WO1999019674A1 - Chambre de combustion a debit de carburant pouvant etre regule de maniere independante selon les differents etages - Google Patents
Chambre de combustion a debit de carburant pouvant etre regule de maniere independante selon les differents etages Download PDFInfo
- Publication number
- WO1999019674A1 WO1999019674A1 PCT/US1998/021335 US9821335W WO9919674A1 WO 1999019674 A1 WO1999019674 A1 WO 1999019674A1 US 9821335 W US9821335 W US 9821335W WO 9919674 A1 WO9919674 A1 WO 9919674A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fuel
- members
- flow
- passage
- combustor according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/28—Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/28—Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
- F23R3/286—Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply having fuel-air premixing devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C7/00—Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
- F02C7/22—Fuel supply systems
- F02C7/222—Fuel flow conduits, e.g. manifolds
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C6/00—Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion
- F23C6/04—Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection
- F23C6/045—Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection with staged combustion in a single enclosure
- F23C6/047—Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection with staged combustion in a single enclosure with fuel supply in stages
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/28—Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
- F23R3/34—Feeding into different combustion zones
Definitions
- the present invention relates to a combustor for burning fuel in compressed air. More specifically, the present invention relates to a combustor in which fuel is introduced by fuel tubes into two pre-mixing passages.
- fuel is burned in compressed air, produced by a compressor, in one or more combustors.
- combustors had a primary combustion zone in which an approximately stoichiometric mixture of fuel and air was formed and burned in a diffusion type combustion process. Additional air was introduced into the combustor downstream of the primary combustion zone.
- the overall fuel/air ratio was considerably less than stoichiometric, the fuel/air mixture was readily ignited at start-up and good flame stability was achieved over a wide range of firing temperatures due to the locally richer nature of the fuel/air mixture in the primary combustion zone.
- a combustor such as that suitable for use in a gas turbine, in which the flow of fuel to multiple pre-mixing passages can be individually controlled.
- a combustor for combusting a flow of fuel in a flow of oxygen bearing fluid, such as compressed air.
- the combustor comprises (i) first and second passages for mixing first and second portions of the fuel flow in first and second portions of the flow of oxygen bearing fluid, respectively, and (ii) means for introducing the fuel flow into first and second portions of the flow of oxygen bearing fluid.
- the first passage has an inlet for receiving the first portion of the oxygen bearing fluid flow
- the second passage has an inlet for receiving the second portion of the oxygen bearing fluid flow.
- the fuel introducing means comprises two members, a first member having means for introducing the first portion of the fuel flow into the first passage and a second member having means for introducing the second portion of the fuel flow into the second passage.
- the second member of the fuel introducing means extends through the first member of the fuel introducing means.
- the combustor further comprises means for individually regulating the flow rate of the first portion of the fuel flow introduced by the first portion of the fuel introducing means and the flow rate of the second portion of the fuel flow introduced by the second portion of the fuel introducing means.
- the fuel flow introducing means comprises a plurality of fuel introducing assemblies, each of which comprises first and second members. The first members are dispersed about the first passage, while the second members are dispersed about the second passage. A first chamber distributes the first portion of the fuel flow to the plurality of first members and a second chamber distributes the second portion of the fuel flow to the plurality of second members. The flow of fuel to the two chambers can be individually regulated by control valves.
- Figure 3 is a longitudinal cross-section through the primary gas fuel tube assembly shown in Figure 2.
- Figure 4 is an isometric view of the air inlet portion of the combustor primary section shown in Figure 2, with the flow guide shown in phantom for clarity.
- Figure 5 is a detailed view of the primary gas fuel manifold shown in Figure 3.
- Figure 1 the combustion section of a gas turbine.
- the gas turbine is comprised of a compressor 2 that is driven by a turbine 6 via a shaft 26.
- Ambient air is drawn into the compressor 2 and compressed.
- the compressed air 8 produced by the compressor 2 is directed to a combustion system that includes one or more combustors 4 disposed within a chamber 7 formed by a cylindrical shell 22.
- gaseous or liquid fuel is burned in the compressed air 8, thereby producing a hot compressed gas 20.
- Each combustor has a primary zone 30 and a secondary zone 32.
- the hot compressed gas 20 produced by the combustor 4 is directed to the turbine 6 by a duct 5 where it is expanded, thereby producing shaft horsepower for driving the compressor 2, as well as a load, such as an electric generator.
- the expanded gas produced by the turbine 6 is exhausted, either to the atmosphere directly or, in a combined cycle plant, to a heat recovery steam generator and then to atmosphere.
- the primary zone 30 of the combustor 4 is supported by a support plate 28.
- the support plate 28 is attached to a cylinder 13 that extends from the shell 22 and encloses the primary zone 30.
- the secondary zone 32 is supported by arms (not shown) extending from the support plate 28. Separately supporting the primary and secondary zones 30 and 32 reduces thermal stresses due to differential thermal expansion.
- a primary combustion zone 35 in which a lean mixture of fuel and air is burned, is located within the primary zone 30 of the combustor 4. Specifically, the primary combustion zone 35 is enclosed by a cylindrical inner liner 44.
- the inner liner 44 is encircled by a cylindrical middle liner 42 that is, in turn, encircled by a cylindrical outer liner 40.
