[go: up one dir, main page]

WO2000048177A1 - Procede permettant d'augmenter le signal fluorescent de disques optiques a lecture fluorescente - Google Patents

Procede permettant d'augmenter le signal fluorescent de disques optiques a lecture fluorescente Download PDF

Info

Publication number
WO2000048177A1
WO2000048177A1 PCT/US2000/001990 US0001990W WO0048177A1 WO 2000048177 A1 WO2000048177 A1 WO 2000048177A1 US 0001990 W US0001990 W US 0001990W WO 0048177 A1 WO0048177 A1 WO 0048177A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorescent
substrate
increasing
distinguished
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US2000/001990
Other languages
English (en)
Inventor
Mark Alperovich
Irene Zuhl
Eugene Levich
A. Khaikin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TriD Store IP LLC
Original Assignee
TriD Store IP LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TriD Store IP LLC filed Critical TriD Store IP LLC
Priority to AU32159/00A priority Critical patent/AU3215900A/en
Priority to EP00909989A priority patent/EP1155409A1/fr
Publication of WO2000048177A1 publication Critical patent/WO2000048177A1/fr
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/26Apparatus or processes specially adapted for the manufacture of record carriers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/245Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing a polymeric component
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/246Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/246Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
    • G11B2007/24624Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes fluorescent dyes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/253Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
    • G11B7/2533Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins
    • G11B7/2534Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins polycarbonates [PC]
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/253Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
    • G11B7/2533Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins
    • G11B7/2535Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins polyesters, e.g. PET, PETG or PEN

