[go: up one dir, main page]

WO1999066199A1 - Force motrice inepuisable - Google Patents

Force motrice inepuisable Download PDF

Info

Publication number
WO1999066199A1
WO1999066199A1 PCT/GB1999/001917 GB9901917W WO9966199A1 WO 1999066199 A1 WO1999066199 A1 WO 1999066199A1 GB 9901917 W GB9901917 W GB 9901917W WO 9966199 A1 WO9966199 A1 WO 9966199A1
Authority
WO
WIPO (PCT)
Prior art keywords
column
liquid
finely divided
divided material
motive power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/GB1999/001917
Other languages
English (en)
Inventor
Alan David Kenney
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to MXPA00012639A priority Critical patent/MXPA00012639A/es
Priority to CA002337842A priority patent/CA2337842A1/fr
Priority to EP99926630A priority patent/EP1088162A1/fr
Priority to AU43812/99A priority patent/AU4381299A/en
Publication of WO1999066199A1 publication Critical patent/WO1999066199A1/fr
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/005Installations wherein the liquid circulates in a closed loop ; Alleged perpetua mobilia of this or similar kind

Definitions

  • This invention concerns a method and apparatus for providing motive power.
  • apparatus for providing motive power comprising first and second columns of liquid, the liquid in the second column being substantially the same as in the first column but containing a finely divided material to increase its specific gravity relative to the liquid in the first column, means for reducing pressure above said columns, whereby liquid height in the respective columns is different, means for causing liquid from the first column to overflow into the second column, means for converting energy from resultant movement of liquid into motive power and means for returning liquid to the first column.
  • An object of this invention is to provide improved method and apparatus for providing motive power.
  • apparatus for providing motive power comprising first and second communicating columns of liquid, the liquid in the second column being substantially the same as in the first column but containing a finely divided material to increase its specific gravity relative to the liquid in the first column, means for maintaining the finely divided material in suspension in the second column, whereby liquid height in the respective columns is different, so that liquid from the first column overflows into the second column, means for converting energy from resultant movement of liquid into motive power and means for returning the liquid to the first column.
  • a method of providing motive power comprising the steps of providing in a first column a liquid and in a second column the same liquid but containing a finely divided material to increase its specific gravity relative to the liquid in the first column, maintaining the finely divided material in suspension in the second column, the two columns communicating whereby liquid height in the respective columns is different, so that liquid from the first column overflows into the second column, converting energy from resultant movement of liquid into motive power and returning the liquid to the first column.
  • the invention provides a circulatory system for providing motive power.
  • Overflow of liquid from the first to the second columns may be controlled by a valved outlet located below the level at which the first column would be in dynamic balance with the second column. It is preferred to keep the finely divided material substantially evenly dispersed throughout the liquid in the second column.
  • liquid agitating means may be associated with the second column. Such agitating means may be mechanical, such as a propeller or impeller. It may be advantageous to have two or more propellers or impellers at different heights in the column.
  • the means for converting energy from liquid movement into motive power is preferably a turbine.
  • the turbine may be located at any point in the apparatus where movement of the liquid only can be utilised.
  • the turbine may be associated with the second column for falling liquid to impinge directly on rotating blades thereof.
  • the turbine may be associated with the first column itself to be driven by liquid rising or pressurised in that column.
  • the second column preferably has a second limb communicating with the main column from just below the turbine to a lower part of the column, which limb may include said agitating means to provide circulatory motion for the liquid in the second column and hence even dispersion of the finely divided material therein.
  • the second column is preferably taller than its width, to minimise mixing energy requirements.
  • two or more agitators will be used spaced apart on a single shaft for achieving suspension of the finely divided material.
  • the preferred finely divided material is one that can readily be separated from the liquid in the second column so that the liquid only can be returned from the second column to the first column.
  • the finely divided material may be of a magnetic substance such as magnetite or ferrosilicon or a mixture of both, so that magnetic means may be used to remove or hold back the finely divided material from the liquid being returned to the first column.
  • mechanical separation means may be used such as filter means or a settling tank.
  • the finely divided material is preferably of a particle size that will pass a 0.25mm mesh.
  • settling vessel needs careful consideration as the rate of suspension separation may determine the maximum system liquid flow, and hence energy available to the turbine.
  • An outwardly conically shaped vessel is adequate but settling rates can be improved by installing suitable baffle plates to induce longer flow paths for the suspension, and hence longer residence time for the separation phase to take place.
  • the angle of the outer wall of a cone shaped vessel may be significant in facilitating settlement. Angles of at least 70° to the horizontal are believed to be desirable.
  • appropriately sized filter screens can be employed in the second column or an associated vessel or vessels to achieve the phase separation of the suspension. Vibration of these screens may be desirable to minimise blinding and maximise separation rates.
  • Suitable vibration devices may be mounted in an airlock at the upper end of the second column and motive power provided by small turbines operated from pressurised liquid in the first column.
  • a further energy efficient method that may be employed either alone or in conjunction with other separation methods is to direct the suspension flow within the settling vessel through a weakly magnetic field, which has the effect of agglomerating the individual magnetic particles together, into heavier clusters, which causes them to sink faster, speeding up the separation process.
  • tilted tube settling devices be used. Such tubes are commercially available and can reduce the area required for gravity settling by about 50% without substantial pressure loss.
  • An alternative separation method for use in the apparatus of the invention may be to use cyclone separation.
  • the apparatus is able to produce a surplus of output energy from gravitational force greater than the energy required for its sustained operation.
  • Liquids of different densities are used in the respective first and second columns. The liquids are freely miscible with each other and are used to establish the different levels between the first and second columns. It is this difference in levels that gives the separated water its potential energy relative to the media in the second or mixing column.
  • the use of finely divided material enables the necessary height differential between the first and second columns to be established.