- the liners 40, 42 and 44 are concentrically arranged so that an annular secondary pre-mixing passage 50 is formed between the middle and outer liners 42 and 44, respectively.
- Secondary gas fuel is directed from a manifold 38 to an annular secondary gas fuel ring 36 that distributes gaseous fuel around the inlet to passage 50 into secondary combustion air
- the fuel/ air mixture produced by the secondary pre-mixing passage 50 is directed to a secondary combustion zone (not shown).
- a fuel nozzle 18 is centrally disposed within the primary zone 30 and is supplied with oil fuel 14.
- the fuel nozzle 18 may be supplied with gaseous fuel and/ or water for additional NOx control.
- Compressed air from the compressor 2 is introduced into the primary combustion zone 35 by a primary air inlet formed in the front end of the primary zone 30.
- the primary air inlet is formed by first and second primary pre-mixing passages 48 and 49 that divide the incoming air into two streams 8' and 8".
- the first primary pre-mixing passage 48 has an upstream radial portion and a downstream axial portion.
- the upstream portion of the first passage 48 is formed between a radially extending circular plate 60 and the radially extending portion of a flow guide 46.
- the downstream portion is formed between the flow guide 46 and the outer sleeve 34 of the fuel nozzle 18 and is encircled by the second passage 49.
- the second primary pre-mixing passage 49 also has an upstream radial portion and a downstream axial portion.
- the upstream portion of second passage 49 is formed between the radially extending portion of the flow guide 46 and a radially extending portion of the inner liner 44.
- the downstream portion of second passage 49 is formed between the axial portion of the flow guide 46 and an axially extending portion of the inner liner 44.
- a number of swirl vanes 22 and 24 are distributed around the circumference of the upstream portions of the primary pre- mixing passages 48 and 49.
- the swirl vanes 22 in the inlet of the first passage 48 impart a counterclockwise (when viewed in the direction of the axial flow) rotation to the air stream 8' .
- the swirl vanes 24 in the inlet of second passage 49 impart a clockwise rotation to the air stream 8".
- the swirl imparted by the vanes 22 and 24 to the air streams 8' and 8" ensures good mixing between fuel 16' and 16" and the air, thereby eliminating locally fuel rich mixtures and the associated high temperatures that increase NOx generation.
- a number of axially oriented, primary fuel spray tube assemblies, or pegs, 52 are distributed around the circumference of the primary air inlet.
- the primary fuel tubes 52 serve to introduce fuel 16, which is preferably gaseous, into the first and second primary pre-mixing passages 48 and 49. Consequently, the primary fuel tubes 52 extend through the upstream portions of the both the first and second passages 48 and 49.
- a primary fuel spray tube assembly 52 is located between each of the swirlers 22 and
- the primary fuel spray tube assemblies 52 are supplied with fuel 16 by a circumferentially extending tubular manifold 70 disposed within the support plate 28.
- the manifold 70 forms a hollow cavity that is divided into two chambers 71 and 72 by a circumferentially extending baffle 74.
- separate fuel supply pipes 62 and 64 supply separate streams of fuel 16" and 16', respectively, to chambers 71 and 72, respectively.
- a control valve 76 is installed in each of the fuel pipes 62 and 64 so that the flow rate of fuel 16' and 16" can be separately regulated.
- each primary fuel spray tube 52 is an assembly comprised of two tubular members 53 and 54.
- Member 53 has two rows of fuel discharge ports 66 spaced along its length.
- Member 54 also has two rows of fuel discharge ports 68 spaced along its length.
- member 54, and hence its fuel discharge ports 68 extends only through the first pre- mixing passage 48 so as to supply fuel 16' to only that passage.
- member 53 extends through both pre-mixing passages 48 and 49, its fuel discharge ports 66 are located in only the portion that extends through the second pre-mixing passage 49.
- member 53 supplies fuel 16" to only the second pre-mixing passage 49.
- the fuel discharge ports 66 and 68 are oriented so as to discharge the fuel circumferentially in the clockwise and counterclockwise directions within the inlets of pre-mixing passage 48 and 49.
- the proximal end of member 53 is attached, for example by welding, to the manifold baffle 74, through which it extends.
- the inlet of member 53 is thus in flow communication with the chamber 71 of the fuel manifold 70.
- the proximal end of member 54 is attached to the outer wall of the circumferentially extending manifold 70, through which it extends.
- member 53 has a reduced diameter portion 53' that extends through member 54. Consequently, an annular gap is formed between members 53 and 54 that forms a fuel passage 55.
- Fuel passage 55 is in flow communication with chamber 72 of the manifold 70, thereby supplying fuel 16" to the discharge ports 68.
- the distal end of member 54 is attached, for example by welding, to member 53 so as to seal the end of the passage 55.
- the joint along which the members 53 and 54 are joined is disposed within the passage in the vertical flange of the liner 46 through which the fuel tube assembly 52 extends.
- the configuration of the primary fuel tubes 52 of the current invention has several advantages. First, since the fuel mbe 53 for second pre-mixing passage 49 extends through the fuel tube 54 for the first pre-mixing passage 48, there is minimal obstruction of the flow area of the pre-mixing passages.
