WO1998003668A1 - Vegetaux a resistance phytovirale - Google Patents
Vegetaux a resistance phytovirale Download PDFInfo
- Publication number
- WO1998003668A1 WO1998003668A1 PCT/GB1997/001960 GB9701960W WO9803668A1 WO 1998003668 A1 WO1998003668 A1 WO 1998003668A1 GB 9701960 W GB9701960 W GB 9701960W WO 9803668 A1 WO9803668 A1 WO 9803668A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- plant
- virus
- rna
- pvx
- rdrp
- Prior art date
Links
- 241000700605 Viruses Species 0.000 title claims abstract description 64
- 238000000034 method Methods 0.000 claims abstract description 13
- 108060004795 Methyltransferase Proteins 0.000 claims abstract description 4
- 108091032973 (ribonucleotides)n+m Proteins 0.000 claims description 49
- 241000196324 Embryophyta Species 0.000 claims description 49
- 108091027544 Subgenomic mRNA Proteins 0.000 claims description 22
- 230000003612 virological effect Effects 0.000 claims description 19
- 235000002637 Nicotiana tabacum Nutrition 0.000 claims description 10
- 108091033319 polynucleotide Proteins 0.000 claims description 9
- 102000040430 polynucleotide Human genes 0.000 claims description 9
- 239000002157 polynucleotide Substances 0.000 claims description 9
- 230000029812 viral genome replication Effects 0.000 claims description 9
- 230000000295 complement effect Effects 0.000 claims description 7
- 230000005764 inhibitory process Effects 0.000 claims description 7
- 230000001965 increasing effect Effects 0.000 claims description 6
- 108090000623 proteins and genes Proteins 0.000 claims description 6
- 230000010076 replication Effects 0.000 claims description 6
- 230000001939 inductive effect Effects 0.000 claims description 5
- 230000001404 mediated effect Effects 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 4
- 239000002245 particle Substances 0.000 claims description 4
- 244000061176 Nicotiana tabacum Species 0.000 claims description 3
- 230000001105 regulatory effect Effects 0.000 claims description 3
- 230000009466 transformation Effects 0.000 claims description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 claims description 2
- 108700039691 Genetic Promoter Regions Proteins 0.000 claims description 2
- 108700007698 Genetic Terminator Regions Proteins 0.000 claims description 2
- 235000007688 Lycopersicon esculentum Nutrition 0.000 claims description 2
- 240000003768 Solanum lycopersicum Species 0.000 claims description 2
- 244000061456 Solanum tuberosum Species 0.000 claims description 2
- 235000002595 Solanum tuberosum Nutrition 0.000 claims description 2
- 239000007975 buffered saline Substances 0.000 claims description 2
- 238000012967 direct insertion method Methods 0.000 claims description 2
- 239000000835 fiber Substances 0.000 claims description 2
- 230000001172 regenerating effect Effects 0.000 claims description 2
- 101710118046 RNA-directed RNA polymerase Proteins 0.000 abstract description 61
- 230000009261 transgenic effect Effects 0.000 abstract description 27
- 208000015181 infectious disease Diseases 0.000 abstract description 22
- 238000004519 manufacturing process Methods 0.000 abstract description 5
- 230000000694 effects Effects 0.000 abstract description 4
- 230000009385 viral infection Effects 0.000 abstract description 4
- 241000709992 Potato virus X Species 0.000 description 62
- 241000723873 Tobacco mosaic virus Species 0.000 description 44
- 210000001938 protoplast Anatomy 0.000 description 21
- 238000009825 accumulation Methods 0.000 description 16
- 238000002474 experimental method Methods 0.000 description 11
- 108090000565 Capsid Proteins Proteins 0.000 description 9
- 102100023321 Ceruloplasmin Human genes 0.000 description 9
- 238000002965 ELISA Methods 0.000 description 9
- 241000209219 Hordeum Species 0.000 description 9
- 235000007340 Hordeum vulgare Nutrition 0.000 description 9
- 108020004414 DNA Proteins 0.000 description 8
- 239000013612 plasmid Substances 0.000 description 8
- 241000208125 Nicotiana Species 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- 210000004027 cell Anatomy 0.000 description 7
- 238000011081 inoculation Methods 0.000 description 7
- 238000003786 synthesis reaction Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 238000013518 transcription Methods 0.000 description 6
- 230000035897 transcription Effects 0.000 description 6
- 238000000338 in vitro Methods 0.000 description 5
- 230000002458 infectious effect Effects 0.000 description 5
- 108020004707 nucleic acids Proteins 0.000 description 5
- 102000039446 nucleic acids Human genes 0.000 description 5
- 150000007523 nucleic acids Chemical class 0.000 description 5
- 108091092236 Chimeric RNA Proteins 0.000 description 4
- 108091026890 Coding region Proteins 0.000 description 4
- 239000013642 negative control Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 210000002845 virion Anatomy 0.000 description 4
- 108700008625 Reporter Genes Proteins 0.000 description 3
- 241001493065 dsRNA viruses Species 0.000 description 3
- 238000013519 translation Methods 0.000 description 3
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 2
- 101710132601 Capsid protein Proteins 0.000 description 2
- 101710094648 Coat protein Proteins 0.000 description 2
- 101710125418 Major capsid protein Proteins 0.000 description 2
- 101710141454 Nucleoprotein Proteins 0.000 description 2
- 101710083689 Probable capsid protein Proteins 0.000 description 2
- 108700019146 Transgenes Proteins 0.000 description 2
- 108020000999 Viral RNA Proteins 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- 238000004520 electroporation Methods 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 230000001052 transient effect Effects 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 1
- 241000409898 Empodisma minus Species 0.000 description 1
- 241000701867 Enterobacteria phage T7 Species 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 102100021181 Golgi phosphoprotein 3 Human genes 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 241000208135 Nicotiana sp. Species 0.000 description 1
- 101900259239 Potato virus X Coat protein Proteins 0.000 description 1
- 101000714429 Potato virus X Coat protein Proteins 0.000 description 1
- 230000006819 RNA synthesis Effects 0.000 description 1
- 108010067390 Viral Proteins Proteins 0.000 description 1
- 108050006628 Viral movement proteins Proteins 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000005352 clarification Methods 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 210000001339 epidermal cell Anatomy 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 238000013383 initial experiment Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 239000002054 inoculum Substances 0.000 description 1
- 108010026228 mRNA guanylyltransferase Proteins 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 238000001262 western blot Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
- C12N15/8279—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
- C12N15/8283—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for virus resistance
Definitions
- This invention relates to virus resistance in plants.
- RNA-dependent RNA polymerase RDRP; sometimes referred to as the viral "replicase"
- This enzyme is responsible for synthesising complementary (-)-strand RNA, then using this RNA as a template for synthesis of genomic (+)-strand RNA (which can be packaged into virions) and (for some viruses) sub-genomic (+)-strand RNA's which can encode other structural and non-structural viral proteins.
- genomic (+)-strand RNA which can be packaged into virions
- sub-genomic (+)-strand RNA's which can encode other structural and non-structural viral proteins.
- This process is shown diagramatically in Fig 1. Although it appears that host (plant) factors are also involved in viral RNA replication, the RDRP initiates (-)-strand RNA synthesis by binding to a specific sequence at the 3' end of the viral genome, synthesising RNA in the 5'— >3' direction.
- the present invention seeks to provide, inter alia, a method for the protection of plants by inhibiting the replication of viruses, post infection.
- a DNA construct comprising sequentially a promoter which is operable in plants, a polynucleotide comprising a sequence encoding an RNA capable of binding to an RNA dependent RNA polymerase of a plant virus, said RNA being the promoter region of a gene which when present in the viral genome is sub-genomic, and a terminator sequence, characterised in that the said sequence is heterologous with respect to the plant operable promoter.
- a DNA costruct in which the polynucleotide is selected from the group of sequences as depicted in SEQ ID Nos.
- DNA construct 1 or 2 as provided in the sequence listing herein, or is a polynucleotide which is complementary to one which when incubated at a temperature of between 60 and 65°C in 0.3 strength citrate buffered saline containing 0.1% SDS still hybridises with the sequences as depicted in SEQ ID Nos. lor 2.
- DNA constructs according to the present invention may contain a plant operable promoter which is constitutive, developmentally regulated or inducible. In addition to this the said promoter may be tissue specific and/or inducible.
- the present invention further provides a method of imparting to or improving the ability of a plant to inhibit the replication of an infecting virus comprising inserting into the genome of plant material, a construct as described herein, regenerating said plant material, and selecting from the progeny those regenerants which have an improved ability to inhibit the infecting virus replication.
- Transformation according to the present invention may be achieved via the Agrobaterium, particle mediated, fibre mediated or direct insertion methods.
- the invention further provides a plant resulting from any of the aforesaid methods, characterised in that the said plant exhibits an increased inhibition of viral replication in said plant.
- plants according to the present invention are potato, tomato, letuce and tobacco.
- the invention may be considered to operate by producing an abundance of the RDRP binding sequence, which upon infection by a specific virus, will actively compete for binding of the RDRP produced by the infecting virus. Binding of the RDRP's to the "transgenic sites"(which are abundant, in-situ and immediately available for binding upon production of the viral RDRP) will reduce the degree of binding to the endogenous infecting virus. This will have the effect of inhibiting the production of infecting viral genomic RNA and thereby interrupting viral replication which depends thereon.
- FIGURE 1 - A simplified infection cycle for a prototype (-t-)-strand RNA virus (based on TMV). Although the virus shown here is rod-shaped, not all (+)-strand RNA viruses are rods.
- a typical infection cycle involves the following steps. Infectious virus ( 1 a) enters the cell (A) and begins to uncoat (B). Translation of this partially uncoated virion (2) ensues (C) and virus uncoating continues (D), resulting in synthesis of RDRP (3) and liberation of genomic RNA (4).
- the RDRP (in concert with host factors) synthesises (-)-strand RNA (E;5) and subsequently both (+)-strand RNA (F;6) and, in many cases, (+)-strand sub-genomic RNA(s) (7).
- RNA's are typically used as transcripts for proteins involved in processes such as virus spread as well as the CP (G;8).
- the CP (8) and newly synthesised (+)-strand genomic RNA (6) can reassemble to form infectious virions (lb).
- Virus movement throughout the plant may be potentiated by virion-like particles (perhaps involving other proteins such as the movement protein or MP) which could also be assembled at this stage (not shown).
- FIGURE 2 A summary of the principle of virus protection through competition for RDRP binding by means of example involving; A transgenic plant produced containing a chimeric gene (A) that in turn produces a transcript containing (at least 1) "Virus A” RDRP binding sequence (B). This RNA serves no function in the cell unless "Virus A” enters the cell and initiates infection (C). Upon initiation of infection, "Virus A” will produce its RDRP (D). The transgenic RDRP binding sequence transcript will compete for RDRP binding. The result of successful binding to the "transgenic RDRP binding sites", illustrated at (E), will reduce the amount of RDRP available for binding to the endogenous sites thereby interrupting infecting viral replication.
- a transgenic plant produced containing a chimeric gene (A) that in turn produces a transcript containing (at least 1) "Virus A” RDRP binding sequence (B). This RNA serves no function in the cell unless "Virus A” enters the cell and initiates infection (C). Upon initiation of infection, "
- FIGURE 3 Diagram of "X2-TM53", or Construct 1 Construct lb is the plasmid pRTlOl containing "X2-TM53", capable of producing RNA's which are more stable when electroporated into Barley protoplasts
- FIGURE 4 Diagram of "T2-X53", or Construct 2 Construct 2b is the plasmid pRT 101 containing "T2-X53", capable of producing RNA's which are more stable when electroporated into Barley protoplasts
- FIGURE 5 Diagram of Construct 3. This is a negative control and comprises TMV 5' and 3' regions, i.e it contains no sub-genomic promoter binding sequences.
- FIGURE 9 Diagram illustrating a multiple resistance model. This construct contains two copies (arranged in tandem) of PVX SgPr.RDRP binding sequence and TMV SgPr.RDRP binding sequence flanked by a promoter and terminator to enable their transcription.
- FIGURE 10 Schematic representation of an inoculated tobacco leaf.
- the diagram illustrates the leaf regions used for the ELIS A analysis and the distance between the regions.
- constructs illustrated in these examples contain viral genomic promoter binding sequences (eg. Fig. 3. TMV 5' and 3' in the case of construct 1) flanking either side of the sub-genomic promoter (SgPr.) binding sequence
- SgPr. sub-genomic promoter
- the 5' and 3' sequences were used in construct preparation as a model for the protection of the transcript from degradation and as a means by which the viral RDRP specificity between genomic and sub-genomic promoters could be tested.
- Early experiments provided results indicating that viral genomic promoters are not competitive inhibitors for viral RDRP. This inability of viral genomic promoters to inhibit virus replication has been reported elsewhere. For example Dawson 1991, Virology 184, 277-289 and White et al 1992. J. Virol. 66. 3069-3076
- This invention relates to the use of Sub-genomic promoters which have demonstrated resistance to virus infection.
- the invention requires the production of transgenic plants in which copies of a RDRP binding site accumulate in the plant. Constitutive accumulation may be sufficient but developmentally regulated and/or tissue-specific accumulation of RDRP binding sites may be preferred.
- tobacco mosaic virus TMV is known to initiate plant infection in epidermal cells, and therefore it may be preferable to block infection specifically in those cells.
- protection may be produced via accumulation of RDRP binding sites within phloem cells.
- Another means by which the copy number of the transcript can be produced involves transformation of a plant with multiple copies of the sub-genomic promoter RDRP binding sequence. When the chimeric gene is transcribed, an increased number of binding sites may be produced.
- Fig.1. parts 1-3. RDRP binding sequences already present in the cytoplasm of these cells (due to transcription of the nuclear transgene) compete with the virus genome for RDRP binding and if sufficient transgenic SgPr. RDRP binding sequences are present, infection should be reduced at this point, see Fig. 2. This would also be true for a multiple resistance model. Transgenic plants producing SgPr.
- RDRP binding sites from heterologous viruses would exhibit resistance to either a single virus, or a combination of viruses from which the transgenic SgPr. binding sites were derived.
- EXAMPLE 1 These experiments used a protoplast transient assay system, as a preliminary model for transgenic plant work. The experiments involved the co-introduction of RNA's containing RDRP binding sequences (synthesised in vitro) and infectious virus RNA. It has previously been shown that, for at least one other virus protection system, inhibition of virus replication can be obtained following co-introduction of the "protecting molecule" with the infectious particle.
- RNA from Construct 1 consists of (from 5'— >3'): (i) the 5' end of the TMV genome (containing a sequence complementary to the TMV RDRP binding site), (ii) a tandem repeat of the complement of the PVX sequence (i.e.
- RNA transcript produced from Construct 1 contains two copies of the minus(-) sense sub-genomic RDRP binding sites. The ability of this transcript to protect against virus infection is then tested by co- introducing TMV RNA or PVX RNA with transcript from Construct 1 into Barley protoplasts and monitoring TMV or PVX infection using an ELISA to the relevant CP. The results are shown in Table 1.
- RNA from Construct 2 consists of (from 5'->3'): (i) the 5' end of the PVX genome (containing a sequence complementary to the PVX RDRP binding site), (ii) a tandem repeat of the complement of the TMV sequence found immediately upstream of the TMV capsid protein (CP) coding region in the virus RNA (each repeat contains a RDRP binding site which is used for synthesis of a sub-genomic RNA that produces TMV CP during infection), and (iii) the 3' end of the PVX genome (containing the PVX RDRP binding sequence).
- RNA transcript produced from Construct 2 contains two copies of the minus(-) sense sub- genomic RDRP binding sites and the ability of this construct to protect against virus infection is tested by co-introducing PVX RNA or TMV RNA with transcript from Construct 2 into tobacco protoplasts and monitoring PVX or TMV infection using an ELISA to the relevant CP. The results are shown in Table 2.
- constructs 1 and 2 were unsuccessful, probably due to the instability of the chimeric RNA's when elecroporated into the protoplasts because the RNA's were lacking a "cap structure". In order to circumvent this problem the constructs 1 and 2 were cloned into the plasmid pRTlOl under the influence of the 35S promoter and a poly a signal (see Fig. 3b and 4b).
- Construct 3 As for construct 1, except without any SgPr. RDRP binding sequences. This construct was produced as a negative control and to identify whether under these circumstances transgenic binding sites using viral genomic promoters will compete for viral RDRP. The construct also aimed to determine whether the binding sites are virus specific.
- Construct 4 As for construct I, except contains 1 copy of the SgPr. RDRP binding sequence from PVX.
- Construct 5 As for construct 1 , except contains 4 copies of the SgPr. RDRP binding sequence from PVX.
- Construct 6 As for construct 1, except contains 8 copies of the SgPr. RDRP binding sequence from PVX
- This construct comprises from 5' to 3', a 5' region containing a promoter capable of driving the transcription of the coding sequence. Tandem repeats of PVX sub-genomic promoter RDRP binding sites in positive sense (+). Tandem repeats of TMV SgPr. RDRP binding sites in positive sense (+). A 3' region containing a terminator capable of terminating the transcription of the coding sequence.
- the initial experiments used tobacco mosaic virus (TMV) and potato virus X (PVX), two viruses which are capable of infecting protoplasts. Electroporation was used to introduce the
- RNA's into the protoplasts Barley protoplasts were transformed with chime ⁇ c RNA transc ⁇ pts produced in vitro from construct 1 by electroporation and infected with TMV and PVX. See Table 1.
- PVX 3 2 control, vi ⁇ on DNA only
- TMV 3.2 control, virion DNA only
- Tobacco plants (Nicotiana sp.) were transformed with construct lb (pRTlOl "X2-TM53") containing two copies of PVX SgPr. binding sites, arranged in tandem and construct 3 (pRTlOl
- Plant Line Inoculated leaf regions Upper non inoculated leaf a b c d non 1.309+/-0.05 0.805+/-0.32 0.263+/-0.12 0.052+/-0.02 1.71747-0.49 transgenic
- pi -2 Plants transformed with construct 3 see fig.5.
- pi -2(1) Plant line 1, transformed with construct lb see fig.3.
- p 1-2(11) Plant line 2, transformed with construct lb see f ⁇ g.3.
- RDRP binding sites is a process that is virus specific. Clarification of which is illustrated in tables 7 and 8.
- MOLECULE TYPE other nucleic acid
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Plant Pathology (AREA)
- Microbiology (AREA)
- Virology (AREA)
- Biophysics (AREA)
- Cell Biology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| AU36279/97A AU3627997A (en) | 1996-07-22 | 1997-07-21 | Virus resistance in plants |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| GBGB9615349.9A GB9615349D0 (en) | 1996-07-22 | 1996-07-22 | Virus resistance in plants |
| GB9615349.9 | 1996-07-22 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO1998003668A1 true WO1998003668A1 (fr) | 1998-01-29 |
Family
ID=10797290
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/GB1997/001960 WO1998003668A1 (fr) | 1996-07-22 | 1997-07-21 | Vegetaux a resistance phytovirale |
Country Status (3)
| Country | Link |
|---|---|
| AU (1) | AU3627997A (fr) |
| GB (1) | GB9615349D0 (fr) |
| WO (1) | WO1998003668A1 (fr) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1999049031A1 (fr) * | 1998-03-26 | 1999-09-30 | Advanced Research And Technology Institute, Inc. | Utilisation de molecules d'acide nucleique comme agents antiviraux |
| WO2000004141A3 (fr) * | 1998-07-20 | 2000-04-27 | Ribozyme Pharm Inc | Utilisation de molecules d'acide nucleique comme agents antiviraux |
| CN111513077A (zh) * | 2020-05-25 | 2020-08-11 | 中国农业科学院烟草研究所 | 一种RNAi纳米制剂及其制备方法和在TMV防治中的应用 |
Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1033645A (zh) * | 1988-10-22 | 1989-07-05 | 中国科学院上海植物生理研究所 | 控制植物病毒病的基因工程方法 |
| EP0425004A2 (fr) * | 1989-10-03 | 1991-05-02 | Aveve N.V. | Manipulations génétiques avec l'ADN recombinant, contenant des séquences dérivées des virus d'ARN |
| WO1991013994A1 (fr) * | 1990-03-13 | 1991-09-19 | Commonwealth Scientific And Industrial Research Organisation | Expression de genes |
| EP0479180A2 (fr) * | 1990-10-05 | 1992-04-08 | Hoechst Aktiengesellschaft | Plantes résistantes aux virus, procédé pour leur production |
| WO1994016089A1 (fr) * | 1992-12-30 | 1994-07-21 | Biosource Genetics Corporation | Amplification virale de l'arn messager recombine dans les plantes transgeniques |
| WO1994029464A1 (fr) * | 1993-06-04 | 1994-12-22 | Sandoz Ltd. | Plantes resistantes aux virus |
| US5466788A (en) * | 1985-03-07 | 1995-11-14 | Mycogen Plant Science, Inc. | Subgenomic promoter |
| EP0806481A2 (fr) * | 1996-05-09 | 1997-11-12 | Metapontum Agrobios s.c.r.l. | Méthode de préparation de plantes transgéniques résistantes aux infections virales et plantes obtenues |
-
1996
- 1996-07-22 GB GBGB9615349.9A patent/GB9615349D0/en active Pending
-
1997
- 1997-07-21 AU AU36279/97A patent/AU3627997A/en not_active Abandoned
- 1997-07-21 WO PCT/GB1997/001960 patent/WO1998003668A1/fr active Application Filing
Patent Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5466788A (en) * | 1985-03-07 | 1995-11-14 | Mycogen Plant Science, Inc. | Subgenomic promoter |
| CN1033645A (zh) * | 1988-10-22 | 1989-07-05 | 中国科学院上海植物生理研究所 | 控制植物病毒病的基因工程方法 |
| EP0425004A2 (fr) * | 1989-10-03 | 1991-05-02 | Aveve N.V. | Manipulations génétiques avec l'ADN recombinant, contenant des séquences dérivées des virus d'ARN |
| WO1991013994A1 (fr) * | 1990-03-13 | 1991-09-19 | Commonwealth Scientific And Industrial Research Organisation | Expression de genes |
| EP0479180A2 (fr) * | 1990-10-05 | 1992-04-08 | Hoechst Aktiengesellschaft | Plantes résistantes aux virus, procédé pour leur production |
| WO1994016089A1 (fr) * | 1992-12-30 | 1994-07-21 | Biosource Genetics Corporation | Amplification virale de l'arn messager recombine dans les plantes transgeniques |
| WO1994029464A1 (fr) * | 1993-06-04 | 1994-12-22 | Sandoz Ltd. | Plantes resistantes aux virus |
| EP0806481A2 (fr) * | 1996-05-09 | 1997-11-12 | Metapontum Agrobios s.c.r.l. | Méthode de préparation de plantes transgéniques résistantes aux infections virales et plantes obtenues |
Non-Patent Citations (7)
| Title |
|---|
| ATABEKOV J G: "New strategies for construction of virus resistant transgenic plants", MITT.BIOL.BUNDESANST.LANDFORSTWIRTSCH.;(1995) 309, 23-24 CODEN: MBBLA9 ISSN: 0067-5849 KEY BIOSAFETY ASPECTS OF GENETICALLY MODIFIED ORGANISMS, 10-11 APRIL, 1995, BRUNSWICK, GERMANY., XP002047297 * |
| CHEMICAL ABSTRACTS, vol. 113, no. 15, 8 October 1990, Columbus, Ohio, US; abstract no. 127723, JUN, W.: "Preparation of transgenic plants for control of virosis" XP002027388 * |
| HEMENWAY, C., ET AL.: "Analysis of the mechanism of protection in transgenic plants expressing the potato virus X coat protein or its antisense RNA", THE EMBO JOURNAL, vol. 7, no. 5, 1988, pages 1273 - 1280, XP002047300 * |
| HUNTLEY, C.C., ET AL.: "Minus sense transcripts of brome mosaic virus RNA-3 intercistronic region interfere with viral replication", VIROLOGY, vol. 192, 1993, pages 290 - 297, XP002047298 * |
| NELSON, A., ET AL.: "Tobacco mosiac virus infection of transgenic Nicotiana tabacum plants s inhibited by antisense constructs directed at the 5' region of viral RNA", GENE, vol. 127, 1993, pages 227 - 232, XP002047369 * |
| POWELL P A ET AL: "PROTECTION AGAINST TOBACCO MOSAIC VIRUS IN TRANSGENIC PLANTS THAT EXPRESS TOBACCO MOSAIC VIRUS ANTISENSE RNA", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, vol. 86, no. 18, 1 September 1989 (1989-09-01), pages 6949 - 6952, XP000068469 * |
| ZACCOMER, B., ET AL.: "Transgenic plants that express genes including the 3' untranslated region of the turnip yellow mosaic virus (TYMV) genome are partially protected against TYMV infection", GENE, vol. 136, 1993, pages 87 - 94, XP002047299 * |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1999049031A1 (fr) * | 1998-03-26 | 1999-09-30 | Advanced Research And Technology Institute, Inc. | Utilisation de molecules d'acide nucleique comme agents antiviraux |
| WO2000004141A3 (fr) * | 1998-07-20 | 2000-04-27 | Ribozyme Pharm Inc | Utilisation de molecules d'acide nucleique comme agents antiviraux |
| CN111513077A (zh) * | 2020-05-25 | 2020-08-11 | 中国农业科学院烟草研究所 | 一种RNAi纳米制剂及其制备方法和在TMV防治中的应用 |
| CN111513077B (zh) * | 2020-05-25 | 2021-05-25 | 中国农业科学院烟草研究所 | 一种RNAi纳米制剂及其制备方法和在TMV防治中的应用 |
Also Published As
| Publication number | Publication date |
|---|---|
| AU3627997A (en) | 1998-02-10 |
| GB9615349D0 (en) | 1996-09-04 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| AU694102B2 (en) | Viral amplification of recombinant messenger RNA in transgenic plants | |
| US5889191A (en) | Viral amplification of recombinant messenger RNA in transgenic plants | |
| Turpen et al. | Transfection of whole plants from wounds inoculated with Agrobacterium tumefaciens containing cDNA of tobacco mosaic virus | |
| Sánchez et al. | Infectivity of turnip mosaic potyvirus cDNA clones and transcripts on the systemic host Arabidopsis thaliana and local lesion hosts | |
| Tanzer et al. | Characterization of post-transcriptionally suppressed transgene expression that confers resistance to tobacco etch virus infection in tobacco. | |
| US4970168A (en) | Virus-resistant plants | |
| IE81098B1 (en) | Protection of plants against viral infection | |
| WO1995003404A1 (fr) | Ribozymes de virus a adn | |
| Woolston et al. | Replication of wheat dwarf virus DNA in protoplasts and analysis of coat protein mutants in protoplasts and plants | |
| EP1021527A1 (fr) | Promoteurs vegetaux et viraux | |
| Plant et al. | Detection of a subgenomic mRNA for gene V, the putative reverse transcriptase gene of cauliflower mosaic virus | |
| WO1996021033A2 (fr) | GENE DE PROTEASE NIa DU VIRUS DE LA DECOLORATION FOLIAIRE DE LA PAPAYE | |
| Candresse et al. | The role of the viroid central conserved region in cDNA infectivity | |
| US5185253A (en) | Virus resistant plants | |
| WO1998003668A1 (fr) | Vegetaux a resistance phytovirale | |
| AU706040B2 (en) | Papaya ringspot virus coat protein gene | |
| US5849891A (en) | Satellite RNA from bamboo mosaic virus as a vector for foreign gene expression in plants | |
| JP5230608B2 (ja) | P15ヘアピン構造及びその使用方法 | |
| JPH04500154A (ja) | キュウリモザイクウイルス外皮蛋白遺伝子 | |
| Wang et al. | Identification of a novel plant virus promoter using a potyvirus infectious clone | |
| AU742555B2 (en) | Infectious vectors and clones of plants derived from the turnip mosaic virus (TuMV) | |
| Grellet et al. | Electron microscopic mapping of wheat germ RNA polymerase II binding sites on cloned CaMV DNA | |
| US6433248B1 (en) | Trans-activation of transcription from viral RNA | |
| Tousignant et al. | Cucumber mosaic virus from Ixora: infectious RNA transcripts confirm deficiency in satellite support and unusual symptomatology | |
| US5514570A (en) | Squash mosaic virus genes and plants transformed therewith |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A1 Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN YU AM AZ BY KG KZ MD RU TJ TM |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH KE LS MW SD SZ UG ZW AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF |
|
| DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
| NENP | Non-entry into the national phase |
Ref country code: JP Ref document number: 1998506701 Format of ref document f/p: F |
|
| 122 | Ep: pct application non-entry in european phase | ||
| NENP | Non-entry into the national phase |
Ref country code: CA |