  • the miscible properties of the suspension of finely divided materials and the liquid in the first column enable continuous flow conditions within the apparatus to be maintained.
  • the separation of the clear liquid from the finely divided material is achieved by using gravity again, to settle out the material.
  • the off-take pipe is always located below the dynamic balance level of the liquid column to ensure that the system cannot balance and stop. Gravity acting equally on each column will cause liquid to move upwards in the first column as the liquids attempt to rebalance. It is this continuous upwards displacement of the lighter liquid in the first column that maintains the height differential between the two columns and provides the energy output.
  • the apparatus requires comparatively small amounts of energy to circulate and maintain the finely divided material in suspension within the second column.
  • the net energy output from the apparatus is the energy available at the turbine shaft, less the energy required to maintain the finely divided material in suspension.
  • the apparatus of the invention does not contravene the first and second laws of thermodynamics. The energy produced is significantly less than the total gravitational force input.
  • FIG. 1 is a schematic representation of apparatus according to the invention.
  • FIGS 2 and 3 show the apparatus of Figure 1 in operation
  • FIG. 4 shows schematically an alternative embodiment of the invention
  • FIG. 5 shows schematically coupling of apparatus of the invention.
  • Figure 6 shows a variation on the embodiment of Figure 4.
  • apparatus for providing motive power comprises a first column 10 in the form of an annular tank having flared sides and a base formed as a plurality of cone shaped separating zones 12 and a second column 14 surrounded by the first column 10.
  • the first and second columns 10, 14 communicate in three ways. Firstly, a lower region of the second column communicates with a lower region of the first column almost at the top of the cones 12 by means of pipe 16. Secondly at the bottom of the cones 14 there are pipes 18 extending from the cones via rotary valves 20. (Any other suitable valves may be used, such as sock valves).
  • the second column 14 contains an aerofoil or propeller type mixer 28 operating in a lower region thereof.
  • the column 14 also includes a plurality of baffle plates 30 spaced around its outer region to promote mixing.
  • the first column 10 initially contains water and the second column 14 contains water and finely divided magnetite (or any suitable dense medium) in suspension.
  • the suspension is maintained by the mixer 28 operating at a relatively low speed, simply to maintain a mixture of magnetite and water.
  • the two columns are in communication via pipe 16 and the liquids therein have different specific gravities, the water in the first column rises relative to the mixture in the second column. Some magnetite will enter the first column but settles out and is returned to the second column via the rotary valves 20.
  • Figure 3 water can return to the second column.
  • valve outlet 24 is positioned below the static level of the liquid in the first column on opening the valve liquid will flow down pipe 26 and a turbine on the pipe (not shown) can extract the energy available from the head pressure times the volume flowing and convert this kinetic energy into shaft power.
  • the system is now unbalanced and gravity will continue to force the lighter separated water to the top of the first column in an attempt to re-balance the system.
  • the magnetite is maintained in suspension and the rate of separation is maintained within the first vessel 10 the circulation and energy extraction will be constantly maintained.
  • gravity is providing the turbine motive power as it attempts to re-balance a constantly unbalanced liquid circulatory system and in doing so generates kinetic energy as both liquid head pressure and flow. Gravity is also made to serve a secondary function in effecting the phase separation of the magnetite and liquid, within the first column 10.
  • apparatus for providing motive power comprises a first column 100 in the form of four quadrant section tanks 101 , each communicating via valved connections 102 with the base of a second column 104 around which they are arranged.
  • the tanks 101 together form a generally cone shaped outer surface.
  • the second column or tank 104 has a lower conical portion 106 widening to an upper cylindrical portion
  • Each tank 101 has a pipe 110 from its upper end communicating with the top of the second column via a turbine 112.
  • the tanks 101 have flexible bellows type connections 113 to the second tank 104 and are suspended via load cells 114 from rigid supports 116.
  • the second tank is mounted on the rigid supports 116 with load cells 120 therebetween.
  • the load cells 114 and 120 enable the weights of the various tanks to be monitored and hence operating conditions recorded. That can provide a basis for automatic operation control.
  • the second column contains an aerofoil or propeller type mixer having a shaft 124 and a series of spaced three bladed aerofoils 126 for agitation of the contents of the tank.
  • the shaft is driven by a water motor 130 in an airlock cylinder 131 at the top of the second column to shroud the drive unit and protect it from the media.
  • the shaft is supported intermediate its ends by a bearing 132 supported from sides of the tank and within an airlock 134.
  • an electric motor could be used for driving the shaft.
  • the first tanks 101 initially contain water and the second tank 104 contains water and finely divided magnetite or ferrosilicon in suspension.
  • the agitation of the aerofoil blades keeps the finely divided material in suspension.
  • the aerofoil blades are designed to urge the suspension downwards drawing a central core of suspended media down to the base of the tank and to flow upwards in the outer regions of the tank.
  • the outer sides of the first tanks slope at an angle of about 70° to the horizontal, so that there is less likelihood of the finely divided material settling on the sides of the tanks.
  • the water in the first tanks rises relative to the media in the second tank. Some of the finely divided material will enter the first tanks but will settle out and return to the second tank via the valved connections. The water rising in the first tanks flows back to the second tank via the turbines thus generating power in the same way as described for the first embodiment.
  • the second tank contains about 8 tonnes of magnetite to form a media ranging in density from 2sg at the base to 1.8sg at the top of the tank.
  • the mixer blades can operate adequately using around 750 watts to provide a re-mixing capability of around 5m 3 per minute. With an achieved pressure head of 2.75 metres a turbine output, net of mechanical losses, in excess of 2Kw may be achieved showing an exportable energy output of around 1.4Kw. More blades may be fitted to the shaft but that does not seem to require a linear progression in the amount of power drawn.
  • FIG. 5 it is proposed to mount apparatus 2O0A and 200B of the invention in a vertical series.
  • the apparatus 200 can be of the type shown in Figure 4, for example.
  • Top apparatus 200A delivers water under pressure from its first column 202A to the second coumn 204B of the bottom apparatus 200B. The water pressure is further increased by the operation of apparatus 200B and the water is then delivered to turbine 206.
  • the turbine is located at ground level for convenience and is of a type designed to extract energy from the difference in the inlet pressure water flow and the back pressure on the discharge.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

Cet appareil fournissant une énergie motrice est constitué de deux colonnes de liquide communicantes (10, 14), le liquide de la seconde colonne étant quasiment le même que celui de la première mais contenant un matériau finement fractionné et ce, afin d'augmenter sa densité relative par rapport à celle de la première colonne, et d'un dispositif (28) servant à maintenir en suspension dans la seconde colonne le matériau finement fractionné. Les hauteurs de liquide différent donc dans les deux colonnes, de sorte qu'une partie du liquide présent dans la première colonne se déverse dans la seconde. Cet appareil comporte également un dispositif transformant en force motrice l'énergie issue du mouvement résultant du liquide ainsi qu'un dispositif (26) servant à renvoyer le liquide vers la première colonne.
PCT/GB1999/001917 1998-06-18 1999-06-16 Force motrice inepuisable Ceased WO1999066199A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
MXPA00012639A MXPA00012639A (es) 1998-06-18 1999-06-16 Accionador primario sin escape.
CA002337842A CA2337842A1 (fr) 1998-06-18 1999-06-16 Force motrice inepuisable
EP99926630A EP1088162A1 (fr) 1998-06-18 1999-06-16 Force motrice inepuisable
AU43812/99A AU4381299A (en) 1998-06-18 1999-06-16 Inexhaustible prime mover

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GBGB9813173.3A GB9813173D0 (en) 1998-06-18 1998-06-18 Method and apparatus for providing motive power
GB9813173.3 1998-06-18

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US09719953 A-371-Of-International 2001-02-15
US10/317,008 Continuation US20030147305A1 (en) 1998-06-18 2002-12-11 Inexhaustible prime mover

Publications (1)

Publication Number Publication Date
WO1999066199A1 true WO1999066199A1 (fr) 1999-12-23

Family

ID=10833990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB1999/001917 Ceased WO1999066199A1 (fr) 1998-06-18 1999-06-16 Force motrice inepuisable

Country Status (6)

Country Link
EP (1) EP1088162A1 (fr)
AU (1) AU4381299A (fr)
CA (1) CA2337842A1 (fr)
GB (1) GB9813173D0 (fr)
MX (1) MXPA00012639A (fr)
WO (1) WO1999066199A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006020872A1 (fr) * 2004-08-11 2006-02-23 A Better Power, Llc Systeme hydraulique de pompage de liquide
EP2835528A1 (fr) * 2013-08-09 2015-02-11 Robert Jobski Procédé de conversion d'énergie

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4291232A (en) * 1979-07-09 1981-09-22 Cardone Joseph T Liquid powered, closed loop power generating system and process for using same
US4767938A (en) * 1980-12-18 1988-08-30 Bervig Dale R Fluid dynamic energy producing device
US4803016A (en) * 1986-08-08 1989-02-07 Central Soya Company, Inc. Method of deoiling crude lecithin
DE3842851A1 (de) * 1988-11-05 1990-05-10 Kloeckner Humboldt Deutz Ag Verfahren und vorrichtung zur aufbereitung von flugaschen durch flotation
US4971685A (en) * 1989-04-11 1990-11-20 The United States Of America As Represented By The Secretary Of The Interior Bubble injected hydrocyclone flotation cell
WO1991009224A1 (fr) * 1989-12-14 1991-06-27 Alan David Kenny Appareil generateur de force motrice
WO1992019864A1 (fr) * 1991-04-30 1992-11-12 Alan David Kenney Systemes de circulation hydraulique