- this arrangement minimizes stresses due to differential thermal expansion. Note that relatively cool fuel 16' and 16" flows over and through, respectively, the reduced diameter portion 53' of member 53, whereas much hotter air 8' flows over member 54, which surrounds the reduced diameter portion 53'. Consequently, member 54 will expand more than the reduced diameter portion 53' of the other member. According to the current invention, this differential growth is accommodated by the flexibility of the baffle 74, which can bend to accommodate growth, thereby reducing thermal stresses on the assembly.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Fluidized-Bed Combustion And Resonant Combustion (AREA)
Abstract
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| AU12699/99A AU1269999A (en) | 1997-10-13 | 1998-10-09 | Combustor with independently controllable fuel flow to different stages |
| KR1020007003901A KR20010024477A (ko) | 1997-10-13 | 1998-10-09 | 독립적으로 제어 가능한 서로 다른 스테이지로의 연료유동을 가진 연소기 |
| EP98956100A EP1025398A1 (fr) | 1997-10-13 | 1998-10-09 | Chambre de combustion a debit de carburant pouvant etre regule de maniere independante selon les differents etages |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US08/949,252 | 1997-10-13 | ||
| US08/949,252 US5983642A (en) | 1997-10-13 | 1997-10-13 | Combustor with two stage primary fuel tube with concentric members and flow regulating |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO1999019674A1 true WO1999019674A1 (fr) | 1999-04-22 |
Family
ID=25488808
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US1998/021335 Ceased WO1999019674A1 (fr) | 1997-10-13 | 1998-10-09 | Chambre de combustion a debit de carburant pouvant etre regule de maniere independante selon les differents etages |
Country Status (7)
| Country | Link |
|---|---|
| US (1) | US5983642A (fr) |
| EP (1) | EP1025398A1 (fr) |
| KR (1) | KR20010024477A (fr) |
| AR (1) | AR017332A1 (fr) |
| AU (1) | AU1269999A (fr) |
| TW (1) | TW362129B (fr) |
| WO (1) | WO1999019674A1 (fr) |
Cited By (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7189073B2 (en) | 2000-10-16 | 2007-03-13 | Alstom Technology Ltd. | Burner with staged fuel injection |
| JP2007534913A (ja) * | 2004-02-27 | 2007-11-29 | プラット アンド ホイットニー カナダ コーポレイション | ガスタービンエンジン用内部燃料マニホールドまたはガスタービン燃料ノズルアッセンブリ |
| EP2107300A1 (fr) * | 2008-04-01 | 2009-10-07 | Siemens Aktiengesellschaft | Ensemble de tourbillonnement avec injecteur à gaz |
| WO2009087050A3 (fr) * | 2008-01-08 | 2010-05-20 | Ln 2 S.R.L. A Socio Unico | Dispositif de mélange d'air et de gaz, destiné en particulier à des appareils brûleurs à prémélange |
| EP2192347A1 (fr) * | 2008-11-26 | 2010-06-02 | Siemens Aktiengesellschaft | Dispositif de tourbillonnement double |
| CN102022728A (zh) * | 2009-09-15 | 2011-04-20 | 通用电气公司 | 用于燃烧器的径向入口导叶 |
| EP2543931A1 (fr) * | 2011-07-06 | 2013-01-09 | General Electric Company | Appareil et systèmes relatifs à des injecteurs de carburant et passages de carburant dans des moteurs à turbine à gaz |
| US8365534B2 (en) | 2011-03-15 | 2013-02-05 | General Electric Company | Gas turbine combustor having a fuel nozzle for flame anchoring |
| EP2329121A4 (fr) * | 2008-08-28 | 2013-02-27 | Woodward Inc | Collecteur de carburant a passages multiples et procedes de construction |
| EP1975513A3 (fr) * | 2007-03-14 | 2015-05-20 | Ansaldo Energia S.p.A. | Brûleur à prémélange pour turbine à gaz, en particulier une microturbine |
| EP2309188A4 (fr) * | 2008-05-23 | 2016-03-23 | Kawasaki Heavy Ind Ltd | Dispositif de combustion et procédé de commande de celui-ci |
| EP2719953A3 (fr) * | 2012-10-09 | 2018-01-03 | Delavan Inc. | Injecteurs multipoints à étage auxiliaire |
Families Citing this family (98)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6109038A (en) * | 1998-01-21 | 2000-08-29 | Siemens Westinghouse Power Corporation | Combustor with two stage primary fuel assembly |
| US6161387A (en) * | 1998-10-30 | 2000-12-19 | United Technologies Corporation | Multishear fuel injector |
| WO2001075361A1 (fr) * | 2000-03-31 | 2001-10-11 | Aqua-Chem, Inc. | Bruleur a faible emission de polluants |
| EP1436546B1 (fr) * | 2001-10-19 | 2016-09-14 | General Electric Technology GmbH | Brûleur à gaz de synthèse |
| FR2832760B1 (fr) * | 2001-11-28 | 2004-08-13 | Microturbo | Couronne de distribution de carburant pour l'alimentation d'une chambre de combustion |
| US6666029B2 (en) | 2001-12-06 | 2003-12-23 | Siemens Westinghouse Power Corporation | Gas turbine pilot burner and method |
| JP3495730B2 (ja) * | 2002-04-15 | 2004-02-09 | 三菱重工業株式会社 | ガスタービンの燃焼器 |
| DE10219354A1 (de) * | 2002-04-30 | 2003-11-13 | Rolls Royce Deutschland | Gasturbinenbrennkammer mit gezielter Kraftstoffeinbringung zur Verbesserung der Homogenität des Kraftstoff-Luft-Gemisches |
| US7028484B2 (en) * | 2002-08-30 | 2006-04-18 | Pratt & Whitney Canada Corp. | Nested channel ducts for nozzle construction and the like |
| US6786047B2 (en) * | 2002-09-17 | 2004-09-07 | Siemens Westinghouse Power Corporation | Flashback resistant pre-mix burner for a gas turbine combustor |
| US6848260B2 (en) * | 2002-09-23 | 2005-02-01 | Siemens Westinghouse Power Corporation | Premixed pilot burner for a combustion turbine engine |
| US6935116B2 (en) * | 2003-04-28 | 2005-08-30 | Power Systems Mfg., Llc | Flamesheet combustor |
| US6986254B2 (en) * | 2003-05-14 | 2006-01-17 | Power Systems Mfg, Llc | Method of operating a flamesheet combustor |
| US7249461B2 (en) * | 2003-08-22 | 2007-07-31 | Siemens Power Generation, Inc. | Turbine fuel ring assembly |
| US7093441B2 (en) * | 2003-10-09 | 2006-08-22 | United Technologies Corporation | Gas turbine annular combustor having a first converging volume and a second converging volume, converging less gradually than the first converging volume |
| US7350357B2 (en) * | 2004-05-11 | 2008-04-01 | United Technologies Corporation | Nozzle |
| US6993916B2 (en) * | 2004-06-08 | 2006-02-07 | General Electric Company | Burner tube and method for mixing air and gas in a gas turbine engine |
| DE112005001695A5 (de) * | 2004-08-27 | 2007-11-22 | Alstom Technology Ltd. | Mischeranordnung |
| US7370466B2 (en) * | 2004-11-09 | 2008-05-13 | Siemens Power Generation, Inc. | Extended flashback annulus in a gas turbine combustor |
| US20060156733A1 (en) * | 2005-01-14 | 2006-07-20 | Pratt & Whitney Canada Corp. | Integral heater for fuel conveying member |
| US7565807B2 (en) * | 2005-01-18 | 2009-07-28 | Pratt & Whitney Canada Corp. | Heat shield for a fuel manifold and method |
| US7677025B2 (en) * | 2005-02-01 | 2010-03-16 | Power Systems Mfg., Llc | Self-purging pilot fuel injection system |
| US7137256B1 (en) | 2005-02-28 | 2006-11-21 | Peter Stuttaford | Method of operating a combustion system for increased turndown capability |
| US7530231B2 (en) * | 2005-04-01 | 2009-05-12 | Pratt & Whitney Canada Corp. | Fuel conveying member with heat pipe |
| US7533531B2 (en) * | 2005-04-01 | 2009-05-19 | Pratt & Whitney Canada Corp. | Internal fuel manifold with airblast nozzles |
| US7540157B2 (en) | 2005-06-14 | 2009-06-02 | Pratt & Whitney Canada Corp. | Internally mounted fuel manifold with support pins |
| US7559201B2 (en) * | 2005-09-08 | 2009-07-14 | Pratt & Whitney Canada Corp. | Redundant fuel manifold sealing arrangement |
| US7954325B2 (en) * | 2005-12-06 | 2011-06-07 | United Technologies Corporation | Gas turbine combustor |
| US7878000B2 (en) * | 2005-12-20 | 2011-02-01 | General Electric Company | Pilot fuel injector for mixer assembly of a high pressure gas turbine engine |
| US7607226B2 (en) * | 2006-03-03 | 2009-10-27 | Pratt & Whitney Canada Corp. | Internal fuel manifold with turned channel having a variable cross-sectional area |
| US7854120B2 (en) * | 2006-03-03 | 2010-12-21 | Pratt & Whitney Canada Corp. | Fuel manifold with reduced losses |
| US7942002B2 (en) * | 2006-03-03 | 2011-05-17 | Pratt & Whitney Canada Corp. | Fuel conveying member with side-brazed sealing members |
| US7624577B2 (en) * | 2006-03-31 | 2009-12-01 | Pratt & Whitney Canada Corp. | Gas turbine engine combustor with improved cooling |
| US8096130B2 (en) * | 2006-07-20 | 2012-01-17 | Pratt & Whitney Canada Corp. | Fuel conveying member for a gas turbine engine |
| US8353166B2 (en) | 2006-08-18 | 2013-01-15 | Pratt & Whitney Canada Corp. | Gas turbine combustor and fuel manifold mounting arrangement |
| US7765808B2 (en) * | 2006-08-22 | 2010-08-03 | Pratt & Whitney Canada Corp. | Optimized internal manifold heat shield attachment |
