[go: up one dir, main page]

WO1998016571A1 - Systeme adhesif a deux parties a base de polyurethane et son procede d'utilisation - Google Patents

Systeme adhesif a deux parties a base de polyurethane et son procede d'utilisation Download PDF

Info

Publication number
WO1998016571A1
WO1998016571A1 PCT/US1997/018230 US9718230W WO9816571A1 WO 1998016571 A1 WO1998016571 A1 WO 1998016571A1 US 9718230 W US9718230 W US 9718230W WO 9816571 A1 WO9816571 A1 WO 9816571A1
Authority
WO
WIPO (PCT)
Prior art keywords
aqueous phase
polyol
prepolymer
curing agent
adhesive system
Prior art date
Application number
PCT/US1997/018230
Other languages
English (en)
Inventor
Pat L. Murray
Original Assignee
Polyfoam Products, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/729,599 external-priority patent/US5723534A/en
Application filed by Polyfoam Products, Inc. filed Critical Polyfoam Products, Inc.
Priority to AU47509/97A priority Critical patent/AU4750997A/en
Publication of WO1998016571A1 publication Critical patent/WO1998016571A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/02Organic macromolecular compounds, natural resins, waxes or and bituminous materials
    • C08L2666/04Macromolecular compounds according to groups C08L7/00 - C08L49/00, or C08L55/00 - C08L57/00; Derivatives thereof
    • C08L2666/08Homopolymers or copolymers according to C08L7/00 - C08L21/00; Derivatives thereof

Definitions

  • This invention relates to an adhesive and a method of bonding with the adhesive. More specifically, the invention relates to a two part polyurethane-based adhesive and a method of bonding polyurethane foams, polystyrene foams, and other substrates with the adhesive.
  • Chlorinated solvent-based adhesives have historically been used for bonding together pieces of cellular polyurethane foam and for bonding cellular polyurethane foam to other materials such as fabrics, fibers, or corrugated paper. These solvent-based adhesives were preferred in many polyurethane fabricating applications because of the soft durable bonds they created, the high flash points of the adhesive chemicals, the quick drying properties, and the ease of use associated with these adhesives.
  • these adhesives comprised a solution of a high molecular weight polymer such as nitrile rubber, butadiene, or natural rubber and a chlorinated solvent such as 1, 1, 1-trichlorethane or methylene chloride.
  • a chlorinated solvent such as 1, 1, 1-trichlorethane or methylene chloride.
  • the solvents in these solvent-based adhesives often constituted as much as seventy-five percent of the weight of adhesive. Much of this chlorinated solvent was evaporated into the atmosphere during the process of using the adhesive.
  • Water-based emulsion adhesives have also been used as alternatives to the chlorinated solvent adhesives. These water-based emulsion adhesives were similar to the solvent-based adhesives in that a polymer was solubilized or dispersed in water. However, unlike the solvent-based adhesives, the water-based adhesives did not necessarily require the water to evaporate in order for the polymer to function as an adhesive. Instead, the polymer contained in the water-based emulsions could also be released from the water by numerous methods including shearing forces, pressure, changes in pH, or by chemical additives.
  • water-based emulsion adhesives had several disadvantages when compared to the chlorinated solvent-based adhesives. Particularly, the amount of time required for a final cure was much longer and the instabihty associated with the water-based emulsions resulted in line and equipment plugging problems. Additionally, the shelf life of the water-based emulsion adhesives was dependant upon the storage temperature and could be very limited in either hot or cold storage conditions. Many of these type of adhesives would become unstable when exposed to certain metals such as iron, brass, or aluminum. This often meant that special equipment was required to use the water-based emulsion adhesives. Additionally, ammonia would sometimes be added to these adhesives to decrease the instability, but this addition of ammonia would result in a noxious odor upon use of the adhesive.
  • Thermosetting moisture-cure polyurethane adhesives have been used in the adhesive art outside of the cellular foam fabrication industry, however, polyurethane adhesives were generally known for forming very weak initial bonds.
  • U.S. Patent Nos. 4,539,345 and 4,891,269 disclosed various attempts to overcome this weakness in initial bond strength, but these attempts required blending a polyurethane prepolymer with other components such as thermoplastic polymers and aromatic or aliphatic-aromatic tackifying resins.
  • polyurethane prepolymers In addition to use in polyurethane adhesives, polyurethane prepolymers have been manufactured for use in many other applications.
  • Polyurethane prepolymers are reaction mixtures of polyols and isocyanates in which one of these components is in stoichiometric excess. The prepolymer resulting from the reaction of these components remains a liquid and retains reactive functional groups of the excess component.
  • polyurethane piepolymers have been manufactured because they reduce the vapor hazard associated with the isocyanate component and because the increased viscosity of the prepolymer enhances processing capabilities as compared to the unreacted components.
  • Polyurethane prepolymers have also been used to form hydrogels used in soil stabilization and waste treatment.
  • hydrogels are formed when the polyurethane prepolymers are brought into contact with a relatively large amount of water.
  • Examples of polyurethane prepolymers used to form hydrogels are disclosed in U.S. Pat. Nos. 4,241,537, 4, 118,354, and 3,719,050.
  • an adhesive system it would be desirable for an adhesive system to be flexible and to be capable of easily adjusting tack and cure properties depending upon the needs of a particular application. Additionally, it would be desirable if the adhesive system was environmentally safe, did not contain chlorinated solvents, ketones or other low flash point volatile organic compounds, and did not have the equipment plugging or other problems associated with water-based emulsion adhesives.
  • the present invention provides a two part polyurethane adhesive system and a method of bonding using the adhesive system.
  • the adhesive system of the present invention is chemically storage stable and has acceptable cure properties, but does not require chlorinated solvents or other low flash point volatile organic compounds. Additionally, the two part nature of the adhesive enhances the flexibility of the adhesive system allowing for manipulation of curing, open, and set times.
  • the first part of the adhesive system of the present invention is a hydrophilic polyurethane prepolymer prepared by reacting a high molecular weight, multi-functional polyol which has been copolymerized randomly from propylene oxide and ethylene oxide, with a diisocyanate or polyisocyanate.
  • the reaction mixture is then diluted with either a flame retardant, a plasticizer, a solvent which is a not considered a low flash point volatile organic compound, or a combination of these chemicals as may be required for the end use application.
  • the functional groups of the isocyanate, the "NCO" groups are in excess such that the functional groups of the polyol, the hydroxyl groups, are capped and create cross linking within the prepolymer while a number of NCO groups remain available for further reaction.
  • the second part of the adhesive system is an aqueous phase curing agent.
  • the components of the aqueous phase may include a tackifying agent or a catalyst or both.
  • the actual composition of the aqueous phase curing agent can be varied to adjust for the amount of tack and the cure time desired in a given application.
  • the method of adhering using the adhesive of the present invention essentially comprises applying the polyurethane prepolymer to one of the substrates which is to be bonded, applying the aqueous phase curing agent to the polyurethane prepolymer, and placing the second substrate in contact with the prepolymer.
  • the prepolymer and the aqueous phase curing agent may be applied sequentially or simultaneously.
  • the adhesive system of the present invention is a two part adhesive including a first part which is a polyurethane prepolymer and a second part which is an aqueous phase curing agent.
  • the two part nature of the adhesive provides for chemical stability prior to combination of the two parts, flexibility in the open and set time of the adhesive, and also eliminates the need for chlorinated solvents or a low flash point volatile organic compounds.
  • the first part of the adhesive system of the present invention is the hydrophilic polyurethane prepolymer.
  • the prepolymer is prepared by reacting a high molecular weight, multi-functional polyol with a diisocyanate or polyisocyanate.
  • the initial prepolymer resulting from this reaction may be diluted with a flame retardant, a plasticizer, a solvent which is a not considered a low flash point volatile organic compound, or a combination of these chemicals.
  • the prepolymer used in making the adhesive system of the present invention has a relatively high molecular weight with a relatively low amount of excess NCO per unit weight.
  • a high molecular weight polyol is required as a reactant.
  • a polyol is manufactured by starting with an initiator, and polymerizing with alkylene oxides to obtain a functionality of at least two and a number average molecular weight in the range of about 1000 to about 5000 per terminal hydroxyl group.
  • the polyol should be polymerized randomly with ethylene oxide and propylene oxide with between about 50 and about 90 percent of the polyol by weight being ethylene oxide.
  • a polyol polymerized using exclusively ethylene oxide would be hydrophihc and water soluble, but could also be a solid at ambient temperatures. Using more than about 50% by weight of propylene oxide in the polymerization of the polyol does not result in the necessary hydrophilic properties desired. Most preferably, between about 65 and about 75 percent by weight of the polyol results from ethylene oxide polymerization and the average molecular weight of the polyol is between about 1500 to about 2000 per terminal hydroxyl group.
  • the preferred commercially available polyols for use in the polyurethane prepolymer of the present invention are Multranol E9199 made by Bayer Corporation or Voranol CP1421 made by Dow Chemical Company or equivalent.
  • Suitable isocyanates for use in the prepolymer should have at least two isocyanate groups per molecule.
  • Various isomers of toluene diisocyanate (TDI), isomers of diphenylmethane diisocyanate (MDI), and blends of these isomers and isocyanates may be used to manufacture the polyurethane prepolymer portion of the present invention, however, a polymeric MDI is the preferred isocyanate for use in manufacturing the prepolymer.
  • the preferred commercially available polymeric MDI products for use in the polyurethane prepolymer are Mondur 582 made by Bayer Corporation or PAPI 94 made by Dow Chemical Company.
  • aliphatic polyisocyanates such as the triisocyanate, Desmodur N- 100, which is a biuret adduct of hexamethylenediisocyanate and Desmodur W which is 4,4'-dicyclohexylmethane diisocyanate sold by Bayer; IPDI or isophorone diisocyanate which is 3-isocyanatomethyl-3,5,5-trimethylcyclohexyl isocyanate; or THMDI which is a mixture of 2,2,4- and 2,4,4-isomers of trimethyl hexamethylene diisocyanate. These materials are used in formulating UV stable polymers. The isocyanate is reacted with the polyol to produce a prepolymer having a free
  • NCO content of between about 1% and about 20% by weight.
  • the prepolymer has about 5 to about 15 percent free NCO by weight. Most preferably, about 8 to about 12 percent free NCO by weight is used.
  • the cross link characteristic of the prepolymer may be adjusted according to the application demands through the selection of an appropriate isocyanate functionality or polyol functionality.
  • the prepolymer forming reaction is carried out at a temperature in the range of about 20 to about 100° C, preferably between about 30 and about 65° C. Although the reaction is operable under atmospheric conditions, it is preferably carried out in an inert, moisture free medium such as under a nitrogen blanket. Reaction of the isocyanate and polyol will produce a liquid prepolymer for use in the present invention having a viscosity of between about 2,000 and about 25,000 centipoise at 25° C. Use of TDI isocyanates results in a prepolymer at the lower end of the viscosity range while use of MDI isocyanates results in a higher viscosity prepolymer.
  • the solids level of the prepolymer can be adjusted using liquid flame retardants, plasticizers, or solvents which are not considered low flash point volatile organic compounds.
  • the initial prepolymer should be diluted to reduce the viscosity to between about 1000 and about 1500 centipoise at 25°C. Typically, the initial prepolymer requires dilution with about 30 to 60 percent by weight with these components. When TDI is used, the prepolymer will require as little as 10 percent by weight dilution may be required. Because low density, open-celled polyurethane foams have a large surface area and a high permeability to air, these foams burn given a sufficient ignition source and oxygen.
  • Flame retardants are generally, but not limited, to phosphorous and/or halogen based retardants.
  • Acceptable flame retardants for use in the prepolymer of the present invention include isocyanate compatible Fyrol PCF made by AKZO Chemicals or equivalents.
  • the amount of flame retardant used is dependant upon the type actually used, however, in any case, it should be an amount which allows the cured adhesive to meet the flammability requirements of the application for which it is intended.
  • isocyanate compatible plasticizers may also be added to the prepolymer of the present invention.
  • Plasticizers are nonreactive liquids which can be used to soften the cured adhesive and also to reduce the viscosity of the prepolymer for processing purposes. The amount of plasticizers which can be added is limited by the adverse physical effects, such as increased density, that may result from their use.
  • a particularly suitable plasticizer which can be used in the prepolymer of the present invention is dimethylphthalate.
  • a solvent may be required to control the viscosity of the prepolymer in addition to or in place of the flame retardants and the plasticizers.
  • the solvents used to dilute the prepolymer of the present invention should be isocyanate compatable and non-volatile organic compounds.
  • Isocyanate compatible solvent particularly suited for the present invention is DE Acetate (Diethylene Glycol Monobutyl Ether Acetate) as made by Eastman Chemicals and/or DBE (Aliphatic Dibasic Acid Esters) made by Dupont.
  • DE Acetate Diethylene Glycol Monobutyl Ether Acetate
  • DBE Advantic Dibasic Acid Esters
  • the second part of the adhesive system of the present invention is an aqueous phase curing agent.
  • aqueous phase curing agent mean water alone or water with other chemical additives.
  • the required composition of the aqueous phase curing agent is dependant upon the parameters desired in the adhering process.
  • Water alone is an effective curing agent for the polyurethane prepolymer of the present invention.
  • Water is an active source of hydrogen and the NCO groups of the isocyanate prepolymer react with the water. If water alone is used as the aqueous phase curing agent, the adhesive system as applied has low initial tack and may require the substrates to be held together for several minutes to complete the bonding process.
  • a catalyst may be added to the water for applications in which faster set and cure times are desired.
  • Aqueous phase curing agents composed of water and catalyst result in an adhesive system which develops tack sooner and cures faster than when water alone is used as a curing agent.
  • Suitable catalysts for use in the aqueous phase curing agent of the current invention include water stable organometallic compounds such as tin mercaptides like UL-1, UL-22, and UL-32 made by Witco, and potassium octoate, amines such as triethylene chamine, dimethyl piperazine, bis[2-(N.N.-dialkylamino)alkyl] ethers, and dimorpholino dialkyl ethers, and other urethane-forming catalysts known to those skilled in the art.
  • the concentration of the catalyst used in the aqueous phase is dependant upon the catalyst used.
  • the preferred concentration of amine catalyst is generally between about 2 and about 20 percent by weight of the aqueous phase curing agent. More preferably, the concentration of amine catalyst in the aqueous phase curing agent is between about 8 and about 12 percent.
  • a tackifying agent can be added to the aqueous phase curing agent.
  • a tackifying agent may be used in conjunction with a catalyst or without a catalyst.
  • the water portion of the aqueous phase is readily attracted to the hydrophilic nature of the prepolymer and this instant attraction combines with the tackifying agent to improve the initial bonding strength of the adhesive system.
  • Tackifying agents which may be used in the aqueous phase curing agent of the present invention include latexes, polyvinyl alcohol, vinyl alcohol emulsions, waterborne polyurethane polymers, and other polymeric emulsions.
  • latexes may feature a wide variety of polymers.
  • Acceptable latex polymers for use as the tackifying agent includes, but is not limited to, natural rubber, styrene-butadiene, acrylic, styrene acrylic, vinyl acrylic, and vinyl esters.
  • tackifying agents include Flexbond vinyl acetate and acrylic emulsions, including Flexbond 165, available from Air Products and Chemicals, Inc.; Airvol 540 (polyvinyl alcohol) and Airvol 203 (polyvinyl alcohol) available from Air Products; UCAR latexes with acrylic, vinyl acrylic, styrene acrylic, or vinyl ester polymers available from Union Carbide; SBR latex available from Goodyear; NeoRez XR-9630 emulsion available from ZENECA Resins; and natural rubber latexes.
  • the weight ratio of prepolymer to aqueous phase curing agent used in the adhesive system of the present invention should be between about 0.1 to 1 .0 and about 1.0 to 0.1.
  • the weight ratio should be between about 0.1 to 1.0 and about 1.0 to 1.0.
  • the weight ratio should be about 1.0 to 1.0.
  • the method of adhering using the adhesive of the present invention essentially comprises applying the polyurethane prepolymer to one of the substrates which is to be bonded, applying the aqueous phase curing agent to the polyurethane prepolymer, and placing the second substrate in contact with the prepolymer.
  • the prepolymer or the aqueous phase curing agent can be applied by utilizing a spraying system, by brushing on, by rolling on, or by other means of evenly distributing these adhesive parts over the surface of a substrate.
  • the prepolymer and the aqueous phase curing agent may be applied sequentially or simultaneously.
  • the prepolymer and the curing agent When the prepolymer and the curing agent are applied simultaneously, a stream of prepolymer and a stream of curing agent is sprayed onto the surface of the substrate to be bonded such that the aqueous phase is applied to the prepolymer in an evenly dispersed manner.
  • the prepolymer can be applied to the bonding surface and be later followed with an application of the aqueous phase curing agent.
  • the prepolymer can be applied and the aqueous phase curing agent applied in small sections as desired to allow positioning of the substrates.
  • the present invention is further illustrated, but is expressly not limited, by the following examples.
  • the prepolymer viscosity was reduced using 27 grams of a liquid isocyanate compatible flame retardant, Fyrol PCF made by AKZO Chemicals, 18 grams of an isocyanate compatible solvent, DE Acetate made by Eastman Chemicals, and 9 grams of an isocyanate compatible plasticizer, dimethylphthalate.
  • the prepolymer viscosity after dilution was 1000 to 1500 cps range at 25° C.
  • Example 2 Using the polyurethane prepolymer as prepared in Example 1, a thin layer of the prepolymer was applied to a surface of a flexible foam substrate. An aqueous phase, consisting of water, was sprayed onto the layer of prepolymer on the substrate surface.
  • Example 2 Using the polyurethane prepolymer as prepared in Example 1, a thin layer of the prepolymer was applied to a surface of a flexible foam substrate. An aqueous phase, consisting of water with 6% by weight amine catalyst, was sprayed onto the layer of prepolymer on the substrate surface. The adhesive system on the foam substrate exhibited initial tack in 25 to 30 seconds with 45 to 50 seconds of open work time. Open work time is the allowable time to reposition the items for bonding. The treated substrate surface was held together with a second flexible foam substrate surface and an adhesive bond was established. After sixty seconds, attempts to separate the two substrates, resulted in tearing of the foam substrates with no failure of the adhesive bond.
  • aqueous phase consisting of water with 6% by weight amine catalyst
  • Example 5 Using the polyurethane prepolymer as prepared in Example 1, a thin layer of the prepolymer was applied to a surface of a flexible foam substrate. An aqueous phase, consisting of water with 12% by weight amine catalyst, was sprayed onto the layer of prepolymer on the substrate surface. The adhesive system on the foam substrate exhibited an initial tack in 15 to 23 seconds with 35 to 45 seconds of open work time. The treated substrate surface was held together with a second flexible foam substrate surface and an adhesive bond was established. After sixty seconds, attempts to separate the two substrates resulted in tearing of the foam substrates, with no failure of the adhesive bond. EXAMPLE 5
  • Example 2 Using the polyurethane prepolymer as prepared in Example 1, a thin layer of the prepolymer was applied to a surface of a flexible foam substrate. An aqueous phase, consisting of an SBR latex emulsion made by The Goodyear Tire and Rubber Company which was reduced by 10% for processing, was sprayed onto the layer of prepolymer on the substrate surface. Surface tack was immediate, allowing for 2 minutes open time and 2 minutes and 30 seconds of cure time. Attempts to separate the substrates resulted in tearing of the foam substrates, with no failure of the adhesive bond.
  • An aqueous phase consisting of an SBR latex emulsion made by The Goodyear Tire and Rubber Company which was reduced by 10% for processing, was sprayed onto the layer of prepolymer on the substrate surface. Surface tack was immediate, allowing for 2 minutes open time and 2 minutes and 30 seconds of cure time. Attempts to separate the substrates resulted in tearing of the foam substrates, with no failure of the adhesive bond.
  • the adhesive remains tacky for long periods and allows repeated placement and removal of the second substrate.
  • the reaction product is allowed to cure and form a tacky adhesive before the second substrate is placed in contact with the adhesive.
  • Tackifying agents that result in an adhesive having the properties of this embodiment of the invention include pressure sensitive latexes including Union Carbide's UCAR emulsions 123, 190 or 145, Air Products' Flexbond Series vinyl, acrylic and styrene polymers or copolymers, such as Flexbond 149, 153, 165 and 185, or Mallard Creek Polymers', Rovene 6130 or 6105.
  • the present invention provides a mechanism for rapidly curing pressure sensitive latexes or emulsions which normally require the evaporation for the cure cycle.
  • This embodiment of the present invention is particularly useful in the areas of self-adhering carpet squares, flexible foam display items, message boards, storage displays, etc.
  • the adhesive system of the present invention provides chemically stable adhesive system but does not require chlorinated solvents or other low flash point volatile organic compounds (VOC's). Additionally, the two part application technique allows for the simple manipulation of tack, open, set, and curing properties.
  • the adhesive system may be used to bond together a variety of substrates including flexible foams, foam backed vinyls, cloth to flexible foam, carpet to fiberglass, paper, polystyrene, etc.
  • the adhesive system of the present invention is particularly suited for use in the cellular polyurethane foam fabrication industry to bond flexible foams, the packaging industry to bond polyurethane and polystyrene parts, and for use in automotive and boating industries to bond cloth, carpeting, and headliners to various substrates.
  • the adhesive system of the present invention may also be used to provide a polyurethane or urea modified polyurethane coating or sealant on a variety of surfaces including flexible foam, rigid foam, fabrics, masonry walls, or floors.
  • the aqueous phase curing agent of the present invention should comprise water or water and a catalyst.
  • the adhesive system is applied to the surface to be coated in the same manner as previously described, however, a second substrate is not bonded to the surface of the first substrate. Instead, the adhesive system is allowed to cure on the surface of the first substrate.
  • the adhesive system of the present invention is particularly suited to producing a moisture resistant coating on the surface of recreational foams.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

L'invention concerne un système adhésif à deux parties à base de polyuréthane et un procédé d'utilisation de l'adhésif pour lier des mousses de polyuréthane, des mousses de polystyrènes et d'autres supports. La première partie du système adhésif est un prépolymère pour polyuréthannes hydrophile obtenu par la mise en réaction d'un polyol polyvalent de poids moléculaire élevé, ayant été copolymérisé de manière aléatoire à partir d'un oxyde de propylène et d'un oxyde d'éthylène, avec un diisoxyanate ou d'un polyisocyanate. Ce mélange réactionnel est ensuite dilué à l'aide soit d'un agent ignifuge, d'un plastifiant ou d'un solvant non réputé être un composé organique volatil à point d'éclair faible, soit d'une combinaison desdites substance chimiques. La deuxième partie du système adhésif est un agent de polymérisation en phase aqueuse. Outre de l'eau, les éléments de la phase aqueuse peuvent inclure un agent collant, un catalyseur ou les deux. La méthode de liaison au moyen de l'adhésif consiste essentiellement à appliquer le prépolymère pour polyuréthannes sur un des supports à lier, à appliquer l'agent de polymérisation en phase aqueuse sur le prépolymère pour polyuréthannes et à mettre le deuxième support au contact du prépolymère. Le prépolymère et l'agent de polymérisation en phase aqueuse peuvent être appliqués séquentiellement ou simultanément.
PCT/US1997/018230 1996-10-11 1997-10-08 Systeme adhesif a deux parties a base de polyurethane et son procede d'utilisation WO1998016571A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU47509/97A AU4750997A (en) 1996-10-11 1997-10-08 Two part polyurethane-based adhesive system and method of using same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US08/729,599 US5723534A (en) 1996-10-11 1996-10-11 Two part polyurethane-based adhesive system
US08/729,599 1996-10-11
US93201897A 1997-09-17 1997-09-17
US08/932,018 1997-09-17

Publications (1)

Publication Number Publication Date
WO1998016571A1 true WO1998016571A1 (fr) 1998-04-23

Family

ID=27111915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1997/018230 WO1998016571A1 (fr) 1996-10-11 1997-10-08 Systeme adhesif a deux parties a base de polyurethane et son procede d'utilisation

Country Status (2)

Country Link
AU (1) AU4750997A (fr)
WO (1) WO1998016571A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002008327A1 (fr) * 2000-07-20 2002-01-31 Noveon Ip Holdings Corp. Dispersions de polyurethanne a l'eau plastifiees et procede de fabrication
WO2015156657A1 (fr) * 2013-04-09 2015-10-15 Dow Química Mexicana S.A. De C.V. Composition adhésive à durcissement rapide
CN119410323A (zh) * 2025-01-09 2025-02-11 湖南亚大丰晖新材料有限公司 一种船艇地板粘接专用水性胶及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3719050A (en) * 1970-06-01 1973-03-06 Toho Chem Ind Co Ltd Soil stabilization method
US4118354A (en) * 1972-11-24 1978-10-03 Dai-Ichi Kogyo Seiyaku Co., Ltd. Polyurethane hydrogel and method for the production of the same
US4891269A (en) * 1986-01-29 1990-01-02 H. B. Fuller Company Bonding method employing thermally stable hot melt moisture-cure polyurethane adhesive composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3719050A (en) * 1970-06-01 1973-03-06 Toho Chem Ind Co Ltd Soil stabilization method
US4118354A (en) * 1972-11-24 1978-10-03 Dai-Ichi Kogyo Seiyaku Co., Ltd. Polyurethane hydrogel and method for the production of the same
US4891269A (en) * 1986-01-29 1990-01-02 H. B. Fuller Company Bonding method employing thermally stable hot melt moisture-cure polyurethane adhesive composition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002008327A1 (fr) * 2000-07-20 2002-01-31 Noveon Ip Holdings Corp. Dispersions de polyurethanne a l'eau plastifiees et procede de fabrication
US6576702B2 (en) 2000-07-20 2003-06-10 Noveon Ip Holdings Corp. Plasticized waterborne polyurethane dispersions and manufacturing process
WO2015156657A1 (fr) * 2013-04-09 2015-10-15 Dow Química Mexicana S.A. De C.V. Composition adhésive à durcissement rapide
CN119410323A (zh) * 2025-01-09 2025-02-11 湖南亚大丰晖新材料有限公司 一种船艇地板粘接专用水性胶及其制备方法

Also Published As

Publication number Publication date
AU4750997A (en) 1998-05-11

Similar Documents

Publication Publication Date Title
US5723534A (en) Two part polyurethane-based adhesive system
EP2016150B1 (fr) Formulation adhesive pour applications de mise en forme sous vide
US6290803B1 (en) Bonding method for water-based formulations having enhanced characteristics
US6967226B2 (en) Reactive hot-melt adhesive compositions with improved adhesion to difficult substrates
US7902291B2 (en) Aqueous polyurethane resin composition and one-component adhesive agent and laminated body that use the same, and method for manufacturing aqueous polyurethane resin composition
US4636546A (en) Process for preparing modified polymer emulsion adhesives
EP0702071B1 (fr) Matière adhésive aqueuse en deux parties
KR20050044529A (ko) 구조용 핑거 조인트를 위한 2-성분 폴리우레탄 접착제 및그것의 제조 방법
JPH03205473A (ja) ポリウレタン系接着剤
EP0441242A2 (fr) Composition d'une peinture de fond pour l'amélioration de l'adhésivité d'un adhésif uréthane
EP0210859A2 (fr) Composition durcissable ayant une collabilité et une résistance initiale élevée
US3829533A (en) Polyurethane adhesives based on omega,omega'-diisocyanate dimethylcyclohexane
JPH1077444A (ja) 湿気硬化型ウレタンプライマー組成物及びその被覆方法
WO1998016571A1 (fr) Systeme adhesif a deux parties a base de polyurethane et son procede d'utilisation
KR20090018081A (ko) 수분-경화 접착제 및 밀봉제
KR100557838B1 (ko) 수성 용융형 폴리우레탄 접착제 및 이의 제조방법
US6025434A (en) Process for making an adhesive and product thereof
KR101804939B1 (ko) 전분당계 수분산성 폴리우레탄 수지 및 이의 제조방법
KR19980070745A (ko) 수분 경화성 투명 및 색소 안료 착색된 폴리우레탄 코팅
WO1999033930A1 (fr) Adhesif sans couche de fond pour une surface peinte
JPH04164986A (ja) 接着剤組成物
KR101548657B1 (ko) 수성 비자외선 선처리제 조성물 및 그 제조방법
JPH01167389A (ja) ポリウレタン接着剤組成物
JP3181854B2 (ja) 水性接着剤組成物
JP4170420B2 (ja) 一液性ポリウレタン樹脂接着剤組成物

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG UZ VN YU ZW AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH KE LS MW SD SZ UG ZW AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA