[go: up one dir, main page]

WO2000040594A1 - AcpS - Google Patents

AcpS Download PDF

Info

Publication number
WO2000040594A1
WO2000040594A1 PCT/US1999/029464 US9929464W WO0040594A1 WO 2000040594 A1 WO2000040594 A1 WO 2000040594A1 US 9929464 W US9929464 W US 9929464W WO 0040594 A1 WO0040594 A1 WO 0040594A1
Authority
WO
WIPO (PCT)
Prior art keywords
polypeptide
seq
polynucleotide
amino acid
sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US1999/029464
Other languages
French (fr)
Inventor
Stewart C. Pearson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SmithKline Beecham Corp
Original Assignee
SmithKline Beecham Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SmithKline Beecham Corp filed Critical SmithKline Beecham Corp
Publication of WO2000040594A1 publication Critical patent/WO2000040594A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1288Transferases for other substituted phosphate groups (2.7.8)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/53DNA (RNA) vaccination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy

Definitions

  • This invention relates to newly identified polynucleotides and polypeptides, and their production and uses, as well as their variants, agonists and antagonists, and their uses.
  • the invention relates to polynucleotides and polypeptides of the phosphopantethienyl transferases family, as well as their variants, herein referred to as "AcpS,” “AcpS polynucleotide(s),” and “AcpS polypeptide(s)” as the case may be.
  • Staphylococcal genes and gene products are particularly preferred to employ Staphylococcal genes and gene products as targets for the development of antibiotics.
  • the Staphylococci make up a medically important genera of microbes. They are known to produce two types of disease, invasive and toxigenic. Invasive infections are characterized generally by abscess formation effecting both skin surfaces and deep tissues. Staphylococcus aureus is the second leading cause of bacteremia in cancer patients. Osteomyelitis, septic arthritis, septic thrombophlebitis and acute bacterial endocarditis are also relatively common. There are at least three clinical conditions resulting from the toxigenic properties of Staphylococci. The manifestation of these diseases result from the actions of exotoxins as opposed to tissue invasion and bacteremia. These conditions include: Staphylococcal food poisoning, scalded skin syndrome and toxic shock syndrome.
  • Staphylococcus aureus infections has risen dramatically in the past few decades. This has been attributed to the emergence of multiply antibiotic resistant strains and an increasing population of people with weakened immune systems. It is no longer uncommon to isolate Staphylococcus aureus strains that are resistant to some or all of the standard antibiotics. This phenomenon has created an unmet medical need and demand for new anti-microbial agents, vaccines, drug screening methods, and diagnostic tests for this organism. Moreover, the drug discovery process is currently undergoing a fundamental revolution as it embraces "functional genomics,” that is, high throughput genome- or gene-based biology. This approach is rapidly superseding earlier approaches based on "positional cloning" and other methods.
  • polynucleotides and polypeptides such as the AcpS embodiments of the invention, that have a present benefit of, among other things, being useful to screen compounds for antimicrobial activity.
  • Such factors are also useful to determine their role in pathogenesis of infection, dysfunction and disease.
  • identification and characterization of such factors and their antagonists and agonists to find ways to prevent, ameliorate or correct such infection, dysfunction and disease.
  • the present invention relates to AcpS, in particular AcpS polypeptides and AcpS polynucleotides, recombinant materials and methods for their production. J-n another aspect, the invention relates to methods for using such polypeptides and polynucleotides, including treatment of microbial diseases, amongst others. In a further aspect, the invention relates to methods for identifying agonists and antagonists using the materials provided by the invention, and for treating microbial infections and conditions associated with such infections with the identified agonist or antagomst compounds. In a still further aspect, the invention relates to diagnostic assays for detecting diseases associated with microbial infections and conditions associated with such infections, such as assays for detecting AcpS expression or activity.
  • the invention relates to AcpS polypeptides and polynucleotides as described in greater detail below.
  • the invention relates to polypeptides and polynucleotides of a AcpS of Staphylococcus aureus, which is related by amino acid sequence homology to E.coli acpS polypeptide.
  • the invention relates especially to AcpS having a nucleotide and amino acid sequences set out in Table 1 as SEQ ED NO:l and SEQ ID NO:2 respectively.
  • sequences recited in the Sequence Listing below as "DNA” represent an exemplification of the invention, since those of ordinary skill will recognize that such sequences can be usefully employed in polynucleotides in general, including ribopolynucleotides.
  • NCIMB National Collections of Industrial and Marine Bacteria Ltd.
  • Staphylococcus aureus WCUH29 on deposit.
  • the Staphylococcus aureus strain deposit is referred to herein as "the deposited strain” or as "the DNA of the deposited strain.”
  • the deposited strain comprises a full length AcpS gene.
  • the sequence of the polynucleotides comprised in the deposited strain, as well as the -imino acid sequence of any polypeptide encoded thereby, are controlling in the event of any conflict with any description of sequences herein.
  • the deposit of the deposited strain has been made under the terms of the Budapest Treaty on the International Recognition of the Deposit of Micro-organisms for Purposes of Patent Procedure.
  • the deposited strain will be irrevocably and without restriction or condition released to the public upon the issuance of a patent.
  • the deposited strain is provided merely as convenience to those of skill in the art and is not an admission that a deposit is required for enablement, such as that required under 35 U.S.C. ⁇ 112.
  • a license may be required to make, use or sell the deposited strain, and compounds derived therefrom, and no such license is hereby granted.
  • an isolated nucleic acid molecule encoding a mature polypeptide expressible by the Staphylococcus aureus WCUH 29 strain, which polypeptide is comprised in the deposited strain.
  • AcpS polynucleotide sequences in the deposited strain such as DNA and RNA, and amino acid sequences encoded thereby.
  • AcpS polypeptide and polynucleotide sequences isolated from the deposited strain are substantially phylogenetically related to other proteins of the phosphopantethienyltraiisferases family.
  • polypeptides of Staphylococcus aureus referred to herein as "AcpS” and "AcpS polypeptides” as well as biologically, diagnostically, prophylactically, clinically or therapeutically useful variants thereof, and compositions comprising the same.
  • AcpS Staphylococcus aureus
  • AcpS polypeptides as well as biologically, diagnostically, prophylactically, clinically or therapeutically useful variants thereof, and compositions comprising the same.
  • variants of AcpS polypeptide encoded by naturally occurring alleles of a AcpS gene are particularly preferred embodiments of the invention.
  • the present invention further provides for an isolated polypeptide which: (a) comprises or consists of an amino acid sequence which has at least 95% identity, most preferably at least 97-99% or exact identity, to that of SEQ ID NO:2 over the entire length of SEQ ID NO:2; (b) a polypeptide encoded by an isolated polynucleotide comprising or consisting of a polynucleotide sequence which has at least 95% identity, even more preferably at least 97-99% or exact identity to SEQ ID NO: 1 over the entire length of SEQ ID NO: 1 ; (c) a polypeptide encoded by an isolated polynucleotide comprising or consisting of a polynucleotide sequence encoding a polypeptide which has at least 95% identity, even more preferably at least 97-99% or exact identity, to the amino acid sequence of SEQ ID NO:2, over the entire length of SEQ ID NO:2.
  • polypeptides of the invention include a polypeptide of Table 1 [SEQ ID NO:2] (in particular a mature polypeptide) as well as polypeptides and fragments, particularly those which have a biological activity of AcpS, and also those which have at least 95% identity to a polypeptide of Table 1 [SEQ ID NO:2] and also include portions of such polypeptides with such portion of the polypeptide generally comprising at least 30 amino acids and more preferably at least 50 amino acids.
  • the invention also includes a polypeptide consisting of or comprising a polypeptide of the formula:
  • X is hydrogen, a metal or any other moiety described herein for modified polypeptides, and at the carboxyl terminus
  • Y is hydrogen, a metal or any other moiety described herein for modified polypeptides
  • Ri and R3 are any amino acid residue or modified amino acid residue
  • m is an integer between 1 and 1000 or zero
  • n is an integer between 1 and 1000 or zero
  • R 2 is an amino acid sequence of the invention, particularly an amino acid sequence selected from Table 1 or modified forms thereof.
  • R 2 is oriented so that its amino terminal amino acid residue is at the left, covalently bound to R 1 and its carboxy terminal amino acid residue is at the right, covalently bound to R3.
  • Any stretch of amino acid residues denoted by either Ri or R3, where m and/or n is greater than 1, may be either a heteropolymer or a homopolymer, preferably a heteropolymer.
  • Other preferred embodiments of the invention are provided where m is an integer between 1 and 50, 100 or 500, and n is an integer between 1 and 50, 100, or 500.
  • a polypeptide of the invention is derived from Staphylococcus aureus, however, it may preferably be obtained from other organisms of the same taxonomic genus.
  • a polypeptide of the invention may also be obtained, for example, from organisms of the same taxonomic family or order.
  • a fragment is a variant polypeptide having an amino acid sequence that is entirely the same as part but not all of any amino acid sequence of any polypeptide of the invention.
  • fragments may be "free-standing,” or comprised within a larger polypeptide of which they form a part or region, most preferably as a single continuous region in a single larger polypeptide.
  • Preferred fragments include, for example, truncation polypeptides having a portion of an amino acid sequence of Table 1 [SEQ ID NO:2], or of variants thereof, such as a continuous series of residues that includes an amino- and/or carboxyl-terminal amino acid sequence.
  • Degradation forms of the polypeptides of the invention produced by or in a host cell, particularly a Staphylococcus aureus, are also preferred.
  • fragments characterized by structural or functional attributes such as fragments that comprise alpha-helix and alpha-helix forming regions, beta-sheet and beta-sheet-forming regions, turn and turn-forming regions, coil and coil-forming regions, hydrophilic regions, hydrophobic regions, alpha amphipathic regions, beta amphipathic regions, flexible regions, surface-forming regions, substrate binding region, and high antigenic index regions.
  • fragments include an isolated polypeptide comprising an amino acid sequence having at least 15, 20, 30, 40, 50 or 100 contiguous amino acids from the amino acid sequence of SEQ ID NO:2, or an isolated polypeptide comprising an amino acid sequence having at least 15, 20, 30, 40, 50 or 100 contiguous amino acids truncated or deleted from the amino acid sequence of SEQ ID NO:2.
  • Fragments of the polypeptides of the invention may be employed for producing the corresponding full-length polypeptide by peptide synthesis; therefore, these variants may be employed as intermediates for producing the full-length polypeptides of the invention.
  • the polynucleotide comprises a region encoding AcpS polypeptides comprising a sequence set out in Table 1 [SEQ ID NO:l] which includes a full length gene, or a variant thereof.
  • SEQ ID NO:l a sequence set out in Table 1 [SEQ ID NO:l] which includes a full length gene, or a variant thereof.
  • SEQ ID NO:l a sequence set out in Table 1 [SEQ ID NO:l] which includes a full length gene, or a variant thereof.
  • isolated nucleic acid molecules encoding and or expressing AcpS polypeptides and polynucleotides, particularly Staphylococcus aureus AcpS polypeptides and polynucleotides, including, for example, unprocessed R As, ribozyme RNAs, mRNAs, cDNAs, genomic DNAs, B- and Z-DNAs.
  • Further embc -ime ⁇ ts of the invention include biologically, diagnostically, prophylactically, clinically or therapeutically useful polynucleotides and polypeptides, and variants thereof, and compositions comprising the same.
  • Another aspect of the invention relates to isolated polynucleotides, including at least one full length gene, that encodes a AcpS polypeptide having a deduced -imino acid sequence of Table 1 [SEQ ID NO:2] and polynucleotides closely related thereto and variants thereof.
  • a polynucleotide of the invention encoding AcpS polypeptide may be obtained using standard cloning and screening methods, such as those for cloning and sequencing chromosomal DNA fragments from bacteria using Staphylococcus aureus WCUH 29 cells as starting material, followed by obtaining a full length clone.
  • a polynucleotide sequence of the invention such as a polynucleotide sequence given in Table 1 [SEQ ID NO:l]
  • a library of clones of chromosomal DNA of Staphylococcus aureus WCUH 29 in E.coli or some other suitable host is probed with a radiolabeled oligonucleotide, preferably a 17-mer or longer, derived from a partial sequence. Clones carrying DNA identical to that of the probe can then be distinguished using stringent hybridization conditions.
  • sequencing is then possible to extend the polynucleotide sequence in both directions to determine a full length gene sequence.
  • sequencing is performed, for example, using denatured double stranded DNA prepared from a plasmid clone. Suitable techniques are described by Maniatis, T., Fritsch, E.F. and Sambrook et al., MOLECULAR CLONING, A LABORATORY MANUAL, 2nd Ed.; Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (1989).
  • each polynucleotide set out in Table 1 [SEQ ID NO:l] was discovered in a DNA library derived from Staphylococcus aureus WCUH 29.
  • each DNA sequence set out in Table 1 [SEQ ID NO:l] contains an open reading frame encoding a protein having about the number of amino acid residues set forth in Table 1 [SEQ ID NO:2] with a deduced molecular weight that can be calculated using amino acid residue molecular weight values well known to those skilled in the art.
  • the present invention provides for an isolated polynucleotide comprising or consisting of: (a) a polynucleotide sequence which has at least 95% identity, even more preferably at least 97-99% or exact identity to SEQ ID NO:l over the entire length of SEQ ID NO:l, or the entire length of that portion of SEQ ID NO:l which encodes SEQ ID NO:2; (b) a polynucleotide sequence encoding a polypeptide which has at least 95% identity, even more preferably at least 97-99% or 100% exact, to the amino acid sequence of SEQ ID NO:2, over the entire length of SEQ ID NO:2.
  • a polynucleotide encoding a polypeptide of the present invention may be obtained by a process which comprises the steps of screening an appropriate library under stringent hybridization conditions with a labeled or detectable probe consisting of or comprising the sequence of SEQ ID NO:l or a fragment thereof; and isolating a full-length gene and/or genomic clones comprising said polynucleotide sequence.
  • the invention provides a polynucleotide sequence identical over its entire length to a coding sequence (open reading frame) in Table 1 [SEQ ID NO:l]. Also provided by the invention is a coding sequence for a mature polypeptide or a fragment thereof, by itself as well as a coding sequence for a mature polypeptide or a fragment in reading frame with another coding sequence, such as a sequence encoding a leader or secretory sequence, a pre-, or pro- or prepro-protein sequence.
  • the polynucleotide of the invention may also comprise at least one non-coding sequence, including for example, but not limited to at least one non-coding 5' and 3' sequence, such as the transcribed but non-translated sequences, termination signals (such as rho-dependent and rho-independent termination signals), ribosome binding sites, Kozak sequences, sequences that stabilize mRNA, introns, and polyadenylation signals.
  • the polynucleotide sequence may also comprise additional coding sequence encoding additional amino acids. For example, a marker sequence that facilitates purification of a fused polypeptide can be encoded.
  • the marker sequence is a hexa-histidine peptide, as provided in the pQE vector (Qiagen, Inc.) and described in Gentz et al., Proc. Nat/. Acad. Set, USA 86: 821-824 (1989), or an HA peptide tag (Wilson et al, Cell 37: 767 (1984), both of which may be useful in purifying polypeptide sequence fused to them.
  • Polynucleotides of the invention also include, but are not limited to, polynucleotides comprising a structural gene and its naturally associated sequences that control gene expression.
  • a preferred embodiment of the invention is a polynucleotide of consisting of or comprising nucleotide
  • nucleotide immediately upstream of or including nucleotide 358 set forth in SEQ ID NO: 1 of Table 1, both of which encode a AcpS polypeptide.
  • the invention also includes a polynucleotide consisting of or comprising a polynucleotide of the formula: X-(R ⁇ ) m -(R 2 MR 3 ) n -Y wherein, at the 5' end of the molecule, X is hydrogen, a metal or a modified nucleotide residue, or together with Y defines a covalent bond, and at the 3' end of the molecule, Y is hydrogen, a metal, or a modified nucleotide residue, or together with X defines the covalent bond, each occurrence of Ri and R3 is independently any nucleic acid residue or modified nucleic acid residue, m is an integer between 1 and 3000 or zero , n is an integer between 1 and 3000 or zero, and R 2 is a nucleic acid sequence or modified nucleic acid sequence of the invention, particularly a nucleic acid sequence selected from Table 1 or a modified nucleic acid sequence thereof.
  • R 2 is oriented so that its 5' end nucleic acid residue is at the left, bound to R ⁇ and its 3' end nucleic acid residue is at the right, bound to R3.
  • Any stretch of nucleic acid residues denoted by either Ri and/or R2, where m and/or n is greater than 1, may be either a heteropolymer or a homopolymer, preferably a heteropolymer.
  • the polynucleotide of the above formula is a closed, circular polynucleotide, which can be a double-stranded polynucleotide wherein the formula shows a first strand to which the second strand is complementary.
  • m and/or n is an integer between 1 and 1000.
  • Other preferred embodiments of the invention are provided where m is an integer between 1 and 50, 100 or 500, and n is an integer between 1 and 50, 100, or 500.
  • a polynucleotide of the invention is derived from Staphylococcus aureus, however, it may preferably be obtained from other organisms of the same taxonomic genus.
  • a polynucleotide of the invention may also be obtained, for example, from organisms of the same taxonomic family or order.
  • polynucleotide encoding a polypeptide encompasses polynucleotides that include a sequence encoding a polypeptide of the invention, particularly a bacterial polypeptide and more particularly a polypeptide of the Staphylococcus aureus AcpS having an amino acid sequence set out in Table 1 [SEQ ID NO:2].
  • polynucleotides that include a single continuous region or discontinuous regions encoding the polypeptide (for example, polynucleotides interrupted by integrated phage, an integrated insertion sequence, an integrated vector sequence, an integrated transposon sequence, or due to R A editing or genomic DNA reorganization) together with additional regions, that also may comprise coding and/or non-coding sequences.
  • the invention further relates to variants of the polynucleotides described herein that encode variants of a polypeptide having a deduced amino acid sequence of Table 1 [SEQ ID NO:2]. Fragments of polynucleotides of the invention may be used, for example, to synthesize frill-length polynucleotides of the invention.
  • polynucleotides encoding AcpS variants that have the amino acid sequence of AcpS polypeptide of Table 1 [SEQ ID NO:2] in which several, a few, 5 to 10, 1 to 5, 1 to 3, 2, 1 or no amino acid residues are substituted, modified, deleted and/or added, in any combination.
  • amino acid sequence of AcpS polypeptide of Table 1 [SEQ ID NO:2] in which several, a few, 5 to 10, 1 to 5, 1 to 3, 2, 1 or no amino acid residues are substituted, modified, deleted and/or added, in any combination.
  • silent substitutions, additions and deletions that do not alter the properties and activities of AcpS polypeptide.
  • polynucleotides that are at least 95% or 97% identical over their entire length to a polynucleotide encoding AcpS polypeptide having an amino acid sequence set out in Table 1 [SEQ ID NO:2], and polynucleotides that are complementary to such polynucleotides.
  • polynucleotides that comprise a region that is at least 95% are especially preferred.
  • those with at least 97% are highly preferred among those with at least 95%, and among these those with at least 98% and at least 99% are particularly highly preferred, with at least 99% being the more preferred.
  • Preferred embodiments are polynucleotides encoding polypeptides that retain substantially the same biological function or activity as a mature polypeptide encoded by a DNA of Table 1 [SEQ ID NO: 1].
  • polynucleotides that hybridize, particularly under stringent conditions, to AcpS polynucleotide sequences, such as those polynucleotides in Table 1.
  • the invention further relates to polynucleotides that hybridize to the polynucleotide sequences provided herein.
  • the invention especially relates to polynucleotides that hybridize under stringent conditions to the polynucleotides described herein.
  • stringent conditions and “stringent hybridization conditions” mean hybridization CK-curring only if there is at least 95% and preferably at least 97% identity between the sequences.
  • a specific example of stringent hybridization conditions is overnight incubation at 42°C in a solution comprising: 50% formamide, 5x SSC (150mM NaCl, 15mM trisodium citrate), 50 mM sodium phosphate (pH7.6), 5x Denhardt's solution, 10% dextran sulfate, and 20 micrograms/ml of denatured, sheared salmon sperm DNA, followed by washing the hybridization support in O.lx SSC at about 65°C.
  • Hybridization and wash conditions are well known and exemplified in Sambrook, et al., Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor, N.Y., (1989), particularly Chapter 11 therein. Solution hybridization may also be used with the polynucleotide sequences provided by the invention.
  • the invention also provides a polynucleotide consisting of or comprising a polynucleotide sequence obtained by screening an appropriate library comprising a complete gene for a polynucleotide sequence set forth in SEQ ID NO:l under stringent hybridization conditions with a probe having the sequence of said polynucleotide sequence set forth in SEQ ID NO: 1 or a fragment thereof; and isolating said polynucleotide sequence.
  • Fragments useful for obtaining such a polynucleotide include, for example, probes and primers fully described elsewhere herein.