| US20080053096A1 (en) * | 2006-08-31 | 2008-03-06 | Pratt & Whitney Canada Corp. | Fuel injection system and method of assembly |
| US8033113B2 (en) * | 2006-08-31 | 2011-10-11 | Pratt & Whitney Canada Corp. | Fuel injection system for a gas turbine engine |
| US7703289B2 (en) * | 2006-09-18 | 2010-04-27 | Pratt & Whitney Canada Corp. | Internal fuel manifold having temperature reduction feature |
| US7926279B2 (en) * | 2006-09-21 | 2011-04-19 | Siemens Energy, Inc. | Extended life fuel nozzle |
| US7775047B2 (en) * | 2006-09-22 | 2010-08-17 | Pratt & Whitney Canada Corp. | Heat shield with stress relieving feature |
| US7926286B2 (en) * | 2006-09-26 | 2011-04-19 | Pratt & Whitney Canada Corp. | Heat shield for a fuel manifold |
| US7716933B2 (en) * | 2006-10-04 | 2010-05-18 | Pratt & Whitney Canada Corp. | Multi-channel fuel manifold |
| US8572976B2 (en) * | 2006-10-04 | 2013-11-05 | Pratt & Whitney Canada Corp. | Reduced stress internal manifold heat shield attachment |
| US7856825B2 (en) * | 2007-05-16 | 2010-12-28 | Pratt & Whitney Canada Corp. | Redundant mounting system for an internal fuel manifold |
| US8146365B2 (en) * | 2007-06-14 | 2012-04-03 | Pratt & Whitney Canada Corp. | Fuel nozzle providing shaped fuel spray |
| DE102007043626A1 (de) | 2007-09-13 | 2009-03-19 | Rolls-Royce Deutschland Ltd & Co Kg | Gasturbinenmagerbrenner mit Kraftstoffdüse mit kontrollierter Kraftstoffinhomogenität |
| JP5358198B2 (ja) * | 2008-01-17 | 2013-12-04 | 学校法人中部大学 | 燃焼器及び当該燃焼器を用いた発電装置 |
| US8443608B2 (en) * | 2008-02-26 | 2013-05-21 | Delavan Inc | Feed arm for a multiple circuit fuel injector |
| EP2107301B1 (fr) * | 2008-04-01 | 2016-01-06 | Siemens Aktiengesellschaft | Injection de gaz dans un brûleur |
| EP2107311A1 (fr) * | 2008-04-01 | 2009-10-07 | Siemens Aktiengesellschaft | Mise à l'échelle de taille dans un brûleur |
| EP2107309A1 (fr) * | 2008-04-01 | 2009-10-07 | Siemens Aktiengesellschaft | Diffuseurs dans un brûleur |
| US8113001B2 (en) * | 2008-09-30 | 2012-02-14 | General Electric Company | Tubular fuel injector for secondary fuel nozzle |
| US8505304B2 (en) * | 2008-12-01 | 2013-08-13 | General Electric Company | Fuel nozzle detachable burner tube with baffle plate assembly |
| US20100180599A1 (en) * | 2009-01-21 | 2010-07-22 | Thomas Stephen R | Insertable Pre-Drilled Swirl Vane for Premixing Fuel Nozzle |
| EP2236793A1 (fr) * | 2009-03-17 | 2010-10-06 | Siemens Aktiengesellschaft | Ensemble brûleur |
| US8739546B2 (en) * | 2009-08-31 | 2014-06-03 | United Technologies Corporation | Gas turbine combustor with quench wake control |
| DE102009045950A1 (de) * | 2009-10-23 | 2011-04-28 | Man Diesel & Turbo Se | Drallerzeuger |
| KR101037462B1 (ko) * | 2009-11-16 | 2011-05-26 | 두산중공업 주식회사 | 가스터빈 엔진용 연소기의 연료 다단식 공급구조 |
| KR101127037B1 (ko) * | 2009-11-16 | 2012-04-12 | 두산중공업 주식회사 | 가스터빈 엔진용 연소기의 냉각구조 |
| US8443610B2 (en) | 2009-11-25 | 2013-05-21 | United Technologies Corporation | Low emission gas turbine combustor |
| US8966877B2 (en) | 2010-01-29 | 2015-03-03 | United Technologies Corporation | Gas turbine combustor with variable airflow |
| US9068751B2 (en) * | 2010-01-29 | 2015-06-30 | United Technologies Corporation | Gas turbine combustor with staged combustion |
| US8418468B2 (en) | 2010-04-06 | 2013-04-16 | General Electric Company | Segmented annular ring-manifold quaternary fuel distributor |
| US8438852B2 (en) | 2010-04-06 | 2013-05-14 | General Electric Company | Annular ring-manifold quaternary fuel distributor |
| US9003804B2 (en) * | 2010-11-24 | 2015-04-14 | Delavan Inc | Multipoint injectors with auxiliary stage |
| US8899048B2 (en) | 2010-11-24 | 2014-12-02 | Delavan Inc. | Low calorific value fuel combustion systems for gas turbine engines |
| US9958162B2 (en) | 2011-01-24 | 2018-05-01 | United Technologies Corporation | Combustor assembly for a turbine engine |
| US8479521B2 (en) | 2011-01-24 | 2013-07-09 | United Technologies Corporation | Gas turbine combustor with liner air admission holes associated with interspersed main and pilot swirler assemblies |
| US9068748B2 (en) | 2011-01-24 | 2015-06-30 | United Technologies Corporation | Axial stage combustor for gas turbine engines |
| US20120208137A1 (en) * | 2011-02-11 | 2012-08-16 | General Electric Company | System and method for operating a combustor |
| US20120208136A1 (en) * | 2011-02-11 | 2012-08-16 | General Electric Company | System and method for operating a combustor |
| RU2011115528A (ru) | 2011-04-21 | 2012-10-27 | Дженерал Электрик Компани (US) | Топливная форсунка, камера сгорания и способ работы камеры сгорания |
| US8904797B2 (en) * | 2011-07-29 | 2014-12-09 | General Electric Company | Sector nozzle mounting systems |
| US9353949B2 (en) * | 2012-04-17 | 2016-05-31 | Siemens Energy, Inc. | Device for improved air and fuel distribution to a combustor |
| DE102012216080A1 (de) * | 2012-08-17 | 2014-02-20 | Dürr Systems GmbH | Brenner |
| US10060630B2 (en) | 2012-10-01 | 2018-08-28 | Ansaldo Energia Ip Uk Limited | Flamesheet combustor contoured liner |
| US20140090400A1 (en) | 2012-10-01 | 2014-04-03 | Peter John Stuttaford | Variable flow divider mechanism for a multi-stage combustor |
| US9897317B2 (en) | 2012-10-01 | 2018-02-20 | Ansaldo Energia Ip Uk Limited | Thermally free liner retention mechanism |
| US10378456B2 (en) | 2012-10-01 | 2019-08-13 | Ansaldo Energia Switzerland AG | Method of operating a multi-stage flamesheet combustor |
| US9383098B2 (en) * | 2012-10-31 | 2016-07-05 | General Electric Company | Radial flow fuel nozzle for a combustor of a gas turbine |
| JP6035123B2 (ja) * | 2012-11-26 | 2016-11-30 | 三菱日立パワーシステムズ株式会社 | ガスタービン燃焼器 |
| JP6037812B2 (ja) * | 2012-12-13 | 2016-12-07 | 三菱日立パワーシステムズ株式会社 | 燃料ノズル、燃焼バーナ、ガスタービン燃焼器及びガスタービン |
| US9500367B2 (en) * | 2013-11-11 | 2016-11-22 | General Electric Company | Combustion casing manifold for high pressure air delivery to a fuel nozzle pilot system |
| JP6228434B2 (ja) * | 2013-11-15 | 2017-11-08 | 三菱日立パワーシステムズ株式会社 | ガスタービン燃焼器 |
| EP3105507A1 (fr) | 2014-02-11 | 2016-12-21 | Siemens Aktiengesellschaft | Coupelle de turbulence pour brûleur de turbine à gaz |
| US9683744B2 (en) | 2014-02-28 | 2017-06-20 | Pratt & Whitney Canada Corp. | Combustion system for a gas turbine engine and method of operating same |
| EP2949999A1 (fr) * | 2014-05-28 | 2015-12-02 | Siemens Aktiengesellschaft | Ensemble d'injection de combustible pour une turbine à gaz |
| WO2017121872A1 (fr) * | 2016-01-15 | 2017-07-20 | Siemens Aktiengesellschaft | Chambre de combustion pour turbine à gaz |
| EP3220050A1 (fr) * | 2016-03-16 | 2017-09-20 | Siemens Aktiengesellschaft | Brûleur pour turbine à gaz |
| US10428738B2 (en) | 2016-12-14 | 2019-10-01 | Solar Turbines Incorporated | Start biased liquid fuel manifold for a gas turbine engine |
| US11761635B2 (en) * | 2017-04-06 | 2023-09-19 | University Of Cincinnati | Rotating detonation engines and related devices and methods |
| KR102101488B1 (ko) | 2018-08-17 | 2020-04-16 | 두산중공업 주식회사 | 연소기 및 이를 포함하는 가스 터빈 |
| US11149941B2 (en) * | 2018-12-14 | 2021-10-19 | Delavan Inc. | Multipoint fuel injection for radial in-flow swirl premix gas fuel injectors |
| US11060460B1 (en) | 2019-04-01 | 2021-07-13 | Marine Turbine Technologies, LLC | Fuel distribution system for gas turbine engine |
| US11808178B2 (en) * | 2019-08-05 | 2023-11-07 | Rtx Corporation | Tangential onboard injector inlet extender |
| KR102382634B1 (ko) * | 2020-12-22 | 2022-04-01 | 두산중공업 주식회사 | 연소기용 노즐, 연소기 및 이를 포함하는 가스 터빈 |
| CN116293795B (zh) * | 2021-12-06 | 2025-05-16 | 通用电气阿维奥有限责任公司 | 用于燃气涡轮燃烧器应用的圆顶集成声学阻尼器 |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4305255A (en) * | 1978-11-20 | 1981-12-15 | Rolls-Royce Limited | Combined pilot and main burner |
| US4499735A (en) * | 1982-03-23 | 1985-02-19 | The United States Of America As Represented By The Secretary Of The Air Force | Segmented zoned fuel injection system for use with a combustor |
| US5323614A (en) * | 1992-01-13 | 1994-06-28 | Hitachi, Ltd. | Combustor for gas turbine |
| US5479782A (en) | 1993-10-27 | 1996-01-02 | Westinghouse Electric Corporation | Gas turbine combustor |
| JPH08128636A (ja) * | 1994-10-31 | 1996-05-21 | Tokyo Gas Co Ltd | ガス燃焼装置 |
| JPH08261465A (ja) * | 1995-03-27 | 1996-10-11 | Mitsubishi Heavy Ind Ltd | ガスタービン |
Family Cites Families (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2978870A (en) * | 1957-12-26 | 1961-04-11 | Gen Electric | Fuel injector for a combustion chamber |
| US3973390A (en) * | 1974-12-18 | 1976-08-10 | United Technologies Corporation | Combustor employing serially staged pilot combustion, fuel vaporization, and primary combustion zones |
| DE3412319C1 (de) * | 1984-04-03 | 1985-06-27 | Woma-Apparatebau Wolfgang Maasberg & Co Gmbh, 4100 Duisburg | Als hydraulische Wirbelstrahlduese ausgebildetes Arbeitswerkzeug |
| US4751815A (en) * | 1986-08-29 | 1988-06-21 | United Technologies Corporation | Liquid fuel spraybar |
| US5307636A (en) * | 1987-11-20 | 1994-05-03 | Sundstrand Corporation | Staged, coaxial, multiple point fuel injection in a hot gas generator having a sufficiently wide cone angle |
| DE59000422D1 (de) * | 1989-04-20 | 1992-12-10 | Asea Brown Boveri | Brennkammeranordnung. |
| GB9023004D0 (en) * | 1990-10-23 | 1990-12-05 | Rolls Royce Plc | A gas turbine engine combustion chamber and a method of operating a gas turbine engine combustion chamber |
| US5295352A (en) * | 1992-08-04 | 1994-03-22 | General Electric Company | Dual fuel injector with premixing capability for low emissions combustion |
| US5361586A (en) * | 1993-04-15 | 1994-11-08 | Westinghouse Electric Corporation | Gas turbine ultra low NOx combustor |
| US5359847B1 (en) * | 1993-06-01 | 1996-04-09 | Westinghouse Electric Corp | Dual fuel ultra-flow nox combustor |
| GB9410233D0 (en) * | 1994-05-21 | 1994-07-06 | Rolls Royce Plc | A gas turbine engine combustion chamber |
| US5415000A (en) * | 1994-06-13 | 1995-05-16 | Westinghouse Electric Corporation | Low NOx combustor retro-fit system for gas turbines |
| DE4446945B4 (de) * | 1994-12-28 | 2005-03-17 | Alstom | Gasbetriebener Vormischbrenner |
| US5813846A (en) * | 1997-04-02 | 1998-09-29 | North American Manufacturing Company | Low NOx flat flame burner |
-
1997
- 1997-10-13 US US08/949,252 patent/US5983642A/en not_active Expired - Fee Related
-
1998
- 1998-10-09 WO PCT/US1998/021335 patent/WO1999019674A1/fr not_active Ceased
- 1998-10-09 AU AU12699/99A patent/AU1269999A/en not_active Abandoned
- 1998-10-09 KR KR1020007003901A patent/KR20010024477A/ko not_active Withdrawn
- 1998-10-09 EP EP98956100A patent/EP1025398A1/fr not_active Withdrawn
- 1998-10-13 AR ARP980105094A patent/AR017332A1/es unknown
- 1998-12-15 TW TW087116724A patent/TW362129B/zh active
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4305255A (en) * | 1978-11-20 | 1981-12-15 | Rolls-Royce Limited | Combined pilot and main burner |
| US4499735A (en) * | 1982-03-23 | 1985-02-19 | The United States Of America As Represented By The Secretary Of The Air Force | Segmented zoned fuel injection system for use with a combustor |
| US5323614A (en) * | 1992-01-13 | 1994-06-28 | Hitachi, Ltd. | Combustor for gas turbine |
| US5479782A (en) | 1993-10-27 | 1996-01-02 | Westinghouse Electric Corporation | Gas turbine combustor |
| JPH08128636A (ja) * | 1994-10-31 | 1996-05-21 | Tokyo Gas Co Ltd | ガス燃焼装置 |
| JPH08261465A (ja) * | 1995-03-27 | 1996-10-11 | Mitsubishi Heavy Ind Ltd | ガスタービン |
Non-Patent Citations (2)
| Title |
|---|
| PATENT ABSTRACTS OF JAPAN vol. 096, no. 009 30 September 1996 (1996-09-30) * |
| PATENT ABSTRACTS OF JAPAN vol. 097, no. 002 28 February 1997 (1997-02-28) * |
Cited By (19)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7189073B2 (en) | 2000-10-16 | 2007-03-13 | Alstom Technology Ltd. | Burner with staged fuel injection |
| JP2007534913A (ja) * | 2004-02-27 | 2007-11-29 | プラット アンド ホイットニー カナダ コーポレイション | ガスタービンエンジン用内部燃料マニホールドまたはガスタービン燃料ノズルアッセンブリ |
| EP1725755A4 (fr) * | 2004-02-27 | 2009-09-02 | Pratt & Whitney Canada | Collecteur de carburant interne pour turbine gaz ou ensemble injecteur de carburant pour turbine gaz |
| EP1975513A3 (fr) * | 2007-03-14 | 2015-05-20 | Ansaldo Energia S.p.A. | Brûleur à prémélange pour turbine à gaz, en particulier une microturbine |
| WO2009087050A3 (fr) * | 2008-01-08 | 2010-05-20 | Ln 2 S.R.L. A Socio Unico | Dispositif de mélange d'air et de gaz, destiné en particulier à des appareils brûleurs à prémélange |
| US8033112B2 (en) | 2008-04-01 | 2011-10-11 | Siemens Aktiengesellschaft | Swirler with gas injectors |
| EP2107300A1 (fr) * | 2008-04-01 | 2009-10-07 | Siemens Aktiengesellschaft | Ensemble de tourbillonnement avec injecteur à gaz |
| WO2009121780A1 (fr) * | 2008-04-01 | 2009-10-08 | Siemens Aktiengesellschaft | Dispositif à effet tourbillonaire comprenant des injecteurs de gaz |
| EP2309188A4 (fr) * | 2008-05-23 | 2016-03-23 | Kawasaki Heavy Ind Ltd | Dispositif de combustion et procédé de commande de celui-ci |
| EP2329121A4 (fr) * | 2008-08-28 | 2013-02-27 | Woodward Inc | Collecteur de carburant a passages multiples et procedes de construction |
| EP2192347A1 (fr) * | 2008-11-26 | 2010-06-02 | Siemens Aktiengesellschaft | Dispositif de tourbillonnement double |
| US8707703B2 (en) | 2008-11-26 | 2014-04-29 | Siemens Aktiengesellschaft | Dual swirler |
| CN102022728B (zh) * | 2009-09-15 | 2015-08-19 | 通用电气公司 | 用于燃烧器的径向入口导叶 |
| CN102022728A (zh) * | 2009-09-15 | 2011-04-20 | 通用电气公司 | 用于燃烧器的径向入口导叶 |
| US8365534B2 (en) | 2011-03-15 | 2013-02-05 | General Electric Company | Gas turbine combustor having a fuel nozzle for flame anchoring |
| CN102865597A (zh) * | 2011-07-06 | 2013-01-09 | 通用电气公司 | 与燃气轮机中的燃料喷射器和燃料通道有关的设备和系统 |
| US8919125B2 (en) | 2011-07-06 | 2014-12-30 | General Electric Company | Apparatus and systems relating to fuel injectors and fuel passages in gas turbine engines |
| EP2543931A1 (fr) * | 2011-07-06 | 2013-01-09 | General Electric Company | Appareil et systèmes relatifs à des injecteurs de carburant et passages de carburant dans des moteurs à turbine à gaz |
| EP2719953A3 (fr) * | 2012-10-09 | 2018-01-03 | Delavan Inc. | Injecteurs multipoints à étage auxiliaire |
Also Published As
| Publication number | Publication date |
|---|---|
| KR20010024477A (ko) | 2001-03-26 |
| AU1269999A (en) | 1999-05-03 |
| US5983642A (en) | 1999-11-16 |
| EP1025398A1 (fr) | 2000-08-09 |
| TW362129B (en) | 1999-06-21 |
| AR017332A1 (es) | 2001-09-05 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US5983642A (en) | Combustor with two stage primary fuel tube with concentric members and flow regulating | |
| US6109038A (en) | Combustor with two stage primary fuel assembly | |
| EP0791160B1 (fr) | Chambre de combustion de turbine a deux combustibles | |
| EP0656512B1 (fr) | Chambre de combustion d'une turbine à gaz utilisant deux types de carburant | |
| EP0620402B1 (fr) | Chambre de combustion à prémélange avec des passages annulaires concentriques | |
| EP0654639B1 (fr) | Ailettes de tourbillon ajustables pour bruleur de turbine à gaz | |
| US5647215A (en) | Gas turbine combustor with turbulence enhanced mixing fuel injectors | |
| US5623819A (en) | Method and apparatus for sequentially staged combustion using a catalyst | |
| US6453658B1 (en) | Multi-stage multi-plane combustion system for a gas turbine engine | |
| EP0878665B1 (fr) | Système de combustion à faibles émissions pour moteur à turbine à gaz | |
| EP0602901B1 (fr) | Système d'injection de combustible tertiaire pour brûleur à faible production de NOx | |
| JP4121096B2 (ja) | ガス点火装置及び点火炎形成方法 | |
| WO1999017057A1 (fr) | CHAMBRE DE COMBUSTION A TRES FAIBLE EMISSION DE NO¿x? | |
| JPH08261465A (ja) | ガスタービン | |
| RU2107227C1 (ru) | Трубчато-кольцевая камера сгорания газотурбинной энергетической установки | |
| Sharifi et al. | Combustor with two stage primary fuel assembly | |
| CA2236903A1 (fr) | Chambre de combustion pour turbine a gaz a injecteurs melangeurs de carburant ameliores |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A1 Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG UZ VN YU ZW |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
| WWE | Wipo information: entry into national phase |
Ref document number: 1998956100 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 1020007003901 Country of ref document: KR |
|
| ENP | Entry into the national phase |
Ref country code: JP Ref document number: 2000 516191 Kind code of ref document: A Format of ref document f/p: F |
|
| WWP | Wipo information: published in national office |
Ref document number: 1998956100 Country of ref document: EP |
|
| REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
| WWW | Wipo information: withdrawn in national office |
Ref document number: 1998956100 Country of ref document: EP |
|
| WWP | Wipo information: published in national office |
Ref document number: 1020007003901 Country of ref document: KR |
|
| NENP | Non-entry into the national phase |
Ref country code: CA |
|
| WWW | Wipo information: withdrawn in national office |
Ref document number: 1020007003901 Country of ref document: KR |