WO1998007410A1 - Procedes de production de particules de proteines utiles dans la diffusion d'agents pharmacologiques - Google Patents
Procedes de production de particules de proteines utiles dans la diffusion d'agents pharmacologiques Download PDFInfo
- Publication number
- WO1998007410A1 WO1998007410A1 PCT/US1997/014661 US9714661W WO9807410A1 WO 1998007410 A1 WO1998007410 A1 WO 1998007410A1 US 9714661 W US9714661 W US 9714661W WO 9807410 A1 WO9807410 A1 WO 9807410A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- protein
- particles
- dna
- factor
- albumin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/51—Nanocapsules; Nanoparticles
- A61K9/5107—Excipients; Inactive ingredients
- A61K9/513—Organic macromolecular compounds; Dendrimers
- A61K9/5169—Proteins, e.g. albumin, gelatin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/22—Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations
- A61K49/222—Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations characterised by a special physical form, e.g. emulsions, liposomes
- A61K49/223—Microbubbles, hollow microspheres, free gas bubbles, gas microspheres
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/16—Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
- A61K9/1605—Excipients; Inactive ingredients
- A61K9/1629—Organic macromolecular compounds
- A61K9/1658—Proteins, e.g. albumin, gelatin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/51—Nanocapsules; Nanoparticles
- A61K9/5192—Processes
Definitions
- the present invention relates to methods for the production of protein-based colloidal particulate vehicles, and compositions produced thereby.
- the present invention provides a novel procedure for the preparation of a colloidal system of proteins such as albumin and other molecules in the form of microparticles and nanoparticles, in the presence of divalent cations such as calcium.
- Intravenous drug delivery permits rapid and direct equilibration with the blood stream, which then carries the medication to the rest of the body. It is desirable, however, to avoid the peak serum levels which are achieved within a short time after intravascular injection.
- a solution to this problem is to administer drugs carried within stable carriers, which would allow gradual release of the drugs inside the intravascular compartment following a bolus intravenous injection of therapeutic nanoparticles.
- Injectable controlled-release nanoparticles can provide pre-programmed duration of action ranging from days to weeks to months from a single injection. Such nanoparticles can also offer several profound advantages over conventionally admininstered medicaments, such as, for example, automatic assured patient compliance with the dose regimen, as well as drug targeting to specific tissues or organs (see, for example, Tice and Gilley, in Journal of Controlled Release 2:343-352 (1985)).
- Use of submicron size microspheres (nanospheres) minimizes the incidence of pulmonary embolism often encountered with particles greater than 7 microns or particles which aggregate upon in vivo administration (see, for example, Gupta, et al . , in International Journal of Pharmaceutics 43.-167-177 (1988)).
- Particulate microspheres facilitate the delivery of drugs to specific organs of the body.
- a major aim in cancer chemotherapy is to improve the efficiency of cytostatic treatment. Killing of sensitive tumor cells is facilitated by exposing the cancerous lesions to high concentrations of anticancer drug, but conventional methods of administration prohibit the use of very high doses of the drugs due to their toxic secondary effects.
- intravenous delivery of drug-containing microspheres can prolong the serum half-life and bioavailability of the drug (see, for example, Leucuta, et al., in International Journal of Pharmaceutics 41:213-217 (1988) ) .
- albumin microspheres have been used extensively in the diagnosis of reticuloendothelial abnormalities and in the measurement of blood flow, it has been desirable to develop albumin microspheres for active as well as passive drug targeting (see, for example, Gupta, et al., supra) .
- An important prerequisite for clinical use of drug-containing microspheres is a stable product with reproducible characteristics. Microspheres were originally manufactured in suspension form for use in patients within a few hours, but techniques such as freeze-drying have been employed to increase the shelf-life of the product.
- albumin microspheres have been prepared by formation of water-in-oil emlusions, where the droplets contain a protein and a drug, and the droplets are further crosslinked by covalent bonds by using a crosslinking agent such as glutaraldehyde .
- This method is capable of yielding suspensions of drug-loaded albumin microspheres in aqueous buffers for intravascular administration (see, for example, illmott and Harrison, in International Journal of Pharmaceutics 43:161-166 (1988)).
- Heat-denaturation of albumin to form drug-containing microspheres is often preferred to the use of crosslinking agents such as glutaraldehyde, because hea -denaturation avoids potentially undesirable chemical crosslinking reactions involving the therapeutic drug itself.
- crosslinking agents such as glutaraldehyde
- cotton seed oil has been added to a solution of bovine serum albumin, and then ultrasonicated to obtain a water-in-oil emulsion. This emulsion is then added dropwise to a larger volume of rapidly stirred cottonseed oil which has been preheated to temperatures between 105°C and 150°C.
- Such high temperatures are needed to achieve denaturation and precipitation of the serum albumin from the microdroplets of the emulsion, thereby forming stabilized microspheres which can be washed and dried to obtain a free-flowing powder of drug-containing microspheres (see, for example, Gupta, et al . , supra) .
- US Patent No. 5,041,292 issued to J. Feijen, also discloses a process for preparation of microspheres, by forming a water-in-oil emulsion of olive oil and an aqueous solution of bovine serum albumin and a polysaccharide such as Heparin, and then heating the emulsion to 100-170°C, or adding a crosslinking agent such as glutaraldehyde.
- the microspheres are loaded later with a suitable pharmacologically active agent.
- US Patent No. 5,133,908, assigned to S. Stainmesse describes a method to form nanoparticles by dissolving the protein, e.g., serum albumin, at low temperature, and at a pH far above or below the isoelectric point, and adding this solution into a larger volume of water at very high temperature (e.g., boiling) .
- EP Application No. 349,428, by Devissaguet et al . describes a method for producing colloidal suspensions of spherical protein particles employing the following steps : a. dissolving the protein and optionally an active agent in aqueous medium below the coagulation temperature of the protein, optionally with added surfactant, b.
- nanomatrixes of proteins has recently been reported (see US Patent No. 5,308,620, by R.C.K. Chen, issued in 1994) .
- the method is based on mixing at least two types of proteins (hemoglobin and albumin) , and addition of a solution containing organic solvent (e.g., an alcohol), without heat treatment.
- a solution containing organic solvent e.g., an alcohol
- the resulting system is a turbid suspension of monodispersed nanomatrixes which are typically larger than 1 micron but less than 4 microns in diameter.
- US Patent No. 5,049,322 issued to Devissaguet et al .
- proteins e.g., human serum albumin
- stable protein particles can be produced by heat-denaturation of proteins (e.g., human serum albumin), at a pH above the iso-electric point in the presence of an appropriate concentration of polyvalent cations (e.g., calcium ions) at temperatures below the heat denaturation temperature of the protein. Heating of the protein solution in the presence of polyvalent (e.g., calcium) cations allows co-precipitation of other negatively charged molecules such as hemoglobin, antibodies (at pH above the isoelectric point) and DNA or pharmacologically active molecules (including uncharged molecules) which cannot withstand high temperatures .
- proteins e.g., human serum albumin
- polyvalent cations e.g., calcium ions
- multivalent ions such as calcium
- heat treatment at temperatures which are significantly lower than the denaturation temperature of the protein.
- polyvalent cations to promote the precipitation of protein particles occurs only within a very narrow range of electrolyte concentrations.
- the present invention relates to performing a heat induced precipitation, which, in the presence of divalent ions (e.g., calcium) at a specific concentration range, forms submicron particles of albumin or particles of albumin and other molecules such as DNA.
- divalent ions e.g., calcium
- the heat denaturation takes place at temperatures significantly below that of the protein in the absence of the divalent cations.
- the protein particles form without the need for formation of a water-in-oil emulsion, or addition of any organic solvent, cross-linking agent or surfactants, at the defined cation concentration range.
- the present invention provides a method for the formation of submicron particles (nanoparticles) by heat-denaturation of proteins (e.g., human serum albumin) in the presence of multivalent ions (e.g., calcium).
- proteins e.g., human serum albumin
- multivalent ions e.g., calcium
- the use of an appropriate concentration of cations (e.g., calcium ions) induces the precipitation of the protein at a temperature which is significantly lower than the regular heat denaturation temperature of the protein.
- the process also allows co-precipitation of other molecules (including those which cannot withstand high temperatures) , which are then incorporated within the nanoparticles .
- This procedure facilitates the production of nanoparticles containing various proteins, pharmacologically active agents or DNA for various purposes such as drug delivery, diagnostics, gene therapy, and the like.
- the present invention ultimately yields a colloidal system in the form of particles composed of proteins and other active molecules, having a diameter of several micrometers
- inventions for the preparation of protein particles having a diameter less than about 30 microns.
- invention methods comprise:
- aqueous solution containing an amount of at least one multivalent cation sufficient to promote the formation of insoluble particles at a temperature below that of the heat denaturation temperature of said protein in purified form, wherein said aqueous solution is substantially free of organic media, and
- Invention methods can readily be carried out in the substantial absence of organic solvent, i.e., organic solvent is not required to facilitate the invention method. Avoidance of organic solvent substantially reduces the possibility for denaturation of sensitive pharmacologically active agents as a result of the microparticle-forming process .
- Proteins contemplated for use in the practice of the present invention include structural proteins, enzymes, antibodies, peptides, and the like. Specific proteins contemplated for use herein include albumins, collagen, gelatin, immunoglobulins, insulin, hemoglobin, tran ⁇ ferrin, caesins, pepsin, trypsin, chymotrypsin, lysozyme, o.-2- macroglobulin, fibronectin, vitronectin, fibrinogen, laminin, lipase, interleukin-1, interleukin-2 , tissue necrosis factor, colony-stimulating factor, epidermal growth factor, transforming growth factors, fibroblast growth factor, insulin-like growth factors, hirudin, tissue plasminogen activator, urokinase, streptokinase, erythropoietin, Factor VIII, Factor IX, insulin, somatostatin, proinsulin, macrophage- inhibiting factor, macrophag
- Optional non-proteinaceous materials contemplated for use herein include nucleic acids, oligonucleotides, polynucleotides, DNA, RNA, polysaccharides, ribozymes, pharmacologically active compounds capable of inclusion within the protein particles, and the like.
- Nucleic acids contemplated for use in the practice of the present invention include sense or anti- sense nucleic acids encoding (or complementary to nucleic acids encoding) any protein suitable for delivery by inhalation.
- DNA introduced as part of invention particles can be used for a variety of purposes, e.g., for gene delivery, for cell transfection, and the like.
- Polysaccharides contemplated for use in the practice of the present invention include starches, celluloses, dextran ⁇ , alginates, chitosans, pectins, hyaluronic acid, and the like.
- Pharmacologically active compounds capable of inclusion within the protein particles contemplated for incorporation into invention particles include antisense nucleic acids, antiviral compounds, anticancer agents, immunosuppressive agents, and the like.
- exemplary pharmacologically active agents contemplated for use herein include antiviral agents (e.g., interferon gamma, zidovudine, amantadine hydrochloride, ribavirin, acyclovir, and the like), anticancer agents, immunosuppressants (e.g., glucocorticoids, buspirone, castanospermine, ebselen, edelfosine, enlimomab, galaptin, methoxatone, mizoribine) , and the like .
- antiviral agents e.g., interferon gamma, zidovudine, amantadine hydrochloride, ribavirin, acyclovir, and the like
- Multivalent cations contemplated for use in the practice of the present invention include calcium, zinc, magnesium, barium, copper, iron, manganese, nickel, aluminium, gadolinium, technecium, strontium, cobalt, and the like. Isotopes of these elements are also contemplated for potential use in such applications as diagnostics and radionuclide therapy.
- multivalent cations are introduced in an amount sufficient to promote the formation of insoluble particles at a temperature below that of the heat denaturation temperature of said protein in purified form.
- concentration of multivalent cations falls in the range of about 0.1 mM up to about 10 mM. This concentration range depends on the ion type used, the pH of the protein- containing solution, the presence of solvent (s), and the like.
- suitable protein (s) , optional non-proteinaceous materials, and multivalent cation (s) are combined in a suitable aqueous solution.
- suitable solutions for such purpose include distilled water, deionized water, buffered aqueous media, solutions of water and water-miscible solvent (s), and the like.
- the combination is subjected to heat to a temperature below that of the heat denaturation temperature of an aqueous solution of said protein in purified form for a period of time sufficient to form insoluble particles containing the protein and optional non-proteinaceous materials.
- heat is typically carried out at a temperature less than about 100°C. It is presently preferred that such heating be carried out at a temperature less than about 80°C.
- Suitable pHs contemplated for use in the invention process are in the range 1.5 - 11.
- Electrolyte concentration in the aqueous medium containing the protein, peptide, nucleic acids, pharmacological agents is in the range 0.01 mM - 1.0 M.
- a typical process is based on preparation of the protein solution at pH above the isoelectric point (e.g., 1% serum albumin at pH 6.4), together with multivalent cation (e.g., calcium) at a defined, very low concentration, and optionally a non-proteinaceous material (i.e., an active molecule such as DNA) , followed by heating the solution at a temperature below the usual heat denaturation temperature (for example, serum albumin should be heated to about 60°C) .
- the duration of heating, the temperature, and the concentration of the multivalent ions will determine the average size of the particles, and their concentration in solution.
- the method of the present invention does not require formation of a water- in- oil emulsion and heating to very high temperatures, nor addition of crosslinking agents, as commonly described in other patents and publications .
- hollow particles comprising a shell of proteinaceous material may be formed by dispersion of gas into the aqueous medium during the process of formation of the particles.
- the invention process results in a lower formation temperature for the hollow particles such as described in US Patent No. 4,957,656 (Cerny et al . , 1990).
- products produced by the above-described methods are useful for a variety of purposes, e.g., controlled release of a variety of pharmacologically active agents, for protected delivery of sensitive reagents (e.g., DNA, peptides, enzymes, and the like), and the like.
- sensitive reagents e.g., DNA, peptides, enzymes, and the like
- Human serum albumin was dissolved in deionized, sterile water, to yield a clear 1% w/w stock albumin solution, having a pH 6.3, which is above the isoelectric point of the protein.
- the stock solution was used for the following experiments : A) Three ml of this solution was immersed into a water bath at 65°C, for 5 minutes. The solution remained clear, and no particles were observed by light microscope.
- albumin particles were formed only at a specific, narrow range of calcium chloride concentrations.
- the purpose of this example is to demonstrate the formation of microparticles and nanoparticles which contain both a protein and DNA.
- the RSV-SGal reporter plasmid was introduced into Escherichia coli JM109 cells by calcium chloride transformation (see, for example, Sambrook et al . in Molecular Cloning: A Laboratory Manual, 2nd ed. Vol. 1. 1989, Plainview, NY: Cold Spring Harbor Laboratory Press. The cells were grown from a single colony in 1 liter LB Broth (GibcoBRL #12780-029) containing 50 (g/ml ampicillin to an optical density of 1.32 at 600 nm. The plasmid was purified using the QIAGEN Plasmid Mega Kit (QIAGEN #12181) according to the manufacturer's instructions.
- the final yield was 2 ml RSV- ⁇ Gal plasmid at a concentration of 1.24 g/1 in TE (10 mM Tris-HCl, 1 mM EDTA pH 8.0) . 806 ⁇ l of the sample was diluted to 1 ml with TE to give a final concentration of 1 g/1, and this sample was divided into 50 ⁇ l aliquots for nanoparticle formation studies.
- HSA-DNA particles having a size about 10 urn, were prepared by the same procedure but the temperature was 65°C, while the heating period was only one minute.
- the samples were then electrophoresed on a 0.7% agarose gel and stained with ethidium bromide to ascertain the presence and integrity of the DNA.
- microparticles having a mean diameter of 10 ⁇ m
- nanoparticles having a mean diameter of 420 nm
- the DNA could not be extracted from the particles using the standard phenol : chloroform: isoamyl alcohol (25:24:1 v/v) procedure alone, even after addition of both 10 mM EDTA and 1% sodium dodecylsulfate. Since most proteins are extracted from DNA by these procedures (see, for example, Sambrook et al . , supra) , this is indicative of very tight associations within the HSA-DNA complexes.
- the second method employed to verify the presence of DNA was based on specific DNA staining.
- the particles were stained with 1 ⁇ g/ml Hoechst 33258 (a DNA specific dye) in 50 mM sodium phosphate pH 7.4/2M NaCl [Labarca] , and then visualized with an Olympus 1X70 fluorescent microscope .
- the formation of protein particles during heating in the presence of calcium ions at a specific concentration can also be achieved by using other multivalent ions (e.g., barium, copper, magnesium, and the like) which are capable of reducing the heat denaturation temperature of the protein.
- Other multivalent ions e.g., barium, copper, magnesium, and the like
- the type and required concentration of the specific multivalent ion used should be evaluated according to the type of protein (and other optional molecules) present in the system.
- the above prepared albumin-antibody particles can be used to deliver a drug, diagnostic agent or radiopharmaceutical and target it to a specific site in the body by incorporating into the particles, a recognition molecule or molecules.
- a non-limiting list of such molecules include proteins, peptides, antibodies, sugars, polysaccharides and combinations thereof.
- an antibody against a human mammary carcinoma (MX-1) can be incorporated into these particles which are then subsequently introduced into the blood stream of a cancer patient suffering from the disease in order to carry a payload of therapeutic drug or radioactive isotope to treat the disease, or a diagnostic marker to locate the extent of disease.
- MX-1 human mammary carcinoma
- These targeting agents can be incorporated into the particles during the process of formation or after the protein particles are formed.
- the above prepared protein-DNA particles can be used for gene therapy by delivering the intact DNA into cells, under such conditions that effective transfection can be achieved.
- agents such as glycocholic acid, polylysine, gelatin, phospholipids, calcium ions, glycerol, and the like, into a suspension of the protein-DNA particles or using techniques such as electroporation and the like can improve the uptake of particles by various cells.
- these particles can be also linked to molecules capable of targeting the particles to specific organs and tissues, cells or even to specific sites inside the cell.
- the present invention may be used in order to achieve small particles of proteins with specific biological activity.
- hemoglobin particles can be formed by a similar process as described above for albumin.
- Hemoglobin particles can be used, for example, as a blood substitute, as a therapeutic to treat anemias, and the like.
- the present invention can be used in order to form protein shells around air bubbles, thus enabling their use as an echocontrast agent, for medical diagnostics .
Landscapes
- Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Biomedical Technology (AREA)
- Optics & Photonics (AREA)
- Nanotechnology (AREA)
- Acoustics & Sound (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicinal Preparation (AREA)
Abstract
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CA2263765A CA2263765C (fr) | 1996-08-19 | 1997-08-19 | Procedes de production de particules de proteines utiles dans la diffusion d'agents pharmacologiques |
| EP97936517A EP0938299A4 (fr) | 1996-08-19 | 1997-08-19 | Procedes de production de particules de proteines utiles dans la diffusion d'agents pharmacologiques |
| AU39169/97A AU3916997A (en) | 1996-08-19 | 1997-08-19 | Methods for the production of protein particles useful for delivery of pharmacological agents |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US2396896P | 1996-08-19 | 1996-08-19 | |
| US60/023,968 | 1996-08-19 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO1998007410A1 true WO1998007410A1 (fr) | 1998-02-26 |
Family
ID=21818165
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US1997/014661 Ceased WO1998007410A1 (fr) | 1996-08-19 | 1997-08-19 | Procedes de production de particules de proteines utiles dans la diffusion d'agents pharmacologiques |
Country Status (4)
| Country | Link |
|---|---|
| EP (1) | EP0938299A4 (fr) |
| AU (1) | AU3916997A (fr) |
| CA (1) | CA2263765C (fr) |
| WO (1) | WO1998007410A1 (fr) |
Cited By (22)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1999029307A1 (fr) * | 1997-12-12 | 1999-06-17 | Massachusetts Institute Of Technology | Billes polymeres biodegradables, inferieures a 100 nm, capables de vehiculer et de liberer des acides nucleiques |
| WO2002080881A3 (fr) * | 2001-04-05 | 2003-07-17 | Univ Laval | Procede de fabrication d'une matrice d'administration et utilisations |
| WO2004011035A3 (fr) * | 2002-07-25 | 2004-03-18 | Yissum Res Dev Co | Microspheres de diagnostic |
| US6835396B2 (en) | 2001-09-26 | 2004-12-28 | Baxter International Inc. | Preparation of submicron sized nanoparticles via dispersion lyophilization |
| US6869617B2 (en) | 2000-12-22 | 2005-03-22 | Baxter International Inc. | Microprecipitation method for preparing submicron suspensions |
| US6884436B2 (en) | 2000-12-22 | 2005-04-26 | Baxter International Inc. | Method for preparing submicron particle suspensions |
| US6951656B2 (en) | 2000-12-22 | 2005-10-04 | Baxter International Inc. | Microprecipitation method for preparing submicron suspensions |
| US6977085B2 (en) | 2000-12-22 | 2005-12-20 | Baxter International Inc. | Method for preparing submicron suspensions with polymorph control |
| US7112340B2 (en) | 2001-10-19 | 2006-09-26 | Baxter International Inc. | Compositions of and method for preparing stable particles in a frozen aqueous matrix |
| US7193084B2 (en) | 2000-12-22 | 2007-03-20 | Baxter International Inc. | Polymorphic form of itraconazole |
| FR2902007A1 (fr) * | 2006-06-09 | 2007-12-14 | Flamel Technologies Sa | Formulations pharmaceutiques pour la liberation prolongee de principe(s) actif(s) ainsi que leurs applications notamment therapeutiques |
| EP1491210A4 (fr) * | 2002-03-29 | 2010-10-13 | Japan Science & Tech Agency | Medicament therapeutique comprenant des nanoparticules proteiques creuses presentant un anticorps et nanoparticules proteiques creuses |
| US7820788B2 (en) | 2002-12-09 | 2010-10-26 | Abraxis Bioscience, Llc | Compositions and methods of delivery of pharmacological agents |
| EP2360275A1 (fr) * | 2000-11-15 | 2011-08-24 | Minerva Biotechnologies Corporation | Identifiants d'oligonucléotides |
| US8067032B2 (en) | 2000-12-22 | 2011-11-29 | Baxter International Inc. | Method for preparing submicron particles of antineoplastic agents |
| US8722091B2 (en) | 2001-09-26 | 2014-05-13 | Baxter International Inc. | Preparation of submicron sized nanoparticles via dispersion lyophilization |
| US9351940B2 (en) | 2011-04-15 | 2016-05-31 | Bionanoplus, S.L. | Nanoparticles comprising esters of poly (methyl vinyl ether-co-maleic anhydride) and uses thereof |
| US9399071B2 (en) | 2010-06-04 | 2016-07-26 | Abraxis Bioscience, Llc | Methods of treatment of pancreatic cancer |
| US9700866B2 (en) | 2000-12-22 | 2017-07-11 | Baxter International Inc. | Surfactant systems for delivery of organic compounds |
| CN110302364A (zh) * | 2019-06-24 | 2019-10-08 | 浙江工商大学 | 一种自组装过氧化氢酶纳米颗粒及其制备方法和应用 |
| US10806770B2 (en) | 2014-10-31 | 2020-10-20 | Monash University | Powder formulation |
| CN115154651A (zh) * | 2022-06-23 | 2022-10-11 | 华中科技大学 | 一种生物矿化的牛血清白蛋白@钙硒纳米球、制备方法及应用 |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5585112A (en) * | 1989-12-22 | 1996-12-17 | Imarx Pharmaceutical Corp. | Method of preparing gas and gaseous precursor-filled microspheres |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS6020059B2 (ja) * | 1980-09-16 | 1985-05-20 | 雪印乳業株式会社 | 食品または医薬品に適したマイクロカプセルの製造法 |
| GB9106686D0 (en) * | 1991-03-28 | 1991-05-15 | Hafslund Nycomed As | Improvements in or relating to contrast agents |
| JP3482242B2 (ja) * | 1994-06-10 | 2003-12-22 | 株式会社キティー | 生理活性物質の封入されている微粒子及びその製法 |
-
1997
- 1997-08-19 AU AU39169/97A patent/AU3916997A/en not_active Abandoned
- 1997-08-19 WO PCT/US1997/014661 patent/WO1998007410A1/fr not_active Ceased
- 1997-08-19 CA CA2263765A patent/CA2263765C/fr not_active Expired - Lifetime
- 1997-08-19 EP EP97936517A patent/EP0938299A4/fr not_active Withdrawn
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5585112A (en) * | 1989-12-22 | 1996-12-17 | Imarx Pharmaceutical Corp. | Method of preparing gas and gaseous precursor-filled microspheres |
Non-Patent Citations (1)
| Title |
|---|
| See also references of EP0938299A4 * |
Cited By (32)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1999029307A1 (fr) * | 1997-12-12 | 1999-06-17 | Massachusetts Institute Of Technology | Billes polymeres biodegradables, inferieures a 100 nm, capables de vehiculer et de liberer des acides nucleiques |
| US6254890B1 (en) | 1997-12-12 | 2001-07-03 | Massachusetts Institute Of Technology | Sub-100nm biodegradable polymer spheres capable of transporting and releasing nucleic acids |
| EP2360275A1 (fr) * | 2000-11-15 | 2011-08-24 | Minerva Biotechnologies Corporation | Identifiants d'oligonucléotides |
| US6977085B2 (en) | 2000-12-22 | 2005-12-20 | Baxter International Inc. | Method for preparing submicron suspensions with polymorph control |
| US8067032B2 (en) | 2000-12-22 | 2011-11-29 | Baxter International Inc. | Method for preparing submicron particles of antineoplastic agents |
| US6869617B2 (en) | 2000-12-22 | 2005-03-22 | Baxter International Inc. | Microprecipitation method for preparing submicron suspensions |
| US6884436B2 (en) | 2000-12-22 | 2005-04-26 | Baxter International Inc. | Method for preparing submicron particle suspensions |
| US6951656B2 (en) | 2000-12-22 | 2005-10-04 | Baxter International Inc. | Microprecipitation method for preparing submicron suspensions |
| US7037528B2 (en) | 2000-12-22 | 2006-05-02 | Baxter International Inc. | Microprecipitation method for preparing submicron suspensions |
| US7193084B2 (en) | 2000-12-22 | 2007-03-20 | Baxter International Inc. | Polymorphic form of itraconazole |
| US9700866B2 (en) | 2000-12-22 | 2017-07-11 | Baxter International Inc. | Surfactant systems for delivery of organic compounds |
| WO2002080881A3 (fr) * | 2001-04-05 | 2003-07-17 | Univ Laval | Procede de fabrication d'une matrice d'administration et utilisations |
| US6835396B2 (en) | 2001-09-26 | 2004-12-28 | Baxter International Inc. | Preparation of submicron sized nanoparticles via dispersion lyophilization |
| US8722091B2 (en) | 2001-09-26 | 2014-05-13 | Baxter International Inc. | Preparation of submicron sized nanoparticles via dispersion lyophilization |
| US7112340B2 (en) | 2001-10-19 | 2006-09-26 | Baxter International Inc. | Compositions of and method for preparing stable particles in a frozen aqueous matrix |
| EP1491210A4 (fr) * | 2002-03-29 | 2010-10-13 | Japan Science & Tech Agency | Medicament therapeutique comprenant des nanoparticules proteiques creuses presentant un anticorps et nanoparticules proteiques creuses |
| US8231860B2 (en) | 2002-07-25 | 2012-07-31 | Yissum Research Development Company Of The Hebrew University Of Jerusalem | Diagnostic microspheres |
| WO2004011035A3 (fr) * | 2002-07-25 | 2004-03-18 | Yissum Res Dev Co | Microspheres de diagnostic |
| US9012519B2 (en) | 2002-12-09 | 2015-04-21 | Abraxis Bioscience, Llc | Compositions and methods of delivery of pharmacological agents |
| US7820788B2 (en) | 2002-12-09 | 2010-10-26 | Abraxis Bioscience, Llc | Compositions and methods of delivery of pharmacological agents |
| US8846771B2 (en) | 2002-12-09 | 2014-09-30 | Abraxis Bioscience, Llc | Compositions and methods of delivery of pharmacological agents |
| US9012518B2 (en) | 2002-12-09 | 2015-04-21 | Abraxis Bioscience, Llc | Compositions and methods of delivery of pharmacological agents |
| WO2007141344A3 (fr) * | 2006-06-09 | 2008-04-10 | Flamel Tech Sa | Formulations pharmaceutiques pour la liberation prolongee de principe(s) actif(s), ainsi que leurs applications notamment therapeutiques |
| FR2902007A1 (fr) * | 2006-06-09 | 2007-12-14 | Flamel Technologies Sa | Formulations pharmaceutiques pour la liberation prolongee de principe(s) actif(s) ainsi que leurs applications notamment therapeutiques |
| US9399072B2 (en) | 2010-06-04 | 2016-07-26 | Abraxis Bioscience, Llc | Methods of treatment of pancreatic cancer |
| US9399071B2 (en) | 2010-06-04 | 2016-07-26 | Abraxis Bioscience, Llc | Methods of treatment of pancreatic cancer |
| US9820949B2 (en) | 2010-06-04 | 2017-11-21 | Abraxis Bioscience, Llc | Methods of treatment of pancreatic cancer |
| US9351940B2 (en) | 2011-04-15 | 2016-05-31 | Bionanoplus, S.L. | Nanoparticles comprising esters of poly (methyl vinyl ether-co-maleic anhydride) and uses thereof |
| US10806770B2 (en) | 2014-10-31 | 2020-10-20 | Monash University | Powder formulation |
| CN110302364A (zh) * | 2019-06-24 | 2019-10-08 | 浙江工商大学 | 一种自组装过氧化氢酶纳米颗粒及其制备方法和应用 |
| CN115154651A (zh) * | 2022-06-23 | 2022-10-11 | 华中科技大学 | 一种生物矿化的牛血清白蛋白@钙硒纳米球、制备方法及应用 |
| CN115154651B (zh) * | 2022-06-23 | 2023-10-27 | 华中科技大学 | 一种生物矿化的牛血清白蛋白@钙硒纳米球、制备方法及应用 |
Also Published As
| Publication number | Publication date |
|---|---|
| EP0938299A1 (fr) | 1999-09-01 |
| EP0938299A4 (fr) | 2001-01-17 |
| AU3916997A (en) | 1998-03-06 |
| CA2263765A1 (fr) | 1998-02-26 |
| CA2263765C (fr) | 2010-03-30 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CA2263765C (fr) | Procedes de production de particules de proteines utiles dans la diffusion d'agents pharmacologiques | |
| US5069936A (en) | Manufacturing protein microspheres | |
| US6090925A (en) | Macromolecular microparticles and methods of production and use | |
| EP0495187B1 (fr) | Nanonmatrices protéiniques et méthode de production | |
| Widder et al. | Magnetic microspheres: synthesis of a novel parenteral drug carrier | |
| EP0785776B1 (fr) | Preparation de microspheres, de pellicules et de revetements a partir de proteines | |
| US5972707A (en) | Gene delivery system | |
| US5981719A (en) | Macromolecular microparticles and methods of production and use | |
| Müller et al. | Albumin nanospheres as carriers for passive drug targeting: an optimized manufacturing technique | |
| Burgess et al. | Potential use of albumin microspheres as a drug delivery system. I. Preparation and in vitro release of steroids | |
| JP2009538926A (ja) | マイクロ粒子およびそれを製造するための方法 | |
| JP5147699B2 (ja) | タンパク質ナノ粒子およびその使用 | |
| US5955108A (en) | Cross-linked microparticles and their use as therapeutic vehicles | |
| JP7646729B2 (ja) | 核酸導入キャリア、核酸導入キャリアセット、核酸導入組成物及び核酸導入方法 | |
| US20050084456A1 (en) | Functionalized particles | |
| JP2008260705A (ja) | 注射用組成物 | |
| EP1369110A1 (fr) | Fabrication de nanoparticules a l'aide du copolymere ether methylvinylique/anhydride maleique, destinees a l'administration de medicaments de nature hydrophile, en particulier de bases puriques et pyrimidiques | |
| EP1683517A1 (fr) | Méthode pour la préparation de particules de proteines pour la libération d' agents pharmacologiques | |
| CA2155648C (fr) | Composition de microparticules en phase condensee et procede correspondant | |
| HK1094865A (en) | Methods for the production of protein particles useful for delivery of pharmacological agents | |
| KR100819184B1 (ko) | 약물전달용 인체유래 재조합 젤라틴 나노입자 | |
| Lipiński et al. | Wide band-gap oxide nanoparticles as potential drug carriers. | |
| Selvamani et al. | A review on resealed erythrocyte as a novel drug delivery system | |
| RU2838201C1 (ru) | Способ синтеза трансфецирующего наноагента для генотерапевтических применений (варианты) | |
| RU2820320C2 (ru) | Способ получения белковых наночастиц из молекул иммуноглобулинов |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A1 Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN YU AM AZ BY KG KZ MD RU TJ TM |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH KE LS MW SD SZ UG ZW AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
| DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| ENP | Entry into the national phase |
Ref document number: 2263765 Country of ref document: CA Ref country code: CA Ref document number: 2263765 Kind code of ref document: A Format of ref document f/p: F |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 1997936517 Country of ref document: EP |
|
| NENP | Non-entry into the national phase |
Ref country code: JP Ref document number: 1998510931 Format of ref document f/p: F |
|
| REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
| WWP | Wipo information: published in national office |
Ref document number: 1997936517 Country of ref document: EP |
|
| WWW | Wipo information: withdrawn in national office |
Ref document number: 1997936517 Country of ref document: EP |