[go: up one dir, main page]

WO1999046647A1 - Control method and apparatus therefor - Google Patents

Control method and apparatus therefor Download PDF

Info

Publication number
WO1999046647A1
WO1999046647A1 PCT/JP1998/002968 JP9802968W WO9946647A1 WO 1999046647 A1 WO1999046647 A1 WO 1999046647A1 JP 9802968 W JP9802968 W JP 9802968W WO 9946647 A1 WO9946647 A1 WO 9946647A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
control
values
integer
past
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/JP1998/002968
Other languages
French (fr)
Japanese (ja)
Inventor
Takehiko Futatsugi
Hiroo Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Adtex Inc
Original Assignee
Adtex Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Adtex Inc filed Critical Adtex Inc
Priority to PCT/JP1998/002968 priority Critical patent/WO1999046647A1/en
Priority to JP53559498A priority patent/JP3352701B2/en
Priority to AU79362/98A priority patent/AU7936298A/en
Priority to AU43946/99A priority patent/AU4394699A/en
Priority to PCT/JP1999/003519 priority patent/WO2000002104A1/en
Publication of WO1999046647A1 publication Critical patent/WO1999046647A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/048Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators using a predictor
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B21/00Systems involving sampling of the variable controlled
    • G05B21/02Systems involving sampling of the variable controlled electric

Definitions

  • the present invention provides a control cycle in which a pulsation (ripple) of a control value is equal to or less than a desired value, and corrects an operation value obtained as a value that matches a control value predicted using a response function to a target value, thereby improving resolution.
  • the present invention relates to a control method having a characteristic that a constant bias does not occur even when an operation means (including ON / OFF control) with insufficient is used, and a control device using the method.
  • the control device inputs the target value S, control value R, and disturbance value (A, B: sometimes not used), and uses these values and the operation value C to calculate S and R in an arithmetic unit having a storage device. Find C that matches, and output C as a result.
  • preprocessing examples include converting the thermocouple electromotive force to temperature, converting voltage and current values to power values, and performing statistical processing to increase the signal Z noise ratio.
  • Examples of post-processing include converting the calculated power value to an AC phase value, and rounding a real value to an integer value.
  • this pre-processing and post-processing is expressed as inputting and outputting values used in control calculations in accordance with customary practices, and also means inputting and outputting converted values.
  • a response function is determined, and an operation value is calculated so that the control value predicted by the response function matches the target value.
  • the number of operation values (levels) that can be set by digitization is also limited.
  • the operation value has only 0 and 1 0 NZOFF control is an operation method with two levels of set values. In a control system with a control cycle of 10 seconds, ON operation is performed in integer units of seconds. If the operating value is fixed to one of these levels, the control value will also reach the value determined by this level (attained value). The number of reached values and the number of set levels are equal. The attained value corresponding to the minimum setpoint is one limit value, and the attained value corresponding to the maximum setpoint is the other limit value. The range between these two limits is the controllable range. The value obtained by dividing the controllable range by the number of set levels is the control value resolution.
  • this operation level and the reached value are represented by a series of integer values.
  • the resolution is 23.4, it is expressed as an integer with 23.4 as the unit. Because the operation target is high temperature, unstable, foams, and there are restrictions on the materials that can be handled, it is almost impossible to use operation means with a sufficient number of setting levels (operation means with high resolution), or it is often expensive and cannot be used There is none.
  • control value predicted by the transfer equation match the target value, and approach the target value.However, if it is limited to the conventional technology, it is essentially a prescription when the resolution of the measured value and the set value is high . Control has a starting point, and it is not necessary to mention an infinite past within a reasonable approximation.
  • a sequence (a left regular sequence) with a term that is not 0 itself but has a term that is all 0 on the past side of that term (called the first term, and its term number is called the first place)
  • All terms are 0 Is a sequence (represented by 0)
  • a sequence that has a term that is not 0, but whose futures are all 0 after that term (called the terminating term, and the term number is terminating) is called a finite sequence.
  • the sequence 0 is another example of this, but a 1 represents a sequence where the 0th term is 1 and all other terms are 0. 0 and 1 are the units of addition and multiplication, respectively.
  • This identification defines the scalar product by multiplication.
  • n ⁇ a ⁇ n-am ⁇ Defines positive and negative powers as if they were real numbers by repeating multiplication and division. a ° ⁇ 1 a k + 1 a a 'a k a k _ 1 ⁇ a k / a However, a ⁇ 0 can not be divided by 0, and the distribution law, the associative law, and the addition law And can be calculated in the same way as ordinary algebraic calculations.
  • the multiplication symbol ⁇ may be omitted.
  • represents a sequence in which the first term is 1 and all other terms are 0.
  • the m-th power of ⁇ is 1 for only the m-th term and 0 for the other terms.
  • ⁇ - a ⁇ a A s + aAs + i + ⁇ ⁇ ⁇ + a » ⁇ (AS Hatsukurai of a is)
  • the transfer equation is an equation that relates the cause (operation value c, disturbance a, b, etc.) to the result (control value r).
  • the cause and effect shall represent the difference (change amount) at each time point.
  • the first order of the response function is 1 or more.
  • g ⁇ ⁇ ⁇ , 0, gl, g2, g3, ⁇ ⁇ ⁇
  • h ⁇ ⁇ ⁇ , 0, hi, h 2 , h 3 , ⁇ ;
  • This transfer equation can be expressed using a sequence as follows.
  • theorem “Limited energy can only do finite work. That is, the cause effect attenuates and stops changing.” For example, even if there is a difference in temperature between the input of a 100 W electric heater one second and two seconds before, it is not possible to measure the difference between one hour and ten hours ago. From this theorem, the response function f, g, h is approximated by the following equation using a finite sequence d ', f', g ', h' whose first rank is 1 or more (ends are DE, FE, GE, HE) I can do it.
  • this equation can be expressed as a cause (external cause c, b, a)
  • An internal cause is an accumulation of external causes and is known as a cause of phenomena such as memory, accumulation, inertia, resonance, and tailing.
  • d ' can be thought of as a response function of the memory effect
  • f', g ', and h' can be thought of as response functions considering the memory effect.
  • the pole of the memory effect is positive and less than 1.
  • d ', f g', h '; f, g, h are pulse response functions.
  • the response functions d ', f g', and h ' are determined by the least squares method, finite identification method, sequential identification method, etc. based on this equation.
  • the pulse response function and the cause and effect changes are expressed in lowercase letters, and the step response function and the actual values of the cause and effect are expressed in uppercase letters.
  • ⁇ ⁇ R means a sequence one point before R.
  • Expressions 1 and 2 are rewritten because it is easier to express target values and control values as real values (sum of differences) than as differences.
  • c is the last time point, the operation value when no change is made in the future (no operation) (current and future is 0), R is the measured value up to the present and the control value representing the prediction of no operation, c 'is the current The subsequent operation value (0 in the past) and R 'are the control values when c' is executed after c (the measured value in the past and present, and the predicted value in the future).
  • the predicted value R at the time of no operation can be calculated sequentially from the 1st time to the required time by the 4th formula.
  • Past and present values can be used as the disturbance values if they are measurable disturbances, and past values, present values, and future values (planned values) can be used if the disturbances are caused intentionally. . Equation 4 removes the effect of this intellectual disturbance. With PID control, the removal of such intellectual disturbances (feedforward) was difficult and required a lot of trial and error.
  • the required time is up to the FE + DE point in the finite settling method and the program settling method.
  • Optimal control depends on the choice of optimal conditions.
  • R ' F-(c + c') + G-b + H-a
  • Equation 6 The finite settling method is a method in which the target value S is invariable from the present time, and the program stabilization method allows for change. How. (These methods are called multipoint settling method.) To find the control value c ', in the multipoint settling method, Equation 6 is regarded as a simultaneous linear equation of unknown c', and in the optimal control method, Equation 6 is It is regarded as an observation equation of the least square method (selecting a weight and a specific point in time considered as an optimal condition).
  • control value and the target value are matched in the multipoint settling method, and close in the optimal control method.
  • the control value coincides with the target value. It is said that setting closer to Z is settled.
  • the pulsation (ripple) of the control value caused by reciprocating between the levels (two-sided levels) sandwiching the target value is unavoidable to some extent, It must be avoided that the time average of the control values will cause a constant difference (bias).
  • the response values d 'and f' are determined by appropriately changing the operation values in preliminary measurements.
  • the response function g ' h' of the intelligent disturbance Must make that change happen.
  • the operating value a pulse-like or step-like change with a safe operating value range is attempted. Observe this situation and find the response function using the least squares method, for example. Using this response function, the pulsation is reduced below the desired value by the following means.
  • the response function is modified using the preferred identification method (finite identification method, least squares method, sequential identification method, ⁇ ⁇ ⁇ ) in the actual production. If it is recorded in the non-volatile memory in a timely manner so that it can be used as the initial value at the start of the next control, a learning effect will be generated and the control can be started in a better state next time.
  • the preferred identification method finite identification method, least squares method, sequential identification method, ⁇ ⁇ ⁇
  • This operation value +.
  • the integral value ⁇ is obtained by integrating (accumulating) the fraction obtained when the operation value up to the previous point is converted into an integer C.
  • sgn (x) is a function that takes positive, 0, and negative values of X and takes values of -1, 0, and 1.
  • the value of sgn (0) can be +1 or 11 as well.
  • Int (x) is a function that converts ⁇ to an integer and uses rounding.
  • any function such as rounding, rounding down, rounding up, etc., is a nearly equivalent means of converting to an integer.
  • the manipulated value transitions between the two levels, the control value pulsates above and below the target value, and the average value over time of the control value matches the target value.
  • Fig. 2 shows a case where this transition is made under the condition of Fig. 1.
  • the non-negative numbers p and q in the range of p + 2'q ⁇ l are selected because the integral term rotates the phase in the loop transfer and the proportional term creates an oscillation cause by increasing the gain.
  • a positive number k less than or equal to 1 can be reduced to less than 1 to reduce phase rotation. If the oscillation is very small or no oscillation occurs, k can be set to 1.
  • the manipulated value C-i in the previous cycle (previous point) is not always an integer value.
  • the error integral is corrected with the measured C-i.
  • Fig. 1 is a graph when the operation value is converted to an operation method with low resolution by simply converting the operation value to an integer.
  • ⁇ -1, ⁇ , ⁇ + 1 indicates the control level
  • 0 to 7 indicate the control time
  • FIG. 2 is a graph showing the operation state according to the present invention.
  • Fig. 3 shows how to modify the response function using a graph when changing the control cycle.
  • FI G. 4 shows a graph that determines the end of the response function.
  • the final position is 4.
  • Rl Ro + d 'l To + f' 2-C- l + f '3-C-2 + g'l'bo + g '2-b- l + g' 3-b-2
  • R 2 Ri + d ':-(Ri-Ro) + f' 3-c- i + g 'i -bi + g' 2 -bo + g ' 3 -b- i
  • R 3 R2 + d 'l - (R 2 -Ri) + g' l ⁇ ba + g '2 ⁇ bi + g' 3 ⁇ bo