  • the polynucleotides of the invention may be used as a hybridization probe for RNA, cDNA and genomic DNA to isolate full-length cDNAs and genomic clones encoding AcpS and to isolate cDNA and genomic clones of other genes that have a high identity, particularly high sequence identity, to a AcpS gene.
  • Such probes generally will comprise at least 15 nucleotide residues or base pairs.
  • such probes will have at least 30 nucleotide residues or base pairs and may have at least 50 nucleotide residues or base pairs.
  • Particularly preferred probes will have at least 20 nucleotide residues or base pairs and will have lee than 30 nucleotide residues or base pairs.
  • a coding region of a AcpS gene may be isolated by screening using a DNA sequence provided in Table 1 [SEQ ID NO: 1] to synthesize an oligonucleotide probe.
  • a labeled oligonucleoti.de having a sequence complementary to that of a gene of the invention is then used to screen a Ubrary of cDN-A, genomic DNA or mRNA to dete ⁇ nine which members of the library the probe hybridizes to.
  • PCR Nucleic acid amplification
  • PCR Nucleic acid amplification
  • the PCR reaction is then repeated using "nested" primers, that is, primers designed to anneal within the amplified product (typically an adaptor specific primer that anneals further 3' in the adaptor sequence and a gene specific primer that anneals further 5' in the selected gene sequence).
  • the products of this reaction can then be analyzed by DNA sequencing and a full-length DNA constructed either by joining the product directly to the existing DNA to give a complete sequence, or carrying out a separate full- length PCR using the new sequence information for the design of the 5' primer.
  • polynucleotides and polypeptides of the invention may be employed, for example, as research reagents and materials for discovery of treatments of and diagnostics for diseases, particularly human diseases, as further discussed herein relating to polynucleotide assays.
  • polynucleotides of the invention that are oligonucleotides derived from a sequence of Table 1 [SEQ ID NOS:l or 2] may be used in the processes herein as described, but preferably for PCR, to determine whether or not the polynucleotides identified herein in whole or in part are transcribed in bacteria in infected tissue. It is recognized that such sequences will also have utility in diagnosis of the stage of infection and type of infection the pathogen has attained.
  • the invention also provides polynucleotides that encode a polypeptide that is a mature protein plus additional amino or (-arboxyl-te ⁇ ninal amino acids, or amino acids interior to a mature polypeptide (when a mature form has more than one polypeptide chain, for instance).
  • Such sequences may play a role in processing of a protein from precursor to a mature form, may allow protein transport, may lengthen or shorten protein half-life or may facilitate manipulation of a protein for assay or production, among other things.
  • the additional amino acids may be processed away from a mature protein by cellular enzymes.
  • polynucleotide of the invention there is provided a polynucleotide complementary to it. It is preferred that these complementary polynucleotides are fully complementary to each polynucleotide with which they are complementary.
  • a precursor protein, having a mature form of the polypeptide fused to one or more prosequences may be an inactive form of the polypeptide.
  • inactive precursors When prosequences are removed such inactive precursors generally are activated. Some or all of the prosequences may be removed before activation. Generally, such precursors are called proproteins.
  • a polynucleotide of the invention may encode a mature protein, a mature protein plus a leader sequence (which may be referred to as a preprotein), a precursor of a mature protein having one or more prosequences that are not the leader sequences of a preprotein, or a preproprotein, which is a precursor to a proprotein, having a leader sequence and one or more prosequences, which generally are removed during processing steps that produce active and mature forms of the polypeptide.
  • a leader sequence which may be referred to as a preprotein
  • a preproprotein which is a precursor to a proprotein, having a leader sequence and one or more prosequences, which generally are removed during processing steps that produce active and mature forms of the polypeptide.
  • the invention also relates to vectors that comprise a polynucleotide or polynucleotides of the invention, host cells that are genetically engineered with vectors of the invention and the production of polypeptides of the invention by recombinant techniques.
  • Cell-free translation systems can also be employed to produce such proteins using RNAs derived from the DNA constructs of the invention.
  • Recombinant polypeptides of the present invention may be prepared by processes well known in those skilled in the art from genetically engineered host cells comprising expression systems.
  • the present invention relates to expression systems which comprise a polynucleotide or polynucleotides of the present invention, to host cells which are genetically engineered with such expression systems, and to the production of polypeptides of the invention by recombinant techniques.
  • host cells can be genetically engineered to incorporate expression systems or portions thereof or polynucleotides of the invention.
  • Introduction of a polynucleotide into the host cell can be effected by methods described in many standard laboratory manuals, such as Davis, et al, BASIC METHODS IN MOLECULAR BIOLOGY, (1986) and Sambrook, et al, MOLECULAR CLONING: A LABORATORY MANUAL, 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989), such as, calcium phosphate transfection, DEAE-dextran mediated transfection, transvection, microinjection, cationic lipid-mediated transfection, electroporation, transduction, scrape loading, ballistic introduction and infection.
  • bacterial cells such as cells of streptococci, staphylococci, enterococci E. coli, streptomyces, cyanobacteria, Bacillus subtilis, and Staphylococcus aureus
  • fungal cells such as cells of a yeast, Kluveromyces, Saccharomyces, a basidiomycete, Candida albicans and Aspergillus
  • insect cells such as cells of Drosophila S2 and Spodoptera Sf9
  • animal cells such as CHO, COS, HeLa, C127, 3T3, BHK, 293, CV-1 and Bowes melanoma cells
  • plant cells such as cells of a gymnosperm or angiosperm.
  • vectors include, among others, chromosomal-, episomal- and virus-derived vectors, for example, vectors derived from bacterial plasmids, from bacteriophage, from transposons, from yeast episomes, from insertion elements, from yeast chromosomal elements, from viruses such as baculoviruses, papova viruses, such as SV40, vaccinia viruses, adenoviruses, fowl pox viruses, pseudorabies viruses, picornaviruses and rctroviruses, and vectors derived from combinations thereof, such as those derived from plasmid and bacteriophage genetic elements, such as cosmids and phagemids.
  • the expression system constructs may comprise control regions that regulate as well as engender expression.
  • any system or vector suitable to ma tain, propagate or express polynucleotides and/or to express a polypeptide in a host may be used for expression in this regard.
  • the appropriate DNA sequence may be inserted into the expression system by any of a variety of well-known and routine techniques, such as, for example, those set forth in Sambrook et al, MOLECULAR CLONING, A LABORATORY MANUAL, (supra).
  • secretion signals may be incorporated into the expressed polypeptide. These signals may be endogenous to the polypeptide or they may be heterologous signals.
  • Polypeptides of the invention can be recovered and purified from recombinant cell cultures by well- known methods including ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography, and lectin cl--romatography. Most preferably, high performance Uquid chromatography is employed for purification.
  • WeU known techniques for refolding protein may be employed to regenerate active conformation when the polypeptide is denatured during isolation and or purification.
  • This invention is also related to the use of AcpS polynucleotides and polypeptides of the invention for use as diagnostic reagents. Detection of AcpS polynucleotides and/or polypeptides in a eukaryote, particularly a mammal, and especially a human, will provide a diagnostic method for diagnosis of disease, staging of disease or response of an infectious organism to drugs. Eukaryotes, particularly mammals, and especially humans, particularly those infected or suspected to be infected with an organism comprising the AcpS gene or protein, may be detected at the nucleic acid or amino acid level by a variety of weU known techniques as weU as by methods provided herein.
  • Polypeptides and polynucleotides for prognosis, diagnosis or other analysis may be obtained from a putatively infected and/or infected individual's bodily materials.
  • Polynucleotides from any of these sources particularly DNA or RNA, may be used directly for detection or may be amplified enzymaticaUy by using PCR or any other amplification technique prior to analysis.
  • RNA, particularly mRNA, cDNA and genomic DNA may also be used in the same ways. Using amplification, characterization of the species and strain of infectious or resident organism present in an individual, may be made by an analysis of the genotype of a selected polynucleotide of the organism.
  • Deletions and insertions can be detected by a change in size of the amplified product in comparison to a genotype of a reference sequence selected from a related organism, preferably a different species of the same genus or a different strain of the same species.
  • Point mutations can be identified by hybridizing amplified DNA to labeled AcpS polynucleotide sequences. Perfectly or significantly matched sequences can be distinguished from imperfectly or more significantly mismatched duplexes by DNase or RNase digestion, for DNA or RNA respectively, or by detecting differences in melting temperatures or reriaturation kinetics.
  • Polynucleotide sequence differences may also be detected by alterations in the electrophoretic mobility of polynucleotide fragments in gels as compared to a reference sequence. This may be carried out with or without denaturing agents. Polynucleotide differences may also be detected by direct DNA or RNA sequencing. See, for example, Myers et al, Science, 230: 1242 (1985). Sequence changes at specific locations also may be revealed by nuclease protection assays, such as RNase, VI and SI protection assay or a chemical cleavage method. See, for example, Cotton et al., Proc. Natl. Acad. Sci, USA, 85: 4397-4401 (1985).
  • an array of oUgonucleotides probes comprising AcpS nucleotide sequence or fragments thereof can be constructed to conduct efficient screening of, for example, genetic mutations, serotype, taxonomic classification or identification.
  • Array technology methods are weU known and have general appUcabiUty and can be used to address a variety of questions in molecular genetics including gene expression, genetic linkage, and genetic variabiUty (see, for example, Chee etal, Science, 274: 610 (1996)).
  • the present invention relates to a diagnostic kit which comprises: (a) a polynucleotide of the present invention, preferably the nucleotide sequence of SEQ ID NO:l, or a fragment thereof ; (b) a nucleotide sequence complementary to that of (a); (c) a polypeptide of the present invention, preferably the polypeptide of SEQ ID NO:2 or a fragment thereof; or (d) an antibody to a polypeptide of the present invention, preferably to the polypeptide of SEQ ID NO:2. It will be appreciated that in any such kit, (a), (b), (c) or (d) may comprise a substantial component.
  • Such a kit will be of use in diagnosing a disease or susceptibility to a Disease, among others.
  • This invention also relates to the use of polynucleotides of the present invention as diagnostic reagents. Detection of a mutated form of a polynucleotide of the invention, preferable, SEQ ID NO: 1, which is associated with a disease or pathogenicity will provide a diagnostic tool that can add to, or define, a diagnosis of a disease, a prognosis of a course of disease, a dete--mination of a stage of disease, or a susceptibility to a disease, which results from under-expression, over-expression or altered expression of the polynucleotide.
  • Organisms, particularly infectious organisms, carrying mutations in such polynucleotide may be detected at the polynucleotide level by a variety of techniques, such as those described elsewhere herein.
  • the differences in a polynucleotide and/or polypeptide sequence between organisms possessing a first phenotype and organisms possessing a different, second different phenotype can also be determined. If a mutation is observed in some or all organisms possessing the first phenotype but not in any organisms possessing the second phenotype, then the mutation is likely to be the causative agent of the first phenotype.
  • Cells from an organism carrying mutations or polymorphisms (alleUc variations) in a polynucleotide and or polypeptide of the invention may also be detected at the polynucleotide or polypeptide level by a variety of techniques, to allow for serotyping, for example.
  • RT-PCR can be used to detect mutations in the RNA. It is particularly preferred to use RT-PCR in conjunction with automated detection systems, such as, for example, GeneScan.
  • RNA, cDNA or genomic DNA may also be used for the same purpose, PCR.
  • PCR primers complementary to a polynucleotide encoding AcpS polypeptide can be used to identify and analyze mutations.
  • the invention further provides these primers with 1, 2, 3 or 4 nucleotides removed from the 5' and/or the 3' end.
  • These primers may be used for, among other things, amplifying AcpS DNA and/or RNA isolated from a sample derived from an individual, such as a bodily material.
  • the primers may be used to amplify a polynucleotide isolated from an infected individual, such that the polynucleotide may then be subject to various techniques for elucidation of the polynucleotide sequence. In this way, mutations in the polynucleotide sequence may be detected and used to diagnose and/or prognose the infection or its stage or course, or to serotype and/or classify the infectious agent.
  • the invention further provides a process for diagnosing, disease, preferably bacterial infections, more preferably infections caused by Staphylococcus aureus, comprising determining from a sample derived from an individual, such as a bodily material, an increased level of expression of polynucleotide having a sequence of Table 1 [SEQ ID NO:l].
  • Increased or decreased expression of a AcpS polynucleotide can be measured using any on of the methods well known in the art for the quantitation of polynucleotides, such as, for example, amplification, PCR, RT-PCR, RNase protection, Northern blotting, spectrometry and other hybridization methods.
  • a diagnostic assay in accordance with the invention for detecting over-expression of AcpS polypeptide compared to normal control tissue samples may be used to detect the presence of an infection, for example.
  • Assay techniques that can be used to determine levels of a AcpS polypeptide, in a sample derived from a host, such as a bodily material, are wen-known to those of skill in the art. Such assay methods include radioimmunoassays, competitive-binding assays, Western Blot analysis, antibody sandwich assays, antibody detection and ELISA assays. Antagonists and Agonists - Assays and Molecules
  • Polypeptides and polynucleotides of the invention may also be used to assess the binding of smaU molecule substrates and Ugands in, for example, ceUs, ceU-free preparations, chemical hbraries, and natural product mixtures. These substrates and Ugands may be natural substrates and Ugands or may be structural or functional mimetics. See, e.g., CoUgan etal, Current Protocols in Immunology 1(2): Chapter 5 (1991). Polypeptides and polynucleotides of the present invention are responsible for many biological functions, including many disease states, in particular the Diseases herein mentioned.
  • the present invention provides for a method of screening compounds to identify those which stimulate or which inhibit the function of a polypeptide or polynucleotide of the invention, as weU as related polypeptides and polynucleotides.
  • agonists or antagonists e.g. , inhibitors
  • Compounds may be identified from a variety of sources, for example, cells, cell-free preparations, chemical Ubraries, and natural product mixtures.
  • Such agonists and antagonists so-identified may be natural or modified substrates, Ugands, receptors, enzymes, etc., as the case may be, of AcpS polypeptides and polynucleotides; or may be structural or functional mimetics thereof (see CoUgan et al. , Current Protocols in Immunology l(2):Chapter 5 (1991)).
  • the screening methods may simply measure the binding of a candidate compound to the polypeptide or polynucleotide, or to cells or membranes bearing the polypeptide or polynucleotide, or a fusion protein of the polypeptide by means of a label directly or indirectly associated with the candidate compound.
  • the screening method may involve competition with a labeled competitor.
  • these screening methods may test whether the candidate compound results in a signal generated by activation or inhibition of the polypeptide or polynucleotide, using detection systems appropriate to the cells comprising the polypeptide or polynucleotide.
  • Inhibitors of activation are generally assayed in the presence of a known agonist and the effect on activation by the agonist by the presence of the candidate compound is observed.
  • Constitutively active polypeptide and/or constitutively expressed polypeptides and polynucleotides may be employed in screening methods for inverse agonists, in the absence of an agonist or antagonist, by testing whether the candidate compound results in inhibition of activation of the polypeptide or polynucleotide, as the case may be.
  • the screening methods may simply comprise the steps of mixing a candidate compound with a solution comprising a polypeptide or polynucleotide of the present invention, to form a mixture, measuring AcpS polypeptide and/or polynucleotide activity in the mixture, and comparing the AcpS polypeptide and/or polynucleotide activity of the mixture to a standard.
  • Fusion proteins such as those made from Fc portion and AcpS polypeptide, as herein described, can also be used for high-throughput screening assays to identify antagonists of the polypeptide of the present invention, as well as of phylogenetically and and or functionally related polypeptides (see D. Bennett et al., J Mol Recognition, 8:52-58 (1995); and K. Johanson et al., J Biol Chem, 270(16):9459-9471 (1995)).
  • polypeptides and antibodies that bind to and/or interact with a polypeptide of the present invention may also be used to configure screening methods for detecting the effect of added compounds on the production of mRNA and/or polypeptide in cells.
  • an ELISA assay may be constructed for measuring secreted or cell associated levels of polypeptide using monoclonal and polyclonal antibodies by standard methods known in the art. This can be used to discover agents which may inhibit or enhance the production of polypeptide (also called antagonist or agonist, respectively) from suitably manipulated cells or tissues.
  • the invention also provides a method of screening compounds to identify those which enhance
  • agonist or block (antagonist) the action of AcpS polypeptides or polynucleotides, particularly those compounds that are bacteristatic and/or bactericidal.
  • the method of screening may involve high-throughput techniques. For example, to screen for agonists or antagonists, a synthetic reaction mix, a cellular compartment, such as a membrane, ceU envelope or ceU waU, or a preparation of any thereof, comprising AcpS polypeptide and a labeled substrate or Ugand of such polypeptide is incubated in the absence or the presence of a candidate molecule that may be a AcpS agonist or antagonist.
  • the ability of the candidate molecule to agonize or antagonize the AcpS polypeptide is reflected in decreased binding of the labeled Ugand or decreased production of product from such substrate.
  • Molecules that bind gratuitously, i.e., without inducing the effects of AcpS polypeptide are most likely to be good antagonists.
  • Molecules that bind weU and, as the case may be, increase the rate of product production from substrate, increase signal transduction, or increase chemical channel activity are agonists. Detection of the rate or level of, as the case may be, production of product from substrate, signal transduction, or chemical channel activity may be enhanced by using a reporter system.
  • Reporter systems that may be useful in this regard include but are not limited to colorimetric, labeled substrate converted into product, a reporter gene that is responsive to changes in AcpS polynucleotide or polypeptide activity, and binding assays known in the art.
  • Polypeptides of the invention may be used to identify membrane bound or soluble receptors, if any, for such polypeptide, through standard receptor binding techniques known in the art. These techniques include, but are not limited to, Ugand binding and crosslinking assays in which the polypeptide is labeled with a radioactive isotope (for instance, 1 ⁇ 1), chemically modified (for instance, biotinylated), or fused to a peptide sequence suitable for detection or purification, and incubated with a source of the putative receptor (e.g., cells, cell membranes, cell supernatants, tissue extracts, bodily materials). Other methods include biophysical techniques such as surface plasmon resonance and spectroscopy. These screening methods may also be used to identify agonists and antagonists of the polypeptide which compete with the binding of the polypeptide to its receptor(s), if any. Standard methods for conducting such assays are well understood in the art.
  • the fluorescence polarization value for a fluorescently-tagged molecule depends on the rotational correlation time or tumbling rate. Protein complexes, such as formed by AcpS polypeptide associating with another AcpS polypeptide or other polypeptide, labeled to comprise a fluorescently- labeled molecule will have higher polarization values than a fluorescently labeled monomeric protein. It is preferred that this method be used to characterize small molecules that disrupt polypeptide complexes.
  • Fluorescence energy transfer may also be used characterize small molecules that interfere with the formation of AcpS polypeptide dimers, trimers, tetramers or higher order structures, or structures formed by AcpS polypeptide bound to another polypeptide.
  • AcpS polypeptide can be labeled with both a donor and acceptor fluorophore. Upon mixing of the two labeled species and excitation of the donor fluorophore, fluorescence energy transfer can be detected by observing fluorescence of the acceptor. Compounds that block dimerization will inhibit fluorescence energy transfer.
  • Surface plasmon resonance can be used to monitor the effect of small molecules on AcpS polypeptide self-association as well as an association of AcpS polypeptide and another polypeptide or small molecule.
  • AcpS polypeptide can be coupled to a sensor chip at low site density such that covalently bound molecules will be monomeric.
  • Solution protein can then passed over the AcpS polypeptide -coated surface and specific binding can be detected in real-time by monitoring the change in resonance angle caused by a change in local refractive index. This technique can be used to characterize the effect of small molecules on kinetic rates and equilibrium binding constants for AcpS polypeptide self-association as well as an association of AcpS polypeptide and another polypeptide or small molecule.