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4291232A (en) * 1979-07-09 1981-09-22 Cardone Joseph T Liquid powered, closed loop power generating system and process for using same
US4767938A (en) * 1980-12-18 1988-08-30 Bervig Dale R Fluid dynamic energy producing device
US4803016A (en) * 1986-08-08 1989-02-07 Central Soya Company, Inc. Method of deoiling crude lecithin
DE3842851A1 (de) * 1988-11-05 1990-05-10 Kloeckner Humboldt Deutz Ag Verfahren und vorrichtung zur aufbereitung von flugaschen durch flotation
US4971685A (en) * 1989-04-11 1990-11-20 The United States Of America As Represented By The Secretary Of The Interior Bubble injected hydrocyclone flotation cell
WO1991009224A1 (fr) * 1989-12-14 1991-06-27 Alan David Kenny Appareil generateur de force motrice
WO1992019864A1 (fr) * 1991-04-30 1992-11-12 Alan David Kenney Systemes de circulation hydraulique

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006020872A1 (fr) * 2004-08-11 2006-02-23 A Better Power, Llc Systeme hydraulique de pompage de liquide
US7377492B2 (en) 2004-08-11 2008-05-27 A Better Power, Llc Hydraulic liquid pumping system
AU2005272731B2 (en) * 2004-08-11 2011-08-25 A Better Power, Llc Hydraulic liquid pumping system
EP2835528A1 (fr) * 2013-08-09 2015-02-11 Robert Jobski Procédé de conversion d'énergie

Also Published As

Publication number Publication date
AU4381299A (en) 2000-01-05
EP1088162A1 (fr) 2001-04-04
MXPA00012639A (es) 2002-05-08
CA2337842A1 (fr) 1999-12-23
GB9813173D0 (en) 1998-08-19

Similar Documents

Publication Publication Date Title
AU2005272731B2 (en) Hydraulic liquid pumping system
US4684614A (en) Mixing or pumping apparatus for the treatment of flowable thin or highly viscous media
JPS61153107A (ja) 抗井流の成分の分離方法および装置
US6322056B1 (en) Submarine type liquid mixer with aeration
US7510661B2 (en) Separation system for the removal of fat, oil or grease from wastewater
US6406624B1 (en) Flocculation apparatus and apparatus for floating upwardly in a liquid and for moving downwardly in the liquid under the influence of gravity
US7083324B2 (en) Integrated fixed film activated sludge system using gravity assisted mixing
WO2001021897A2 (fr) Systemes de regualtion de fluide
US6095336A (en) Flotation cell with radial launders for enhancing froth removal
NO144950B (no) Fremgangsmaate til forbedring av stofftransport i flytende medier.
CA1186680A (fr) Melangeur a tube d'adduction
US20030147305A1 (en) Inexhaustible prime mover
EP1088162A1 (fr) Force motrice inepuisable
CN108975453A (zh) 一种结构改进的化工机械用收油装置
US6030113A (en) Mixing apparatus and method for mixing black liquor from cellulose production with ash from flue gases formed from combustion of black liquor
US4163723A (en) Continuously operated liquid-solids separator
WO1991009224A1 (fr) Appareil generateur de force motrice
WO1992007652A1 (fr) Procede et appareil servant a melange des contenus liquides dans une cuve
CN120158348A (zh) 一种大蒜油提取设备
SU1072793A3 (ru) Устройство дл диспергировани газа в подвижную жидкость или суспензию,преимущественно во флотационном аппарате
CN214971926U (zh) 一种基于超疏水超亲油金属网的油水分离装置
CN214218342U (zh) 一种厨余垃圾含油废水油水分离的装置
CN103172150B (zh) 一种采用潜水回流泵复合微涡流反应工艺的澄清池
CN1297489C (zh) 多功能高速澄清器
CN212417962U (zh) 一种恒温循环曝气反应装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1999926630

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: PA/a/2000/012639

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2337842

Country of ref document: CA

Ref document number: 2337842

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IN/PCT/2001/82/CHE

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 09719953

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1999926630

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWW Wipo information: withdrawn in national office

Ref document number: 1999926630

Country of ref document: EP