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Feedback Control In General (AREA)

Abstract

In order to output a value calculated by using a controlled variable, a manipulated variable and a usable disturbance value and used to bring a predicted value of the controlled variable into agreement with or close to a desired value S to an operation means having a small number of preset levels (to convert preset values to a series of integer values), the ripple of the controlled variable are evaluated at a pole having the smallest memory effect, and the control period is determined; a correction value expressed by a linear equation of an integrated value of fractions which are rounded to integers and a sign of the change in the manipulated variable added to convert the value into an integer and to output the integer as a manipulated variable; and thus it is possible for the manipulated variable to vary between the preset values (between n and n+1 in the diagramed example) which are acquired values on both sides of a desired value S. When the difference between the acquired value of the manipulated variance and the desired value is great, the correcting value need not be added. The ripple of the controlled variance is small and deviation between the controlled variance and the desired value is small.

Description

明 細 書 制御方法とその装置 技術分野  Description Control method and device Technical field

この発明は、 制御値の脈動 ( リ ップル) が所望値以下になる制御周期 にし、 応答関数を用いて予測する制御値を目標値に一致させる値として 求めた操作値を修正することにより、 分解能が不十分な操作手段 ( O N / O F F制御を含む) を用いても恒常的な偏りが生じないという特徴を 持つ制御方法及びその方法を用いた制御装置に関します。 背景技術  The present invention provides a control cycle in which a pulsation (ripple) of a control value is equal to or less than a desired value, and corrects an operation value obtained as a value that matches a control value predicted using a response function to a target value, thereby improving resolution. The present invention relates to a control method having a characteristic that a constant bias does not occur even when an operation means (including ON / OFF control) with insufficient is used, and a control device using the method. Background art

制御装置は、 目標値 S , 制御値 R 及び外乱値 ( A, B :用いない場 合もある) を入力し、 これらと操作値 Cとを用いて記憶装置をもつ演算 装置で Sと Rとを一致させる Cを求めて、 その結果 Cを出力します。  The control device inputs the target value S, control value R, and disturbance value (A, B: sometimes not used), and uses these values and the operation value C to calculate S and R in an arithmetic unit having a storage device. Find C that matches, and output C as a result.

実際の制御では、 観測や設定によって得られる入力値を、 前処理して から制御の演算をし、 得られた数値を後処理してから出力します。  In actual control, input values obtained from observations and settings are pre-processed, then control calculations are performed, and the obtained values are post-processed and output.

前処理の例として、 熱電対の起電力を温度に換算する, 電圧値や電流値 を電力値に換算する, 信号 Z雑音比を大きくするために統計処理をする 等があります。 Examples of preprocessing include converting the thermocouple electromotive force to temperature, converting voltage and current values to power values, and performing statistical processing to increase the signal Z noise ratio.

後処理の例として、 計算結果の電力値を交流の位相値に換算する, 実数 値を四捨五入して整数値にする等があります。 Examples of post-processing include converting the calculated power value to an AC phase value, and rounding a real value to an integer value.

本発明に関わる後処理を除いて、 この前処理や後処理は、 慣例に従い制 御の演算で用いる値を入出力すると言う表現で、 換算値の入出力をも意 味することにします。 Except for the post-processing related to the present invention, this pre-processing and post-processing is expressed as inputting and outputting values used in control calculations in accordance with customary practices, and also means inputting and outputting converted values.

最近では、 より精密で高速な制御を実現するために、 従来の P I D制 御で代表される古典制御に代り、 近代制御も用いられています。 Recently, in order to realize more precise and faster control, the conventional PID system Modern control is used instead of classical control represented by control.

近代制御では、 応答関数を求め、 応答関数によって予測される制御値を 目標値に一致 接近させる操作値を算出します。 In modern control, a response function is determined, and an operation value is calculated so that the control value predicted by the response function matches the target value.

この予測や算出の計算は、 演算装置 (コンピュータ) の発達に伴い離 散 (デジタル) 数を取り扱うようになりました。  The calculation of these predictions and calculations has dealt with the number of discrete (digital) numbers with the development of computing devices (computers).

デジタル化により設定可能な操作値 (水準) も有限個になります。 The number of operation values (levels) that can be set by digitization is also limited.

操作値が 0と 1 しかない 0 N Z O F F制御は、 設定値が 2水準の操作手 段です。 制御周期が 1 0秒の制御系で、 整数単位の秒数だけ O Nさせる 操作方法は 1 1水準の操作手段です。 操作値をこのいずれかの水準に 固定すると、 制御値もこの水準によって決まる値 (到達値) に到達しま す。 到達値数と設定水準数とは等しくなります。 最小の設定値に対応す る到達値が、 一つの限界値であり、 最大の設定値に対応する到達値が他 の限界値です。 この両限界値の間が制御可能範囲です。 制御可能範囲を 設定水準数で除した値が、 制御値の分解能です。 The operation value has only 0 and 1 0 NZOFF control is an operation method with two levels of set values. In a control system with a control cycle of 10 seconds, ON operation is performed in integer units of seconds. If the operating value is fixed to one of these levels, the control value will also reach the value determined by this level (attained value). The number of reached values and the number of set levels are equal. The attained value corresponding to the minimum setpoint is one limit value, and the attained value corresponding to the maximum setpoint is the other limit value. The range between these two limits is the controllable range. The value obtained by dividing the controllable range by the number of set levels is the control value resolution.

便宜上、 この操作水準や到達値を一続きの整数値で表します。 For convenience, this operation level and the reached value are represented by a series of integer values.

分解能を 2 3 . 4とすれば、 2 3 . 4を単位とした整数で表現します。 操作対象が高温、 不安定、 発泡する、 扱える材質に制限があるなどで十 分な設定水準数を持つ操作手段 (分解能が高い操作手段) が不可能に近 いか、 高価で使用できない場合も少なくありません。 If the resolution is 23.4, it is expressed as an integer with 23.4 as the unit. Because the operation target is high temperature, unstable, foams, and there are restrictions on the materials that can be handled, it is almost impossible to use operation means with a sufficient number of setting levels (operation means with high resolution), or it is often expensive and cannot be used There is none.