  • a scintillation proximity assay may be used to characterize the interaction between an association of AcpS polypeptide with another AcpS polypeptide or a different polypeptide .
  • AcpS polypeptide can be coupled to a scintillation-filled bead. Addition of radio-labeled AcpS polypeptide results in binding where the radioactive source molecule is in close proximity to the scintillation fluid. Thus, signal is emitted upon AcpS polypeptide binding and compounds that prevent AcpS polypeptide self-association or an association of AcpS polypeptide and another polypeptide or small molecule will diminish signal.
  • methods for identifying compounds which bind to or otherwise interact with and inhibit or activate an activity or expression of a polypeptide and/or polynucleotide of the invention comprising: contacting a polypeptide and/or polynucleotide of the invention ⁇ ith a compound to be screened under conditions to permit binding to or other interaction between the compound and the polypeptide and/or polynucleotide to assess the binding to or other interaction with the compound, such binding or interaction preferably being associated with a second component capable of providing a detectable signal in response to the binding or interaction of the polypeptide and/or polynucleotide with the compound; and dete ⁇ r-ining whether the compound binds to or otherwise interacts ⁇ ith and activates or inhibits an activity or expression of the polypeptide and/or polynucleotide by detecting the presence or absence of a signal generated from the binding or interaction of the compound with the polypeptide and/or polynucleotide.
  • an assay for AcpS agonists is a competitive assay that combines AcpS and a potential agonist with AcpS-binding molecules, recombinant AcpS binding molecules, natural substrates or ligands, or substrate or Ugand mimetics, under appropriate conditions for a competitive inhibition assay.
  • AcpS can be labeled, such as by radioactivity or a colorimetric compound, such that the number of AcpS molecules bound to a binding molecule or converted to product can be deteimined accurately to assess the effectiveness of the potential antagonist.
  • a polypeptide and/or polynucleotide of the present invention may also be used in a method for the structure-based design of an agonist or antagonist of the polypeptide and/or polynucleotide, by: (a) determining in the first instance the three- dimensional structure of the polypeptide and/or polynucleotide, or complexes thereof; (b) deducing the three-dimensional structure for the likely reactive site(s), binding site(s) or motif(s) of an agonist or antagonist; (c) synthesizing candidate compounds that are predicted to bind to or react with the deduced binding site(s), reactive site(s), and/or motif(s); and
  • the present invention provides methods of treating abnormal conditions such as, for instance, a Disease, related to either an excess of, an under-expression of, an elevated activity of, or a decreased activity of AcpS polypeptide and/or polynucleotide.
  • One approach comprises administering to an individual in need thereof an inhibitor compound (antagomst) as herein descnbed, optionally in combination with a pharmaceutically acceptable earner, in an amount effective to inhibit the function and/or expression of the polypeptide and/or polynucleotide, such as, for example, by blocking the binding of Ugands, substrates, receptors, enzymes, etc , or by inhibiting a second signal, and thereby alleviating the abnormal condition
  • soluble forms of the polypeptides still capable of binding the Ugand, substrate, enzymes, receptors, etc m competition with endogenous polypeptide and/or polynucleotide may be administered Typical examples of such competitors mclude fragments of the AcpS polypeptide and/or polypeptide
  • expression of the gene encoding endogenous AcpS polypeptide can be inhibited usmg expression blocking techniques
  • This blocking may be targeted against any step m gene expression, but is preferably targeted against transcription and/or translation
  • An examples of a known technique of this sort mvolve the use of antisense sequences, either internally generated or separately administered (see, for example, O'Connor, J Neurochem (1991) 56 560 m Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988))
  • ohgonucleotides which form triple helices with the gene can be supplied (see, for example, Lee et al , Nucleic Acids Res (1979) 6 3073, Cooney et al , Science (1988) 241 456, Dervan et al , Science (1991) 251 1360)
  • These ohgomers can be administered /.er se or the relevant ohgomers can be expressed in vivo
  • Each of the polynucleotide sequences provided herem may be used m the discovery and development of antibactenal compounds
  • the encoded protein upon expression, can be used as a target for the screenmg of antibactenal drugs
  • the polynucleotide sequences encoding the ammo terminal regions of the encoded protem or Shine-Delgarno or other translation facilitating sequences of the respective mRNA can be used to construct antisense sequences to control the expression of the codmg sequence of mterest
  • the mvention also provides the use of the polypeptide, polynucleotide, agomst or antagomst of the invention to mterfere with the imtial physical mteraction between a pathogen or pathogens and a eukaryotic, preferably mammalian, host responsible for sequelae of infection
  • the molecules of the mvention may be used m the prevention of adhesion of bactena, m particular gram positive and/or gram negative bactena, to eukaryotic, preferably mammalian, extracellular matnx protems on in-dwelling devices or to extracellular matnx protems m wounds, to block bactenal adhesion between eukaryotic, preferably mammalian, extracellular matnx protems and bactenal AcpS protems that mediate tissue damage and/or, to block the normal progression of pathogenesis m infections initiated other than by the implantation of m-dwellmg devices or by other
  • AcpS agonists and antagonists preferably bactenstabc or bactencidal agonists and antagonists
  • the antagonists and agonists of the mvention may be employed, for instance, to prevent, inhibit and/or treat diseases
  • Hehcobacter pylon herem "H pylori" bactena infect the stomachs of over one-third of the world's population causmg stomach cancer, ulcers, and gastntis (International Agency for Research on Cancer (1994) Schistosomes, Liver Flukes and Hehcobacter Pylori (International Agency for Research on Cancer, Lyon, France, http //www uicc ch/ecp/ecp2904 htm)
  • the International Agency for Research on Cancer recently recognized a cause-and-effect relationship between H pylori and gastric adenocarcrnoma, classifying the bactenum as a Group I (definite) carcinogen
  • Preferred antimicrobial compounds of the mvention agonists and antagonists of AcpS polypeptides and/or polynucleotides found usmg screens provided by the mvention, or known in the art, particularly narrow-spectrum antibiotics, should be useful m the treatment of H pylori infection Such treatment
  • Bodily matenal(s) means any matenal denved from an mdividual or from an organism infecting, infesting or inhabiting an mdividual, including but not limited to, ceUs, tissues and waste, such as, bone, blood, serum, cerebrospinal fluid, semen, sahva, muscle, cartilage, organ tissue, skin, urine, stool or autopsy matenals
  • D ⁇ sease(s) means any disease caused by or related to infection by a bactena, mcluding , for example, disease, such as, infections of the upper respiratory tract (e g , otitis media, bactenal tracheihs, acute epiglottitis, thyroiditis), lower respiratory (e g , empyema, lung abscess), cardiac (e g , infective endocarditis), gastrointestinal (e g , secretory dianhoea, splenic absces, retropentoneal abscess), CNS (e g , cerebral abscess), eye (e g , blephantis, conjunctivitis, keratitis, endophthalmitis, preseptal and orbital celluhtis, darcryocystitis), kidney and urinary tract (e g , epididymitis, lntrarenal and pennephnc absces,
  • “Host cell(s)” is a cell which has been transformed or transfected, or is capable of transformation or transfection by an exogenous polynucleotide sequence
  • Identity is a relationship between two or more polypeptide sequences or two or more polynucleotide sequences, as the case may be, as determined by compa ⁇ ng the sequences In the art, ' identity” also means the degree of sequence relatedness between polypeptide or polynucleotide sequences, as the case may be, as determined by the match between strings of such sequences "Identity” can be readily calculated by known methods, including but not limited to those descnbed m (Computational Molecular Biology, Lesk, A M , ed , Oxford University Press, New York, 1988, BwLomputing Informatics and Genome Projects, Smith, D W , ed , Academic Press, New York, 1993, Computer Analysis of Sequence Data, Part I, Gnffin, A M , and Gnfifin
  • Polynucleotide embodiments further include an isolated polynucleotide comprising a polynucleotide sequence having at least a 50, 60, 70, 80, 85, 90, 95, 97 or 100% identity to the reference sequence of SEQ ID NO: 1, wherein said polynucleotide sequence may be identical to the reference sequence of SEQ ID NO: 1 or may include up to a certain integer number of nucleotide alterations as compared to the reference sequence, wherein said alterations are selected from the group consisting of at least one nucleotide deletion, substitution, including transition and transversion, or insertion, and wherein said alterations may occur at the 5' or 3' terminal positions of the reference nucleotide sequence or anywhere between those terminal positions, interspersed either individually among the nucleotides in the reference sequence or in one or more contiguous groups within the reference sequence, and wherein said number of nucleotide alterations is determined by multiplying the total number of nucleotides in SEQ ID NO: 1 by the integer
  • n n is the number of nucleotide alterations
  • x n is the total number of nucleotides in SEQ ID NO: l
  • y is 0.95 for 95%, 0.97 for 97% or 1.00 for 100%
  • is the symbol for the multiplication operator, and wherein any non-integer product of x n and y is rounded down to the nearest integer prior to subtracting it from x n .
  • Alterations of a polynucleotide sequence encoding the polypeptide of SEQ ID NO:2 may create nonsense, missense or frameshift mutations in this coding sequence and thereby alter the polypeptide encoded by the polynucleotide following such alterations.
  • a polynucleotide sequence of the present invention may be identical to the reference sequence of SEQ ID NO: 1, that is it may be 100% identical, or it may include up to a certain integer number of nucleic acid alterations as compared to the reference sequence such that the percent identity is less than 100% identity.
  • Such alterations are selected from the group consisting of at least one nucleic acid deletion, substitution, including transition and transversion, or insertion, and wherein said alterations may occur at the 5' or 3' terminal positions of the reference polynucleotide sequence or anywhere between those terminal positions, interspersed either individually among the nucleic acids in the reference sequence or in one or more contiguous groups within the reference sequence.
  • the number of nucleic acid alterations for a given percent identity is dete ⁇ nined by multiplying the total number of nucleic acids in SEQ ID NO: 1 by the integer defining the percent identity divided by 100 and then subtracting that product from said total number of nucleic acids in SEQ ID NO: 1, or:
  • n n is the number of nucleic acid alterations
  • x n is the total number of nucleic acids in SEQ ID NO: 1
  • y is, for instance 0.95 for 95%, 0.97 for 97% or 1.00 for 100%, etc.
  • is the symbol for the multiplication operator, and wherein any non-integer product of x n and y is rounded down to the nearest integer prior to subtracting it from x n .
  • Polypeptide embodiments further include an isolated polypeptide comprising a polypeptide having at least a 95, 97 or 100% identity to a polypeptide reference sequence of SEQ ID NO:2, wherein said polypeptide sequence may be identical to the reference sequence of SEQ ID NO:2 or may include up to a certain integer number of amino acid alterations as compared to the reference sequence, wherein said alterations are selected from the group consisting of at least one amino acid deletion, substitution, including conservative and non-conservative substitution, or insertion, and wherein said alterations may occur at the amino- or carboxy-terminal positions of the reference polypeptide sequence or anywhere between those terminal positions, interspersed either individually among the amino acids in the reference sequence or in one or more contiguous groups within the reference sequence, and wherein said number of amino acid alterations is determined by multiplying the total number of amino acids in SEQ ID NO:2 by the integer de-i-ning the percent identity divided by 100 and then subtracting that product from said total number of amino acids in SEQ ID NO:2, or:
  • n a is the number of amino acid alterations
  • x a is the total number of amino acids in SEQ ID NO:2
  • y is 0.95 for 95%, 0.97 for 97% or 1.00 for 100%
  • is the symbol for the multiplication operator, and wherein any non-integer product of x a and y is rounded down to the nearest integer prior to subtracting it from x a .
  • a polypeptide sequence of the present invention may be identical to the reference sequence of SEQ ID NO:2, that is it may be 100% identical, or it may include up to a certain integer number of amino acid alterations as compared to the reference sequence such that the percent identity is less than 100% identity.
  • Such alterations are selected from the group consisting of at least one -unino acid deletion, substitution, including conservative and non-conservative substitution, or insertion, and wherein said alterations may occur at the amino- or carboxy-terminal positions of the reference polypeptide sequence or anywhere between those terminal positions, interspersed either individually among the amino acids in the reference sequence or in one or more contiguous groups within the reference sequence.
  • the number of amino acid alterations for a given % identity is determined by multiplying the total number of amino acids in SEQ ID NO:2 by the integer defining the percent identity divided by 100 and then subtracting that product from said total number of amino acids in SEQ 1D N0:2, or:
  • n a is the number of amino acid alterations
  • x a is the total number of amino acids in SEQ ID NO:2
  • y is, for instance 0.95 for 95%, 0.97 for 97% or 1.00 for 100%, etc.
  • is the symbol for the multiplication operator, and wherein any non-integer product of x a and y is rounded down to the nearest integer prior to subtracting it from x a .
  • “Individual(s)” means a multiceUular eukaryote, including, but not limited to a metazoan, a mammal, an ovid, a bovid, a simian, a primate, and a human.
  • “Isolated” means altered “by the hand of man” from its natural state, i.e., if it occurs in nature, it has been changed or removed from its original environment, or both.
  • a polynucleotide or a polypeptide naturaUy present in a Uving organism is not “isolated,” but the same polynucleotide or polypeptide separated from the coexisting materials of its natural state is “isolated", as the term is employed herein.
  • a polynucleotide or polypeptide that is introduced into an organism by transformation, genetic manipulation or by any other recombinant method is "isolated” even if it is still present in said organism, which organism may be Uving or non-Uving.
  • Organic means a (i) prokaryote, including but not limited to, a member of the genus Streptococcus, Staphylococcus, Bordetella, Corynebacterium, Mycobacterium, Neisseria, Haemophilus, Actinomycetes, Streptomycetes, Nocardia, Enterobacter, Yersinia, Fancisella, Pasturella, Moraxella, Acinetobacter, Erysipelothrix, Branhamella, Actinobacillus, Streptobacillus, Listeria, Calymmatobacterium, Brucella, Bacillus, Clostridium, Treponema, Escherichia, Salmonella, Kleibsiella, Vibrio, Proteus, Erwinia, Borrelia, Leptospira, Spirillum, Campylobacter, Shigella, Legionella, Pseudomonas, Aeromonas, Ricke
  • Polynucleotide(s) generaUy refers to any polyribonucleotide or polydeoxyribonucleotide, which may be unmodified RNA or DNA or modified RNA or DNA.
  • Polynucleotide(s) include, without -imitation, single- and double-stranded DNA, DNA that is a mixture of single- and double-stranded regions or single-, double- and triple-stranded regions, single- and double-stranded RNA, and RNA that is mixture of single- and double-stranded regions, hybrid molecules comprising DNA and RNA that may be single-stranded or, more typically, double-stranded, or triple-stranded regions, or a mixture of single- and double-stranded regions.
  • polynucleotide refers to triple-stranded regions comprising RNA or DNA or both RNA and DNA.
  • the strands in such regions may be from the same molecule or from different molecules.
  • the regions may include aU of one or more of the molecules, but more typicaUy involve only a region of some of the molecules.
  • One of the molecules of a triple-heUcal region often is an oUgonucleotide.
  • the term "polynucleotide(s)" also includes DNAs or RNAs as described above that comprise one or more modified bases.
  • DNAs or RNAs with backbones modified for stability or for other reasons are "pohnucleotide(s)" as that term is intended herein.
  • DNAs or RNAs comprising unusual bases, such as inosine, or modified bases, such as tritylated bases, to name just two examples are polynucleotides as the term is used herein. It will be appreciated that a great variety of modifications have been made to DNA and RNA that serve many useful purposes known to those of sk ⁇ l in the art.
  • polynucleotide(s) as it is employed herein embraces such chemicaUy, enzymatically or metaboUcally modified forms of polynucleotides, as weU as the chemical forms of DNA and RNA characteristic of viruses and cells, including, for example, simple and complex ceUs. "Polynucleotide(s)” also embraces short polynucleotides often referred to as oligonucleotide(s).
  • Polypeptide(s) refers to any peptide or protein comprising two or more amino acids joined to each other by peptide bonds or modified peptide bonds.
  • Polypeptide(s) refers to both short chains, commonly referred to as peptides, oUgopeptides and oUgomers and to longer chains generaUy referred to as proteins. Polypeptides may comprise amino acids other than the 20 gene encoded amino acids.
  • Polypeptide(s) include those modified either by natural processes, such as processing and other post-translational modifications, but also by chemical modification techniques.
  • Modifications include, for example, acetylation, acylation, ADP-ribosylation, amidation, covalent attachment of flavin, covalent attachment of a heme moiety, covalent attachment of a nucleotide or nucleotide derivative, covalent attachment of a Upid or lipid derivative, covalent attachment of phosphotidylinositol, cross-Unking, cyclization, disulfide bond formation, demethylation, formation of covalent cross-links, formation of cysteine, formation of pyroglutamate, formylation, gamma-carboxylation, GPI anchor formation, hydroxylation, iodination, methylation, myristoylation, oxidation, proteolytic processing, phosphorylation, prenylation, racemization, glycosylation, Upid attachment, sulfation, gamma-carboxylation of glutamic acid residues, hydroxylation and ADP-ribosylation, selenoylation
  • Polypeptides may be branched or cychc, with or without branching.
  • Cychc, branched and branched circular polypeptides may result from posttranslational natural processes and may be made by entirely synthetic methods, as weU.
  • "Recombinant expression system(s)” refers to expression systems or portions thereof or polynucleotides of the invention introduced or transformed into a host ceU or host cell lysate for the production of the polynucleotides and polypeptides of the invention.
  • 'Nariant(s) is a polynucleotide or polypeptide that differs from a reference polynucleotide or polypeptide respectively, but retains essential properties.
  • a typical variant of a polynucleotide differs in nucleotide sequence from another, reference polynucleotide. Changes in the nucleotide sequence of the variant may or may not alter the amino acid sequence of a polypeptide encoded by the reference polynucleotide. Nucleotide changes may result in amino acid substitutions, additions, deletions, fusion proteins and truncations in the polypeptide encoded by the reference sequence, as discussed below.
  • a typical variant of a polypeptide differs in amino acid sequence from another, reference polypeptide. Generally, differences are limited so that the sequences of the reference polypeptide and the variant are closely similar overall and, in many regions, identical.
  • a variant and reference polypeptide may differ in amino acid sequence by one or more substitutions, additions, deletions in any combination.
  • a substituted or inserted amino acid residue may or may not be one encoded by the genetic code.
  • the present invention also includes include variants of each of the polypeptides of the invention, that is polypeptides that vary from the referents by conservative amino acid substitutions, whereby a residue is substituted by another with like characteristics.
  • substitutions are among Ala, Val, Leu and lie; among Ser and Thr; among the acidic residues Asp and Glu; among Asn and Gin; and among the basic residues Lys and Arg; or aromatic residues Phe and Tyr.
  • Particularly prefened are variants in which several, 5-10, 1-5, 1-3, 1-2 or 1 amino acids are substituted, deleted, or added in any combination.
  • a variant of a polynucleotide or polypeptide may be a naturally occurring such as an allelic variant, or it may be a variant that is not known to occur naturally.
  • Non-naturally occurring variants of polynucleotides and polypeptides may be made by mutagenesis techniques, by direct synthesis, and by other recombinant methods known to skilled artisans.
  • Example 1 Strain selection, Library Production and Sequencing The polynucleotide having a DNA sequence given in Table 1 [SEQ ID NO:l] was obtained from a library of clones of chromosomal DNA of Staphylococcus aureus in E. coli. The sequencing data from two or more clones comprising overlapping Staphylococcus aureus DNAs was used to construct the contiguous DNA sequence in S ⁇ Q ID NO:l. Libraries may be prepared by routine methods, for example: Methods 1 and 2 below.
  • Total cellular DNA is isolated from Staphylococcus aureus WCUH 29 according to standard procedures and size-fractionated by either of two methods.
  • Method 1 Total cellular DNA is mechanically sheared by passage through a needle in order to size- fractionate according to standard procedures. DNA fragments of up to 1 lkbp in size are rendered blunt by treatment with exonuclease and DNA polymerase, and EcoRI linkers added. Fragments are ligated into the vector Lambda ZapII that has been cut with EcoRI, the library packaged by standard procedures and E.coli infected with the packaged library. The library is amplified by standard procedures.
  • Total cellular DNA is partially hydrolyzed with a one or a combination of restriction enzymes appropriate to generate a series of fragments for cloning into library vectors (e.g., Rsal, Pall, AM, Bshl235I), and such fragments are size-fractionated according to standard procedures.
  • EcoRI linkers are ligated to the DNA and the fragments then ligated into the vector Lambda ZapII that have been cut with EcoRI, the library packaged by standard procedures, and E.coli infected with the packaged library.
  • the library is amplified by standard procedures.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)

Abstract

The invention provides AcpS polypeptides and polynucleotides encoding AcpS polypeptides and methods for producing such polypeptides by recombinant techniques. Also provided are methods for utilizing AcpS polypeptides to screen for antibacterial compounds.

Description

AcpS
FIELD OF THE INVENTION
This invention relates to newly identified polynucleotides and polypeptides, and their production and uses, as well as their variants, agonists and antagonists, and their uses. In particular, the invention relates to polynucleotides and polypeptides of the phosphopantethienyl transferases family, as well as their variants, herein referred to as "AcpS," "AcpS polynucleotide(s)," and "AcpS polypeptide(s)" as the case may be.
BACKGROUND OF THE INVENTION It is particularly preferred to employ Staphylococcal genes and gene products as targets for the development of antibiotics. The Staphylococci make up a medically important genera of microbes. They are known to produce two types of disease, invasive and toxigenic. Invasive infections are characterized generally by abscess formation effecting both skin surfaces and deep tissues. Staphylococcus aureus is the second leading cause of bacteremia in cancer patients. Osteomyelitis, septic arthritis, septic thrombophlebitis and acute bacterial endocarditis are also relatively common. There are at least three clinical conditions resulting from the toxigenic properties of Staphylococci. The manifestation of these diseases result from the actions of exotoxins as opposed to tissue invasion and bacteremia. These conditions include: Staphylococcal food poisoning, scalded skin syndrome and toxic shock syndrome.
The frequency of Staphylococcus aureus infections has risen dramatically in the past few decades. This has been attributed to the emergence of multiply antibiotic resistant strains and an increasing population of people with weakened immune systems. It is no longer uncommon to isolate Staphylococcus aureus strains that are resistant to some or all of the standard antibiotics. This phenomenon has created an unmet medical need and demand for new anti-microbial agents, vaccines, drug screening methods, and diagnostic tests for this organism. Moreover, the drug discovery process is currently undergoing a fundamental revolution as it embraces "functional genomics," that is, high throughput genome- or gene-based biology. This approach is rapidly superseding earlier approaches based on "positional cloning" and other methods. Functional genomics relies heavily on the various tools of bioinformatics to identify gene sequences of potential interest from the many molecular biology databases now available as well as from other sources. There is a continuing and significant need to identify and characterize further genes and other polynucleotides sequences and their related polypeptides, as targets for drug discovery.
Clearly, there exists a need for polynucleotides and polypeptides, such as the AcpS embodiments of the invention, that have a present benefit of, among other things, being useful to screen compounds for antimicrobial activity. Such factors are also useful to determine their role in pathogenesis of infection, dysfunction and disease. There is also a need for identification and characterization of such factors and their antagonists and agonists to find ways to prevent, ameliorate or correct such infection, dysfunction and disease.
SUMMARY OF THE INVENTION The present invention relates to AcpS, in particular AcpS polypeptides and AcpS polynucleotides, recombinant materials and methods for their production. J-n another aspect, the invention relates to methods for using such polypeptides and polynucleotides, including treatment of microbial diseases, amongst others. In a further aspect, the invention relates to methods for identifying agonists and antagonists using the materials provided by the invention, and for treating microbial infections and conditions associated with such infections with the identified agonist or antagomst compounds. In a still further aspect, the invention relates to diagnostic assays for detecting diseases associated with microbial infections and conditions associated with such infections, such as assays for detecting AcpS expression or activity.
Various changes and modifications within the spirit and scope of the disclosed invention will become readily apparent to those skilled in the art from reading the following descriptions and from reading the other parts of the present disclosure.
DESCRIPTION OF THE INVENTION
The invention relates to AcpS polypeptides and polynucleotides as described in greater detail below. In particular, the invention relates to polypeptides and polynucleotides of a AcpS of Staphylococcus aureus, which is related by amino acid sequence homology to E.coli acpS polypeptide. The invention relates especially to AcpS having a nucleotide and amino acid sequences set out in Table 1 as SEQ ED NO:l and SEQ ID NO:2 respectively. Note that sequences recited in the Sequence Listing below as "DNA" represent an exemplification of the invention, since those of ordinary skill will recognize that such sequences can be usefully employed in polynucleotides in general, including ribopolynucleotides.
TABLE 1 AcpS Polynucleotide and Polypeptide Sequences
(A) Staphylococcus aureus AcpS polynucleotide sequence [SEQ ID NO: 1]. 5 ' -
ATGATACATGGAATTGGTGTAGATTT-2-ATCG-V^TCGATCGAAT-V^-AGTGTTATATAGTAA.GCAGCCAAAATTG GTTGAGCGGATTTTAACTAAAAATGAACAGCACAAATTCAACAATTTCACACATGAGCAACGTAAAATTGAATTT TTAGCTGGCAGGTTTGCTACAAAAGAAGCGTTCAGTAAAGCATTAGGCACAGGCTTAGGAAAACATGTAGCTTTT AACGATATAGACTGTTACAACGACGAACTTGGCAAACCAAAGATTGATTACGAAGGGTTCATCGTACATGTTAGT ATCTCACACACTGAGCATTATGCGATGAGCCAAGTTGTTTTAGAAAAGTCAGCATTTTAA-3 ' (B) Staphylococcus aureus AcpS polypeptide sequence deduced from a polynucleotide sequence in this table [SEQ ID NO:2].
NH2- MIHGIGVDLIEIDRIKVLYSKQPKLVERILTKNEQHKFNNFTHEQRKIEFLAGRFATKEAFSKALGTGLGKHVAF NDIDCYNDELGKPKIDYEGFIVHVSISHTEHYAMSQWLEKSAF*-COOH
Deposited materials
A deposit comprising a Staphylococcus aureus WCUH 29 strain has been deposited with the National Collections of Industrial and Marine Bacteria Ltd. (herein "NCIMB"), 23 St. Machar Drive,
Aberdeen AB2 1RY, Scotland on 11 September 1995 and assigned NCIMB Deposit No. 40771, and referred to as Staphylococcus aureus WCUH29 on deposit. . The Staphylococcus aureus strain deposit is referred to herein as "the deposited strain" or as "the DNA of the deposited strain."
The deposited strain comprises a full length AcpS gene. The sequence of the polynucleotides comprised in the deposited strain, as well as the -imino acid sequence of any polypeptide encoded thereby, are controlling in the event of any conflict with any description of sequences herein.
The deposit of the deposited strain has been made under the terms of the Budapest Treaty on the International Recognition of the Deposit of Micro-organisms for Purposes of Patent Procedure. The deposited strain will be irrevocably and without restriction or condition released to the public upon the issuance of a patent. The deposited strain is provided merely as convenience to those of skill in the art and is not an admission that a deposit is required for enablement, such as that required under 35 U.S.C. §112. A license may be required to make, use or sell the deposited strain, and compounds derived therefrom, and no such license is hereby granted.
In one aspect of the invention there is provided an isolated nucleic acid molecule encoding a mature polypeptide expressible by the Staphylococcus aureus WCUH 29 strain, which polypeptide is comprised in the deposited strain. Further provided by the invention are AcpS polynucleotide sequences in the deposited strain, such as DNA and RNA, and amino acid sequences encoded thereby. Also provided by the invention are AcpS polypeptide and polynucleotide sequences isolated from the deposited strain. Polypeptides AcpS polypeptide of the invention is substantially phylogenetically related to other proteins of the phosphopantethienyltraiisferases family.
In one aspect of the invention there are provided polypeptides of Staphylococcus aureus referred to herein as "AcpS" and "AcpS polypeptides" as well as biologically, diagnostically, prophylactically, clinically or therapeutically useful variants thereof, and compositions comprising the same. Among the particularly preferred embodiments of the invention are variants of AcpS polypeptide encoded by naturally occurring alleles of a AcpS gene.
The present invention further provides for an isolated polypeptide which: (a) comprises or consists of an amino acid sequence which has at least 95% identity, most preferably at least 97-99% or exact identity, to that of SEQ ID NO:2 over the entire length of SEQ ID NO:2; (b) a polypeptide encoded by an isolated polynucleotide comprising or consisting of a polynucleotide sequence which has at least 95% identity, even more preferably at least 97-99% or exact identity to SEQ ID NO: 1 over the entire length of SEQ ID NO: 1 ; (c) a polypeptide encoded by an isolated polynucleotide comprising or consisting of a polynucleotide sequence encoding a polypeptide which has at least 95% identity, even more preferably at least 97-99% or exact identity, to the amino acid sequence of SEQ ID NO:2, over the entire length of SEQ ID NO:2.
The polypeptides of the invention include a polypeptide of Table 1 [SEQ ID NO:2] (in particular a mature polypeptide) as well as polypeptides and fragments, particularly those which have a biological activity of AcpS, and also those which have at least 95% identity to a polypeptide of Table 1 [SEQ ID NO:2] and also include portions of such polypeptides with such portion of the polypeptide generally comprising at least 30 amino acids and more preferably at least 50 amino acids.
The invention also includes a polypeptide consisting of or comprising a polypeptide of the formula:
X-(Rι)m-(R2)-(R3)nN wherein, at the amino terminus, X is hydrogen, a metal or any other moiety described herein for modified polypeptides, and at the carboxyl terminus, Y is hydrogen, a metal or any other moiety described herein for modified polypeptides, Ri and R3 are any amino acid residue or modified amino acid residue, m is an integer between 1 and 1000 or zero, n is an integer between 1 and 1000 or zero, and R2 is an amino acid sequence of the invention, particularly an amino acid sequence selected from Table 1 or modified forms thereof. In the formula above, R2 is oriented so that its amino terminal amino acid residue is at the left, covalently bound to R 1 and its carboxy terminal amino acid residue is at the right, covalently bound to R3. Any stretch of amino acid residues denoted by either Ri or R3, where m and/or n is greater than 1, may be either a heteropolymer or a homopolymer, preferably a heteropolymer. Other preferred embodiments of the invention are provided where m is an integer between 1 and 50, 100 or 500, and n is an integer between 1 and 50, 100, or 500.
It is most preferred that a polypeptide of the invention is derived from Staphylococcus aureus, however, it may preferably be obtained from other organisms of the same taxonomic genus. A polypeptide of the invention may also be obtained, for example, from organisms of the same taxonomic family or order.
A fragment is a variant polypeptide having an amino acid sequence that is entirely the same as part but not all of any amino acid sequence of any polypeptide of the invention. As with AcpS polypeptides, fragments may be "free-standing," or comprised within a larger polypeptide of which they form a part or region, most preferably as a single continuous region in a single larger polypeptide.
Preferred fragments include, for example, truncation polypeptides having a portion of an amino acid sequence of Table 1 [SEQ ID NO:2], or of variants thereof, such as a continuous series of residues that includes an amino- and/or carboxyl-terminal amino acid sequence. Degradation forms of the polypeptides of the invention produced by or in a host cell, particularly a Staphylococcus aureus, are also preferred. Further preferred are fragments characterized by structural or functional attributes such as fragments that comprise alpha-helix and alpha-helix forming regions, beta-sheet and beta-sheet-forming regions, turn and turn-forming regions, coil and coil-forming regions, hydrophilic regions, hydrophobic regions, alpha amphipathic regions, beta amphipathic regions, flexible regions, surface-forming regions, substrate binding region, and high antigenic index regions.
Further preferred fragments include an isolated polypeptide comprising an amino acid sequence having at least 15, 20, 30, 40, 50 or 100 contiguous amino acids from the amino acid sequence of SEQ ID NO:2, or an isolated polypeptide comprising an amino acid sequence having at least 15, 20, 30, 40, 50 or 100 contiguous amino acids truncated or deleted from the amino acid sequence of SEQ ID NO:2.
Fragments of the polypeptides of the invention may be employed for producing the corresponding full-length polypeptide by peptide synthesis; therefore, these variants may be employed as intermediates for producing the full-length polypeptides of the invention. Polynucleotides
It is an object of the invention to provide polynucleotides that encode AcpS polypeptides, particularly polynucleotides that encode a polypeptide herein designated AcpS.
In a particularly preferred embodiment of the invention the polynucleotide comprises a region encoding AcpS polypeptides comprising a sequence set out in Table 1 [SEQ ID NO:l] which includes a full length gene, or a variant thereof. The Apphcants believe that this full length gene is essential to the growth and/or survival of an organism that possesses it, such as Staphylococcus aureus.
As a further aspect of the invention there are provided isolated nucleic acid molecules encoding and or expressing AcpS polypeptides and polynucleotides, particularly Staphylococcus aureus AcpS polypeptides and polynucleotides, including, for example, unprocessed R As, ribozyme RNAs, mRNAs, cDNAs, genomic DNAs, B- and Z-DNAs. Further embc -imeπts of the invention include biologically, diagnostically, prophylactically, clinically or therapeutically useful polynucleotides and polypeptides, and variants thereof, and compositions comprising the same. Another aspect of the invention relates to isolated polynucleotides, including at least one full length gene, that encodes a AcpS polypeptide having a deduced -imino acid sequence of Table 1 [SEQ ID NO:2] and polynucleotides closely related thereto and variants thereof.
In another particularly preferred embodiment of the invention there is a AcpS polypeptide from Staphylococcus aureus comprising or consisting of an amino acid sequence of Table 1 [SEQ ID NO:2], or a variant thereof.
Using the information provided herein, such as a polynucleotide sequence set out in Table 1 [SEQ ID NO: 1], a polynucleotide of the invention encoding AcpS polypeptide may be obtained using standard cloning and screening methods, such as those for cloning and sequencing chromosomal DNA fragments from bacteria using Staphylococcus aureus WCUH 29 cells as starting material, followed by obtaining a full length clone. For example, to obtain a polynucleotide sequence of the invention, such as a polynucleotide sequence given in Table 1 [SEQ ID NO:l], typically a library of clones of chromosomal DNA of Staphylococcus aureus WCUH 29 in E.coli or some other suitable host is probed with a radiolabeled oligonucleotide, preferably a 17-mer or longer, derived from a partial sequence. Clones carrying DNA identical to that of the probe can then be distinguished using stringent hybridization conditions. By sequencing the individual clones thus identified by hybridization with sequencing primers designed from the original polypeptide or polynucleotide sequence it is then possible to extend the polynucleotide sequence in both directions to determine a full length gene sequence. Conveniently, such sequencing is performed, for example, using denatured double stranded DNA prepared from a plasmid clone. Suitable techniques are described by Maniatis, T., Fritsch, E.F. and Sambrook et al., MOLECULAR CLONING, A LABORATORY MANUAL, 2nd Ed.; Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (1989). (see in particular Screening By Hybridization 1.90 and Sequencing Denatured Double-Stranded DNA Templates 13.70). Direct genomic DNA sequencing may also be performed to obtain a full length gene sequence. Illustrative of the invention, each polynucleotide set out in Table 1 [SEQ ID NO:l] was discovered in a DNA library derived from Staphylococcus aureus WCUH 29.
Moreover, each DNA sequence set out in Table 1 [SEQ ID NO:l] contains an open reading frame encoding a protein having about the number of amino acid residues set forth in Table 1 [SEQ ID NO:2] with a deduced molecular weight that can be calculated using amino acid residue molecular weight values well known to those skilled in the art. The polynucleotide of SEQ ID NO: 1, between nucleotide number 1 and the stop codon which begins at nucleotide number 358 of SEQ ID NO:l, encodes the polypeptide of SEQ ID NO:2.
In a further aspect, the present invention provides for an isolated polynucleotide comprising or consisting of: (a) a polynucleotide sequence which has at least 95% identity, even more preferably at least 97-99% or exact identity to SEQ ID NO:l over the entire length of SEQ ID NO:l, or the entire length of that portion of SEQ ID NO:l which encodes SEQ ID NO:2; (b) a polynucleotide sequence encoding a polypeptide which has at least 95% identity, even more preferably at least 97-99% or 100% exact, to the amino acid sequence of SEQ ID NO:2, over the entire length of SEQ ID NO:2.
A polynucleotide encoding a polypeptide of the present invention, including homologs and orthologs from species other than Staphylococcus aureus, may be obtained by a process which comprises the steps of screening an appropriate library under stringent hybridization conditions with a labeled or detectable probe consisting of or comprising the sequence of SEQ ID NO:l or a fragment thereof; and isolating a full-length gene and/or genomic clones comprising said polynucleotide sequence.
The invention provides a polynucleotide sequence identical over its entire length to a coding sequence (open reading frame) in Table 1 [SEQ ID NO:l]. Also provided by the invention is a coding sequence for a mature polypeptide or a fragment thereof, by itself as well as a coding sequence for a mature polypeptide or a fragment in reading frame with another coding sequence, such as a sequence encoding a leader or secretory sequence, a pre-, or pro- or prepro-protein sequence. The polynucleotide of the invention may also comprise at least one non-coding sequence, including for example, but not limited to at least one non-coding 5' and 3' sequence, such as the transcribed but non-translated sequences, termination signals (such as rho-dependent and rho-independent termination signals), ribosome binding sites, Kozak sequences, sequences that stabilize mRNA, introns, and polyadenylation signals. The polynucleotide sequence may also comprise additional coding sequence encoding additional amino acids. For example, a marker sequence that facilitates purification of a fused polypeptide can be encoded. In certain embodiments of the invention, the marker sequence is a hexa-histidine peptide, as provided in the pQE vector (Qiagen, Inc.) and described in Gentz et al., Proc. Nat/. Acad. Set, USA 86: 821-824 (1989), or an HA peptide tag (Wilson et al, Cell 37: 767 (1984), both of which may be useful in purifying polypeptide sequence fused to them. Polynucleotides of the invention also include, but are not limited to, polynucleotides comprising a structural gene and its naturally associated sequences that control gene expression. A preferred embodiment of the invention is a polynucleotide of consisting of or comprising nucleotide
1 to the nucleotide immediately upstream of or including nucleotide 358 set forth in SEQ ID NO: 1 of Table 1, both of which encode a AcpS polypeptide.
The invention also includes a polynucleotide consisting of or comprising a polynucleotide of the formula: X-(Rι)m-(R2MR3)n-Y wherein, at the 5' end of the molecule, X is hydrogen, a metal or a modified nucleotide residue, or together with Y defines a covalent bond, and at the 3' end of the molecule, Y is hydrogen, a metal, or a modified nucleotide residue, or together with X defines the covalent bond, each occurrence of Ri and R3 is independently any nucleic acid residue or modified nucleic acid residue, m is an integer between 1 and 3000 or zero , n is an integer between 1 and 3000 or zero, and R2 is a nucleic acid sequence or modified nucleic acid sequence of the invention, particularly a nucleic acid sequence selected from Table 1 or a modified nucleic acid sequence thereof. In the polynucleotide formula above, R2 is oriented so that its 5' end nucleic acid residue is at the left, bound to R\ and its 3' end nucleic acid residue is at the right, bound to R3. Any stretch of nucleic acid residues denoted by either Ri and/or R2, where m and/or n is greater than 1, may be either a heteropolymer or a homopolymer, preferably a heteropolymer. Where, in a preferred embodiment, X and Y together define a covalent bond, the polynucleotide of the above formula is a closed, circular polynucleotide, which can be a double-stranded polynucleotide wherein the formula shows a first strand to which the second strand is complementary. In another preferred embodiment m and/or n is an integer between 1 and 1000. Other preferred embodiments of the invention are provided where m is an integer between 1 and 50, 100 or 500, and n is an integer between 1 and 50, 100, or 500.
It is most preferred that a polynucleotide of the invention is derived from Staphylococcus aureus, however, it may preferably be obtained from other organisms of the same taxonomic genus. A polynucleotide of the invention may also be obtained, for example, from organisms of the same taxonomic family or order.
The term "polynucleotide encoding a polypeptide" as used herein encompasses polynucleotides that include a sequence encoding a polypeptide of the invention, particularly a bacterial polypeptide and more particularly a polypeptide of the Staphylococcus aureus AcpS having an amino acid sequence set out in Table 1 [SEQ ID NO:2]. The term also encompasses polynucleotides that include a single continuous region or discontinuous regions encoding the polypeptide (for example, polynucleotides interrupted by integrated phage, an integrated insertion sequence, an integrated vector sequence, an integrated transposon sequence, or due to R A editing or genomic DNA reorganization) together with additional regions, that also may comprise coding and/or non-coding sequences.
The invention further relates to variants of the polynucleotides described herein that encode variants of a polypeptide having a deduced amino acid sequence of Table 1 [SEQ ID NO:2]. Fragments of polynucleotides of the invention may be used, for example, to synthesize frill-length polynucleotides of the invention.
Further particularly preferred embodiments are polynucleotides encoding AcpS variants, that have the amino acid sequence of AcpS polypeptide of Table 1 [SEQ ID NO:2] in which several, a few, 5 to 10, 1 to 5, 1 to 3, 2, 1 or no amino acid residues are substituted, modified, deleted and/or added, in any combination. Especially preferred among these are silent substitutions, additions and deletions, that do not alter the properties and activities of AcpS polypeptide.
Further preferred embodiments of the invention are polynucleotides that are at least 95% or 97% identical over their entire length to a polynucleotide encoding AcpS polypeptide having an amino acid sequence set out in Table 1 [SEQ ID NO:2], and polynucleotides that are complementary to such polynucleotides. Most highly preferred are polynucleotides that comprise a region that is at least 95% are especially preferred. Furthermore, those with at least 97% are highly preferred among those with at least 95%, and among these those with at least 98% and at least 99% are particularly highly preferred, with at least 99% being the more preferred.
Preferred embodiments are polynucleotides encoding polypeptides that retain substantially the same biological function or activity as a mature polypeptide encoded by a DNA of Table 1 [SEQ ID NO: 1].
In accordance with certain preferred embodiments of this invention there are provided polynucleotides that hybridize, particularly under stringent conditions, to AcpS polynucleotide sequences, such as those polynucleotides in Table 1.
The invention further relates to polynucleotides that hybridize to the polynucleotide sequences provided herein. In this regard, the invention especially relates to polynucleotides that hybridize under stringent conditions to the polynucleotides described herein. As herein used, the terms "stringent conditions" and "stringent hybridization conditions" mean hybridization CK-curring only if there is at least 95% and preferably at least 97% identity between the sequences. A specific example of stringent hybridization conditions is overnight incubation at 42°C in a solution comprising: 50% formamide, 5x SSC (150mM NaCl, 15mM trisodium citrate), 50 mM sodium phosphate (pH7.6), 5x Denhardt's solution, 10% dextran sulfate, and 20 micrograms/ml of denatured, sheared salmon sperm DNA, followed by washing the hybridization support in O.lx SSC at about 65°C. Hybridization and wash conditions are well known and exemplified in Sambrook, et al., Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor, N.Y., (1989), particularly Chapter 11 therein. Solution hybridization may also be used with the polynucleotide sequences provided by the invention.
The invention also provides a polynucleotide consisting of or comprising a polynucleotide sequence obtained by screening an appropriate library comprising a complete gene for a polynucleotide sequence set forth in SEQ ID NO:l under stringent hybridization conditions with a probe having the sequence of said polynucleotide sequence set forth in SEQ ID NO: 1 or a fragment thereof; and isolating said polynucleotide sequence. Fragments useful for obtaining such a polynucleotide include, for example, probes and primers fully described elsewhere herein.
As discussed elsewhere herein regarding polynucleotide assays of the invention, for instance, the polynucleotides of the invention, may be used as a hybridization probe for RNA, cDNA and genomic DNA to isolate full-length cDNAs and genomic clones encoding AcpS and to isolate cDNA and genomic clones of other genes that have a high identity, particularly high sequence identity, to a AcpS gene. Such probes generally will comprise at least 15 nucleotide residues or base pairs. Preferably, such probes will have at least 30 nucleotide residues or base pairs and may have at least 50 nucleotide residues or base pairs. Particularly preferred probes will have at least 20 nucleotide residues or base pairs and will have lee than 30 nucleotide residues or base pairs.
A coding region of a AcpS gene may be isolated by screening using a DNA sequence provided in Table 1 [SEQ ID NO: 1] to synthesize an oligonucleotide probe. A labeled oligonucleoti.de having a sequence complementary to that of a gene of the invention is then used to screen a Ubrary of cDN-A, genomic DNA or mRNA to deteπnine which members of the library the probe hybridizes to.
There are several methods available and well known to those skilled in the art to obtain full- length DNAs, or extend short DNAs, for example those based on the method of Rapid Amplification of cDNA ends (RACE) (see, for example, Frohman, et al., PNAS USA 85: 8998-9002, 1988). Recent modifications of the technique, exemplified by the Marathon™ technology (Clontech Laboratories Inc.) for example, have significantly simplified the search for longer cDNAs. In the Marathon™ technology, cDNAs have been prepared from mRNA extracted from a chosen tissue and an 'adaptor' sequence ligated onto each end. Nucleic acid amplification (PCR) is then carried out to amplify the "missing" 5' end of the DNA using a combination of gene specific and adaptor specific oligonucleotide primers. The PCR reaction is then repeated using "nested" primers, that is, primers designed to anneal within the amplified product (typically an adaptor specific primer that anneals further 3' in the adaptor sequence and a gene specific primer that anneals further 5' in the selected gene sequence). The products of this reaction can then be analyzed by DNA sequencing and a full-length DNA constructed either by joining the product directly to the existing DNA to give a complete sequence, or carrying out a separate full- length PCR using the new sequence information for the design of the 5' primer.
The polynucleotides and polypeptides of the invention may be employed, for example, as research reagents and materials for discovery of treatments of and diagnostics for diseases, particularly human diseases, as further discussed herein relating to polynucleotide assays.
The polynucleotides of the invention that are oligonucleotides derived from a sequence of Table 1 [SEQ ID NOS:l or 2] may be used in the processes herein as described, but preferably for PCR, to determine whether or not the polynucleotides identified herein in whole or in part are transcribed in bacteria in infected tissue. It is recognized that such sequences will also have utility in diagnosis of the stage of infection and type of infection the pathogen has attained.
The invention also provides polynucleotides that encode a polypeptide that is a mature protein plus additional amino or (-arboxyl-teπninal amino acids, or amino acids interior to a mature polypeptide (when a mature form has more than one polypeptide chain, for instance). Such sequences may play a role in processing of a protein from precursor to a mature form, may allow protein transport, may lengthen or shorten protein half-life or may facilitate manipulation of a protein for assay or production, among other things. As generally is the case in vivo, the additional amino acids may be processed away from a mature protein by cellular enzymes.
For each and every polynucleotide of the invention there is provided a polynucleotide complementary to it. It is preferred that these complementary polynucleotides are fully complementary to each polynucleotide with which they are complementary.
A precursor protein, having a mature form of the polypeptide fused to one or more prosequences may be an inactive form of the polypeptide. When prosequences are removed such inactive precursors generally are activated. Some or all of the prosequences may be removed before activation. Generally, such precursors are called proproteins. In sum, a polynucleotide of the invention may encode a mature protein, a mature protein plus a leader sequence (which may be referred to as a preprotein), a precursor of a mature protein having one or more prosequences that are not the leader sequences of a preprotein, or a preproprotein, which is a precursor to a proprotein, having a leader sequence and one or more prosequences, which generally are removed during processing steps that produce active and mature forms of the polypeptide. Vectors, Host Cells, Expression Systems
The invention also relates to vectors that comprise a polynucleotide or polynucleotides of the invention, host cells that are genetically engineered with vectors of the invention and the production of polypeptides of the invention by recombinant techniques. Cell-free translation systems can also be employed to produce such proteins using RNAs derived from the DNA constructs of the invention. Recombinant polypeptides of the present invention may be prepared by processes well known in those skilled in the art from genetically engineered host cells comprising expression systems. Accordingly, in a further aspect, the present invention relates to expression systems which comprise a polynucleotide or polynucleotides of the present invention, to host cells which are genetically engineered with such expression systems, and to the production of polypeptides of the invention by recombinant techniques. For recombinant production of the polypeptides of the invention, host cells can be genetically engineered to incorporate expression systems or portions thereof or polynucleotides of the invention. Introduction of a polynucleotide into the host cell can be effected by methods described in many standard laboratory manuals, such as Davis, et al, BASIC METHODS IN MOLECULAR BIOLOGY, (1986) and Sambrook, et al, MOLECULAR CLONING: A LABORATORY MANUAL, 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989), such as, calcium phosphate transfection, DEAE-dextran mediated transfection, transvection, microinjection, cationic lipid-mediated transfection, electroporation, transduction, scrape loading, ballistic introduction and infection.
Representative examples of appropriate hosts include bacterial cells, such as cells of streptococci, staphylococci, enterococci E. coli, streptomyces, cyanobacteria, Bacillus subtilis, and Staphylococcus aureus; fungal cells, such as cells of a yeast, Kluveromyces, Saccharomyces, a basidiomycete, Candida albicans and Aspergillus; insect cells such as cells of Drosophila S2 and Spodoptera Sf9; animal cells such as CHO, COS, HeLa, C127, 3T3, BHK, 293, CV-1 and Bowes melanoma cells; and plant cells, such as cells of a gymnosperm or angiosperm. A great variety of expression systems can be used to produce the polypeptides of the invention. Such vectors include, among others, chromosomal-, episomal- and virus-derived vectors, for example, vectors derived from bacterial plasmids, from bacteriophage, from transposons, from yeast episomes, from insertion elements, from yeast chromosomal elements, from viruses such as baculoviruses, papova viruses, such as SV40, vaccinia viruses, adenoviruses, fowl pox viruses, pseudorabies viruses, picornaviruses and rctroviruses, and vectors derived from combinations thereof, such as those derived from plasmid and bacteriophage genetic elements, such as cosmids and phagemids. The expression system constructs may comprise control regions that regulate as well as engender expression. Generally, any system or vector suitable to ma tain, propagate or express polynucleotides and/or to express a polypeptide in a host may be used for expression in this regard. The appropriate DNA sequence may be inserted into the expression system by any of a variety of well-known and routine techniques, such as, for example, those set forth in Sambrook et al, MOLECULAR CLONING, A LABORATORY MANUAL, (supra).
In recombinant expression systems in eukaryotes, for secretion of a translated protein into the lumen of the endoplasmic reticulum, into the periplasmic space or into the extracellular environment, appropriate secretion signals may be incorporated into the expressed polypeptide. These signals may be endogenous to the polypeptide or they may be heterologous signals.
Polypeptides of the invention can be recovered and purified from recombinant cell cultures by well- known methods including ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography, and lectin cl--romatography. Most preferably, high performance Uquid chromatography is employed for purification. WeU known techniques for refolding protein may be employed to regenerate active conformation when the polypeptide is denatured during isolation and or purification.
Diagnostic, Prognostic, Serotyping and Mutation Assays
This invention is also related to the use of AcpS polynucleotides and polypeptides of the invention for use as diagnostic reagents. Detection of AcpS polynucleotides and/or polypeptides in a eukaryote, particularly a mammal, and especially a human, will provide a diagnostic method for diagnosis of disease, staging of disease or response of an infectious organism to drugs. Eukaryotes, particularly mammals, and especially humans, particularly those infected or suspected to be infected with an organism comprising the AcpS gene or protein, may be detected at the nucleic acid or amino acid level by a variety of weU known techniques as weU as by methods provided herein.
Polypeptides and polynucleotides for prognosis, diagnosis or other analysis may be obtained from a putatively infected and/or infected individual's bodily materials. Polynucleotides from any of these sources, particularly DNA or RNA, may be used directly for detection or may be amplified enzymaticaUy by using PCR or any other amplification technique prior to analysis. RNA, particularly mRNA, cDNA and genomic DNA may also be used in the same ways. Using amplification, characterization of the species and strain of infectious or resident organism present in an individual, may be made by an analysis of the genotype of a selected polynucleotide of the organism. Deletions and insertions can be detected by a change in size of the amplified product in comparison to a genotype of a reference sequence selected from a related organism, preferably a different species of the same genus or a different strain of the same species. Point mutations can be identified by hybridizing amplified DNA to labeled AcpS polynucleotide sequences. Perfectly or significantly matched sequences can be distinguished from imperfectly or more significantly mismatched duplexes by DNase or RNase digestion, for DNA or RNA respectively, or by detecting differences in melting temperatures or reriaturation kinetics. Polynucleotide sequence differences may also be detected by alterations in the electrophoretic mobility of polynucleotide fragments in gels as compared to a reference sequence. This may be carried out with or without denaturing agents. Polynucleotide differences may also be detected by direct DNA or RNA sequencing. See, for example, Myers et al, Science, 230: 1242 (1985). Sequence changes at specific locations also may be revealed by nuclease protection assays, such as RNase, VI and SI protection assay or a chemical cleavage method. See, for example, Cotton et al., Proc. Natl. Acad. Sci, USA, 85: 4397-4401 (1985).
In another embodiment, an array of oUgonucleotides probes comprising AcpS nucleotide sequence or fragments thereof can be constructed to conduct efficient screening of, for example, genetic mutations, serotype, taxonomic classification or identification. Array technology methods are weU known and have general appUcabiUty and can be used to address a variety of questions in molecular genetics including gene expression, genetic linkage, and genetic variabiUty (see, for example, Chee etal, Science, 274: 610 (1996)).
Thus in another aspect, the present invention relates to a diagnostic kit which comprises: (a) a polynucleotide of the present invention, preferably the nucleotide sequence of SEQ ID NO:l, or a fragment thereof ; (b) a nucleotide sequence complementary to that of (a); (c) a polypeptide of the present invention, preferably the polypeptide of SEQ ID NO:2 or a fragment thereof; or (d) an antibody to a polypeptide of the present invention, preferably to the polypeptide of SEQ ID NO:2. It will be appreciated that in any such kit, (a), (b), (c) or (d) may comprise a substantial component. Such a kit will be of use in diagnosing a disease or susceptibility to a Disease, among others. This invention also relates to the use of polynucleotides of the present invention as diagnostic reagents. Detection of a mutated form of a polynucleotide of the invention, preferable, SEQ ID NO: 1, which is associated with a disease or pathogenicity will provide a diagnostic tool that can add to, or define, a diagnosis of a disease, a prognosis of a course of disease, a dete--mination of a stage of disease, or a susceptibility to a disease, which results from under-expression, over-expression or altered expression of the polynucleotide. Organisms, particularly infectious organisms, carrying mutations in such polynucleotide may be detected at the polynucleotide level by a variety of techniques, such as those described elsewhere herein.
The differences in a polynucleotide and/or polypeptide sequence between organisms possessing a first phenotype and organisms possessing a different, second different phenotype can also be determined. If a mutation is observed in some or all organisms possessing the first phenotype but not in any organisms possessing the second phenotype, then the mutation is likely to be the causative agent of the first phenotype.
Cells from an organism carrying mutations or polymorphisms (alleUc variations) in a polynucleotide and or polypeptide of the invention may also be detected at the polynucleotide or polypeptide level by a variety of techniques, to allow for serotyping, for example. For example, RT-PCR can be used to detect mutations in the RNA. It is particularly preferred to use RT-PCR in conjunction with automated detection systems, such as, for example, GeneScan. RNA, cDNA or genomic DNA may also be used for the same purpose, PCR. As an example, PCR primers complementary to a polynucleotide encoding AcpS polypeptide can be used to identify and analyze mutations. The invention further provides these primers with 1, 2, 3 or 4 nucleotides removed from the 5' and/or the 3' end. These primers may be used for, among other things, amplifying AcpS DNA and/or RNA isolated from a sample derived from an individual, such as a bodily material. The primers may be used to amplify a polynucleotide isolated from an infected individual, such that the polynucleotide may then be subject to various techniques for elucidation of the polynucleotide sequence. In this way, mutations in the polynucleotide sequence may be detected and used to diagnose and/or prognose the infection or its stage or course, or to serotype and/or classify the infectious agent.