Definitions

  • the present Invention is in the field of materials for optical memory carriers with high optical memory density and reading by means of fluorescence, such as CD ROM and WORM discs, and three-dimensional optical memory systems.
  • optical carrier capacity is not enough high for the developed computers and videosystems of the new generation.
  • optical carrier capacity is: • increased number active bits per active layer due to reduced pit length and increased number of pits; • multilayer disc creation.
  • JP 63,195,838 (12.08.1988); JP 02,308,439 (21.12.1990) describe reading by means of fluorescence. The principle idea is that after recording the recorded spots are non- fluorescent, and the background is fluorescent. At reading, the relevant laser beam excites fluorescent light, which is registered on the detector.
  • Single-layer optical discs where data is recorded in pit or spiral grooves, filled with fluorescent material, are laminated on each other to form a multilayer system, where active layers containing fluorescent pits or grooves with 0.5-1.0 mkm depth are separated by inactive intermediate layers of 20-50 mkm depth, transparent for the excitation laser wavelength and fluorescent light.
  • Fluorescent media for a multilayer optical disc with fluorescent reading shall meet a range of requirements, the most important being:
  • Fluorescent media absorption range shall coincide with the reading laser wavelength.
  • Quantum yield of fluorescent media shall be the highest possible and shall stay the same during long-term storage and use. 3. Abso ⁇ tion and fluorescence ranges shall not overlap significantly not to cause repeated absorption of fluorescent light.
  • Fluorescent composition shall not disperse the passing excitation radiation and fluorescent light.
  • Fluorescent light shall also coincide well with the matrix and shall not migrate from it.
  • Fluorescent composition shall fill the pits or groove well and shall not tincture the space in between.
  • the solution used for filling pits or grooves shall not solve the substrate, carrying pits or grooves, or change their geometry and size.
  • Refraction ratio of the fluorescent composition shall be close to the one of the substrate, carrying pits or groove.
  • Characteristics of the fluorescent composition shall not be effected by storage or use of a multilayer optical disc.
  • the concentration of fluorescent dye shall be equal to 3-20x10 "2 Mol per kg of polymer.
  • WORM discs with fluorescent reading including multilayer structures.
  • the recorded digital data was read on special drives, providing registration of the fluorescent signal.
  • future increase of fluorescence intensity from active layers of the optical discs is needed to increase stability and quality of the read data, to simplify the construction and to lower cost of production of the reading devices for fluorescent discs. This will also allow increasing the number of active layers on multilayer discs, thus increasing the optical memory capacity.
  • the purpose of this Invention is the development of method of increasing fluorescent signal level from the optical discs with fluorescent reading to obtain optical memory with high capacity.
  • the other purpose of the present Invention is the development of method of increasing fluorescent signal level from the optical discs with fluorescent reading to receive higher stability and reproduction quality, simplify the construction and to lower cost of the device for reading fluorescent signal from optical discs.
  • the future pu ⁇ ose of this Invention is the development of method of increasing fluorescent signal level from the optical discs with fluorescent reading both for single-layer and multilayer optical memory materials with high capacity and high contrast.
  • the above method of increasing the fluorescent signal from optical discs with fluorescent reading assumes use in the fluorescent composition of high-molecular compounds, plasticizers and other ingredients, preventing formation of non-fluorescent dimmers and other dyes associates in the active media.
  • the above method of increasing the fluorescent signal from optical discs assumes use of a primer between the substrate and the active layer to preserve the pits or grooves on the substrate from aggressive effect of solvents, containing the fluorescent composition.
  • the above method of increasing the fluorescent signal from optical discs assumes using in the polymer compositions of active layers the adds, improving adhesion of the active layers to the substrate or the primer.
  • the above method of increasing the fluorescent signal from optical discs assumes using in the substrate or primer the substances, providing effective abso ⁇ tion of non-fluorescent dimmers and other associates of the ionic pairs of cationic dyes in the active layer on the boundary between the substrate or the primer with active layer.
  • the substrate - a transparent disc from polycarbonate (PC) or polymethyl methacrylate (PMMA) with pits or grooves 0J-0.5 ⁇ deep - is covered with a primer, which is later covered with an active layer, containing at least a fluorescent dye, film-making polymer, plasticizers and other ingredients, preventing formation of non-fluorescent dimmers and other associates of the dye, thus providing high fluorescence of the dye.
  • the primer is produced using different materials, providing high adhesion to polycarbonate and polymethyl methacrylate substrates, evenly distributed upon the substrate, pits and grooves surface, forming a film 10-100 nm thick, impermeable for the solvents and other ingredients of the active layer.
  • the materials, forming the primer can be: liquid silica glass, Colcoat N-103X product by Colcoat Co., Ltd. (Japan), polyvinyl alcohol, heat treated after depositing on the substrate, thermosetting resins, including epoxy, phenol-, urea- and melamine-formaldehyde resins, polyorganosiloxanes, as well as latexes - divinyl styrene, divinylonitrile, styrene acrylate, alkyd, acrylate, etc.
  • the fluorescent dye of the active layer with maximum abso ⁇ tion near the recording laser wavelength is chosen among the xanthene dyes of the eosine and rhodamine groups, acridine, oxazine, azine, perylene, violanthrole, cyanine, phthalocyanine dyes, indigoid colors and po ⁇ hyrines.
  • the content of fluorescent dye in the layer is 0.1-10%.
  • Film-forming polymer can be chosen among a wide range of resins, for example: cellulose esters, such as nitrocellulose, cellulose acetate, cellulose acetate butyrate; cellulose ethers such as methyl cellulose, ethyl cellulose, butyl cellulose; vinyl resins such as polyvinyl acetate, polyvinyl butyral, polyvinyl acetal, polyvinyl alcohol and polyvinyl pyrrolidon; acrylic resins such as polymethylmethacrylate, polybutyl acrylate, polymethacrylic acid, polyacrylic amid and polyacrylonitrile, polyvinylchloride, perchlorvinyl resin.
  • resins for example: cellulose esters, such as nitrocellulose, cellulose acetate, cellulose acetate butyrate; cellulose ethers such as methyl cellulose, ethyl cellulose, butyl cellulose; vinyl resins such as polyvinyl acetate, polyvinyl butyral, polyviny
  • Film-forming properties of the used resins and the plasticity of the recording layer can be improved by adding to resins the proper plactisizer, such as dibutyl phthalate, dioctyl phthalate or tricresyl phosphate.
  • the proper plactisizer such as dibutyl phthalate, dioctyl phthalate or tricresyl phosphate.
  • the above-mentioned ingredients are dissolved in organic solvent or introduced in it as microcapsules less than 0,2 mkm in size, prepared by known methods, with future covering the substrate with this compound by spin coating, roller coating or dip coating.
  • the organic solvent is usually selected from alcohols, ketones, amides, sulfoxides, ethers, esters, halogenated aliphatic hydrocarbons or aromatic solvents.
  • solvents examples include methanol, ethanol, iso-propanol, iso-butanol, tetrafluoro-ethanol, diacetone alcohol, methyl cellosolve, ethyl cellosolve, acetone, methylethylketone, cyclohexanone, N,N- dimethhylformamide, N,N-dimethylacetamide, dimethylsulfoxide, tetrahydrofurane, dioxane, ethyl acetate, chloroform, methylene chloride, dichloroethane, toluene, xylene or their mixtures.
  • Various surface-active substances such as butyl glycol, propylene glycol, dimethyl glycol, diethyl glycol, etc., improve adhesion of the active layers to the substrate or the primer, as well as heat the material at 100-120°C.
  • the other variant of realizing the pu ⁇ oses of the present Invention differs from the previous one by that the substrate is formed by a polymer, providing effective abso ⁇ tion of non- fluorescent dimmers and other associates of the ionic pairs of cationic dyes on its boundary with the active layer, thus providing good adhesion of the active layer to the substrate.
  • the substrate is covered with the active layer, containing a fluorescent dye, soluble in hydroxyl solvents of the film-forming polymer, a plasticizer and the add, which improves adhesion of the active layer to the substrate.
  • PVC Polyvinylchloride
  • Example 1 The solution of 1% polyvinylacetate (PVA), 0.013% 3-Diethylamino-7- diethylaminophenoxazonium perchlorate (Ox- 1 ) and 0.2% dioctylphthalatate in ethanol and ethyl cellusolve (1 :1) was used for preparing the fluorescent composition. The solution was filtered and deposited on the substrate.
  • PVA polyvinylacetate
  • Ox- 1 3-Diethylamino-7- diethylaminophenoxazonium perchlorate
  • dioctylphthalatate ethanol and ethyl cellusolve
  • Example 7 The solution of 1 % polyvinylacetate (PVA), 0.013% 1 , 1 ', 3,3,3 ', 3 '- Hexamethylindodicarbocyanine iodide (HIDC) and 0.2% dioctylphthalatate in ethanol and ethyl cellusolve (1:1) was used for preparing the fluorescent composition. The solution was filtered and deposited on the substrate.
  • PVA polyvinylacetate
  • HIDC Hexamethylindodicarbocyanine iodide
  • dioctylphthalatate ethanol and ethyl cellusolve
  • NC 1 % nitrocellulose
  • HIDC Hexamethylindodicarbocyanine iodide
  • dioctylphthalatate 0.2% dioctylphthalatate in ethanol and ethyl cellusolve (1 :1) was used for preparing the fluorescent composition.
  • the solution was filtered and deposited on the substrate.
  • NC 1 % nitrocellulose
  • HIDC Hexamethylindodicarbocyanine iodide
  • dioctylphthalatate 0.2% dioctylphthalatate in ethanol and ethyl cellusolve (1 :1) was used for preparing the fluorescent composition.
  • the solution was filtered and deposited on the substrate.
  • Thickness of fluorescent layer is 150 nm
  • Thickness of fluorescent layer is 300 nm
  • Table 1 illustrates the effect of increasing fluorescence intensity by using a filmmaking polymer, which reduces the ability of cationic dyes to form non-fluorescent dimmers and other dyes associates.
  • the table as well as all the tables given below, utilizes the following designations: D,- optical density of the monomer form in a maxima of abso ⁇ tion;
  • Table 2 illustrates the effect of increasing fluorescence intensity by using a primer between the substrate and the active layer, which allows depositing the fluorescent compositions containing solvents, aggressive to the substrate.
  • Plotting of a liquid silica glass primer 80 nm thick on a PC substrate allows depositing compositions based on PMMA and PVC, containing methylenechloride and dioxane, which also solves the PC substrate.
  • Table 3 illustrates the impact of the polymer substrate nature on the fluorescence intensity in the Example 1.
  • the types of substrates are sorted by ascending of fluorescence. As seen, the transition from polypropylene to polyvinylchloride consecutively increases fluorescence, which is maximum for the polyvinylchloride. The consequence for the adhesion of the active layer to the substrate is the same.
  • the non-cymbate growth of fluorescent signal at increasing the active layer thickness without changing the dye concentration, as shown in the Table 4 with respect to the polymer testifies that the associated forms of the dye are mostly absorbed on the boundary of the substrate (PCV, in this case) and the active layer. At the same time, the monomeric form of the dye is mostly diluted in the polymeric composition.
  • the proposed ways of increasing fluorescence or the polymeric compositions, containing super-high concentrations of the fluorescent dyes (3-20xl0 '2 Mol/kg of polymer), which usually cause rigid deprecation of fluorescence, can be used for creation of optical recording media for low-cost CD ROM, DND and WORM discs with simplified structure and with increased quality and stability of data reproduction at reading by fluorescence.
  • the greatest strengthening of the fluorescent signal is achieved by using primers (2-8 times increase) and polymer substrate, providing effective abso ⁇ tion of the non-fluorescent associates of the dye molecules on its boundary with the active layer (more than 20 times increase).

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

L'invention concerne une composition fluorescente à utiliser avec des disques optiques monocouches ou multicouches destinés à des dispositifs de type ROM, DVD et WORM à lecture fluorescente. La composition contient un colorant fluorescent, un polymère filmogène, un plastifiant, un agent tensio-actif et un photostabilisant. L'invention concerne également un procédé permettant d'augmenter le niveau de signal fluorescent des disques optiques destinés à des matériaux de mémoire optique monocouches et multicouches, ainsi que les disques optiques ainsi obtenus.
PCT/US2000/001990 1999-02-12 2000-01-28 Procede permettant d'augmenter le signal fluorescent de disques optiques a lecture fluorescente Ceased WO2000048177A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU32159/00A AU3215900A (en) 1999-02-12 2000-01-28 Method of increasing fluorescent signal of optical discs with fluorescent reading
EP00909989A EP1155409A1 (fr) 1999-02-12 2000-01-28 Procede permettant d'augmenter le signal fluorescent de disques optiques a lecture fluorescente

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11989999P 1999-02-12 1999-02-12
US60/119,899 1999-02-12

Publications (1)

Publication Number Publication Date
WO2000048177A1 true WO2000048177A1 (fr) 2000-08-17

Family

ID=22387079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2000/001990 Ceased WO2000048177A1 (fr) 1999-02-12 2000-01-28 Procede permettant d'augmenter le signal fluorescent de disques optiques a lecture fluorescente

Country Status (3)

Country Link
EP (1) EP1155409A1 (fr)
AU (1) AU3215900A (fr)
WO (1) WO2000048177A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG96215A1 (en) * 2001-05-08 2003-05-23 Sony Electronics Singapore Pte Recovering recorded information from an optical disk
WO2005031723A3 (fr) * 2003-09-30 2005-05-26 Koninkl Philips Electronics Nv Support d'information optique a contraste eleve
US9275671B2 (en) 2011-06-09 2016-03-01 Case Western Reserve University Optical information storage medium

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59198191A (ja) * 1983-04-25 1984-11-09 Tdk Corp 光記録媒体
EP0190829A2 (fr) * 1985-02-07 1986-08-13 Gould Inc. Senseur optique pour mesurer la pression partielle d'oxygène
JPS62246790A (ja) * 1986-04-04 1987-10-27 Daicel Chem Ind Ltd 光情報記録媒体
JPS63251949A (ja) * 1987-04-09 1988-10-19 Ricoh Co Ltd 光情報記録方法および媒体
JPS6469391A (en) * 1987-09-09 1989-03-15 Ricoh Kk Optical information recording medium
JPH0278037A (ja) * 1988-09-14 1990-03-19 Toppan Printing Co Ltd 光記録媒体
JPH039882A (ja) * 1989-06-06 1991-01-17 Sanyo Chem Ind Ltd 光情報記録媒体
JPH0550757A (ja) * 1991-08-27 1993-03-02 Ricoh Co Ltd 光記録方法
US5225317A (en) * 1989-10-31 1993-07-06 Pioneer Electronic Corporation Optical information recording medium
WO1996037888A1 (fr) * 1995-05-23 1996-11-28 Opticom A/S Memorisation de donnees optiques
WO1998025268A1 (fr) * 1996-12-05 1998-06-11 Omd Devices Llc Memoire optique fluorescente
WO1999024527A1 (fr) * 1997-11-07 1999-05-20 Omd Devices Llc Composition fluorescente pour fabriquer des disques optiques du type cd-rom

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59198191A (ja) * 1983-04-25 1984-11-09 Tdk Corp 光記録媒体
EP0190829A2 (fr) * 1985-02-07 1986-08-13 Gould Inc. Senseur optique pour mesurer la pression partielle d'oxygène
JPS62246790A (ja) * 1986-04-04 1987-10-27 Daicel Chem Ind Ltd 光情報記録媒体
JPS63251949A (ja) * 1987-04-09 1988-10-19 Ricoh Co Ltd 光情報記録方法および媒体
JPS6469391A (en) * 1987-09-09 1989-03-15 Ricoh Kk Optical information recording medium
JPH0278037A (ja) * 1988-09-14 1990-03-19 Toppan Printing Co Ltd 光記録媒体
JPH039882A (ja) * 1989-06-06 1991-01-17 Sanyo Chem Ind Ltd 光情報記録媒体
US5225317A (en) * 1989-10-31 1993-07-06 Pioneer Electronic Corporation Optical information recording medium
JPH0550757A (ja) * 1991-08-27 1993-03-02 Ricoh Co Ltd 光記録方法
WO1996037888A1 (fr) * 1995-05-23 1996-11-28 Opticom A/S Memorisation de donnees optiques
WO1998025268A1 (fr) * 1996-12-05 1998-06-11 Omd Devices Llc Memoire optique fluorescente
WO1999024527A1 (fr) * 1997-11-07 1999-05-20 Omd Devices Llc Composition fluorescente pour fabriquer des disques optiques du type cd-rom

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 198451, Derwent World Patents Index; Class A89, AN 1984-315677, XP002139711 *
DATABASE WPI Section Ch Week 198748, Derwent World Patents Index; Class A89, AN 1987-339841, XP002139713 *
DATABASE WPI Section Ch Week 198848, Derwent World Patents Index; Class A89, AN 1988-340905, XP002139714 *
DATABASE WPI Section Ch Week 198917, Derwent World Patents Index; Class A89, AN 1989-125222, XP002139709 *
DATABASE WPI Section Ch Week 199017, Derwent World Patents Index; Class A23, AN 1990-128679, XP002139710 *
DATABASE WPI Section Ch Week 199109, Derwent World Patents Index; Class A89, AN 1991-061396, XP002139712 *
PATENT ABSTRACTS OF JAPAN vol. 017, no. 352 (M - 1439) 5 July 1993 (1993-07-05) *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG96215A1 (en) * 2001-05-08 2003-05-23 Sony Electronics Singapore Pte Recovering recorded information from an optical disk
US6816451B2 (en) 2001-05-08 2004-11-09 Sony Corporation Recovering recorded information from an optical disk
WO2005031723A3 (fr) * 2003-09-30 2005-05-26 Koninkl Philips Electronics Nv Support d'information optique a contraste eleve
US9275671B2 (en) 2011-06-09 2016-03-01 Case Western Reserve University Optical information storage medium

Also Published As

Publication number Publication date
EP1155409A1 (fr) 2001-11-21
AU3215900A (en) 2000-08-29

Similar Documents

Publication Publication Date Title
EP0822544A1 (fr) Médium d'enregistrement optique
EP1036129A1 (fr) Composition fluorescente pour fabriquer des disques optiques du type cd-rom
JP2000057627A (ja) 光反射膜及びそれを用いた光記録媒体
EP0329396A2 (fr) Colorants polyméthiniques, polymériques et moyen de stockage de données optique les contenant
US6835431B1 (en) Fluorescent composition for the manufacture of CD-ROM type optical memory disks
US4987021A (en) Optical information recording medium
US5332608A (en) Information recording medium
WO2000048177A1 (fr) Procede permettant d'augmenter le signal fluorescent de disques optiques a lecture fluorescente
US7101655B1 (en) Method for increasing fluorescent signal of optical disks with fluorescent reading and resultant discs
EP0307081B1 (fr) Support d'enregistrement pour mémoire optique
US20050013966A1 (en) Optical recording medium for fluorescent WORM discs
CN1231473A (zh) 光记录媒体
JPH06199045A (ja) 光記録媒体
JP2002524324A (ja) 蛍光wormディスク用の有機記録媒体
US6682799B1 (en) Organic recording medium for fluorescent worm disks
EP0587425B1 (fr) Matériau d'enregistrement optique
US20040085950A1 (en) Fluorescent multi-layer recording media containing porphyrin and the method for fabricating the same
JP4456316B2 (ja) 光情報記録媒体
JP3564962B2 (ja) 光記録媒体及びその光記録再生方法
TWI261605B (en) Dye compositon of the optical recording medium
EP0462368A1 (fr) Carte pour emmagasiner des données optiques
EP1107243A2 (fr) Support d'enregistrement optique d'information
US7718242B2 (en) Organic dyes for recording layer and high density optical recording medium using the same
US6716506B2 (en) Recordable high-density optical recording media
JP2827005B2 (ja) シアニン系色素

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2000909989

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000909989

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWW Wipo information: withdrawn in national office

Ref document number: 2000909989

Country of ref document: EP