近代制御理論では、 観測が可能 (可観測) か、 制御が可能 (可制御) か と言う視点で議論します。 In modern control theory, discussion is made from the viewpoint of observability (observable) or control (controllable).

そして、 分解能が低い操作手段による、 分解能以上の制御は、 可制御で ないとされ、 処方箋がありませんでした。 And control over the resolution by means of low-resolution operation was not considered controllable, and there was no prescription.

次に伝達方程式で予測される制御値を目標値に一致 Z接近させる方法 を説明しますが、 従来の技術に限定すれば、 本質的に、 測定値や設定値 の分解能が高い場合の処方箋です。 制御には、 開始時点がありますし、 適当な近似の範囲では無限の過去 にまで言及する必要がありません。 Next, we will explain how to make the control value predicted by the transfer equation match the target value, and approach the target value.However, if it is limited to the conventional technology, it is essentially a prescription when the resolution of the measured value and the set value is high . Control has a starting point, and it is not necessary to mention an infinite past within a reasonable approximation.

そこで、 過去から現在を通り未来に続く両無限数列として、 次のもの ( 左正則的数列 : 以後単に数列と言う ) のみを考えます。 Therefore, as the two infinite sequences that pass from the past to the present and continue into the future, only the following (left regular sequence: hereinafter simply referred to as a sequence) is considered.

A ) 自身は 0ではないが、 その項よりも過去側がすべて 0になる項 (初 項と言い、 その項番号を初位と言う ) がある数列 (左正則数列) B ) すべての項が 0である数列 ( 0で表す) A) A sequence (a left regular sequence) with a term that is not 0 itself but has a term that is all 0 on the past side of that term (called the first term, and its term number is called the first place) B) All terms are 0 Is a sequence (represented by 0)

自身は 0ではないが、 その項よりも未来側がすべて 0になる項 (終項と 言い、 その項番号を終位と言う ) がある数列を有限数列と言います。 初項から終項迄の項の数を項数 ( =終位一初位 + 1 ) と言います。 A sequence that has a term that is not 0, but whose futures are all 0 after that term (called the terminating term, and the term number is terminating) is called a finite sequence. The number of terms from the first term to the last term is called the term number (= final one-first-place + 1).

加法 ( + ) , 減法 (一) , 乗法 ( · ) , 除法 (Z) を定義します。 Defines addition (+), subtraction (1), multiplication (·), and division (Z).

a + b = b + a≡ { am + bm } a— b ≡ { am— bm } a + b = b + a≡ { a m + bm} a- b ≡ {am- bm}

a · b = b · a = { }≡ { · · ·, 0 , c s + s , s + s+ 1, · · · , C k , · · ■ }  a · b = b · a = {} ≡ {· · ·, 0, c s + s, s + s + 1, · · ·, C k, · ■ ■}

= { · · ' , 0 , aA s be s , · · ' , aAsbk-A s + aA s + ibk-A s- i + * · - + ak- B s bB s , · · · } a / b = { Cm} ≡ { · · - ,0, CA S - B S , CA S - B S + 1 , - - " , C A S - B S+ k , " * - } = {· · ', 0, aA s be s, · ·', aAsbk-A s + aA s + ibk-A s- i + * · - + ak- B s bB s, · · ·} a / b = {Cm} ≡ {· ·-, 0, CA S-BS, CA S-BS + 1,--", CAS-B S + k," *-}

= { · · · ,0, aA s/be s , (aAs + i - + i CA s ) /bB s , · · ·  , 0, aA s / be s, (aAs + i-+ i CA s) / bB s,

,(& + k - ID + k - 1 - · + k CA S - , 乗法は、 叩き込み convolution で定義され、 除法はこれを初項側から 解いたものです。  , (& + K-ID + k-1-· + k CAS-, The multiplication is defined by the convolution convolution, and the division is solved from the first term side.

第 0項以外がすべて Oとなる数列 n = {··· ,0,0,0,n。= n ,0,0,0, · · ·}を 第 0項の数値 (スカラー) と同一視し、 その数値 nで数列を表します。 数列 0もこの例ですが、 1は、 第 0項が 1で他のすべての項が 0の数列 を表します。 0と 1はそれぞれ加法と乗法の単位元になります。 A sequence n = {····, 0,0,0, n where all the items other than the 0th term are O = n, 0,0,0, ···} is identified with the numerical value (scalar) of the 0th term, and the numerical value n represents a sequence. The sequence 0 is another example of this, but a 1 represents a sequence where the 0th term is 1 and all other terms are 0. 0 and 1 are the units of addition and multiplication, respectively.

a + 0 = a a · 1 = a  a + 0 = aa1 = a

この同一視により、 スカラー積が乗法で定義されます。  This identification defines the scalar product by multiplication.

n · a = ί n - am} 正負の累乗を乗法と除法の繰り返しで実数と同じように定義します。 a °≡ 1 a k + 1ョ a ' a k a k _ 1≡ a k/ a ただし、 a ≠ 0 数列演算は、 0による除算ができず、 分配法則、 結合法則、 加乗法の交 換法則を満たし、 普通の代数式の計算と同じように計算できます。 n · a = ί n-am} Defines positive and negative powers as if they were real numbers by repeating multiplication and division. a ° ≡ 1 a k + 1 a a 'a k a k _ 1 ≡ a k / a However, a ≠ 0 can not be divided by 0, and the distribution law, the associative law, and the addition law And can be calculated in the same way as ordinary algebraic calculations.

また、 a * b = 0であれば、 a = 0又は b = 0が成り立ちます。 If a * b = 0, then a = 0 or b = 0.

普通の代数式同様に、 乗法記号 · が省略されることがあります。 As in ordinary algebraic expressions, the multiplication symbol · may be omitted.

第 1項が 1で他のすべての項が 0の数列を Λで表します。 数 represents a sequence in which the first term is 1 and all other terms are 0.

Λの m乗は第 m項だけが 1で他の項は 0となります。 The m-th power of 乗 is 1 for only the m-th term and 0 for the other terms.

Λの逆数 1 ΖΛ = Λ— 1が、 Ζ変換の Ζ演算子と同じ作用をします。 The reciprocal of 1 1 ΖΛ = Λ— 1 has the same effect as the Ζ operator of the Ζ transformation.

初位が 1の数列 Δョ 1 — Λ, ∑ = Δ 1と任意の数列 aとの積が、 aの差 分, 和分になります。 The product of a sequence whose first place is 1 Δ ョ 1 — Λ, ∑ = Δ 1 and an arbitrary sequence a is the difference or sum of a.

厶 = {·'·,0,0, Δ。 = 1,-1,0,0, · · ·} ∑ = {· · · , 0,0,∑。= 1, 1,1· · ·}

Figure imgf000006_0001
Room = {· '·, 0, 0, Δ. = 1, -1, 0, 0, ···} ∑ = {· · ·, 0, 0, ∑. = 1, 1,1
Figure imgf000006_0001

∑ - a = {aAs + aAs + i + ■ · · + a»} ( ASは aの初位) Σ - a = {a A s + aAs + i + ■ · · + a »} (AS Hatsukurai of a is)

次に、 数列を用いて、 伝達方程式を表現します。  Next, the transfer equation is expressed using a sequence.

伝達方程式は、 原因 (操作値 c , 外乱 a , b等) と結果 (制御値 r ) と を関係づける方程式です。 何の変化もないことを 0で表現するために、 原因や結果は、 各時点毎の差分 (変化量) を表すものとします。 The transfer equation is an equation that relates the cause (operation value c, disturbance a, b, etc.) to the result (control value r). In order to express zero that there is no change, the cause and effect shall represent the difference (change amount) at each time point.

a = { · · · , a- 1 , ao , ai ,■ · · }, b = { · · · , b- 1 , bo , bi , · · ·} , c = { ..., c- 1 , Co , ci ,… }, r = {…, r - 1, r。, r l,… },  a = {· · ·, a- 1, ao, ai, ■ · ·}, b = {· · ·, b- 1, bo, bi, · · ·}, c = {..., c- 1 , Co, ci, ...}, r = {…, r-1, r. , R l, ...},

(外乱は 2個と限らないが、 便宜上 2個として説明します。 操作値や制 御値が複数の場合もありますが簡単のため 1個ずつで説明します) 伝達方程式の線形性と重ね合わせの原理を仮定します。  (The number of disturbances is not limited to two, but it will be described as two for convenience. There may be multiple operation values and control values, but for simplicity we will explain each one separately.) Linearity and superposition of transfer equations Assume the principle of

原因 a, b , cが第 n時点に起こした変化 an, b„, b„が i時点後に hi · an, gi 'b f i -c, の効果を引き起こせば、 第 m時点で起こる変化 が、 f m = 111 · am- 1+1ΐ2 · am- 2+·■ . +gl , bm- l + g2. bm - 2+· . ' + f 1 ' Cm-l + f 2 - C m - 2 + 1. · となります。 この式で、 第 2項目は、 2時点前に起きた aの変化(a„— 2) の 2時点後の効果 (h2) が第 m時点→rmで実現することを表します。 この h, g , f のように変化量で表した原因と結果を結ぶ数列を (パル ス) 応答関数と言います。 Cause a, b, c changes a n that caused to the n time point, b ", b" hi · a n is after i point, gi 'bfi -c, if Hikiokose the effect of changes that occur in the m time Fm = 111am-1 + 1ΐ2am-2 + ■. + Gl, bm-l + g2.bm-2 +. '+ F1' Cm-l + f2-Cm-2 + 1 . It becomes. In this equation, the second item, the change of a that took place in two time points before. - Indicates that the (a "2) of two time points after the effect (h 2) is realized by the m-th time → r m this A sequence connecting the cause and the result expressed in the amount of change, such as h, g, and f, is called a (pulse) response function.

結果は原因より遅れるので、 応答関数の初位が 1以上になります。 Since the result is later than the cause, the first order of the response function is 1 or more.

f = { · · · ,0, f i . fa . fs , · · ·}  f = {· · ·, 0, f i. fa. fs, · · ·}

g = { · · · ,0, g l , g2 , g3 , · · · } g = {· · ·, 0, gl, g2, g3, · · ·}

h = { · · · ,0,hi ,h2 ,h3 , · ; ·} h = {· · ·, 0, hi, h 2 , h 3 , ·;

この伝達方程式を数列を使って表すと、 次のようになります。 This transfer equation can be expressed using a sequence as follows.

r = f - c + g - b + h - a (第 1式) この第 1式は、 直観的にわかりやすい形をしていますが、 応答関数が有 限数列でないので、 制御が進むにつれて、 どんどん過去に遡った計算が 必要になります。 ( a , b , cの初位を AS, BS, CSとする)  r = f-c + g-b + h-a (Formula 1) Although this formula 1 has an intuitive and easy-to-understand form, the response function is not a finite sequence, so as the control progresses, it increases more and more. You need to go back to the past. (The first place of a, b, c is AS, BS, CS)

= f 1 · Cm - 1 + ί 2 · Cm- 2 + · · · + f m - C S · CC S  = f 1Cm-1 + ί2Cm-2 +

+ g l ' bm- l + g2't)m - 2+ ' - ' + gm - B S ' bB S  + g l 'bm- l + g2't) m-2+'-'+ gm-B S' bB S

+ hi-am -: i + h2- am - 2 + · · · + hm- A s ■ aA S + hi-a m- : i + h2- am-2 + · · · + hm- A s ■ aA S

そこで、 エネルギー定理 「有限のエネルギーでは、 有限の仕事しかでき ない。 即ち、 原因の効果はやがて減衰して変化が止む。 」 を使います。 例えば、 1 0 0 Wの電熱器の入電が 1秒前か 2秒前かで温度の違いがあ つても、 一時間前と十時間前との違いを測定することはできません。 この定理より、 初位が 1以上の有限数列 d' ,f ',g',h' (終位を DE,FE,GE, HEとする) で応答関数 f , g , hを次式で近似できます。 Therefore, we use the energy theorem "Limited energy can only do finite work. That is, the cause effect attenuates and stops changing." For example, even if there is a difference in temperature between the input of a 100 W electric heater one second and two seconds before, it is not possible to measure the difference between one hour and ten hours ago. From this theorem, the response function f, g, h is approximated by the following equation using a finite sequence d ', f', g ', h' whose first rank is 1 or more (ends are DE, FE, GE, HE) I can do it.

f=f V(l-d'), g=g'/(l-d'), h=h'/(l-d') (換算式) 応答関数は一定時間経過後指数関数的に減少して 0に近づきますので、 FE,GE,HEが十分大きければ、 d'の終位 DEを 1にできます。 f = f V (l-d '), g = g' / (l-d '), h = h' / (l-d ') (Conversion formula) Response function decreases exponentially after a certain period of time Then, if FE, GE, and HE are large enough, the final DE of d 'can be set to 1.

これらの有限数列を使うと、 伝達方程式が次式になります。 r = f - c +g' - b +h'- a +d' - r (第 2式) Using these finite sequences, the transfer equation is r = f-c + g '-b + h'-a + d '-r (Formula 2)

d' ,i',g',h' が応答関数としての条件 (初位 1以上) を満たしているの で、 この方程式を、 外部原因 c , b, aが、 結果でもある原因 (内部原因Since d ', i', g ', and h' satisfy the condition as a response function (at least one of the first ranks), this equation can be expressed as a cause (external cause c, b, a)

) rに変化すると解釈することができます。 ) can be interpreted as changing to r.

内部原因は、 外部原因を溜め込む作用で、 記憶, 蓄積, 慣性, 共鳴、 裾 引き等の現象の原因として知られています。 An internal cause is an accumulation of external causes and is known as a cause of phenomena such as memory, accumulation, inertia, resonance, and tailing.

内部原因による効果を、 記憶効果と呼ぶことにします。 The effects of internal causes are called memory effects.

すると、 d'は記憶効果の応答関数、 f', g', h'は記憶効果を考慮した応 答関数と考えることができます。 Then, d 'can be thought of as a response function of the memory effect, and f', g ', and h' can be thought of as response functions considering the memory effect.

Xについての次の方程式の根を記憶効果 (Γの極と言います。 The root of the following equation for X is called the memory effect (the pole of Γ

χ πΒ _ (} . ι . χ 0 Ε-ι _ (1, 2. χ ΟΕ-2 d'DE= 0 記憶効果の極は、 制御系の減衰状態を表します。 ... χ π Β _ ( } ι χ 0 Ε-ι _ (1, 2 χ ΟΕ - 2 d 'DE = 0 pole of memory effect, represents the attenuation state of the control system.

発振しない制御系では記憶効果の極が正で 1未満になります。 In a control system that does not oscillate, the pole of the memory effect is positive and less than 1.

d', f g', h' ; f , g , hは、 パルス応答関数になっています。 d ', f g', h '; f, g, h are pulse response functions.

この第 2式の応答関数は有限数列なので、 常に一定の時点数だけの過去 値を用いて計算できます。 第 2式を書き下すと次のようになります。 Since the response function of this second equation is a finite sequence, it can always be calculated using a certain number of past values. The second expression is as follows.

= f 1 · " - 1 + · · · + f F E · Cm- F E  = f 1 · "-1 + · · + f F E · Cm- F E

+ g 1-bm - l + - ', + g G E * bm-G E  + g 1-bm-l +-', + g G E * bm-G E

+ ll ' 1 ' am- 1 + - ' * + h ' H E · am-H E  + ll '1' am- 1 +-'* + h' H Eam-H E

+ ( 1 · - 1 +… + CT D E · -DE  + (1 ·-1 +… + CT D E · -DE

応答関数 d', f g', h'をこの方程式に基づいた、 最小自乗法, 有限同 定法, 逐次同定法などにより求めます。 The response functions d ', f g', and h 'are determined by the least squares method, finite identification method, sequential identification method, etc. based on this equation.

高橋安人著 システムと制御 上、 下 岩波書店 1 9 7 8年 応答関数 f , g , hは、 d', f, g', h'と換算式とを用いて算出します。 伝達関数 (応答関数) を用いて、 予測される制御値を目標値 sに一致 又は接近させる操作値を決定する方法は次の通りです。 パルス応答関数の和分はステップ応答関数になり、 原因や結果の変化 ( 差分) の和分が実値 (測定や設定の生の値) になります。 Author: Yasuhito Takahashi System and control: Lower Iwanami Shoten 19778 Response functions f, g, h are calculated using d ', f, g', h 'and conversion formulas. The method for determining the operation value that matches or approaches the predicted control value to the target value s using the transfer function (response function) is as follows. The sum of the pulse response function becomes the step response function, and the sum of the cause and the change in the result (difference) becomes the actual value (the raw value of the measurement or setting).

パルス応答関数と原因や結果の変化を英小文字で、 ステツプ応答関数と 原因や結果の実値を英大文字で表すことにします。 The pulse response function and the cause and effect changes are expressed in lowercase letters, and the step response function and the actual values of the cause and effect are expressed in uppercase letters.

(例) R≡∑ ' r r = A 'R = R— A 'R R = Λ · R + r  (Example) R≡∑ 'r r = A' R = R— A 'R R = Λ · R + r

F≡∑ · f =∑ · f '/( 1 -d')  F≡∑f = ∑f '/ (1 -d')

Λ · Rは、 Rよりも 1時点前の数列を意味します。 Λ · R means a sequence one point before R.

目標値や制御値を差分で表現するより、 実値 (差分の和分) で表現した ほうが分かりやすいので、 第 1式, 第 2式を書き換えます。 Expressions 1 and 2 are rewritten because it is easier to express target values and control values as real values (sum of differences) than as differences.

R = F - c + G - b +H - a (第 3式)R = F-c + G-b + H-a (Equation 3)

R = ( A+d, ' 厶 ) ' R + f' - c +g' - b +h' - a (第 4式) 通常、 制御周期毎に、 現時点を表すパラメ一タ mを 1つ大きくするか、 現時点を第 0項に固定して原因と結果の数列を 1項ずつずらします。 第 m項でも良いのですが、 以後、 現時点を第 0項で表わします。 R = (A + d, 'm)' R + f '-c + g'-b + h '-a (Formula 4) Normally, the parameter m representing the current time is increased by one for each control cycle. Or fix the current time to the 0th term and shift the sequence of causes and effects by one term. The m-th term can be used, but the current time will be expressed as the 0th term.

cを前時点を最後に今後変化させない (無操作) 時の操作値 (現在と未 来は 0 ) , Rを現在迄の測定値と無操作時の予測を表す制御値、 c'を現 在以降の操作値 (過去は 0 ) , R'を cに続いて c'を実施した場合の制御 値 (過去と現在は測定値, 未来は予測値) とします。  c is the last time point, the operation value when no change is made in the future (no operation) (current and future is 0), R is the measured value up to the present and the control value representing the prediction of no operation, c 'is the current The subsequent operation value (0 in the past) and R 'are the control values when c' is executed after c (the measured value in the past and present, and the predicted value in the future).

すると、 第 4式で無操作時の予測値 Rが、 第 1時点より必要な時点迄、 逐次計算できます。 Then, the predicted value R at the time of no operation can be calculated sequentially from the 1st time to the required time by the 4th formula.

外乱値には、 測定できる外乱であれば、 過去値や現在値が、 計画的に引 き起こされる外乱であれば過去値, 現在値, 未来値 (計画値) を利用す ることができます。 第 4式でこの可知的外乱の効果が除去できます。 P I D制御では、 このような可知的外乱の除去 (フ ィー ドフ ォ ワー ド) は、 難しく、 多くの試行錯誤を必要としました。 Past and present values can be used as the disturbance values if they are measurable disturbances, and past values, present values, and future values (planned values) can be used if the disturbances are caused intentionally. . Equation 4 removes the effect of this intellectual disturbance. With PID control, the removal of such intellectual disturbances (feedforward) was difficult and required a lot of trial and error.

必要な時点は、 有限整定法やプログラム整定法では第 FE+DE時点迄で、 最適制御法では最適条件の選択に依存します。 The required time is up to the FE + DE point in the finite settling method and the program settling method. Optimal control depends on the choice of optimal conditions.

有操作時は、 第 3式で R→R', c→ c +c'として第 5式を得ます。 When there is an operation, the fifth equation is obtained as R → R ', c → c + c' in the third equation.

R' = F - ( c + c' ) + G - b + H - a R '= F-(c + c') + G-b + H-a

R' = R + F 'c' R '= R + F' c '

F -c' =R' - R (第 5式) 特定時点 nでは、 有操作時の予測値 R'が目標値 Sに等しく なります。F-c '= R'-R (Equation 5) At a specific point in time n, the predicted value R 'during operation is equal to the target value S.

Fn ' C '。十 h Fn- C E - C' c E= S„ - Rn Fn 'C'. Tens h Fn- C E-C 'c E = S „-Rn

(F -c' ) n = ( S - R )π ( n =特定時点) (第 6式) 有限整定法は、 目標値 Sが現時点以降不変とする方法で、 プログラム整 定法は、 変化を認める方法です。 ( この両法を多点整定法と言う) 制御値 c'を求めるのに、 多点整定法では、 第 6式を未知数 c'の連立一次 方程式と見、 最適制御法では、 第 6式を最小自乗法 (最適条件と考える 重みと特定時点とを選択する) の観測方程式と見ます。 (F-c ') n = (S-R) π ( n = specific time point) (Equation 6) The finite settling method is a method in which the target value S is invariable from the present time, and the program stabilization method allows for change. How. (These methods are called multipoint settling method.) To find the control value c ', in the multipoint settling method, Equation 6 is regarded as a simultaneous linear equation of unknown c', and in the optimal control method, Equation 6 is It is regarded as an observation equation of the least square method (selecting a weight and a specific point in time considered as an optimal condition).

言い換えれば、 制御値と目標値とを、 多点整定法では一致させ、 最適制 御法では接近させています。 In other words, the control value and the target value are matched in the multipoint settling method, and close in the optimal control method.

制御値を目標値に一致 Z接近させることを整定すると言い、 一致したこ とを整定したと言います。 The control value coincides with the target value. It is said that setting closer to Z is settled.

これらの方法の変形も当然考えられます。 Variations on these methods are of course conceivable.

第 6式で、 F · C'の左辺の第 FE+DE時点以降が、 第 FE時点〜第 FE + DE時 点の左辺と一次従属になっています。 In equation (6), the time after FE + DE on the left side of F · C 'is linearly dependent on the left side from time FE to time FE + DE.

この結果、 連立一次方程式として操作値を求める方法では、 第 FE+DE時 点以前のデータを用いることになります。 As a result, in the method of obtaining the manipulated value as a system of linear equations, data before the FE + DE time point is used.

それで、 通常、 多点整定法で、 特定時点を第 FE時点〜第 FE+DE時点に選 び、 操作値 c'の終項を DEにして方程式と未知数との数を一致させます。 第 6式を元に、 操作値 c'を求めたら、 直近の操作値 Co = C— i + c' oとして 出力し、 次の制御周期に移ります。 発明の開示 Therefore, usually, using the multipoint settling method, a specific point in time is selected from the FEth point to the FE + DE point, and the last term of the operation value c 'is set to DE to match the number of equations with the unknown. After obtaining the operation value c 'based on Equation 6, output the most recent operation value Co = C-i + c' o, and move on to the next control cycle. Disclosure of the invention

低分解能 (少水準数) の操作手段を選択する場合には、 目標値を挟む 水準 (両側水準) 間を往復することによって生じる制御値の脈動 ( リ ッ プル) はある程度止むを得ないが、 制御値の時間的平均値が恒常的な差 (偏り ) を生じることは、 避けなければなりません。  When selecting the operation means with low resolution (small number of levels), the pulsation (ripple) of the control value caused by reciprocating between the levels (two-sided levels) sandwiching the target value is unavoidable to some extent, It must be avoided that the time average of the control values will cause a constant difference (bias).

Aの温度を制御したい場合に、 Aに供給する冷却媒体の出口温度を制御 する場合のように、 間接的な制御をする場合には、 偏りは大きな問題で すが、 脈動は小さな問題に過ぎないのが普通です。 この場合には、 脈動 の許容値が大きくなります。  When controlling the temperature of A, such as when controlling the outlet temperature of the cooling medium supplied to A, indirect control is a big problem, but pulsation is a small problem. Usually there is no. In this case, the permissible value of pulsation increases.

有限整定法によつて整定 (制御値が目標値に一致すること) していく様 子を、 a = 0, b = 0 ; DE= 1, FN =1とした場合を F I G. 1 , 2に示 します。 F I G. 1は出力値 Coを四捨五入しただけの場合です。 Settling by the finite settling method (control value matches target value) is a = 0, b = 0; DE = 1, FN = 1 It is shown in. F I G. 1 is when the output value Co is simply rounded.

目標値が、 水準 nと水準 n + 1との間に設定されたときに水準 n — 1〜 n + 1の間の各点 a〜 gから、 制御によってどのように変化するかを示 しています。 このように、 操作値を整数化しただけでは、 どの点から開 始しても、 恒常的な偏り ζを生じます。 It shows how the target value changes with control from each point a to g between level n — 1 to n + 1 when set between level n and level n + 1. You. Thus, simply converting the manipulated value to an integer will result in a constant bias し て も, no matter where it starts.

この例では、 各到達水準 ±0.5(1- d' の間に目標値があると恒常的な偏 りを生じます。 (1 =0.5とすると全設定範囲の 5 0 %にもなります。 通常、 操作値のステップ応答関数 F =∑ · f は、 単純増加関数になり、 I S一 R*I <0.5'FFBが不感帯 (偏りを生じる目標値の範囲) になります。 これでは、 目標値として小数点以下の部分が意味を持ちません。 In this example, if the target value is between ± 0.5 (1-d '), there will be a constant deviation. (If 1 = 0.5, it will be 50% of the whole setting range. The step response function F = ∑ · f of the manipulated value is a simple increase function, and IS-R * I <0.5'F FB is the dead band (the range of the target value causing bias). The part after the decimal point has no meaning.

このように、 低い分解能の操作手段に単に整数化して出力したのでは、 高い精度が望めません。  In this way, simply converting the low-resolution operation means to integers and outputting them cannot provide high accuracy.

この問題を以下のようにして解決します。  Resolve this problem as follows:

まず、 近代制御法の常套手段ですが、 予備測定で操作値を適当に変化さ せ、 応答関数 d', f 'を求めます。 可知的外乱の応答関数 g', h'も知るに は、 その変化もあるようにしなければなりません。 操作値については、 安全な操作値の変化幅での、 パルス的変化もしくは階段的変化が試行さ れます。 この様子を観察し、 例えば最小自乗法で応答関数を求めます。 この応答関数を利用して、 次の手段で脈動を所望値以下にします。 First, as is usual in modern control methods, the response values d 'and f' are determined by appropriately changing the operation values in preliminary measurements. To know the response function g ', h' of the intelligent disturbance Must make that change happen. As for the operating value, a pulse-like or step-like change with a safe operating value range is attempted. Observe this situation and find the response function using the least squares method, for example. Using this response function, the pulsation is reduced below the desired value by the following means.

絶対値が最小の記憶効果の極を d"、 許容できるリ ップルの大きさを s、 Y = log( 1― ε )/log(ld"l) The pole of the memory effect with the smallest absolute value is d ", the allowable ripple size is s, and Y = log (1-ε) / log (ld" l)

とするとき、 新しい制御周期を Y · t以下の値 ( X · t ) に選びます。 d"が 0. 8〜0. 98であれば、 制御周期をあま り短くせずに、 リ ップ ルを我慢するのも選択の一つです。 Then, select a new control cycle with a value less than Y · t (X · t). If d "is 0.8 to 0.98, one of the options is to endure the ripple without shortening the control cycle.

このようにして選んだ制御周期での応答関数を、 拡張 Z変換法を応用し て計算するか、 再度応答関数を測定して、 応答関数の初期値にします。 この応答関数の初期値を用いて、 制御を開始します。 Either calculate the response function in the control cycle selected in this way by applying the extended Z-transform method, or measure the response function again to set the initial value of the response function. Control starts using the initial value of this response function.

拡張 Z変換法の応用としては、 次の方法を用いることができます。 The following methods can be used as an application of the extended Z transform method.

記憶効果の極を da,db, · · ·,d,とするとき、 変更後の周期での d'を d' = 1ー(1— (ΚΧΛ ) · (1— db xA ) · ·■ (1— dUxA ) The poles of the memory effect d a, d b, · · ·, when d, and, 'a d' d in period after change = 1 over (1- (Κ Χ Λ) · (1- d b x A) · · ■ (1— dU x A)

とします。 will do.

f g', h' については、 ∑ ·ί', ∑ 'g', ∑ 'h,のグラフ ( F I G. 3 ) を描き、 滑らかな曲線で近似した後、 新しい制御周期(1Χ,2Χ,· '·) に対 応する時点での値を読みとります。 For f g ', h', draw a graph (Fig. 3) of ∑ · ί ', ∑' g ', ∑' h, and approximate it with a smooth curve. Then, create a new control cycle (1Χ, 2Χ, · Read the value at the time corresponding to '·).

他の方法を用いて応答関数を変換しても結構です。 You can convert the response function using other methods.

しかし、 このような変換は目安にとどめ、 再測定するのが確実です。 このような制御周期を選ぶことにより、 制御値の脈動 ( リ ップル) が所 望値以下になります。 ただし、 どの図も脈動を見やすくするために、 制 御周期としてやや不適な場合を示しています。  However, such a conversion is only a guide and it is safe to re-measure. By selecting such a control cycle, the pulsation of the control value will be less than the desired value. However, all figures show cases where the control cycle is slightly inappropriate to make it easier to see the pulsation.

次いで、 本番で好みの同定法 (有限同定法, 最小自乗法, 逐次同定法, ·■· ) で応答関数を修正します。 適時、 不揮発記憶に記録し、 次回の制御開始時の初期値として使えるよ うにしておく と、 学習効果が生じ、 次回はより良い状態で制御を開始す ることができます。 Next, the response function is modified using the preferred identification method (finite identification method, least squares method, sequential identification method, · ■ ·) in the actual production. If it is recorded in the non-volatile memory in a timely manner so that it can be used as the initial value at the start of the next control, a learning effect will be generated and the control can be started in a better state next time.

また、 好みの制御方法 (有限整定法, プログラム整定法, 最適制御法, ·· ·· ) で、 直近の操作値 Coを求めます。 Also, find the latest operating value Co using your favorite control method (finite settling method, program setting method, optimal control method, ...).

この操作値 = + 。を整数化して出力する前に、 前時点までの操 作値を整数化 C したときの端数を積分 (累積加算) した積算値 δ  This operation value = +. Before converting the output value into an integer, the integral value δ is obtained by integrating (accumulating) the fraction obtained when the operation value up to the previous point is converted into an integer C.

δ δ + C c C 0< k≤ 1  δ δ + C c C 0 <k≤ 1

左辺の 5は現時点での値、 右辺の <5は前時点での値。  5 on the left is the current value, and <5 on the right is the previous value.

と直近の操作値の符号 sgn(c' o) And the sign of the last operation value sgn (c 'o)

sgn(x)は Xの正, 0,負で— 1 , 0, 1の値を採る関数、  sgn (x) is a function that takes positive, 0, and negative values of X and takes values of -1, 0, and 1.

sgn(0)の値を + 1又は一 1とすることもできる。  The value of sgn (0) can be +1 or 11 as well.

との一次式で表される補正値 n Correction value n expressed by the linear expression

Τ) = ρ· <5 + q- sgn(c o ) 0≤ , q p+ 2 · q≤ 1 補正値 7]が非負係数 p,q の一次式で表される の単純増加関数であれ ば、 その機能は等価なものになる。  Τ) = ρ · <5 + q-sgn (co) 0≤, q p + 2 · q≤ 1 If the correction value 7] is a simple increasing function of The functions will be equivalent.

を加えた数値 C。 + ?7 =C- + + "を整数化して出力します。 Plus C. +? 7 = C- + + "is converted to an integer and output.

Co = Int(C- + c Ό + η )  Co = Int (C- + c Ό + η)

Int(x)は χを整数化する関数で、 四捨五入を用いる。  Int (x) is a function that converts χ to an integer and uses rounding.

p ÷ 0にすると、 整数化の関数として、 四捨五入, 切り捨て, 切り上 げ等のどのような関数でもほぼ等価な手段になります。  If p ÷ 0, any function such as rounding, rounding down, rounding up, etc., is a nearly equivalent means of converting to an integer.

整数化の端数の積分 δと直近の操作値の符号 sgn(c'Q)は、 P I D制御の 積分項と比例項と同様の作用で両側水準間の遷移を促します。 The integral of the fractional integral δ and the sign of the last manipulated value, sgn (c'Q), promote the transition between the two levels in a manner similar to the integral and proportional terms in PID control.

ごの結果、 操作値が両側水準間を遷移し、 制御値が目標値の上下を脈動 し、 制御値の時間的な平均値が目標値に一致するようになります。 As a result, the manipulated value transitions between the two levels, the control value pulsates above and below the target value, and the average value over time of the control value matches the target value.

F I G. 2に、 F I G. 1の条件でこの遷移をさせた場合を示します。 一巡伝達で積分項が位相を回転させることで、 比例項はゲイ ンを大き く することで発振原因を作りますので、 p+2'q≤l の範囲の非負数 p, qを 選びます。 Fig. 2 shows a case where this transition is made under the condition of Fig. 1. The non-negative numbers p and q in the range of p + 2'q≤l are selected because the integral term rotates the phase in the loop transfer and the proportional term creates an oscillation cause by increasing the gain.

1以下の正数 kは、 1未満にすることで、 位相の回転を減らせます。 微小発振程度か、 発振が起きなければ、 kを 1にしても結構です。  A positive number k less than or equal to 1 can be reduced to less than 1 to reduce phase rotation. If the oscillation is very small or no oscillation occurs, k can be set to 1.

両側水準以外への遷移になる場合には、 補正の必要がありません。 If there is a transition to a level other than the two-sided level, no correction is required.

補正をしない場合は、 If you do not make corrections,

Co = Int( C- 1 + c Ό )  Co = Int (C-1 + c Ό)

となります。 It becomes.

操作値の変化 C。— C— i の絶対値が 2以上になる場合には、 両側水準以外 への遷移です。 Change in operating value C. — C— If the absolute value of i is 2 or more, the transition is to a level other than the two-sided level.

これを判断基準とすることもできます。 You can use this as a criterion.

雑音がある場合には、 補正がなく とも両側水準への遷移が発生します。 しかし、 この雑音による遷移だけでは、 少し長い時間幅で平均した値の 変動 (ユラギ) が大き く なります。 In the presence of noise, a transition to a two-sided level occurs without correction. However, the transition caused by this noise alone causes large fluctuations (average) in the average value over a slightly longer time span.

小さめの値の p,q を用いることで、 このユラギを小さ く できます。 By using smaller values of p and q, we can make this Juragi smaller.

直近の操作値 Coを出力することで、 この制御周期を終了し、 制御周期の 更新手続きをし、 次の制御周期 (時点) に移ります。 By outputting the most recent operation value Co, this control cycle is completed, the control cycle is updated, and the procedure moves to the next control cycle (time).

なお、 操作値を観測している場合には、 設定した操作値と異なった数値 が観測される場合があります。 Note that when operating values are observed, values different from the set operating values may be observed.

この場合には、 測定された値を採用します。 In this case, use the measured value.

この場合、 前周期 (前時点) での操作値 C- i が、 整数値であるとは限ら なく なります。  In this case, the manipulated value C-i in the previous cycle (previous point) is not always an integer value.

この場合、 誤差の積分を測定した C-iで訂正します。  In this case, the error integral is corrected with the measured C-i.

δ = - 3 +C- 2 + c'-i-C-i 0< k≤ 1 図面の簡単な説明 δ =-3 + C- 2 + c'-iCi 0 <k≤ 1 BRIEF DESCRIPTION OF THE FIGURES

F I G. 1は、 操作値を整数化しただけで、 分解能の低い操作手段に出 力した場合のグラフです。  Fig. 1 is a graph when the operation value is converted to an operation method with low resolution by simply converting the operation value to an integer.

a〜gのいずれからも、 目標値 Sと恒常的な差 ζを生じます。 From any of a to g, there is a constant difference 目標 from the target value S.

η - 1 , η, η + 1は制御水準、 0〜 7は制御時点を表します η-1, η, η + 1 indicates the control level, and 0 to 7 indicate the control time

F I G. 2は、 本発明による操作状態を表すグラフです。  FIG. 2 is a graph showing the operation state according to the present invention.

a〜gのいずれからの変化も、 目標値 Sを挟んだ脈動を繰り返します。 n - 1 , η , η + 1は制御水準、 0〜7は制御時点を表します Changes from any of a to g repeat the pulsation across the target value S. n-1, η, η + 1 indicates the control level, and 0 to 7 indicate the control time

F I G. 3は、 制御周期を変更する時の、 グラフを用いた応答関数の修 正方法を示します。  Fig. 3 shows how to modify the response function using a graph when changing the control cycle.

F I G. 4は、 応答関数の終位を判断するグラフを表します。 FI G. 4 shows a graph that determines the end of the response function.

発明を実施する場合の最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION

制御の実態は様々であり、 常に最良の形態というものはありません。 そこで、 DE= 1とでき、 予知できる外乱が 1つある場合を説明します。 予め、 制御周期 tで、 伝達方程式 d', f g'の概形を求めます。  The realities of control vary and there is no always the best form. Therefore, let us explain the case where DE = 1 and there is one predictable disturbance. In advance, the approximate form of the transfer equations d 'and f g' is obtained at the control cycle t.

DE = 1の場合、 d" = d' i-cUが唯一の極になります。 If DE = 1, then d "= d 'i-cU is the only pole.

特殊な場合を除く と、 d"が 1以上になる場合は制御周期が短かすぎる場 合であり、 負になる場合は測定時間が短すぎる場合です。 Except for special cases, when d "is 1 or more, the control cycle is too short, and when it is negative, the measurement time is too short.

正常な場合には、 1未満の正数となります。 Normally, it is a positive number less than 1.

どうしても、 このようにならなければ、 1く DEにせざるを得ません。 許容リ ップルを £ とするとき、 本番の制御周期 Tを If this doesn't happen, we have to make one DE. When the allowable ripple is £, the actual control cycle T is

T≤ t · log( 1 - ε )/log(d") にします。 T≤ t · log (1-ε) / log (d ").

F I G. 3のように Γ, g'を滑らかな曲線で近似し、 周期 Tでの値を読 み取り、 fヽ =0, g =0とみなしてよい項番号 n , mを求め、 この n, mを f', g'の終位にします。  As shown in FI G.3, Γ, g 'are approximated by a smooth curve, the values at period T are read, and the term numbers n, m that can be regarded as f ヽ = 0, g = 0 are obtained. Set n and m to the end of f 'and g'.

ピーク値の 1 Z5以下になれば、 終位にしても実用上の差し支えはほと んどありません。 If the peak value is less than 1 Z5, there is little practical hindrance to the final position.

したがって、 F I G. 4のような例では、 終位を 4にします。 Therefore, in an example like FIG.4, the final position is 4.

ここでは、 説明の都合上 f', g'の終位を 2, 3とします。 Here, the end of f 'and g' is assumed to be 2 and 3 for convenience of explanation.

新しい制御周期で、 再度応答関数を測定して、 本番の初期値にします。 好みの同定法 (有限同定法, 最小自乗法, 逐次同定法, ····) で応答関 数を修正し、 適時、 不揮発記憶に記録し、 次回の制御開始時の初期値と して使えるようにしておきます。 Measure the response function again at the new control cycle and set it to the actual initial value. Modify the response function using the preferred identification method (finite identification method, least square method, sequential identification method, etc.), record it in nonvolatile memory as appropriate, and use it as the initial value at the next control start. I will do so.

d', f g'を換算して、 f , g, Fを求めておきます。 Convert d ', f g' to obtain f, g, F.

また、 好みの制御方法 (有限整定法, プログラム整定法, 最適制御法, ·· ·· ) で、 直近の操作値 C。を求めます。 In addition, using the control method you prefer (finite settling method, program settling method, optimal control method, ...), the most recent operation value C is used. Ask for.

有限整定法を選択したとすれば、 Rl = Ro + d' l To + f ' 2 - C- l + f' 3 - C-2 + g' l'bo + g' 2-b- l+g' 3-b-2If you choose the finite settling method, Rl = Ro + d 'l To + f' 2-C- l + f '3-C-2 + g'l'bo + g '2-b- l + g' 3-b-2

R2 = Ri+d': - (Ri-Ro ) +f ' 3-c- i + g' i -bi + g' 2 -bo +g' 3 -b- i R 2 = Ri + d ':-(Ri-Ro) + f' 3-c- i + g 'i -bi + g' 2 -bo + g ' 3 -b- i

R3 = R2+d' l - (R2-Ri ) +g' l · ba + g' 2 · bi +g ' 3 · bo R 3 = R2 + d 'l - (R 2 -Ri) + g' l · ba + g '2 · bi + g' 3 · bo

により、 無操作時の 〜1?4を推測し、 連立方程式

Figure imgf000017_0001
Guess ~ 1 ~ 4 at the time of no operation by
Figure imgf000017_0001

を解いて、 c'0= {F2(S2 - R2)— F^Ss- R3)}/{F2 2— F F3} を求めます。 補正方法として、 積分のみを利用することにします。 すなわち、 To find c ' 0 = {F 2 (S 2 -R 2 ) —F ^ Ss-R 3 )} / {F 2 2 —FF 3 }. As a correction method, we will use only integration. That is,

CC = C一 i + c'o CC = C-i + c'o

Co = Int(CC) Co = Int (CC)

Co < C- i - 1 または C- i +1く Co であれば、 ?? = 0  If Co <C- i-1 or C-i + 1, then? ? = 0

しからざれば、 C。= Int(CC+ ) n =k- 7} +CC- C0 で修正、 更新して、 Coを出力し、 次周期の操作値 C— i— (:。 にします。 kは、 k =l, k =0.9, ···と少しずつ減らして様子を見ます。 Otherwise, C. = Int (CC +) n = k- 7} + CC- Correct and update with C0, output Co, and manipulated value of the next cycle C— i— (:. Where k is k = l, k = 0.9, ...

改善が認められなければ k = 1 とし、 改善が認められれば、 最適値と思 われる値にします。 If no improvement is found, set k = 1, and if an improvement is found, set the value to the optimal value.

このように、 制御周期の選択と、 操作値を修正するという簡単な方法 で安価な、 場合によっては故障しにく く確実な手段である、 設定水準数 の少ない操作手段を用いて、 精度の高い制御が可能になります。  In this way, using a simple method of selecting the control cycle and correcting the operation value, it is possible to use a simple and inexpensive operating method with a small number of setting levels, which is a reliable means that is less likely to break down. High control is possible.

冷媒を使った温度制御に応用して、 冷媒供給を開時間を制御するだけ で従来のィ ンバ一タとパルス弁を用いた以上の精度が実現しました。 冷媒用の制御弁は、 流量を制御する部分で発泡し、 流量にヒステリシス が現れ、 再現性が悪いのが普通です。 粗い時間制御の開閉弁で勝るとも 劣らない制御が実現できたことは、 部品の経済性とともに大きな価値が あります。  Applying to temperature control using a refrigerant, just controlling the opening time of the refrigerant supply has made it possible to achieve higher accuracy than with conventional inverters and pulse valves. The control valve for refrigerant foams in the part that controls the flow rate, and hysteresis appears in the flow rate, and the reproducibility is usually poor. Achieving control equal to or better than a coarse time-controlled on-off valve is of great value along with the economics of parts.

Claims

請 求 の 範 囲 The scope of the claims 1 . 過去及び現在の制御値, 過去の操作値及び使用可能な過去, 現在, 未来の外乱値を用いて、 未来の制御値を推定し、 制御値が目標値に一致 または接近させる操作値を求める制御方法において、 所望の制御分解能 よりも、 制御範囲を設定水準 (一続きの整数で表す) の数で除した数が 大きい操作手段を用い、 最小の記憶効果の極で評価した脈動が許容され る値になるように制御周期を定め、 直近の操作値の変化に操作値を整数 化したときの端数の積算値と直近の操作値の変化の符号との一次式で表 される補正値を加えて (ただし、 両側水準以外への遷移になる場合には 補正値を加えなく ともよい) 整数化することを特徴とする制御方法。1. Using the past and present control values, past operation values and available past, present, and future disturbance values, estimate future control values, and determine the operation value that causes the control value to match or approach the target value. In the required control method, the pulsation evaluated at the minimum memory effect pole is acceptable by using an operating means that is larger than the desired control resolution by dividing the control range by the number of set levels (represented by a series of integers). The control cycle is determined so as to obtain the value that is calculated, and the correction value expressed by the linear expression of the integrated value of the fraction and the sign of the change of the latest operation value when the operation value is converted to an integer with the change of the latest operation value (However, in the case of a transition to a level other than the two-sided level, the correction value does not need to be added). 2 . 過去及び現在の制御値, 過去の操作値及び使用可能な過去, 現在, 未来の外乱値を用いて、 未来の制御値を推定し、 制御値が目標値に一致 または接近させる操作値を求める制御方法を用いた装置において、 所望 の制御分解能よりも、 制御範囲を設定水準 (一続きの整数で表す) の数 で除した数が大きい操作手段を用い、 最小の記憶効果の極で評価した脈 動の大きさが許容される値になるように制御周期を定め、 直近の操作値 の変化に操作値を整数化したときの端数の積算値と直近の操作値の変化 の符号との一次式で表される補正値を加えて (ただし、 両側水準以外へ の遷移になる場合には補正値を加えなく ともよい) 整数化して出力とす ることを特徴とする制御装置。 2. Estimate future control values using past and present control values, past operation values, and available past, present, and future disturbance values, and determine the operation values that cause the control values to match or approach the target values. In a device that uses the control method that is sought, use the operating means that divides the control range by the number of set levels (represented by a series of integers) larger than the desired control resolution, and evaluates at the extreme of the minimum memory effect. The control cycle is determined so that the magnitude of the pulsation becomes the allowable value, and the integral value of the fraction when the operation value is converted to an integer in the change of the latest operation value and the sign of the change of the latest operation value are determined. A control device characterized by adding a correction value represented by a linear expression (however, if a transition to a level other than the two-sided level occurs, it is not necessary to add the correction value) and outputting the result as an integer.
PCT/JP1998/002968 1998-03-09 1998-07-01 Control method and apparatus therefor Ceased WO1999046647A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP1998/002968 WO1999046647A1 (en) 1998-03-09 1998-07-01 Control method and apparatus therefor
JP53559498A JP3352701B2 (en) 1998-03-09 1998-07-01 Control method and device
AU79362/98A AU7936298A (en) 1998-03-09 1998-07-01 Control method and apparatus therefor
AU43946/99A AU4394699A (en) 1998-07-01 1999-06-30 Predictive control using operating means with fewer set levels
PCT/JP1999/003519 WO2000002104A1 (en) 1998-07-01 1999-06-30 Predictive control using operating means with fewer set levels

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9800959 1998-03-09
JPPCT/JP98/00959 1998-03-09
PCT/JP1998/002968 WO1999046647A1 (en) 1998-03-09 1998-07-01 Control method and apparatus therefor

Publications (1)

Publication Number Publication Date
WO1999046647A1 true WO1999046647A1 (en) 1999-09-16

Family

ID=26439142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/002968 Ceased WO1999046647A1 (en) 1998-03-09 1998-07-01 Control method and apparatus therefor

Country Status (1)

Country Link
WO (1) WO1999046647A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002056122A1 (en) * 2001-01-10 2002-07-18 Adtex Inc. New automatic control system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63128401A (en) * 1986-11-18 1988-06-01 Hitachi Ltd Proportional/integral predictive adaptive control device
JPH02249001A (en) * 1989-03-22 1990-10-04 Mitsubishi Heavy Ind Ltd Arithmetic unit for digital manipulated variable
JPH0464107A (en) * 1990-07-03 1992-02-28 Natl Space Dev Agency Japan<Nasda> Antenna driving device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63128401A (en) * 1986-11-18 1988-06-01 Hitachi Ltd Proportional/integral predictive adaptive control device
JPH02249001A (en) * 1989-03-22 1990-10-04 Mitsubishi Heavy Ind Ltd Arithmetic unit for digital manipulated variable
JPH0464107A (en) * 1990-07-03 1992-02-28 Natl Space Dev Agency Japan<Nasda> Antenna driving device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"AUTOMATIC CONTROL HANDBOOK", JOURNAL OF THE SOCIETY OF INSTRUMENT AND CONTROL ENGINEERS, SN, JP, 1 October 1983 (1983-10-01), JP, pages 73 - 75, XP002926341 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002056122A1 (en) * 2001-01-10 2002-07-18 Adtex Inc. New automatic control system

Similar Documents

Publication Publication Date Title
Holloway et al. Prescribed-time observers for linear systems in observer canonical form
Huang et al. Momentum-based policy gradient methods
US20250348046A1 (en) Adaptive engine for tracking and regulation control using a control law selector and combiner
Muñoz-Vázquez et al. A fuzzy fractional-order control of robotic manipulators with PID error manifolds
Polyakov et al. On boundary finite-time feedback control for heat equation
US11747773B2 (en) Sequential deterministic optimization based control system and method
Almudevar et al. Optimal approximation schedules for a class of iterative algorithms, with an application to multigrid value iteration
EP1938156A1 (en) On demand auto tuner for plant control system
Kouki et al. Application of model predictive control for a thermal process using STM32 microcontroller
WO1999046647A1 (en) Control method and apparatus therefor
JP3352701B2 (en) Control method and device
Jäschke et al. Using process data for finding self-optimizing controlled variables
Stellato et al. Real-time FPGA implementation of direct MPC for power electronics
Hamamci A new PID tuning method based on transient response control
Petráš An adaptive fractional-order controller
Rubagotti et al. Stabilizing embedded MPC with computational complexity guarantees
Rauová et al. Real-time model predictive control of a fan heater via PLC
Liu et al. Stable dynamical controller design for robust polynomial pole assignment
Sreeraj et al. Design and implementation of fractional order PI λ D μ controller for thermal process using stability boundary locus
JPWO1999046647A1 (en) Control method and device
Sokolov Problems of adaptive optimal control of discrete-time systems under bounded disturbance and linear performance indexes
US20060173558A1 (en) Digital control method that control error is improved
Maulat et al. Formulas for continued fractions: An automated guess and prove approach
Babu et al. Enhanced Control Performance for Higher Order SISO Delayed Time Processes
Abramov et al. A method for the numerical solution of the Painlevé equations

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AU BA BB BG BR CA CN CU CZ EE GE GM GW HU ID IL IS JP KR LC LK LR LT LV MG MK MN MX NO NZ PL RO SG SI SK SL TR TT UA US UZ VN YU

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: KR

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA