en) | 2002-01-29 | 2006-03-14 | Medtronic, Inc. | Conditioning of coupled electromagnetic signals on a lead |
| WO2006116979A1 (fr) * | 2005-05-03 | 2006-11-09 | Medizinische Fakultät | Catheter |
| US9259290B2 (en) | 2009-06-08 | 2016-02-16 | MRI Interventions, Inc. | MRI-guided surgical systems with proximity alerts |
| US9439735B2 (en) | 2009-06-08 | 2016-09-13 | MRI Interventions, Inc. | MRI-guided interventional systems that can track and generate dynamic visualizations of flexible intrabody devices in near real time |
| US8886288B2 (en) | 2009-06-16 | 2014-11-11 | MRI Interventions, Inc. | MRI-guided devices and MRI-guided interventional systems that can track and generate dynamic visualizations of the devices in near real time |
| CN103959084A (zh) * | 2011-12-02 | 2014-07-30 | 皇家飞利浦有限公司 | 用于mpi的线圈布置 |
| WO2013080145A1 (fr) * | 2011-12-02 | 2013-06-06 | Koninklijke Philips Electronics N.V. | Agencement de bobine pour mpi |
| CN103959084B (zh) * | 2011-12-02 | 2017-03-22 | 皇家飞利浦有限公司 | 用于mpi的线圈布置 |
| US9759789B2 (en) | 2011-12-02 | 2017-09-12 | Koninklijke Philips N.V. | Coil arrangement for MPI |
| US20190224451A1 (en) * | 2018-01-19 | 2019-07-25 | Lake Region Manufacturing, Inc. | Medical device with guidewire detection |
| US11553854B2 (en) * | 2018-01-19 | 2023-01-17 | Lake Region Manufacturing, Inc. | Medical device with guidewire detection |
Also Published As
| Publication number | Publication date |
|---|---|
| AU3241100A (en) | 2000-09-04 |
| NL1011364C2 (nl) | 2000-08-24 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7194297B2 (en) | Impedance-matching apparatus and construction for intravascular device | |
| JP4053091B2 (ja) | 磁気共鳴画像化装置で用いられる侵襲的装置 | |
| US6675033B1 (en) | Magnetic resonance imaging guidewire probe | |
| US7096057B2 (en) | Method and apparatus for intracorporeal medical imaging using a self-tuned coil | |
| US20080021315A1 (en) | Apparatus and construction for intravascular device | |
| EP1537429B1 (fr) | Filtre intravasculaire de rehaussement de signal irm | |
| US20060173284A1 (en) | Radiofrequency coil and catheter for surface nmr imaging and spectroscopy | |
| US20120242337A1 (en) | MRI Imaging Probe | |
| US20140034377A1 (en) | Thin-sleeve apparatus for reducing rf coupling of devices in mri environments | |
| US5347221A (en) | Truncated nuclear magnetic imaging probe | |
| WO1993008733A1 (fr) | Appareil d'imagerie par resonance magnetique et de chauffage des tissus du corps | |
| WO2000028895A1 (fr) | Bobines miniatures a resonance magnetique de catheter et procedes associes | |
| CN1947028B (zh) | 配备有电气附件装置的磁共振成像系统 | |
| CN102414571B (zh) | 用于多共振的磁共振系统中的设备和布线 | |
| WO2000048512A1 (fr) | Catheter a resonance magnetique utilise pour la detection de position et l'imagerie | |
| CN101084450A (zh) | 用在rf场中的传输路径 | |
| US5432450A (en) | Truncated nuclear magnetic imaging probe | |
| WO2002084316A1 (fr) | Sonde d'imagerie par resonance magnetique | |
| US12487297B2 (en) | MRI radio-frequency heating amelioration for metallic braided catheters | |
| EP1785739A1 (fr) | Objet allongé, segmenté, non-interactif avec le champ r.f. d'une machine d'IRM | |
| JP2025513484A (ja) | 磁気共鳴イメージングまたはスペクトロスコピーのための心臓内受信アンテナを有する受信装置 | |
| WO2011109733A1 (fr) | Circuit pour ligne de transmission compatible irm |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A1 Designated state(s): AU US |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| 122 | Ep: pct application non-entry in european phase |