The invention further provides a process for diagnosing, disease, preferably bacterial infections, more preferably infections caused by Staphylococcus aureus, comprising determining from a sample derived from an individual, such as a bodily material, an increased level of expression of polynucleotide having a sequence of Table 1 [SEQ ID NO:l]. Increased or decreased expression of a AcpS polynucleotide can be measured using any on of the methods well known in the art for the quantitation of polynucleotides, such as, for example, amplification, PCR, RT-PCR, RNase protection, Northern blotting, spectrometry and other hybridization methods.
In addition, a diagnostic assay in accordance with the invention for detecting over-expression of AcpS polypeptide compared to normal control tissue samples may be used to detect the presence of an infection, for example. Assay techniques that can be used to determine levels of a AcpS polypeptide, in a sample derived from a host, such as a bodily material, are wen-known to those of skill in the art. Such assay methods include radioimmunoassays, competitive-binding assays, Western Blot analysis, antibody sandwich assays, antibody detection and ELISA assays. Antagonists and Agonists - Assays and Molecules
Polypeptides and polynucleotides of the invention may also be used to assess the binding of smaU molecule substrates and Ugands in, for example, ceUs, ceU-free preparations, chemical hbraries, and natural product mixtures. These substrates and Ugands may be natural substrates and Ugands or may be structural or functional mimetics. See, e.g., CoUgan etal, Current Protocols in Immunology 1(2): Chapter 5 (1991). Polypeptides and polynucleotides of the present invention are responsible for many biological functions, including many disease states, in particular the Diseases herein mentioned. It is therefore desirable to devise screening methods to identify compounds which stimulate or which inhibit the function of the polypeptide or polynucleotide. Accordingly, in a further aspect, the present invention provides for a method of screening compounds to identify those which stimulate or which inhibit the function of a polypeptide or polynucleotide of the invention, as weU as related polypeptides and polynucleotides. In general, agonists or antagonists (e.g. , inhibitors) may be employed for therapeutic and prophylactic purposes for such Diseases as herein mentioned. Compounds may be identified from a variety of sources, for example, cells, cell-free preparations, chemical Ubraries, and natural product mixtures. Such agonists and antagonists so-identified may be natural or modified substrates, Ugands, receptors, enzymes, etc., as the case may be, of AcpS polypeptides and polynucleotides; or may be structural or functional mimetics thereof (see CoUgan et al. , Current Protocols in Immunology l(2):Chapter 5 (1991)).
The screening methods may simply measure the binding of a candidate compound to the polypeptide or polynucleotide, or to cells or membranes bearing the polypeptide or polynucleotide, or a fusion protein of the polypeptide by means of a label directly or indirectly associated with the candidate compound. Alternatively, the screening method may involve competition with a labeled competitor.
Further, these screening methods may test whether the candidate compound results in a signal generated by activation or inhibition of the polypeptide or polynucleotide, using detection systems appropriate to the cells comprising the polypeptide or polynucleotide. Inhibitors of activation are generally assayed in the presence of a known agonist and the effect on activation by the agonist by the presence of the candidate compound is observed. Constitutively active polypeptide and/or constitutively expressed polypeptides and polynucleotides may be employed in screening methods for inverse agonists, in the absence of an agonist or antagonist, by testing whether the candidate compound results in inhibition of activation of the polypeptide or polynucleotide, as the case may be. Further, the screening methods may simply comprise the steps of mixing a candidate compound with a solution comprising a polypeptide or polynucleotide of the present invention, to form a mixture, measuring AcpS polypeptide and/or polynucleotide activity in the mixture, and comparing the AcpS polypeptide and/or polynucleotide activity of the mixture to a standard. Fusion proteins, such as those made from Fc portion and AcpS polypeptide, as herein described, can also be used for high-throughput screening assays to identify antagonists of the polypeptide of the present invention, as well as of phylogenetically and and or functionally related polypeptides (see D. Bennett et al., J Mol Recognition, 8:52-58 (1995); and K. Johanson et al., J Biol Chem, 270(16):9459-9471 (1995)).
The polynucleotides, polypeptides and antibodies that bind to and/or interact with a polypeptide of the present invention may also be used to configure screening methods for detecting the effect of added compounds on the production of mRNA and/or polypeptide in cells. For example, an ELISA assay may be constructed for measuring secreted or cell associated levels of polypeptide using monoclonal and polyclonal antibodies by standard methods known in the art. This can be used to discover agents which may inhibit or enhance the production of polypeptide (also called antagonist or agonist, respectively) from suitably manipulated cells or tissues. The invention also provides a method of screening compounds to identify those which enhance
(agonist) or block (antagonist) the action of AcpS polypeptides or polynucleotides, particularly those compounds that are bacteristatic and/or bactericidal. The method of screening may involve high-throughput techniques. For example, to screen for agonists or antagonists, a synthetic reaction mix, a cellular compartment, such as a membrane, ceU envelope or ceU waU, or a preparation of any thereof, comprising AcpS polypeptide and a labeled substrate or Ugand of such polypeptide is incubated in the absence or the presence of a candidate molecule that may be a AcpS agonist or antagonist. The ability of the candidate molecule to agonize or antagonize the AcpS polypeptide is reflected in decreased binding of the labeled Ugand or decreased production of product from such substrate. Molecules that bind gratuitously, i.e., without inducing the effects of AcpS polypeptide are most likely to be good antagonists. Molecules that bind weU and, as the case may be, increase the rate of product production from substrate, increase signal transduction, or increase chemical channel activity are agonists. Detection of the rate or level of, as the case may be, production of product from substrate, signal transduction, or chemical channel activity may be enhanced by using a reporter system. Reporter systems that may be useful in this regard include but are not limited to colorimetric, labeled substrate converted into product, a reporter gene that is responsive to changes in AcpS polynucleotide or polypeptide activity, and binding assays known in the art.
Polypeptides of the invention may be used to identify membrane bound or soluble receptors, if any, for such polypeptide, through standard receptor binding techniques known in the art. These techniques include, but are not limited to, Ugand binding and crosslinking assays in which the polypeptide is labeled with a radioactive isotope (for instance, 1^1), chemically modified (for instance, biotinylated), or fused to a peptide sequence suitable for detection or purification, and incubated with a source of the putative receptor (e.g., cells, cell membranes, cell supernatants, tissue extracts, bodily materials). Other methods include biophysical techniques such as surface plasmon resonance and spectroscopy. These screening methods may also be used to identify agonists and antagonists of the polypeptide which compete with the binding of the polypeptide to its receptor(s), if any. Standard methods for conducting such assays are well understood in the art.
The fluorescence polarization value for a fluorescently-tagged molecule depends on the rotational correlation time or tumbling rate. Protein complexes, such as formed by AcpS polypeptide associating with another AcpS polypeptide or other polypeptide, labeled to comprise a fluorescently- labeled molecule will have higher polarization values than a fluorescently labeled monomeric protein. It is preferred that this method be used to characterize small molecules that disrupt polypeptide complexes.
Fluorescence energy transfer may also be used characterize small molecules that interfere with the formation of AcpS polypeptide dimers, trimers, tetramers or higher order structures, or structures formed by AcpS polypeptide bound to another polypeptide. AcpS polypeptide can be labeled with both a donor and acceptor fluorophore. Upon mixing of the two labeled species and excitation of the donor fluorophore, fluorescence energy transfer can be detected by observing fluorescence of the acceptor. Compounds that block dimerization will inhibit fluorescence energy transfer. Surface plasmon resonance can be used to monitor the effect of small molecules on AcpS polypeptide self-association as well as an association of AcpS polypeptide and another polypeptide or small molecule. AcpS polypeptide can be coupled to a sensor chip at low site density such that covalently bound molecules will be monomeric. Solution protein can then passed over the AcpS polypeptide -coated surface and specific binding can be detected in real-time by monitoring the change in resonance angle caused by a change in local refractive index. This technique can be used to characterize the effect of small molecules on kinetic rates and equilibrium binding constants for AcpS polypeptide self-association as well as an association of AcpS polypeptide and another polypeptide or small molecule.
A scintillation proximity assay may be used to characterize the interaction between an association of AcpS polypeptide with another AcpS polypeptide or a different polypeptide . AcpS polypeptide can be coupled to a scintillation-filled bead. Addition of radio-labeled AcpS polypeptide results in binding where the radioactive source molecule is in close proximity to the scintillation fluid. Thus, signal is emitted upon AcpS polypeptide binding and compounds that prevent AcpS polypeptide self-association or an association of AcpS polypeptide and another polypeptide or small molecule will diminish signal.
In other embodiments of the invention there are provided methods for identifying compounds which bind to or otherwise interact with and inhibit or activate an activity or expression of a polypeptide and/or polynucleotide of the invention comprising: contacting a polypeptide and/or polynucleotide of the invention \\ ith a compound to be screened under conditions to permit binding to or other interaction between the compound and the polypeptide and/or polynucleotide to assess the binding to or other interaction with the compound, such binding or interaction preferably being associated with a second component capable of providing a detectable signal in response to the binding or interaction of the polypeptide and/or polynucleotide with the compound; and deteπr-ining whether the compound binds to or otherwise interacts \\ ith and activates or inhibits an activity or expression of the polypeptide and/or polynucleotide by detecting the presence or absence of a signal generated from the binding or interaction of the compound with the polypeptide and/or polynucleotide.
Another example of an assay for AcpS agonists is a competitive assay that combines AcpS and a potential agonist with AcpS-binding molecules, recombinant AcpS binding molecules, natural substrates or ligands, or substrate or Ugand mimetics, under appropriate conditions for a competitive inhibition assay. AcpS can be labeled, such as by radioactivity or a colorimetric compound, such that the number of AcpS molecules bound to a binding molecule or converted to product can be deteimined accurately to assess the effectiveness of the potential antagonist. It will be readily appreciated by the skilled artisan that a polypeptide and/or polynucleotide of the present invention may also be used in a method for the structure-based design of an agonist or antagonist of the polypeptide and/or polynucleotide, by: (a) determining in the first instance the three- dimensional structure of the polypeptide and/or polynucleotide, or complexes thereof; (b) deducing the three-dimensional structure for the likely reactive site(s), binding site(s) or motif(s) of an agonist or antagonist; (c) synthesizing candidate compounds that are predicted to bind to or react with the deduced binding site(s), reactive site(s), and/or motif(s); and
(d) testing whether the candidate compounds are indeed agonists or antagonists. It will be further appreciated that this will normally be an iterative process, and this iterative process may be performed using automated and computer-controlled steps. In a further aspect, the present invention provides methods of treating abnormal conditions such as, for instance, a Disease, related to either an excess of, an under-expression of, an elevated activity of, or a decreased activity of AcpS polypeptide and/or polynucleotide.
If the expression and or activity of the polypeptide and/or polynucleotide is in excess, several approaches are available. One approach comprises administering to an individual in need thereof an inhibitor compound (antagomst) as herein descnbed, optionally in combination with a pharmaceutically acceptable earner, in an amount effective to inhibit the function and/or expression of the polypeptide and/or polynucleotide, such as, for example, by blocking the binding of Ugands, substrates, receptors, enzymes, etc , or by inhibiting a second signal, and thereby alleviating the abnormal condition In another approach, soluble forms of the polypeptides still capable of binding the Ugand, substrate, enzymes, receptors, etc m competition with endogenous polypeptide and/or polynucleotide may be administered Typical examples of such competitors mclude fragments of the AcpS polypeptide and/or polypeptide
In still another approach, expression of the gene encoding endogenous AcpS polypeptide can be inhibited usmg expression blocking techniques This blocking may be targeted against any step m gene expression, but is preferably targeted against transcription and/or translation An examples of a known technique of this sort mvolve the use of antisense sequences, either internally generated or separately administered (see, for example, O'Connor, J Neurochem (1991) 56 560 m Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988)) Alternatively, ohgonucleotides which form triple helices with the gene can be supplied (see, for example, Lee et al , Nucleic Acids Res (1979) 6 3073, Cooney et al , Science (1988) 241 456, Dervan et al , Science (1991) 251 1360) These ohgomers can be administered /.er se or the relevant ohgomers can be expressed in vivo
Each of the polynucleotide sequences provided herem may be used m the discovery and development of antibactenal compounds The encoded protein, upon expression, can be used as a target for the screenmg of antibactenal drugs Additionally, the polynucleotide sequences encoding the ammo terminal regions of the encoded protem or Shine-Delgarno or other translation facilitating sequences of the respective mRNA can be used to construct antisense sequences to control the expression of the codmg sequence of mterest
The mvention also provides the use of the polypeptide, polynucleotide, agomst or antagomst of the invention to mterfere with the imtial physical mteraction between a pathogen or pathogens and a eukaryotic, preferably mammalian, host responsible for sequelae of infection In particular, the molecules of the mvention may be used m the prevention of adhesion of bactena, m particular gram positive and/or gram negative bactena, to eukaryotic, preferably mammalian, extracellular matnx protems on in-dwelling devices or to extracellular matnx protems m wounds, to block bactenal adhesion between eukaryotic, preferably mammalian, extracellular matnx protems and bactenal AcpS protems that mediate tissue damage and/or, to block the normal progression of pathogenesis m infections initiated other than by the implantation of m-dwellmg devices or by other surgical techniques
In accordance with yet another aspect of the mvention, there are provided AcpS agonists and antagonists, preferably bactenstabc or bactencidal agonists and antagonists The antagonists and agonists of the mvention may be employed, for instance, to prevent, inhibit and/or treat diseases
Hehcobacter pylon (herem "H pylori") bactena infect the stomachs of over one-third of the world's population causmg stomach cancer, ulcers, and gastntis (International Agency for Research on Cancer (1994) Schistosomes, Liver Flukes and Hehcobacter Pylori (International Agency for Research on Cancer, Lyon, France, http //www uicc ch/ecp/ecp2904 htm) Moreover, the International Agency for Research on Cancer recently recognized a cause-and-effect relationship between H pylori and gastric adenocarcrnoma, classifying the bactenum as a Group I (definite) carcinogen Preferred antimicrobial compounds of the mvention (agonists and antagonists of AcpS polypeptides and/or polynucleotides) found usmg screens provided by the mvention, or known in the art, particularly narrow-spectrum antibiotics, should be useful m the treatment of H pylori infection Such treatment should decrease the advent of H /?y/orz-ιnduced cancers, such as gastrointestinal carcinoma Such treatment should also prevent, inhibit and/or cure gastnc ulcers and gastntis
All publications and references, including but not limited to patents and patent applications, cited in this specification are herem incorporated by reference in their entirety as if each mdividual publication or reference were specifically and individually indicated to be incorporated by reference herem as bemg fully set forth Any patent application to which this application claims pnonty is also incorporated by reference herem m its entirety m the manner descnbed above for publications and references
GLOSSARY
The foUowmg definitions are provided to facilitate understanding of certain terms used frequently herem
"Bodily matenal(s) means any matenal denved from an mdividual or from an organism infecting, infesting or inhabiting an mdividual, including but not limited to, ceUs, tissues and waste, such as, bone, blood, serum, cerebrospinal fluid, semen, sahva, muscle, cartilage, organ tissue, skin, urine, stool or autopsy matenals
"Dιsease(s)" means any disease caused by or related to infection by a bactena, mcluding , for example, disease, such as, infections of the upper respiratory tract (e g , otitis media, bactenal tracheihs, acute epiglottitis, thyroiditis), lower respiratory (e g , empyema, lung abscess), cardiac (e g , infective endocarditis), gastrointestinal (e g , secretory dianhoea, splenic absces, retropentoneal abscess), CNS (e g , cerebral abscess), eye (e g , blephantis, conjunctivitis, keratitis, endophthalmitis, preseptal and orbital celluhtis, darcryocystitis), kidney and urinary tract (e g , epididymitis, lntrarenal and pennephnc absces, toxic shock svndrome), sk (e g , impetigo, folUcuUtis, cutaneous abscesses, ceUuUtis, wound infection, bactenal myositis) bone and joint (e g , septic arthntis, osteomyeUtis)
"Host cell(s)" is a cell which has been transformed or transfected, or is capable of transformation or transfection by an exogenous polynucleotide sequence "Identity," as known in the art, is a relationship between two or more polypeptide sequences or two or more polynucleotide sequences, as the case may be, as determined by compaπng the sequences In the art, ' identity" also means the degree of sequence relatedness between polypeptide or polynucleotide sequences, as the case may be, as determined by the match between strings of such sequences "Identity" can be readily calculated by known methods, including but not limited to those descnbed m (Computational Molecular Biology, Lesk, A M , ed , Oxford University Press, New York, 1988, BwLomputing Informatics and Genome Projects, Smith, D W , ed , Academic Press, New York, 1993, Computer Analysis of Sequence Data, Part I, Gnffin, A M , and Gnfifin, H G , eds , Humana Press, New Jersey, 1994, Sequence Analysis in Molecular Biology, von Hemje, G , Academic Press, 1987, and Sequence Analysis Primer, Gnbskov, M and Devereux, J , eds , M Stockton Press, New York, 1991, and Canllo, H , and Lipman, D , SIAM J Applied Math , 48 1073 (1988) Methods to determme identity are designed to give the largest match between the sequences tested Moreover, methods to determme identity are codified m publicly available computer programs Computer program methods to determme identity between two sequences mclude, but are not limited to, the GCG program package (Devereux, J , et al , Nucleic Acids Research 12(1) 387 (1984)), BLASTP, BLASTN, and FASTA (Altschul, S F et al , J Molec Biol 215 403-410 (1990) The BLAST X program is publicly available from NCBI and other sources (BLAST Manual, Altschul, S , et al , NCBI NLM NIH Bethesda, MD 20894, Altschul, S , et al , J Mol Biol 215 403-410 (1990) The well known Smith Waterman algonthm may also be used to determine identity
Parameters for polypeptide sequence companson mclude the following Algonthm Needleman and Wunsch, J Mol Biol 48 443-453 (1970)
Companson matnx BLOSSUM62 from Hentikoff and Hentikoff, Proc Natl Acad Sci USA 89 10915-10919 (1992) Gap Penalty 12 Gap Length Penalty 4 A program useful with these parameters is publicly available as the "gap" program from Genetics
Computer Group, Madison WI The aforementioned parameters are the default parameters for peptide compansons (along with no penalty for end gaps)
Parameters for polynucleotide companson mclude the following Algonthm Needleman and Wunsch, J Mol Biol 48 443-453 (1970) Comparison matrix: matches = +10, mismatch = 0 Gap Penalty: 50 Gap Length Penalty: 3
Available as: The "gap" program from Genetics Computer Group, Madison WI. These are the default parameters for nucleic acid comparisons.
A prefened meaning for "identity" for polynucleotides and polypeptides, as the case may be, are provided in (1) and (2) below.
(1) Polynucleotide embodiments further include an isolated polynucleotide comprising a polynucleotide sequence having at least a 50, 60, 70, 80, 85, 90, 95, 97 or 100% identity to the reference sequence of SEQ ID NO: 1, wherein said polynucleotide sequence may be identical to the reference sequence of SEQ ID NO: 1 or may include up to a certain integer number of nucleotide alterations as compared to the reference sequence, wherein said alterations are selected from the group consisting of at least one nucleotide deletion, substitution, including transition and transversion, or insertion, and wherein said alterations may occur at the 5' or 3' terminal positions of the reference nucleotide sequence or anywhere between those terminal positions, interspersed either individually among the nucleotides in the reference sequence or in one or more contiguous groups within the reference sequence, and wherein said number of nucleotide alterations is determined by multiplying the total number of nucleotides in SEQ ID NO: 1 by the integer defining the percent identity divided by 100 and then subtracting that product from said total number of nucleotides in SEQ ID NO: 1, or:
nn < xn - (xn • y),
w herein nn is the number of nucleotide alterations, xn is the total number of nucleotides in SEQ ID NO: l, y is 0.95 for 95%, 0.97 for 97% or 1.00 for 100%, and • is the symbol for the multiplication operator, and wherein any non-integer product of xn and y is rounded down to the nearest integer prior to subtracting it from xn. Alterations of a polynucleotide sequence encoding the polypeptide of SEQ ID NO:2 may create nonsense, missense or frameshift mutations in this coding sequence and thereby alter the polypeptide encoded by the polynucleotide following such alterations.
By way of example, a polynucleotide sequence of the present invention may be identical to the reference sequence of SEQ ID NO: 1, that is it may be 100% identical, or it may include up to a certain integer number of nucleic acid alterations as compared to the reference sequence such that the percent identity is less than 100% identity. Such alterations are selected from the group consisting of at least one nucleic acid deletion, substitution, including transition and transversion, or insertion, and wherein said alterations may occur at the 5' or 3' terminal positions of the reference polynucleotide sequence or anywhere between those terminal positions, interspersed either individually among the nucleic acids in the reference sequence or in one or more contiguous groups within the reference sequence. The number of nucleic acid alterations for a given percent identity is deteπnined by multiplying the total number of nucleic acids in SEQ ID NO: 1 by the integer defining the percent identity divided by 100 and then subtracting that product from said total number of nucleic acids in SEQ ID NO: 1, or:
nn < xn - (xn • y),
wherein nn is the number of nucleic acid alterations, xn is the total number of nucleic acids in SEQ ID NO: 1, y is, for instance 0.95 for 95%, 0.97 for 97% or 1.00 for 100%, etc., • is the symbol for the multiplication operator, and wherein any non-integer product of xn and y is rounded down to the nearest integer prior to subtracting it from xn.
(2) Polypeptide embodiments further include an isolated polypeptide comprising a polypeptide having at least a 95, 97 or 100% identity to a polypeptide reference sequence of SEQ ID NO:2, wherein said polypeptide sequence may be identical to the reference sequence of SEQ ID NO:2 or may include up to a certain integer number of amino acid alterations as compared to the reference sequence, wherein said alterations are selected from the group consisting of at least one amino acid deletion, substitution, including conservative and non-conservative substitution, or insertion, and wherein said alterations may occur at the amino- or carboxy-terminal positions of the reference polypeptide sequence or anywhere between those terminal positions, interspersed either individually among the amino acids in the reference sequence or in one or more contiguous groups within the reference sequence, and wherein said number of amino acid alterations is determined by multiplying the total number of amino acids in SEQ ID NO:2 by the integer de-i-ning the percent identity divided by 100 and then subtracting that product from said total number of amino acids in SEQ ID NO:2, or:
"a ≤ xa (χ a • y)>
wherein na is the number of amino acid alterations, xa is the total number of amino acids in SEQ ID NO:2, y is 0.95 for 95%, 0.97 for 97% or 1.00 for 100%, and • is the symbol for the multiplication operator, and wherein any non-integer product of xa and y is rounded down to the nearest integer prior to subtracting it from xa.
By way of example, a polypeptide sequence of the present invention may be identical to the reference sequence of SEQ ID NO:2, that is it may be 100% identical, or it may include up to a certain integer number of amino acid alterations as compared to the reference sequence such that the percent identity is less than 100% identity. Such alterations are selected from the group consisting of at least one -unino acid deletion, substitution, including conservative and non-conservative substitution, or insertion, and wherein said alterations may occur at the amino- or carboxy-terminal positions of the reference polypeptide sequence or anywhere between those terminal positions, interspersed either individually among the amino acids in the reference sequence or in one or more contiguous groups within the reference sequence. The number of amino acid alterations for a given % identity is determined by multiplying the total number of amino acids in SEQ ID NO:2 by the integer defining the percent identity divided by 100 and then subtracting that product from said total number of amino acids in SEQ 1D N0:2, or:
na ≤ xa " (xa * y),
wherein na is the number of amino acid alterations, xa is the total number of amino acids in SEQ ID NO:2, y is, for instance 0.95 for 95%, 0.97 for 97% or 1.00 for 100%, etc., and • is the symbol for the multiplication operator, and wherein any non-integer product of xa and y is rounded down to the nearest integer prior to subtracting it from xa.
"Individual(s)" means a multiceUular eukaryote, including, but not limited to a metazoan, a mammal, an ovid, a bovid, a simian, a primate, and a human. "Isolated" means altered "by the hand of man" from its natural state, i.e., if it occurs in nature, it has been changed or removed from its original environment, or both. For example, a polynucleotide or a polypeptide naturaUy present in a Uving organism is not "isolated," but the same polynucleotide or polypeptide separated from the coexisting materials of its natural state is "isolated", as the term is employed herein. Moreover, a polynucleotide or polypeptide that is introduced into an organism by transformation, genetic manipulation or by any other recombinant method is "isolated" even if it is still present in said organism, which organism may be Uving or non-Uving.
"Organising)" means a (i) prokaryote, including but not limited to, a member of the genus Streptococcus, Staphylococcus, Bordetella, Corynebacterium, Mycobacterium, Neisseria, Haemophilus, Actinomycetes, Streptomycetes, Nocardia, Enterobacter, Yersinia, Fancisella, Pasturella, Moraxella, Acinetobacter, Erysipelothrix, Branhamella, Actinobacillus, Streptobacillus, Listeria, Calymmatobacterium, Brucella, Bacillus, Clostridium, Treponema, Escherichia, Salmonella, Kleibsiella, Vibrio, Proteus, Erwinia, Borrelia, Leptospira, Spirillum, Campylobacter, Shigella, Legionella, Pseudomonas, Aeromonas, Rickettsia, Chlamydia, Borrelia aadMycoplasma, and further including, but not limited to, a member of the species or group, Group A Streptococcus, Group B Streptococcus, Group C Streptococcus, Group D Streptococcus, Group G Streptococcus, Streptococcus pneumoniae, Streptococcus pyogenes, Streptococcus agalactiae, Streptococcus faecalis, Streptococcus faecium, Streptococcus durans, Neisseria gonorrheae, Neisseria meningitidis, Staphylococcus aureus, Staphylococcus epidermidis, Corynebacterium diptheriae, Gardnerella vaginalis, Mycobacterium tuberculosis, Mycobacterium bovis, Mycobacterium ulcerans, Mycobacterium leprae, Actinomyctes israelii, Listeria monocytogenes, Bordetella pertusis, Bordatella parapertusis, Bordetella bronchiseptica, Escherichia coli, Shigella dysenteriae, Haemophilus influenzae, Haemophilus aegyptius, Haemophilus parainfluenzae, Haemophilus ducreyi, Bordetella, Salmonella typhi, Citrobacter freundii, Proteus mirabilis, Proteus vulgaris, Yersinia pestis, Kleibsiella pneumoniae, Serratia marcessens, Serratia liquefaciens, Vibrio cholera, Shigella dysenterii, Shigella flexneri, Pseudomonas aeruginosa, Franscisella tularensis, Brucella abortis, Bacillus anthracis, Bacillus cereus, Clostridium perfringens, Clostridium tetani, Clostridium botulinum, Treponema pallidum, Rickettsia rickettsii and Chlamydia trachomitis, (n) an archaeon, including but not Umited to Archaebacter, and (iii) a uniceUular or filamentous eukaryote, including but not limited to, a protozoan, a fungus, a member of the genus Saccharomyces, Kluveromyces, or Candida, and a member of the species Saccharomyces ceriviseae, Kluveromyces lactis, or Candida albicans.
"Polynucleotide(s)" generaUy refers to any polyribonucleotide or polydeoxyribonucleotide, which may be unmodified RNA or DNA or modified RNA or DNA. "Polynucleotide(s)" include, without -imitation, single- and double-stranded DNA, DNA that is a mixture of single- and double-stranded regions or single-, double- and triple-stranded regions, single- and double-stranded RNA, and RNA that is mixture of single- and double-stranded regions, hybrid molecules comprising DNA and RNA that may be single-stranded or, more typically, double-stranded, or triple-stranded regions, or a mixture of single- and double-stranded regions. In addition, "polynucleotide" as used herein refers to triple-stranded regions comprising RNA or DNA or both RNA and DNA. The strands in such regions may be from the same molecule or from different molecules. The regions may include aU of one or more of the molecules, but more typicaUy involve only a region of some of the molecules. One of the molecules of a triple-heUcal region often is an oUgonucleotide. As used herein, the term "polynucleotide(s)" also includes DNAs or RNAs as described above that comprise one or more modified bases. Thus, DNAs or RNAs with backbones modified for stability or for other reasons are "pohnucleotide(s)" as that term is intended herein. Moreover, DNAs or RNAs comprising unusual bases, such as inosine, or modified bases, such as tritylated bases, to name just two examples, are polynucleotides as the term is used herein. It will be appreciated that a great variety of modifications have been made to DNA and RNA that serve many useful purposes known to those of skϋl in the art. The term "polynucleotide(s)" as it is employed herein embraces such chemicaUy, enzymatically or metaboUcally modified forms of polynucleotides, as weU as the chemical forms of DNA and RNA characteristic of viruses and cells, including, for example, simple and complex ceUs. "Polynucleotide(s)" also embraces short polynucleotides often referred to as oligonucleotide(s).
"Polypeptide(s)" refers to any peptide or protein comprising two or more amino acids joined to each other by peptide bonds or modified peptide bonds. "Polypeptide(s)" refers to both short chains, commonly referred to as peptides, oUgopeptides and oUgomers and to longer chains generaUy referred to as proteins. Polypeptides may comprise amino acids other than the 20 gene encoded amino acids. "Polypeptide(s)" include those modified either by natural processes, such as processing and other post-translational modifications, but also by chemical modification techniques. Such modifications are weU described in basic texts and in more detailed monographs, as weU as in a voluminous research Uterature, and they are weU known to those of skill in the art. It will be appreciated that the same type of modification may be present in the same or varying degree at several sites in a given polypeptide. Also, a given polypeptide may comprise many types of modifications. Modifications can occur anywhere in a polypeptide, including the peptide backbone, the amino acid side-chains, and the amino or carboxyl termini. Modifications include, for example, acetylation, acylation, ADP-ribosylation, amidation, covalent attachment of flavin, covalent attachment of a heme moiety, covalent attachment of a nucleotide or nucleotide derivative, covalent attachment of a Upid or lipid derivative, covalent attachment of phosphotidylinositol, cross-Unking, cyclization, disulfide bond formation, demethylation, formation of covalent cross-links, formation of cysteine, formation of pyroglutamate, formylation, gamma-carboxylation, GPI anchor formation, hydroxylation, iodination, methylation, myristoylation, oxidation, proteolytic processing, phosphorylation, prenylation, racemization, glycosylation, Upid attachment, sulfation, gamma-carboxylation of glutamic acid residues, hydroxylation and ADP-ribosylation, selenoylation, sulfation, transfer-RNA mediated addition of amino acids to proteins, such as arginylation, and ubiquitination. See, for instance, PROTEINS - STRUCTURE AND MOLECULAR PROPERTIES, 2nd Ed., T. E. Creighton, W. H. Freeman and Company, New York (1993) and Wold, F., Posttranslational Protein Modifications: Perspectives and Prospects, pgs. 1-12 in POSTTRANSLATIONAL COVALENT MODIFICATION OF PROTEINS, B. C. Johnson, Ed, Academic Press, New York (1983); Seifter et al, Meth. Enzymol. 182:626-646 (1990) and Rattan et al. Protein Synthesis: Posttranslational Modifications and Aging, Ann. NN. Acad. Sci. 663: 48-62 (1992). Polypeptides may be branched or cychc, with or without branching. Cychc, branched and branched circular polypeptides may result from posttranslational natural processes and may be made by entirely synthetic methods, as weU. "Recombinant expression system(s)" refers to expression systems or portions thereof or polynucleotides of the invention introduced or transformed into a host ceU or host cell lysate for the production of the polynucleotides and polypeptides of the invention.
'Nariant(s)" as the term is used herein, is a polynucleotide or polypeptide that differs from a reference polynucleotide or polypeptide respectively, but retains essential properties. A typical variant of a polynucleotide differs in nucleotide sequence from another, reference polynucleotide. Changes in the nucleotide sequence of the variant may or may not alter the amino acid sequence of a polypeptide encoded by the reference polynucleotide. Nucleotide changes may result in amino acid substitutions, additions, deletions, fusion proteins and truncations in the polypeptide encoded by the reference sequence, as discussed below. A typical variant of a polypeptide differs in amino acid sequence from another, reference polypeptide. Generally, differences are limited so that the sequences of the reference polypeptide and the variant are closely similar overall and, in many regions, identical. A variant and reference polypeptide may differ in amino acid sequence by one or more substitutions, additions, deletions in any combination. A substituted or inserted amino acid residue may or may not be one encoded by the genetic code. The present invention also includes include variants of each of the polypeptides of the invention, that is polypeptides that vary from the referents by conservative amino acid substitutions, whereby a residue is substituted by another with like characteristics. Typical such substitutions are among Ala, Val, Leu and lie; among Ser and Thr; among the acidic residues Asp and Glu; among Asn and Gin; and among the basic residues Lys and Arg; or aromatic residues Phe and Tyr. Particularly prefened are variants in which several, 5-10, 1-5, 1-3, 1-2 or 1 amino acids are substituted, deleted, or added in any combination. A variant of a polynucleotide or polypeptide may be a naturally occurring such as an allelic variant, or it may be a variant that is not known to occur naturally. Non-naturally occurring variants of polynucleotides and polypeptides may be made by mutagenesis techniques, by direct synthesis, and by other recombinant methods known to skilled artisans. EXAMPLES
The examples below are carried out using standard techniques, which are weU known and routine to those of skill in the art, except where otherwise described in detail. The examples are illustrative, but do not limit the invention. Example 1 Strain selection, Library Production and Sequencing The polynucleotide having a DNA sequence given in Table 1 [SEQ ID NO:l] was obtained from a library of clones of chromosomal DNA of Staphylococcus aureus in E. coli. The sequencing data from two or more clones comprising overlapping Staphylococcus aureus DNAs was used to construct the contiguous DNA sequence in SΕQ ID NO:l. Libraries may be prepared by routine methods, for example: Methods 1 and 2 below.
Total cellular DNA is isolated from Staphylococcus aureus WCUH 29 according to standard procedures and size-fractionated by either of two methods. Method 1 Total cellular DNA is mechanically sheared by passage through a needle in order to size- fractionate according to standard procedures. DNA fragments of up to 1 lkbp in size are rendered blunt by treatment with exonuclease and DNA polymerase, and EcoRI linkers added. Fragments are ligated into the vector Lambda ZapII that has been cut with EcoRI, the library packaged by standard procedures and E.coli infected with the packaged library. The library is amplified by standard procedures.
Method 2
Total cellular DNA is partially hydrolyzed with a one or a combination of restriction enzymes appropriate to generate a series of fragments for cloning into library vectors (e.g., Rsal, Pall, AM, Bshl235I), and such fragments are size-fractionated according to standard procedures. EcoRI linkers are ligated to the DNA and the fragments then ligated into the vector Lambda ZapII that have been cut with EcoRI, the library packaged by standard procedures, and E.coli infected with the packaged library. The library is amplified by standard procedures.

Claims

What is claimed is:
1. An isolated polypeptide selected from the group consisting of:
(i) an isolated polypeptide comprising an amino acid having at least 95% identity to the amino acid sequence of SEQ ID NO:2 over the entire length of SEQ ID NO:2; (ii) an isolated polypeptide comprising the amino acid sequence of SEQ ID NO:2, (iii) an isolated polypeptide which is the amino acid sequence of SEQ ID NO:2, and (iv) a polypeptide which is encoded by a recombinant polynucleotide comprising the polyncleotide sequence of SEQ ID NO:l.
2. An isolated polynucleotide selected from the group consisting of:
(i) an isolated polynucleotide comprising a polynucleotide sequence encoding a polypeptide that has at least 95% identity to the amino acid sequence of SEQ ID NO:2, over the entire length of SEQ ID NO:2;
(n) an isolated polynucleotide comprising a polynucleotide sequence that has at least 95% identity over its entire length to a polynucleotide sequence encoding the polypeptide of SEQ ID
NO:2;
(in) an isolated polynucleotide comprising a nucleotide sequence which has at least 95% identity to that of SEQ ID NO:l over the entire length of SEQ ID NO:l;
(iv) an isolated polynucleotide comprising a nucleotide sequence encoding the polypeptide of SEQ ID
NO:2;
(v) an isolated polynucleotide which is the polynucleotide of SEQ ID NO: 1 ;
(vi) an isolated polynucleotide obtainable by screening an appropriate Ubrary under stringent hybridization conditions with a probe having the sequence of SEQ -D NO: 1 or a fragment thereof; (vii) an isolated polynucleotide encoding a mature polypeptide expressed by the AcpS gene comprised in the Staphylococcus aureus; and
(viii) a polynucleotide sequence complementary to said isolated polynucleotide of (i), (u), (iii), (iv), (v), (vi) or (vn).
3. A method for the treatment of an individual:
(i) in need of enhanced activity or expression of or immunological response to the polypeptide of claim 1 comprising the step of: administering to the individual a therapeutically effective amount of an antagonist to said polypeptide; or (ii) having need to inhibit activity or expression of the polypeptide of claim 1 comprising:
(a) administering to the individual a therapeutically effective amount of an antagonist to said polypeptide; or
(b) administering to the individual a nucleic acid molecule that inhibits the expression of a polynucleotide sequence encoding said polypeptide;
(c) administering to the individual a therapeutically effective amount of a polypeptide that competes with said polypeptide for its Ugand, substrate, or receptor; or
(d) administering to the individual an amount of a polypeptide that induces an immunological response to said polypeptide in said individual.
4. A process for diagnosing or prognosing a disease or a susceptibility to a disease in an individual related to expression or activity of the polypeptide of claim 1 in an individual comprising the step of:
(a) determining the presence or absence of a mutation in the nucleotide sequence encoding said polypeptide in an organism in said individual; or
(b) analyzing for the presence or amount of said polypeptide expression in a sample derived from said individual.
5. A process for producing a polypeptide selected from the group consisting of:
(i) an isolated polypeptide comprising an amino acid sequence selected from the group having at least 95% identity to the amino acid sequence of SEQ ID NO:2 over the entire length of SEQ ID NO:2;
(ii) an isolated polypeptide comprising the amino acid sequence of SEQ ID NO:2;
(iii) an isolated polypeptide which is the amino acid sequence of SEQ ID NO:2, and
(iv) a polypeptide which is encoded by a recombinant polynucleotide comprising the polynucleotide sequence of SEQ ID NO:l, comprising the step of culturing a host cell of claim 7 under conditions sufficient for the production of said polypeptide.
6. A process for producing a host cell comprising an expression system expressing a polypeptide selected from the group consisting of: (i) an isolated polypeptide comprising an amino acid sequence selected from the group having at least 95% identity to the amino acid sequence of SEQ ID NO:2 over the entire length of SEQ ID NO:2;
(ii) an isolated polypeptide comprising the amino acid sequence of SEQ ID NO:2;
(iii) an isolated polypeptide which is the amino acid sequence of SEQ ID NO:2, and
(iv) a polypeptide which is encoded by a recombinant polynucleotide comprising the polynucleotide sequence of SEQ ID NO:l, said process comprising the step of transforming or transfecting a cell with an expression s> stem comprising a polynucleotide capable of producing said polypeptide of (i), (n), (in) or (iv) when said expression system is present in a compatible host cell such the host cell, under appropriate culture conditions, produces said polypeptide of (i), (ii), (iii) or (iv).
7. A host cell expressing a polypeptide or a membrane thereof expressing a polypeptide selected from the group consisting of:
(i) an isolated polypeptide comprising an amino acid sequence selected from the group having at least 95% identity to the amino acid sequence of SEQ ID NO:2 over the entire length of SEQ ID NO:2;
(ii) an isolated polypeptide comprising the amino acid sequence of SEQ ID NO:2;
(iii) an isolated polypeptide which is the amino acid sequence of SEQ ID NO:2, and
(iv) a polypeptide which is encoded by a recombinant polynucleotide comprising the polynucleotide sequence of SEQ ID NO:l.
8. An antibody immunospecific for the polypeptide of claim 1.
9. A method for screening to identify compounds which stimulate or which inhibit the function of the polypeptide of claim 1 which comprises a method selected from the group consisting of:
(a) measuring the binding of a candidate compound to the polypeptide (or to the cells or membranes bearing the polypeptide) or a fusion protein thereof by means of a label directly or indirectly associated with the candidate compound;
(b) measuring the binding of a candidate compound to the polypeptide (or to the cells or membranes bearing the polypeptide) or a fusion protein thereof in the presence of a labeled competitor;
(c) testing whether the candidate compound results in a signal generated by activation or inhibition of the polypeptide, using detection systems appropriate to the cells or cell membranes bearing the polypeptide; (d) mixing a candidate compound with a solution comprising a polypeptide of claim 1, to form a mixture, measuring activity of the polypeptide in the mixture, and comparing the activity of the mixture to a standard; or
(e) detecting the effect of a candidate compound on the production of mRNA encoding said polypeptide and said polypeptide in cells, using for instance, an ELISA assay.
10. An agonist or antagonist to the polypeptide of claim 1.
PCT/US1999/029464 1999-01-08 1999-12-13 AcpS Ceased WO2000040594A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US22770099A 1999-01-08 1999-01-08
US09/227,700 1999-01-08

Publications (1)

Publication Number Publication Date
WO2000040594A1 true WO2000040594A1 (en) 2000-07-13

Family

ID=22854126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1999/029464 Ceased WO2000040594A1 (en) 1999-01-08 1999-12-13 AcpS

Country Status (1)

Country Link
WO (1) WO2000040594A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006060839A3 (en) * 2004-12-10 2007-01-18 Univ Wien Bodenkultur Method for identifying ppt inhibitors

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998023738A2 (en) * 1996-11-25 1998-06-04 Smithkline Beecham Corporation Novel prokaryotic polynucleotides, polypeptides and their uses

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998023738A2 (en) * 1996-11-25 1998-06-04 Smithkline Beecham Corporation Novel prokaryotic polynucleotides, polypeptides and their uses

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KULLIK ET. AL.: "Sequence of the Putative Alanine Racemase Operon in Staphylococcus Aureus: Insertional Interruption of this Operon Reduces D-alanine Substitution of Lipoteichoic Acid and Autolysis.", GENE, vol. 1-2, 28 September 1998 (1998-09-28), pages 9 - 17, XP002928501 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006060839A3 (en) * 2004-12-10 2007-01-18 Univ Wien Bodenkultur Method for identifying ppt inhibitors

Similar Documents

Publication Publication Date Title
US6451556B1 (en) EF-Tu
WO2000044778A1 (en) mvk
US6448038B1 (en) BirA from staphylococcus aureus
US6365387B1 (en) fabG
US6287810B1 (en) Polynucleotides encoding an undercaprenyl diphosphate synthase of staphylococcus aureus
US6352840B1 (en) pskG
US6197546B1 (en) PcrA Helicase of Staphylococcus aureus
US6352843B1 (en) YsxC from Staphylococcus aureus
US6238885B1 (en) Histidine kinase
US6406889B1 (en) 509hk
US6316237B1 (en) Respiratory nitrate reductase alpha subunit
US6194174B1 (en) Histidine kinase, 636 HK, of staphylococcus aureus
US6326167B1 (en) TktA from Streptococcus pneumoniae
US6280990B1 (en) dnaE
US6251633B1 (en) Polynucleotides encoding Staphylococcus aureus FtsA polypeptide
US6277597B1 (en) kdtB
WO2000040594A1 (en) AcpS
WO2000061778A1 (en) Staphylococcus aureus mvaa
WO2000067575A1 (en) 0623hk
WO2000067783A1 (en) 509hk
WO2000056873A1 (en) mvaA
WO2000059923A1 (en) 0636 regulator
WO2000069443A1 (en) ysxC
WO2000071568A1 (en) Staphylococcal ica operon
WO2000060105A1 (en) murA

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase