WO1998055579A1 - Systemes d'enzymes proteases mixtes pour eliminer les taches a base de proteines et compositions incorporant de tels systemes - Google Patents
Systemes d'enzymes proteases mixtes pour eliminer les taches a base de proteines et compositions incorporant de tels systemes Download PDFInfo
- Publication number
- WO1998055579A1 WO1998055579A1 PCT/IB1998/000845 IB9800845W WO9855579A1 WO 1998055579 A1 WO1998055579 A1 WO 1998055579A1 IB 9800845 W IB9800845 W IB 9800845W WO 9855579 A1 WO9855579 A1 WO 9855579A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- enzyme
- composition
- protease
- protease enzyme
- activity
- Prior art date
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 191
- 238000004140 cleaning Methods 0.000 title claims abstract description 66
- 108091005804 Peptidases Proteins 0.000 title claims abstract description 64
- 239000002689 soil Substances 0.000 title claims description 11
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 title abstract 2
- 102000004169 proteins and genes Human genes 0.000 title description 9
- 108090000623 proteins and genes Proteins 0.000 title description 9
- 102000004190 Enzymes Human genes 0.000 claims abstract description 90
- 108090000790 Enzymes Proteins 0.000 claims abstract description 90
- 230000000694 effects Effects 0.000 claims abstract description 55
- 239000000463 material Substances 0.000 claims abstract description 39
- 238000004851 dishwashing Methods 0.000 claims abstract description 38
- 102100027612 Kallikrein-11 Human genes 0.000 claims abstract description 25
- 108090000227 Chymases Proteins 0.000 claims abstract description 24
- 102000003858 Chymases Human genes 0.000 claims abstract description 24
- 102000035195 Peptidases Human genes 0.000 claims description 62
- 239000007844 bleaching agent Substances 0.000 claims description 43
- 239000003054 catalyst Substances 0.000 claims description 34
- 108010065511 Amylases Proteins 0.000 claims description 31
- 102000013142 Amylases Human genes 0.000 claims description 31
- 102000004157 Hydrolases Human genes 0.000 claims description 24
- 108090000604 Hydrolases Proteins 0.000 claims description 24
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 claims description 23
- 150000004760 silicates Chemical class 0.000 claims description 22
- 125000000539 amino acid group Chemical group 0.000 claims description 19
- 239000002736 nonionic surfactant Substances 0.000 claims description 16
- 108090000787 Subtilisin Proteins 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 15
- 239000004615 ingredient Substances 0.000 claims description 13
- 239000012190 activator Substances 0.000 claims description 12
- 150000001413 amino acids Chemical class 0.000 claims description 12
- 230000008901 benefit Effects 0.000 claims description 12
- 239000003795 chemical substances by application Substances 0.000 claims description 10
- 239000002243 precursor Substances 0.000 claims description 10
- 241000193422 Bacillus lentus Species 0.000 claims description 9
- 235000013305 food Nutrition 0.000 claims description 9
- 241000193744 Bacillus amyloliquefaciens Species 0.000 claims description 7
- 238000005187 foaming Methods 0.000 claims description 6
- 235000013336 milk Nutrition 0.000 claims description 4
- 239000008267 milk Substances 0.000 claims description 4
- 210000004080 milk Anatomy 0.000 claims description 4
- 108010021648 semen liquefaction factor Proteins 0.000 claims description 3
- 150000002978 peroxides Chemical class 0.000 claims description 2
- 125000003275 alpha amino acid group Chemical group 0.000 claims 2
- 229940088598 enzyme Drugs 0.000 description 80
- 239000003599 detergent Substances 0.000 description 41
- -1 perborate Chemical compound 0.000 description 31
- 235000019418 amylase Nutrition 0.000 description 29
- 239000004094 surface-active agent Substances 0.000 description 28
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 24
- 239000000758 substrate Substances 0.000 description 22
- 229940025131 amylases Drugs 0.000 description 18
- 150000003839 salts Chemical class 0.000 description 17
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 16
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 15
- 239000004365 Protease Substances 0.000 description 15
- 239000000460 chlorine Substances 0.000 description 15
- 229910017052 cobalt Inorganic materials 0.000 description 15
- 239000010941 cobalt Substances 0.000 description 15
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 15
- 238000006467 substitution reaction Methods 0.000 description 15
- 150000001875 compounds Chemical class 0.000 description 14
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 14
- 229910000323 aluminium silicate Inorganic materials 0.000 description 13
- 239000007788 liquid Substances 0.000 description 13
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 12
- 108090001060 Lipase Proteins 0.000 description 12
- 102000004882 Lipase Human genes 0.000 description 12
- 229910052801 chlorine Inorganic materials 0.000 description 12
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 12
- 239000004382 Amylase Substances 0.000 description 11
- 239000004367 Lipase Substances 0.000 description 11
- 235000019421 lipase Nutrition 0.000 description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 10
- 239000011572 manganese Substances 0.000 description 10
- 229920005646 polycarboxylate Polymers 0.000 description 10
- 238000004061 bleaching Methods 0.000 description 9
- 238000009472 formulation Methods 0.000 description 9
- 230000000087 stabilizing effect Effects 0.000 description 9
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 8
- 229910052748 manganese Inorganic materials 0.000 description 8
- 230000001590 oxidative effect Effects 0.000 description 8
- 239000002245 particle Substances 0.000 description 8
- 235000018102 proteins Nutrition 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 230000001810 trypsinlike Effects 0.000 description 8
- 108010084185 Cellulases Proteins 0.000 description 7
- 102000005575 Cellulases Human genes 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 7
- 239000004115 Sodium Silicate Substances 0.000 description 7
- 235000001014 amino acid Nutrition 0.000 description 7
- 239000002585 base Substances 0.000 description 7
- 150000007942 carboxylates Chemical group 0.000 description 7
- 229910052739 hydrogen Inorganic materials 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 239000004033 plastic Substances 0.000 description 7
- 229920003023 plastic Polymers 0.000 description 7
- 229920001451 polypropylene glycol Polymers 0.000 description 7
- 239000011734 sodium Substances 0.000 description 7
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 7
- LKDMKWNDBAVNQZ-WJNSRDFLSA-N 4-[[(2s)-1-[[(2s)-1-[(2s)-2-[[(2s)-1-(4-nitroanilino)-1-oxo-3-phenylpropan-2-yl]carbamoyl]pyrrolidin-1-yl]-1-oxopropan-2-yl]amino]-1-oxopropan-2-yl]amino]-4-oxobutanoic acid Chemical compound OC(=O)CCC(=O)N[C@@H](C)C(=O)N[C@@H](C)C(=O)N1CCC[C@H]1C(=O)N[C@H](C(=O)NC=1C=CC(=CC=1)[N+]([O-])=O)CC1=CC=CC=C1 LKDMKWNDBAVNQZ-WJNSRDFLSA-N 0.000 description 6
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 6
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 6
- 101000856199 Homo sapiens Chymotrypsin-like protease CTRL-1 Proteins 0.000 description 6
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 6
- 229910019142 PO4 Inorganic materials 0.000 description 6
- 102000003992 Peroxidases Human genes 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 6
- 239000001257 hydrogen Chemical group 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- MWNQXXOSWHCCOZ-UHFFFAOYSA-L sodium;oxido carbonate Chemical compound [Na+].[O-]OC([O-])=O MWNQXXOSWHCCOZ-UHFFFAOYSA-L 0.000 description 6
- 239000003381 stabilizer Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 5
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 5
- 230000009471 action Effects 0.000 description 5
- 229910052681 coesite Inorganic materials 0.000 description 5
- 229910052906 cristobalite Inorganic materials 0.000 description 5
- 235000014113 dietary fatty acids Nutrition 0.000 description 5
- 239000004744 fabric Substances 0.000 description 5
- 239000000194 fatty acid Substances 0.000 description 5
- 229930195729 fatty acid Natural products 0.000 description 5
- 230000002538 fungal effect Effects 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 5
- 239000003446 ligand Substances 0.000 description 5
- 235000021317 phosphate Nutrition 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 235000019419 proteases Nutrition 0.000 description 5
- 239000002516 radical scavenger Substances 0.000 description 5
- 239000000377 silicon dioxide Substances 0.000 description 5
- 229910052911 sodium silicate Inorganic materials 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 241000894007 species Species 0.000 description 5
- 229910052682 stishovite Inorganic materials 0.000 description 5
- 229910052905 tridymite Inorganic materials 0.000 description 5
- 239000010457 zeolite Substances 0.000 description 5
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 4
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 4
- 102100025566 Chymotrypsin-like protease CTRL-1 Human genes 0.000 description 4
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 4
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 4
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 4
- 229910021536 Zeolite Inorganic materials 0.000 description 4
- 229910052783 alkali metal Inorganic materials 0.000 description 4
- 108090000637 alpha-Amylases Proteins 0.000 description 4
- 102000004139 alpha-Amylases Human genes 0.000 description 4
- 125000000129 anionic group Chemical group 0.000 description 4
- 230000001580 bacterial effect Effects 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 235000010338 boric acid Nutrition 0.000 description 4
- 239000000872 buffer Substances 0.000 description 4
- 239000011575 calcium Substances 0.000 description 4
- 229910001424 calcium ion Inorganic materials 0.000 description 4
- 150000001735 carboxylic acids Chemical class 0.000 description 4
- 230000003197 catalytic effect Effects 0.000 description 4
- 150000001768 cations Chemical class 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 239000000975 dye Substances 0.000 description 4
- 229960001484 edetic acid Drugs 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 230000007062 hydrolysis Effects 0.000 description 4
- 238000006460 hydrolysis reaction Methods 0.000 description 4
- 238000005342 ion exchange Methods 0.000 description 4
- 159000000003 magnesium salts Chemical class 0.000 description 4
- 150000004965 peroxy acids Chemical class 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 4
- 239000010452 phosphate Substances 0.000 description 4
- 229910052938 sodium sulfate Inorganic materials 0.000 description 4
- 235000011152 sodium sulphate Nutrition 0.000 description 4
- CFPOJWPDQWJEMO-UHFFFAOYSA-N 2-(1,2-dicarboxyethoxy)butanedioic acid Chemical compound OC(=O)CC(C(O)=O)OC(C(O)=O)CC(O)=O CFPOJWPDQWJEMO-UHFFFAOYSA-N 0.000 description 3
- FAGGUIDTQQXDSJ-UHFFFAOYSA-N 3-benzoylazepan-2-one Chemical compound C=1C=CC=CC=1C(=O)C1CCCCNC1=O FAGGUIDTQQXDSJ-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 3
- 241000193830 Bacillus <bacterium> Species 0.000 description 3
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 3
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- BDAGIHXWWSANSR-UHFFFAOYSA-M Formate Chemical compound [O-]C=O BDAGIHXWWSANSR-UHFFFAOYSA-M 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 239000004471 Glycine Substances 0.000 description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical group C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 3
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 3
- 229910002651 NO3 Inorganic materials 0.000 description 3
- KKCBUQHMOMHUOY-UHFFFAOYSA-N Na2O Inorganic materials [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 3
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 3
- 239000005662 Paraffin oil Substances 0.000 description 3
- 108700020962 Peroxidase Proteins 0.000 description 3
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical class OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 3
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 3
- 108010056079 Subtilisins Proteins 0.000 description 3
- 102000005158 Subtilisins Human genes 0.000 description 3
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 3
- BGRWYDHXPHLNKA-UHFFFAOYSA-N Tetraacetylethylenediamine Chemical compound CC(=O)N(C(C)=O)CCN(C(C)=O)C(C)=O BGRWYDHXPHLNKA-UHFFFAOYSA-N 0.000 description 3
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 3
- 238000002835 absorbance Methods 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 150000001340 alkali metals Chemical class 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 3
- 150000008051 alkyl sulfates Chemical class 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 150000001450 anions Chemical class 0.000 description 3
- 229910021538 borax Inorganic materials 0.000 description 3
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 3
- 239000004327 boric acid Substances 0.000 description 3
- 229910052791 calcium Inorganic materials 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000012217 deletion Methods 0.000 description 3
- 230000037430 deletion Effects 0.000 description 3
- VTIIJXUACCWYHX-UHFFFAOYSA-L disodium;carboxylatooxy carbonate Chemical compound [Na+].[Na+].[O-]C(=O)OOC([O-])=O VTIIJXUACCWYHX-UHFFFAOYSA-L 0.000 description 3
- 150000004665 fatty acids Chemical class 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 229940044170 formate Drugs 0.000 description 3
- 238000010348 incorporation Methods 0.000 description 3
- 239000003112 inhibitor Substances 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 125000001360 methionine group Chemical group N[C@@H](CCSC)C(=O)* 0.000 description 3
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 3
- 229910052700 potassium Inorganic materials 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- 229910000029 sodium carbonate Inorganic materials 0.000 description 3
- 239000001509 sodium citrate Substances 0.000 description 3
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 3
- 235000019795 sodium metasilicate Nutrition 0.000 description 3
- 229940045872 sodium percarbonate Drugs 0.000 description 3
- 235000010339 sodium tetraborate Nutrition 0.000 description 3
- 235000019832 sodium triphosphate Nutrition 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 230000006641 stabilisation Effects 0.000 description 3
- 238000011105 stabilization Methods 0.000 description 3
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 3
- 108010082371 succinyl-alanyl-alanyl-prolyl-phenylalanine-4-nitroanilide Proteins 0.000 description 3
- 108010075550 termamyl Proteins 0.000 description 3
- 229910052723 transition metal Inorganic materials 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- CIOXZGOUEYHNBF-UHFFFAOYSA-N (carboxymethoxy)succinic acid Chemical compound OC(=O)COC(C(O)=O)CC(O)=O CIOXZGOUEYHNBF-UHFFFAOYSA-N 0.000 description 2
- WLDGDTPNAKWAIR-UHFFFAOYSA-N 1,4,7-trimethyl-1,4,7-triazonane Chemical compound CN1CCN(C)CCN(C)CC1 WLDGDTPNAKWAIR-UHFFFAOYSA-N 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- YLAXZGYLWOGCBF-UHFFFAOYSA-N 2-dodecylbutanedioic acid Chemical compound CCCCCCCCCCCCC(C(O)=O)CC(O)=O YLAXZGYLWOGCBF-UHFFFAOYSA-N 0.000 description 2
- CDWQJRGVYJQAIT-UHFFFAOYSA-N 3-benzoylpiperidin-2-one Chemical compound C=1C=CC=CC=1C(=O)C1CCCNC1=O CDWQJRGVYJQAIT-UHFFFAOYSA-N 0.000 description 2
- XSVSPKKXQGNHMD-UHFFFAOYSA-N 5-bromo-3-methyl-1,2-thiazole Chemical compound CC=1C=C(Br)SN=1 XSVSPKKXQGNHMD-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- 239000004475 Arginine Substances 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- 241000194108 Bacillus licheniformis Species 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical class OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 2
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- 108010059892 Cellulase Proteins 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 2
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical class S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 2
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 2
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 2
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 2
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 2
- 239000004472 Lysine Substances 0.000 description 2
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 2
- 229910016887 MnIV Inorganic materials 0.000 description 2
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 2
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 2
- 239000004473 Threonine Substances 0.000 description 2
- 101710152431 Trypsin-like protease Proteins 0.000 description 2
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 235000004279 alanine Nutrition 0.000 description 2
- 229910052910 alkali metal silicate Inorganic materials 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 150000003863 ammonium salts Chemical class 0.000 description 2
- 239000003945 anionic surfactant Substances 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 235000006708 antioxidants Nutrition 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 2
- QMKYBPDZANOJGF-UHFFFAOYSA-N benzene-1,3,5-tricarboxylic acid Chemical compound OC(=O)C1=CC(C(O)=O)=CC(C(O)=O)=C1 QMKYBPDZANOJGF-UHFFFAOYSA-N 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- UCMIRNVEIXFBKS-UHFFFAOYSA-N beta-alanine Chemical compound NCCC(O)=O UCMIRNVEIXFBKS-UHFFFAOYSA-N 0.000 description 2
- 229920001400 block copolymer Polymers 0.000 description 2
- 239000007853 buffer solution Substances 0.000 description 2
- 230000003139 buffering effect Effects 0.000 description 2
- 239000001110 calcium chloride Substances 0.000 description 2
- 229910001628 calcium chloride Inorganic materials 0.000 description 2
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 2
- 239000000920 calcium hydroxide Substances 0.000 description 2
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 2
- 235000011116 calcium hydroxide Nutrition 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 229940106157 cellulase Drugs 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 229910001914 chlorine tetroxide Inorganic materials 0.000 description 2
- 229960004106 citric acid Drugs 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000012933 diacyl peroxide Substances 0.000 description 2
- FSBVERYRVPGNGG-UHFFFAOYSA-N dimagnesium dioxido-bis[[oxido(oxo)silyl]oxy]silane hydrate Chemical compound O.[Mg+2].[Mg+2].[O-][Si](=O)O[Si]([O-])([O-])O[Si]([O-])=O FSBVERYRVPGNGG-UHFFFAOYSA-N 0.000 description 2
- PPNKDDZCLDMRHS-UHFFFAOYSA-N dinitrooxybismuthanyl nitrate Chemical compound [Bi+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O PPNKDDZCLDMRHS-UHFFFAOYSA-N 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 239000003752 hydrotrope Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 239000003999 initiator Substances 0.000 description 2
- 229910052740 iodine Inorganic materials 0.000 description 2
- 229910001425 magnesium ion Inorganic materials 0.000 description 2
- 239000000391 magnesium silicate Substances 0.000 description 2
- 229910052919 magnesium silicate Inorganic materials 0.000 description 2
- 235000019792 magnesium silicate Nutrition 0.000 description 2
- YDSWCNNOKPMOTP-UHFFFAOYSA-N mellitic acid Chemical compound OC(=O)C1=C(C(O)=O)C(C(O)=O)=C(C(O)=O)C(C(O)=O)=C1C(O)=O YDSWCNNOKPMOTP-UHFFFAOYSA-N 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 108010020132 microbial serine proteinases Proteins 0.000 description 2
- 150000004682 monohydrates Chemical class 0.000 description 2
- 239000002304 perfume Substances 0.000 description 2
- FCJSHPDYVMKCHI-UHFFFAOYSA-N phenyl benzoate Chemical compound C=1C=CC=CC=1C(=O)OC1=CC=CC=C1 FCJSHPDYVMKCHI-UHFFFAOYSA-N 0.000 description 2
- HXITXNWTGFUOAU-UHFFFAOYSA-N phenylboronic acid Chemical compound OB(O)C1=CC=CC=C1 HXITXNWTGFUOAU-UHFFFAOYSA-N 0.000 description 2
- YBYRMVIVWMBXKQ-UHFFFAOYSA-N phenylmethanesulfonyl fluoride Chemical compound FS(=O)(=O)CC1=CC=CC=C1 YBYRMVIVWMBXKQ-UHFFFAOYSA-N 0.000 description 2
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 2
- SIOXPEMLGUPBBT-UHFFFAOYSA-N picolinic acid Chemical compound OC(=O)C1=CC=CC=N1 SIOXPEMLGUPBBT-UHFFFAOYSA-N 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 238000002741 site-directed mutagenesis Methods 0.000 description 2
- MSFGZHUJTJBYFA-UHFFFAOYSA-M sodium dichloroisocyanurate Chemical compound [Na+].ClN1C(=O)[N-]C(=O)N(Cl)C1=O MSFGZHUJTJBYFA-UHFFFAOYSA-M 0.000 description 2
- 229960001922 sodium perborate Drugs 0.000 description 2
- 235000019351 sodium silicates Nutrition 0.000 description 2
- 239000004328 sodium tetraborate Substances 0.000 description 2
- YKLJGMBLPUQQOI-UHFFFAOYSA-M sodium;oxidooxy(oxo)borane Chemical compound [Na+].[O-]OB=O YKLJGMBLPUQQOI-UHFFFAOYSA-M 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 235000011044 succinic acid Nutrition 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 229940095064 tartrate Drugs 0.000 description 2
- 150000003573 thiols Chemical class 0.000 description 2
- DHCDFWKWKRSZHF-UHFFFAOYSA-L thiosulfate(2-) Chemical compound [O-]S([S-])(=O)=O DHCDFWKWKRSZHF-UHFFFAOYSA-L 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 2
- 229910009112 xH2O Inorganic materials 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- VKZRWSNIWNFCIQ-WDSKDSINSA-N (2s)-2-[2-[[(1s)-1,2-dicarboxyethyl]amino]ethylamino]butanedioic acid Chemical compound OC(=O)C[C@@H](C(O)=O)NCCN[C@H](C(O)=O)CC(O)=O VKZRWSNIWNFCIQ-WDSKDSINSA-N 0.000 description 1
- QBLFZIBJXUQVRF-UHFFFAOYSA-N (4-bromophenyl)boronic acid Chemical compound OB(O)C1=CC=C(Br)C=C1 QBLFZIBJXUQVRF-UHFFFAOYSA-N 0.000 description 1
- QPKFVRWIISEVCW-UHFFFAOYSA-N 1-butane boronic acid Chemical compound CCCCB(O)O QPKFVRWIISEVCW-UHFFFAOYSA-N 0.000 description 1
- VJSWLXWONORKLD-UHFFFAOYSA-N 2,4,6-trihydroxybenzene-1,3,5-trisulfonic acid Chemical compound OC1=C(S(O)(=O)=O)C(O)=C(S(O)(=O)=O)C(O)=C1S(O)(=O)=O VJSWLXWONORKLD-UHFFFAOYSA-N 0.000 description 1
- QDCPNGVVOWVKJG-VAWYXSNFSA-N 2-[(e)-dodec-1-enyl]butanedioic acid Chemical group CCCCCCCCCC\C=C\C(C(O)=O)CC(O)=O QDCPNGVVOWVKJG-VAWYXSNFSA-N 0.000 description 1
- KYVZSRPVPDAAKQ-UHFFFAOYSA-N 2-benzoyloxybenzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=CC=C1OC(=O)C1=CC=CC=C1 KYVZSRPVPDAAKQ-UHFFFAOYSA-N 0.000 description 1
- GGAVUMZUOHJGGM-UHFFFAOYSA-N 2-decanoyloxybenzenesulfonic acid Chemical compound CCCCCCCCCC(=O)OC1=CC=CC=C1S(O)(=O)=O GGAVUMZUOHJGGM-UHFFFAOYSA-N 0.000 description 1
- QDCPNGVVOWVKJG-UHFFFAOYSA-N 2-dodec-1-enylbutanedioic acid Chemical compound CCCCCCCCCCC=CC(C(O)=O)CC(O)=O QDCPNGVVOWVKJG-UHFFFAOYSA-N 0.000 description 1
- GCVQVCAAUXFNGJ-UHFFFAOYSA-N 2-hexadecylbutanedioic acid Chemical compound CCCCCCCCCCCCCCCCC(C(O)=O)CC(O)=O GCVQVCAAUXFNGJ-UHFFFAOYSA-N 0.000 description 1
- DXPLEDYRQHTBDJ-UHFFFAOYSA-N 2-pentadec-1-enylbutanedioic acid Chemical compound CCCCCCCCCCCCCC=CC(C(O)=O)CC(O)=O DXPLEDYRQHTBDJ-UHFFFAOYSA-N 0.000 description 1
- MWTDCUHMQIAYDT-UHFFFAOYSA-N 2-tetradecylbutanedioic acid Chemical compound CCCCCCCCCCCCCCC(C(O)=O)CC(O)=O MWTDCUHMQIAYDT-UHFFFAOYSA-N 0.000 description 1
- MQWCVVYEJGQDEL-UHFFFAOYSA-N 3-(4-nitrobenzoyl)azepan-2-one Chemical compound C1=CC([N+](=O)[O-])=CC=C1C(=O)C1C(=O)NCCCC1 MQWCVVYEJGQDEL-UHFFFAOYSA-N 0.000 description 1
- 241000607534 Aeromonas Species 0.000 description 1
- 241000750142 Auricula Species 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- 108010073997 Bromide peroxidase Proteins 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- 101100283604 Caenorhabditis elegans pigk-1 gene Proteins 0.000 description 1
- CBOCVOKPQGJKKJ-UHFFFAOYSA-L Calcium formate Chemical compound [Ca+2].[O-]C=O.[O-]C=O CBOCVOKPQGJKKJ-UHFFFAOYSA-L 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-M Carbamate Chemical compound NC([O-])=O KXDHJXZQYSOELW-UHFFFAOYSA-M 0.000 description 1
- 108010035722 Chloride peroxidase Proteins 0.000 description 1
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- 108090000317 Chymotrypsin Proteins 0.000 description 1
- YASYEJJMZJALEJ-UHFFFAOYSA-N Citric acid monohydrate Chemical compound O.OC(=O)CC(O)(C(O)=O)CC(O)=O YASYEJJMZJALEJ-UHFFFAOYSA-N 0.000 description 1
- JNIYAMTYWPMEGP-UHFFFAOYSA-N ClC1=CC=CC(C(=O)C2C(NCCCC2)=O)=C1 Chemical compound ClC1=CC=CC(C(=O)C2C(NCCCC2)=O)=C1 JNIYAMTYWPMEGP-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 241001459693 Dipterocarpus zeylanicus Species 0.000 description 1
- 241000237379 Dolabella Species 0.000 description 1
- 101710121765 Endo-1,4-beta-xylanase Proteins 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 241000193385 Geobacillus stearothermophilus Species 0.000 description 1
- 240000004153 Hibiscus sabdariffa Species 0.000 description 1
- 235000001018 Hibiscus sabdariffa Nutrition 0.000 description 1
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 1
- 241000223198 Humicola Species 0.000 description 1
- 241001480714 Humicola insolens Species 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- IMQLKJBTEOYOSI-GPIVLXJGSA-N Inositol-hexakisphosphate Chemical compound OP(O)(=O)O[C@H]1[C@H](OP(O)(O)=O)[C@@H](OP(O)(O)=O)[C@H](OP(O)(O)=O)[C@H](OP(O)(O)=O)[C@@H]1OP(O)(O)=O IMQLKJBTEOYOSI-GPIVLXJGSA-N 0.000 description 1
- 150000008575 L-amino acids Chemical class 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-L Malonate Chemical compound [O-]C(=O)CC([O-])=O OFOBLEOULBTSOW-UHFFFAOYSA-L 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 1
- LSDPWZHWYPCBBB-UHFFFAOYSA-N Methanethiol Chemical compound SC LSDPWZHWYPCBBB-UHFFFAOYSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 241000237852 Mollusca Species 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 description 1
- 239000006057 Non-nutritive feed additive Substances 0.000 description 1
- IMQLKJBTEOYOSI-UHFFFAOYSA-N Phytic acid Natural products OP(O)(=O)OC1C(OP(O)(O)=O)C(OP(O)(O)=O)C(OP(O)(O)=O)C(OP(O)(O)=O)C1OP(O)(O)=O IMQLKJBTEOYOSI-UHFFFAOYSA-N 0.000 description 1
- 229920005372 Plexiglas® Polymers 0.000 description 1
- 229920000388 Polyphosphate Polymers 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 235000006894 Primula auricula Nutrition 0.000 description 1
- 241000589516 Pseudomonas Species 0.000 description 1
- 241000145542 Pseudomonas marginata Species 0.000 description 1
- 101000968491 Pseudomonas sp. (strain 109) Triacylglycerol lipase Proteins 0.000 description 1
- 241000589614 Pseudomonas stutzeri Species 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- 229920002359 Tetronic® Polymers 0.000 description 1
- 244000269722 Thea sinensis Species 0.000 description 1
- 241000223258 Thermomyces lanuginosus Species 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 108090000631 Trypsin Proteins 0.000 description 1
- 102000004142 Trypsin Human genes 0.000 description 1
- 229910052770 Uranium Inorganic materials 0.000 description 1
- 229940022663 acetate Drugs 0.000 description 1
- 159000000021 acetate salts Chemical class 0.000 description 1
- WJGAPUXHSQQWQF-UHFFFAOYSA-N acetic acid;hydrochloride Chemical compound Cl.CC(O)=O WJGAPUXHSQQWQF-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 150000001334 alicyclic compounds Chemical class 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910000288 alkali metal carbonate Inorganic materials 0.000 description 1
- 150000008041 alkali metal carbonates Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 108010051873 alkaline protease Proteins 0.000 description 1
- 150000004996 alkyl benzenes Chemical class 0.000 description 1
- 150000001371 alpha-amino acids Chemical class 0.000 description 1
- 229940024171 alpha-amylase Drugs 0.000 description 1
- CEGOLXSVJUTHNZ-UHFFFAOYSA-K aluminium tristearate Chemical compound [Al+3].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CEGOLXSVJUTHNZ-UHFFFAOYSA-K 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 150000001449 anionic compounds Chemical class 0.000 description 1
- 229920006318 anionic polymer Polymers 0.000 description 1
- 229940072107 ascorbate Drugs 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229940050390 benzoate Drugs 0.000 description 1
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 1
- 239000012964 benzotriazole Substances 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 229940000635 beta-alanine Drugs 0.000 description 1
- 150000001576 beta-amino acids Chemical class 0.000 description 1
- 230000001851 biosynthetic effect Effects 0.000 description 1
- 150000001621 bismuth Chemical class 0.000 description 1
- 125000005619 boric acid group Chemical class 0.000 description 1
- 150000001638 boron Chemical class 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- 125000005620 boronic acid group Chemical class 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 239000008366 buffered solution Substances 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- VSGNNIFQASZAOI-UHFFFAOYSA-L calcium acetate Chemical compound [Ca+2].CC([O-])=O.CC([O-])=O VSGNNIFQASZAOI-UHFFFAOYSA-L 0.000 description 1
- 239000001639 calcium acetate Substances 0.000 description 1
- 235000011092 calcium acetate Nutrition 0.000 description 1
- 229960005147 calcium acetate Drugs 0.000 description 1
- 229960002713 calcium chloride Drugs 0.000 description 1
- 235000011148 calcium chloride Nutrition 0.000 description 1
- 239000004281 calcium formate Substances 0.000 description 1
- 235000019255 calcium formate Nutrition 0.000 description 1
- 229940044172 calcium formate Drugs 0.000 description 1
- 229940095643 calcium hydroxide Drugs 0.000 description 1
- OLOZVPHKXALCRI-UHFFFAOYSA-L calcium malate Chemical compound [Ca+2].[O-]C(=O)C(O)CC([O-])=O OLOZVPHKXALCRI-UHFFFAOYSA-L 0.000 description 1
- 239000001362 calcium malate Substances 0.000 description 1
- 229940016114 calcium malate Drugs 0.000 description 1
- 235000011038 calcium malates Nutrition 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- HDRTWMBOUSPQON-ODZAUARKSA-L calcium;(z)-but-2-enedioate Chemical compound [Ca+2].[O-]C(=O)\C=C/C([O-])=O HDRTWMBOUSPQON-ODZAUARKSA-L 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 150000005323 carbonate salts Chemical class 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 235000013351 cheese Nutrition 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 150000003841 chloride salts Chemical class 0.000 description 1
- 229960002376 chymotrypsin Drugs 0.000 description 1
- 229940001468 citrate Drugs 0.000 description 1
- 229960002303 citric acid monohydrate Drugs 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 150000004700 cobalt complex Chemical class 0.000 description 1
- JAWGVVJVYSANRY-UHFFFAOYSA-N cobalt(3+) Chemical compound [Co+3] JAWGVVJVYSANRY-UHFFFAOYSA-N 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 108010005400 cutinase Proteins 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 150000001923 cyclic compounds Chemical class 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 235000013365 dairy product Nutrition 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 239000000551 dentifrice Substances 0.000 description 1
- 230000001877 deodorizing effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 235000011180 diphosphates Nutrition 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- NFDRPXJGHKJRLJ-UHFFFAOYSA-N edtmp Chemical compound OP(O)(=O)CN(CP(O)(O)=O)CCN(CP(O)(O)=O)CP(O)(O)=O NFDRPXJGHKJRLJ-UHFFFAOYSA-N 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 230000009144 enzymatic modification Effects 0.000 description 1
- 239000002532 enzyme inhibitor Substances 0.000 description 1
- 229940125532 enzyme inhibitor Drugs 0.000 description 1
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 1
- 238000007046 ethoxylation reaction Methods 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 150000002191 fatty alcohols Chemical class 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 230000002070 germicidal effect Effects 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- XLYOFNOQVPJJNP-ZSJDYOACSA-N heavy water Substances [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 1
- 210000000514 hepatopancreas Anatomy 0.000 description 1
- 125000001072 heteroaryl group Chemical group 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-M hydrogensulfate Chemical compound OS([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-M 0.000 description 1
- RXPAJWPEYBDXOG-UHFFFAOYSA-N hydron;methyl 4-methoxypyridine-2-carboxylate;chloride Chemical compound Cl.COC(=O)C1=CC(OC)=CC=N1 RXPAJWPEYBDXOG-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000000415 inactivating effect Effects 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 229910001412 inorganic anion Inorganic materials 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229940001447 lactate Drugs 0.000 description 1
- 238000004900 laundering Methods 0.000 description 1
- 108010062085 ligninase Proteins 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229940053326 magnesium salt Drugs 0.000 description 1
- 229940049920 malate Drugs 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N malic acid Chemical compound OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 150000002696 manganese Chemical class 0.000 description 1
- 239000011683 manganese gluconate Substances 0.000 description 1
- 235000014012 manganese gluconate Nutrition 0.000 description 1
- 229940072543 manganese gluconate Drugs 0.000 description 1
- OXHQNTSSPHKCPB-IYEMJOQQSA-L manganese(2+);(2r,3s,4r,5r)-2,3,4,5,6-pentahydroxyhexanoate Chemical compound [Mn+2].OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O.OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O OXHQNTSSPHKCPB-IYEMJOQQSA-L 0.000 description 1
- 108010003855 mesentericopeptidase Proteins 0.000 description 1
- 125000005341 metaphosphate group Chemical group 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- XJRBAMWJDBPFIM-UHFFFAOYSA-N methyl vinyl ether Chemical compound COC=C XJRBAMWJDBPFIM-UHFFFAOYSA-N 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 150000002763 monocarboxylic acids Chemical class 0.000 description 1
- 239000002324 mouth wash Substances 0.000 description 1
- 229940051866 mouthwash Drugs 0.000 description 1
- MOFOBJHOKRNACT-UHFFFAOYSA-N nickel silver Chemical compound [Ni].[Ag] MOFOBJHOKRNACT-UHFFFAOYSA-N 0.000 description 1
- 239000010956 nickel silver Substances 0.000 description 1
- MGFYIUFZLHCRTH-UHFFFAOYSA-N nitrilotriacetic acid Chemical compound OC(=O)CN(CC(O)=O)CC(O)=O MGFYIUFZLHCRTH-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid group Chemical group C(CCCCCCC\C=C/CCCCCCCC)(=O)O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 150000001451 organic peroxides Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- IPCSVZSSVZVIGE-UHFFFAOYSA-N palmitic acid group Chemical group C(CCCCCCCCCCCCCCC)(=O)O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 108040007629 peroxidase activity proteins Proteins 0.000 description 1
- JRKICGRDRMAZLK-UHFFFAOYSA-L peroxydisulfate Chemical compound [O-]S(=O)(=O)OOS([O-])(=O)=O JRKICGRDRMAZLK-UHFFFAOYSA-L 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 229940068041 phytic acid Drugs 0.000 description 1
- 239000000467 phytic acid Substances 0.000 description 1
- 235000002949 phytic acid Nutrition 0.000 description 1
- 229940081066 picolinic acid Drugs 0.000 description 1
- 229920001983 poloxamer Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920001444 polymaleic acid Polymers 0.000 description 1
- 229920002959 polymer blend Polymers 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 229920002503 polyoxyethylene-polyoxypropylene Polymers 0.000 description 1
- 239000001205 polyphosphate Substances 0.000 description 1
- 235000011176 polyphosphates Nutrition 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- OTYBMLCTZGSZBG-UHFFFAOYSA-L potassium sulfate Chemical compound [K+].[K+].[O-]S([O-])(=O)=O OTYBMLCTZGSZBG-UHFFFAOYSA-L 0.000 description 1
- 229910052939 potassium sulfate Inorganic materials 0.000 description 1
- 235000011151 potassium sulphates Nutrition 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 150000003138 primary alcohols Chemical class 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 125000002572 propoxy group Chemical group [*]OC([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000002797 proteolythic effect Effects 0.000 description 1
- 235000011962 puddings Nutrition 0.000 description 1
- 150000003217 pyrazoles Chemical class 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- AJTVWPGZWVJMEA-UHFFFAOYSA-N ruthenium tungsten Chemical compound [Ru].[Ru].[W].[W].[W] AJTVWPGZWVJMEA-UHFFFAOYSA-N 0.000 description 1
- 229960001860 salicylate Drugs 0.000 description 1
- YGSDEFSMJLZEOE-UHFFFAOYSA-M salicylate Chemical compound OC1=CC=CC=C1C([O-])=O YGSDEFSMJLZEOE-UHFFFAOYSA-M 0.000 description 1
- 239000003352 sequestering agent Substances 0.000 description 1
- 229940071207 sesquicarbonate Drugs 0.000 description 1
- 229940077386 sodium benzenesulfonate Drugs 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229940079842 sodium cumenesulfonate Drugs 0.000 description 1
- FQENQNTWSFEDLI-UHFFFAOYSA-J sodium diphosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])([O-])=O FQENQNTWSFEDLI-UHFFFAOYSA-J 0.000 description 1
- 239000012418 sodium perborate tetrahydrate Substances 0.000 description 1
- PFUVRDFDKPNGAV-UHFFFAOYSA-N sodium peroxide Chemical compound [Na+].[Na+].[O-][O-] PFUVRDFDKPNGAV-UHFFFAOYSA-N 0.000 description 1
- 229940048086 sodium pyrophosphate Drugs 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 229910000031 sodium sesquicarbonate Inorganic materials 0.000 description 1
- 235000018341 sodium sesquicarbonate Nutrition 0.000 description 1
- QUCDWLYKDRVKMI-UHFFFAOYSA-M sodium;3,4-dimethylbenzenesulfonate Chemical compound [Na+].CC1=CC=C(S([O-])(=O)=O)C=C1C QUCDWLYKDRVKMI-UHFFFAOYSA-M 0.000 description 1
- IBDSNZLUHYKHQP-UHFFFAOYSA-N sodium;3-oxidodioxaborirane;tetrahydrate Chemical compound O.O.O.O.[Na+].[O-]B1OO1 IBDSNZLUHYKHQP-UHFFFAOYSA-N 0.000 description 1
- KVCGISUBCHHTDD-UHFFFAOYSA-M sodium;4-methylbenzenesulfonate Chemical compound [Na+].CC1=CC=C(S([O-])(=O)=O)C=C1 KVCGISUBCHHTDD-UHFFFAOYSA-M 0.000 description 1
- QEKATQBVVAZOAY-UHFFFAOYSA-M sodium;4-propan-2-ylbenzenesulfonate Chemical compound [Na+].CC(C)C1=CC=C(S([O-])(=O)=O)C=C1 QEKATQBVVAZOAY-UHFFFAOYSA-M 0.000 description 1
- MZSDGDXXBZSFTG-UHFFFAOYSA-M sodium;benzenesulfonate Chemical compound [Na+].[O-]S(=O)(=O)C1=CC=CC=C1 MZSDGDXXBZSFTG-UHFFFAOYSA-M 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000007655 standard test method Methods 0.000 description 1
- 229910000898 sterling silver Inorganic materials 0.000 description 1
- 239000010934 sterling silver Substances 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 125000000547 substituted alkyl group Chemical group 0.000 description 1
- 125000003107 substituted aryl group Chemical group 0.000 description 1
- 239000001384 succinic acid Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 150000003445 sucroses Chemical class 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 235000011149 sulphuric acid Nutrition 0.000 description 1
- 239000000271 synthetic detergent Substances 0.000 description 1
- 150000004685 tetrahydrates Chemical class 0.000 description 1
- 235000019818 tetrasodium diphosphate Nutrition 0.000 description 1
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 description 1
- MSLRPWGRFCKNIZ-UHFFFAOYSA-J tetrasodium;hydrogen peroxide;dicarbonate Chemical compound [Na+].[Na+].[Na+].[Na+].OO.OO.OO.[O-]C([O-])=O.[O-]C([O-])=O MSLRPWGRFCKNIZ-UHFFFAOYSA-J 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- JOXIMZWYDAKGHI-UHFFFAOYSA-M toluene-4-sulfonate Chemical compound CC1=CC=C(S([O-])(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-M 0.000 description 1
- 239000000606 toothpaste Substances 0.000 description 1
- 229940034610 toothpaste Drugs 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 150000003852 triazoles Chemical class 0.000 description 1
- ITMCEJHCFYSIIV-UHFFFAOYSA-M triflate Chemical compound [O-]S(=O)(=O)C(F)(F)F ITMCEJHCFYSIIV-UHFFFAOYSA-M 0.000 description 1
- UFTFJSFQGQCHQW-UHFFFAOYSA-N triformin Chemical compound O=COCC(OC=O)COC=O UFTFJSFQGQCHQW-UHFFFAOYSA-N 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- BSVBQGMMJUBVOD-UHFFFAOYSA-N trisodium borate Chemical compound [Na+].[Na+].[Na+].[O-]B([O-])[O-] BSVBQGMMJUBVOD-UHFFFAOYSA-N 0.000 description 1
- POZPMIFKBAEGSS-UHFFFAOYSA-K trisodium;2-hydroxypropane-1,2,3-tricarboxylate;trihydrate Chemical compound O.O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O POZPMIFKBAEGSS-UHFFFAOYSA-K 0.000 description 1
- WCTAGTRAWPDFQO-UHFFFAOYSA-K trisodium;hydrogen carbonate;carbonate Chemical compound [Na+].[Na+].[Na+].OC([O-])=O.[O-]C([O-])=O WCTAGTRAWPDFQO-UHFFFAOYSA-K 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 230000002087 whitening effect Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/38—Products with no well-defined composition, e.g. natural products
- C11D3/386—Preparations containing enzymes, e.g. protease or amylase
- C11D3/38609—Protease or amylase in solid compositions only
Definitions
- the present invention relates to mixed protease enzymes for cleaning protein based soils via various compositions and methods for their use. More particularly, this invention relates to combinations of protease enzymes for tough food cleaning and reduced spotting and filming in automatic dishwashing compositions.
- protease enzymes have long been used in laundry detergents to assist in the removal of certain stains from fabrics.
- Each class of enzyme (amylase, protease, etc.) generally catalyzes a different chemical reaction.
- protease enzymes are known for their ability to hydrolyze (break down a compound into two or more simpler compounds) other proteins. This ability has been taken advantage of through the incorporation of naturally occurring or engineered protease enzymes to laundry detergent compositions.
- compositions which can deliver tough cleaning without spot/film formation More particularly, the need remains for automatic dishwashing compositions which can deliver tough food cleaning and reduced spot/film formation via protease enzymes systems designed to deliver such benefits.
- WO 95/10615 to Genecor International, Inc.; WO 89/06270 to Novo Nordisk A/S; Kirk-Othmer, Encyclopedia of Chemical Technology, 4th. Ed., Vol. 9, Wiley 1994, pages 567-620, titled “Enzyme Applications-Industrial”, Nielsen et al and the references therein.
- WO 95/10591 and WO 95/10592 to the Procter & Gamble Company.
- compositions having a protease enzyme system capable of tough food cleaning and reduced spotting/filming are provided.
- the present invention provides an protease enzyme system that is particularly effective at cleaning protein based soils, and particular in automatic dishwashing compositions without developing spotting/filming problems.
- the invention comprises the combination of at least one enzyme having chymotrypsin-like specificity with at least one enzyme having trypsin-like specificity.
- Trypsin-like and chymotrypsin-like refer to proteases which have specificity profiles similar to the enzymes Trypsin and Chymotrypsin. That is, a trypsin-like protease enzyme refers to an enzyme that hydrolyzes proteins by preferentially cleaving the peptide bonds of charged amino acid residues, more specifically residues such as arginine and lysine, rather than preferentially cleaving the peptide bonds of hydrophobic amino acid residues, more specifically phenylalanine, tryptophan and tyrosine. Enzymes having the latter profile are referred to as having a chymotrypsin-like specificity.
- the present invention involves mixed protease enzyme systems having at least one trypsin-like protease and at least one chymotrypsin-like protease to deliver superior cleaning and spotting/filming benefits.
- a cleaning composition comprising: a) from about 0.0001% to about 10% by weight of the composition of a protease enzyme cleaning system comprising the combination of at least one chymotrypsin-like protease enzyme and at least one trypsin-like protease enzyme, where the at least one chymotrypsin-like protease has an enzyme activity ratio of sAAPF-pNA (N-succinyl-ala-ala-pro-phe-p-Nitroanilide, hereinafter suc-AAPF- pNA) activity /bVGR-pNA (benzyl-val-ara-lys-p-Nitroanilide, hereinafter bVGR4 pNA) activity of at least about 15 and the trypsin-like protease enzyme has an enzyme activity ratio of sAAPF-pNA activity /bVGR-pNA activity of less than about 10.0; and
- the chymotrypsin-like protease enzyme has an enzyme activity ratio of sAAPF-pNA activity /bVGR-pNA activity of at least about 17.5 and the trypsin-like protease enzyme has an enzyme activity ratio of sAAPF- pNA activity/bVGR-pNA activity of less than about 8.0.
- the chymotrypsin-like enzyme is preferably a carbonyl hydrolase variant having an amino acid sequence not found in nature with the carbonyl hydrolase being derived from a precursor carbonyl hydrolase by substituting a different amino acid for a plurality of amino acid residues at a position in the carbonyl hydrolase equivalent to position +76, and at least one position being selected from the group consisting of +99, +101, +103, +104, +107, +123, +27, +105, +109, +126, +128, +135, +195, +197, +204, +206, +216, +217, +218, +222, +260, +265, +274 and mixtures thereof according to the numbering of Bacillus amyloliquefaciens subtilisin with positions +76, +103 and +104 being the most preferred.
- the trypsin-like protease enzyme is preferably either the protease enzyme obtained from Bacillus Lentus or a carbonyl hydrolase variant having an amino acid sequence not found in nature, which is derived from a precursor carbonyl hydrolase by substituting a different amino acid for a plurality of amino acid residues at a position in said precursor carbonyl hydrolase equivalent to position +210 in combination with one or more amino acid residue position equivalent to those selected from the group consisting of +33, +62, +67, +76, +100, +101, +103, +104, +107, +128, +129, +130, +132, +135, +156, +158, +164, +166, +167, +170, +209, +215, +217, +218 and +222 in Bacillus amyloliquefaciens subtilisin with positions +210, +76, +103, +104, +156, and +166 being most preferred.
- the weight ratio of the chymotrypsin-like protease enzyme to the trypsin-like protease enzyme is from about 0.5:1 to about 10:1 and more preferably from about 1:1 to about 5:1.
- an amylase enzyme may be included or the cleaning adjunct ingredients are selected from the group consisting of builders, silicates, low-foaming nonionic surfactants, peroxide bleach sources, bleach activators, bleach catalysts and mixtures thereof.
- an automatic dishwashing composition having improved spotting/filming benefits is provided.
- the automatic dishwashing composition comprises the protease enzyme system substantially as described above or in preferred embodiments an automatic dishwashing composition comprising: a) from about 0.0001% to about 10% by weight of the composition of a protease enzyme cleaning system comprising the combination of at least one chymotrypsin-like protease enzyme and at least one trypsin-like protease enzyme with the at least one chymotrypsin-like protease having an enzyme activity ratio of sAAPF-pNA activity /bVGR-pN A activity of at least about 15 and the trypsin-like protease enzyme having an enzyme activity ratio of sAAPF-pNA activity bVGR- pNA activity of less than about 10.0;
- a method for cleaning dishes while preventing spotting or filming on the dishes comprising providing soiled dishes having milk-based food soils and treating the dishes with the compositions as disclosed above.
- protease enzyme system which delivers superior cleaning performance yet also provides superior spotting and filming benefits. It is a further object of the present invention to provide a cleaning composition including this superior protease enzyme system. It is a further object of the present invention to provide an automatic dishwashing composition including the protease enzyme system. And, it is still further an object of the present invention to provide a method for cleaning dishes by employing the superior protease enzyme system.
- the present invention involves a mixed protease enzyme system that is designed to deliver superior performance benefits in an automatic dishwashing environment.
- the mixed protease enzyme system involves the use of at least two different classes of protease enzyme.
- the first class is that of chymotrypsin-like protease enzymes. That is, protease enzymes which hydrolyze proteins by preferentially cleaving the peptide bonds of hydrophobic amino acid residues such as, for example, phenylalanine, tryptophan and tyrosine.
- These chymotryptic-like proteases are used in conjunction with the second class of protease enzyme, the trypsin-like proteases.
- Trypsin-like protease enzymes hydrolyze proteins by preferentially cleaving the peptide bonds of charged amino acid residues, such as arginine and lysine.
- the combination of enzymes from these two classes of protease provides a superior enzyme cleaning system for the automatic dishwashing environment.
- Substrate specificity is generally illustrated by the action of an enzyme on two synthetic substrates.
- An enzyme is placed in a solution with one of the two synthetic substrates.
- the capability of the enzyme in question to hydrolyze the synthetic substrate is then measured.
- the synthetic substrates employed to measure the specificity of the enzymes of the present invention are the synthetic substrate suc-AAPF-pNA and the synthetic substrate bVGR-pNA, both of which are available from SIGMA Chemicals. Both of these synthetic substrates are well-known to one of ordinary skill in the art.
- a protease in the class of enzymes having trypsin-like specificity preferentially hydrolyze the synthetic substrate bVGR-pNA but hydrolyze the synthetic substrate sucAAPF-pNA to a much lesser extent.
- chymotrypsin-like protease enzymes preferentially hydrolyze the synthetic substrate bVGR-pNA but hydrolyze suc-AAPF-pNA to a much lesser extent.
- the overall specificity of a protease enzyme can then be determined by measuring that enzyme's specificity against each of the synthetic substrates and then taking a ratio of that enzyme's activity on the two synthetic substrates. Accordingly, for the purposes of the present invention, the activity specificity ratio is determined by the formula:
- the • mixture is allowed to incubate for 15 minutes at 25 °C.
- an enzyme inhibitor PMSF
- PMSF an enzyme inhibitor
- the absorbency or OD value of the mixture is determined on a Gilford Response UV spectrometer, Model # 1019 read at a visible light 410 nm wavelength.
- the absorbance then indicates the activity of the enzyme on the synthetic substrate. The greater the absorbance, the higher the level of activity against that substrate. Accordingly, absorbance is equal to enzyme activity for purposes of the present invention.
- the mixed protease enzyme system of the present invention is employed in compositions at higher-end levels of from less than about 10%, more preferably less than about 5% and even more preferably less than about 2% and at lower-end levels of from greater than about 0.0001%, more preferably greater than about 0.1% and even more preferably greater than about 0.5% by weight of the composition.
- the ratio of chymotrypsin-like protease enzyme to trypsin- like protease enzyme ranges from about 0.5:1 to about 10:1, and more preferably from about 2:1 to about 5:1 and most preferably from about 1:1 to about 3:1.
- the protease enzyme is present in the compositions in an amount sufficient to provide a ratio of mg of active protease per 100 grams of composition to ppm theoretical Available O 2 ("AvO 2 ") from any peroxyacid in the wash liquor, referred to herein as the Enzyme to Bleach ratio (E/B ratio), ranging from about 1 : 1 to about 20: 1.
- E/B ratio the Enzyme to Bleach ratio
- the chymotrypsin-like enzymes are those which have an activity ratio, as defined above, of greater than about 15.
- preferred for this class of enzyme are non-naturally-occurring carbonyl hydrolase variants having an amino acid sequence not found in nature, which is derived by replacement of a plurality of amino acid residues corresponding to position +76 in combination with one or more of the following residues +99, +101, +103, +104, +107, +123, +27, +105, +109, +126, +128, +135, +195, +197, +204, +206, +216, +217, +218, +222, +260, +265, and/or +274 of a precursor carbonyl hydrolase with different amino acids, where the numbered position corresponds to naturally-occurring subtilisin from Bacillus amyloliquefaciens or to equivalent amino acid residues in other carbonyl hydrolases or subtilisins, such as Bacillus lentus subtilisin.
- the carbonyl hydrolase variants which are preferred chymotrypsin-like protease enzymes useful in the present invention compositions comprise replacement of amino acid residue in the following combinations: 76/99; 76/101; 76/103; 76/104; 76/107; 76/123; 76/99/101; 76/99/103; 76/99/104; 76/101/103; 76/101/104; 76/103/104; 76/104/107; 76/104/123; 76/107/123; 76/99/101/103; 76/99/101/104; 76/99/103/104; 76/101/103/104; 76/103/104/123; 76/104/107/123; 76/99/101/103/104; 76/99/103/104; 76/101/103/104; 76/103/104/123; 76/104/107/123; 76/99/101/103/104; 76/99/103/104/123 and/or 76/99/101/
- the variant enzymes useful for the present invention comprise the substitution, deletion or insertion of an amino acid residue in the following combination of residues: 76/99; 76/104; 76/99/104; 76/103/104; 76/104/107; 76/101/103/104; 76/99/101/103/104 and 76/101/104 of B. Lentus subtilisin with 76/103/104 being the most preferred.
- Such enzymes are fully described in U.S. Patent Application Serial Nos. 08/322,676 and 08/322,677, and in WO 95/10615 published April 20, 1995 by Genencor International, the disclosures of which are herein incorporated by reference.
- chymotrypsin-like protease enzymes suitable for use in the present invention include those obtained from a strain of Bacillus, having maximum activity throughout the pH range of 8-12, developed and sold as ESPERASE® by Novo Industries A/S of Denmark, hereinafter "Novo". The preparation of this enzyme and analogous enzymes is described in GB 1,243,784 to Novo.
- suitable proteases include ALCALASE® from Novo as well as the proteases known as BPN' and Carlsberg. Trypsin-like Enzymes
- the trypsin-like enzymes are those which have an activity ratio, as defined above, of less than about 10.
- Particularly suitable protease enzymes meeting the above requirement include microbial alkaline proteinases such as the protease enzyme obtained from Bacillus Lentus subtilisin and commercially available under the tradenames SAVINASE® from Novo and PURAFECT® from Genencor International.
- trypsin-like protease enzymes include those which are non-naturally-occurring carbonyl hydrolase variants which are derived by replacement of a plurality of amino acid residues of a precursor carbonyl hydrolase corresponding to position +210 in combination with one or more of the following residues: +33, +62, +67, +76, +100, +101, +103, +104, +107, +128, +129, +130, +132, +135, +156, +158, +164, +166, +167, +170, +209, +215, +217, +218, and +222, where the numbered position corresponds to naturally-occurring subtilisin from Bacillus amyloliquefaciens or to • equivalent amino acid residues in other carbonyl hydrolases or subtilisins, such as Bacillus lentus subtilisin with different amino acids.
- the preferred variant protease enzymes useful for the present invention comprise the substitution, deletion or insertion of amino acid residues in the following combinations: 210/156; 210/166; 210/76; 210/103; 210/104; 210/217; 210/156/166; 210/156/217; 210/166/217; 210/76/156; 210/76/166; 210/76/217; 210/76/156/217; 210/76/166/217; 210/76/103/156; 210/76/103/166; 210/76/103/217; 210/76/104/156; 210/76/104/166; 210/76/104/217; 210/76/103/104/156; 210/76/103/104/166; 210/76/103/104/166; 210/76/103/104/166; 210/76/103/104/217; 210/76/103/104/156; 210/76/103/104/166; 210/76/103/104/166;
- the variant enzymes useful for the present invention comprise the substitution, deletion or insertion of an amino acid residue in the following combination of residues: 210/156; 210/166; 210/217; 210/156/166; 210/156/217; 210/166/217; 210/76/156/166; 210/76/103/156/166 and 210/76/103/104/156/166 of B. lentus subtilisin with 210/76/103/104/156/166 being the most preferred.
- protease enzymes useful herein encompass the substitution of any of the nineteen naturally occurring L-amino acids at the designated amino acid residue positions. Such substitutions can be made in any precursor subtilisin (procaryotic, eucaryotic, mammalian, etc.). Throughout this application reference is made to various amino acids by way of common one- and three-letter codes. Such codes are identified in Dale, M.W. (1989), Molecular Genetics of Bacteria. John Wiley & Sons, Ltd., Appendix B.
- substitutions at position +210 including I, V, L, and A substitutions at positions +33, +62, +76, +100, +101, +103, +104, +107, +128, +129, +130, +132, +135, +156, +158, +164, +166, +167, +170, +209, +215, +217, and +218 of D or E, substitutions at position 76 including D, H, E, G, F, K, P and N; substitutions at position 103 including Q, T, D, E, Y, K, G, R and S; and substitutions at position 104 including S, Y, I, L, M, A, W, D, T, G and V; and substitutions at position 222 including S, C, A. Trypsin-like enzymes as described above are fully disclosed in U.S. Patent Application Serial No. , entitled "PROTEASE ENZY
- the protease enzyme system of the present invention provides • superior cleaning benefits, such as tough food cleaning, as well as superior spotting and filming benefits in automatic dishwashing. These benefits are particularly evident in compositions which also contain an oxygen bleaching system.
- cleaning compositions of the present invention also comprise, in addition to the protease enzyme system described hereinbefore, one or more cleaning adjunct materials compatible with the protease enzyme.
- cleaning adjunct materials means any liquid, solid or gaseous material selected for the particular type of cleaning composition desired and the form of the product (e.g., liquid; granule; spray composition), which materials are also compatible with the protease enzyme system used in the composition.
- the specific selection of cleaning adjunct materials are readily made by considering the surface, item or fabric to be cleaned, and the desired form of the composition for the cleaning conditions during use (e.g., through the wash detergent use).
- compatible means the cleaning composition materials do not reduce the proteolytic activity of the protease enzyme system to such an extent that the protease is not effective as desired during normal use situations.
- Specific cleaning composition materials are exemplified in detail hereinafter.
- compositions useful for cleaning a variety of surfaces in need of proteinaceous stain removal include detergent compositions for cleaning hard surfaces, unlimited in form (e.g., liquid and granular); detergent compositions for cleaning fabrics, unlimited in form (e.g., granular, liquid and bar formulations); dishwashing compositions (unlimited in form and including both granular and liquid automatic dishwashing); oral cleaning compositions, unlimited in form (e.g., dentifrice, toothpaste and mouthwash formulations); and denture cleaning compositions, unlimited in form (e.g., liquid, tablet).
- detergent compositions for cleaning hard surfaces unlimited in form (e.g., liquid and granular)
- detergent compositions for cleaning fabrics unlimited in form (e.g., granular, liquid and bar formulations)
- dishwashing compositions unlimited in form and including both granular and liquid automatic dishwashing
- oral cleaning compositions unlimited in form (e.g., dentifrice, toothpaste and mouthwash formulations)
- denture cleaning compositions unlimited in form (e.g.
- effective amount of protease enzyme system refers to the quantity of protease enzyme system described hereinbefore necessary to achieve the enzymatic activity necessary in the specific cleaning composition. Such effective amounts are readily ascertained by one of ordinary skill in the art and is based on many factors, such as the particular enzyme variant used, the cleaning application, the specific composition of the cleaning composition, and whether a liquid or dry (e.g., granular, bar) composition is required, and the like.
- the compositions of the present invention typically include from about 1% to about 99.9% by weight of the composition of the adjunct materials.
- Enzymes in addition to the herinbefore described protease enzyme system, can be included in the present compositions for a variety of purposes, including removal of protein-based, carbohydrate-based, or triglyceride-based stains from surfaces such as textiles or dishes, for the prevention of refugee dye transfer, for example in laundering, and for fabric restoration.
- Suitable enzymes include additional proteases, amylases, lipases, cellulases, peroxidases, and mixtures thereof of any suitable origin, such as vegetable, animal, bacterial, fungal and yeast origin. Preferred selections are influenced by factors such as pH-activity and/or stability optima, thermostability, and stability to active detergents, builders and the like.
- bacterial or fungal enzymes are preferred, such as bacterial amylases and proteases, and fungal cellulases.
- Detersive enzyme means any enzyme having a cleaning, stain removing or otherwise beneficial effect in a laundry, hard surface cleaning or personal care detergent composition.
- Preferred detersive enzymes are hydrolases such as proteases, amylases and lipases.
- Preferred enzymes for laundry purposes include, but are not limited to, proteases, cellulases, lipases and peroxidases.
- Highly preferred for automatic dishwashing are amylases and/or proteases, including both current commercially available types and improved types which, though more and more bleach compatible though successive improvements, have a remaining degree of bleach deactivation susceptibility.
- Enzymes are normally incorporated into detergent or detergent additive compositions at levels sufficient to provide a "cleaning-effective amount".
- cleaning effective amount refers to any amount capable of producing a cleaning, stain removal, soil removal, whitening, deodorizing, or freshness improving effect on substrates such as fabrics, dishware and the like.
- typical amounts are up to about 5 mg by weight, more typically 0.01 mg to 3 mg, of active enzyme per gram of the detergent composition.
- the compositions herein will typically comprise from 0.001% to 10%), preferably 0.01 %-5% by weight of a commercial enzyme preparation.
- Protease enzymes are usually present in such commercial preparations at levels sufficient to provide from 0.005 to 0.1 Anson units (AU) of activity per gram of composition.
- detergents such as in automatic dishwashing
- Higher active levels may also be desirable in highly concentrated detergent formulations.
- Amylases suitable herein, especially for, but not limited to automatic dishwashing purposes include, for example, ⁇ -amylases described in GB 1,296,839 to Novo; RAPIDASE®, International Bio-Synthetics, Inc. and TERMAMYL®, Novo. FUNGAMYL® from Novo is especially useful.
- Engineering of enzymes for improved stability, e.g., oxidative stability, is known. See, for example J. Biological Chem., Vol. 260, No. 11, June 1985, pp 6518-6521.
- Certain preferred embodiments of the present compositions can make use of amylases having improved stability in detergents such as automatic dishwashing types, especially improved oxidative stability as measured against a reference-point of TERMAMYL® in commercial use in 1993.
- These preferred amylases herein share the characteristic of being "stability- enhanced" amylases, characterized, at a minimum, by a measurable improvement in one or more of: oxidative stability, e.g., to hydrogen peroxide / tetraacetylethylenediamine in buffered solution at pH 9-10; thermal stability, e.g., at common wash temperatures such as about 60°C; or alkaline stability, e.g., at a pH from about 8 to about 11.5, measured versus the above-identified reference-point amylase.
- oxidative stability e.g., to hydrogen peroxide / tetraacetylethylenediamine in buffered solution at pH 9-10
- thermal stability e.g.,
- Stability can be measured using any of the art-disclosed technical tests. See, for example, references disclosed in WO 9402597. Stability-enhanced amylases can be obtained from Novo or from Genencor International. One class of highly preferred amylases herein have the commonality of being derived using site-directed mutagenesis from one or more of the Baccillus amylases, especially the Bacillus a- amylases, regardless of whether one, two or multiple amylase strains are the immediate precursors. Oxidative stability-enhanced amylases vs. the above- identified reference amylase are preferred for use, especially in bleaching, more preferably oxygen bleaching, as distinct from chlorine bleaching, detergent compositions herein.
- Such preferred amylases include (a) an amylase according to the hereinbefore inco ⁇ orated WO 9402597, Novo, Feb. 3, 1994, as further illustrated by a mutant in which substitution is made, using alanine or threonine, preferably threonine, of the methionine residue located in position 197 of the B.licheniformis alpha-amylase, known as TERMAMYL®, or the homologous position variation of a similar parent amylase, such as B. amyloliquefaciens, B.
- subtilis or B.stearothermophilus
- Met was substituted, one at a time, in positions 8, 15, 197, 256, 304, 366 and 438 leading to specific mutants, particularly important being M197L and M197T with the M197T variant being the most stable expressed variant. Stability was measured in CASCADE® and SUNLIGHT®; (c) particularly preferred amylases herein include amylase variants having additional modification in the immediate parent as described in WO 9510603 A and are available from the assignee, Novo, as DURAMYL®. Other particularly preferred oxidative stability enhanced amylase include those described in WO 9418314 to Genencor International and WO 9402597 to Novo.
- Any other oxidative stability-enhanced amylase can be used, for example as derived by site-directed mutagenesis from known chimeric, hybrid or simple mutant parent forms of available amylases. Other preferred enzyme modifications are accessible. See WO 9509909 A to Novo.
- Cellulases usable herein include both bacterial and fungal types, preferably having a pH optimum between 5 and 9.5.
- U.S. 4,435,307, Barbesgoard et al, March 6, 1984 discloses suitable fungal cellulases from Humicola insolens or Humicola strain DSM1800 or a cellulase 212-producing fungus belonging to the genus Aeromonas, and cellulase extracted from the hepatopancreas of a marine mollusk, Dolabella Auricula Solander. Suitable cellulases are also disclosed in GB-A- 2.075.028; GB-A-2.095.275 and DE-OS-2.247.832.
- CAREZYME® (Novo) is especially useful. See also WO 9117243 to Novo.
- Suitable lipase enzymes for detergent usage include those produced by microorganisms of the Pseudomonas group, such as Pseudomonas stutzeri ATCC 19.154, as disclosed in GB 1,372,034. See also lipases in Japanese Patent Application 53,20487, laid open Feb. 24, 1978. This lipase is available from Amano Pharmaceutical Co. Ltd., Nagoya, Japan, under the trade name Lipase P "Amano," or "Amano-P.”
- Other suitable commercial lipases include Amano-CES, lipases ex Chromobacter viscosum, e.g.
- Chromobacter viscosum var. lipolyticum NRRLB 3673 from Toyo Jozo Co., Tagata, Japan; Chromobacter viscosum lipases from U.S. Biochemical Co ⁇ ., U.S.A. and Disoynth Co., The Netherlands, and lipases ex Pseudomonas gladioli.
- Cutinase enzymes suitable for use herein are described in WO 8809367 A to Genencor.
- Peroxidase enzymes may be used in combination with oxygen sources, e.g., percarbonate, perborate, hydrogen peroxide, etc., for "solution bleaching" or prevention of transfer of dyes or pigments removed from substrates during the wash to other substrates present in the wash solution.
- oxygen sources e.g., percarbonate, perborate, hydrogen peroxide, etc.
- Known peroxidases include horseradish peroxidase, ligninase, and haloperoxidases such as chloro- or bromo- peroxidase.
- Peroxidase-containing detergent compositions are disclosed in WO 89099813 A, October 19, 1989 to Novo and WO 8909813 A to Novo.
- a range of enzyme materials and means for their incorporation into synthetic detergent compositions is also disclosed in WO 9307263 A and WO 9307260 A to Genencor International, WO 8908694 A to Novo, and U.S. 3,553,139, January 5, 1971 to McCarty et al. Enzymes are further disclosed in U.S. 4,101,457, Place et al, July 18, 1978, and in U.S. 4,507,219, Hughes, March 26, 1985. Enzyme materials useful for liquid detergent formulations, and their incorporation into such formulations, are disclosed in U.S. 4,261,868, Hora et al, April 14, 1981. Enzymes for use in detergents can be stabilized by various techniques.
- Enzyme stabilization techniques are disclosed and exemplified in U.S. 3,600,319, August 17, 1971, Gedge et al, EP 199,405 and EP 200,586, October 29, 1986, Venegas. Enzyme stabilization systems are also described, for example, in U.S. 3,519,570. A useful Bacillus, sp. AC 13 giving proteases, xylanases and cellulases, is described in WO 9401532 A to Novo.
- Enzyme Stabilizing System Enzyme-containing, including but not limited to, liquid compositions, herein may comprise from about 0.001% to about 10%, preferably from about 0.005%) to about 8%, most preferably from about 0.01%) to about 6%, by weight of an enzyme stabilizing system.
- the enzyme stabilizing system can be any stabilizing system which is compatible with the detersive enzyme. Such a system may be inherently provided by other formulation actives, or be added separately, e.g., by the formulator or by a manufacturer of detergent-ready enzymes.
- Such stabilizing systems can, for example, comprise calcium ion, boric acid, propylene glycol, short chain carboxylic acids, boronic acids, and mixtures thereof, and are designed to address different stabilization problems depending on the type and physical form of the detergent composition.
- One stabilizing approach is the use of water-soluble sources of calcium and/or magnesium ions in the finished compositions which provide such ions to the enzymes.
- Calcium ions are generally more effective than magnesium ions and are preferred herein if only one type of cation is being used.
- Typical detergent compositions, especially liquids will comprise from about 1 to about 30, preferably from about 2 to about 20, more preferably from about 8 to about 12 millimoles of calcium ion per liter of finished detergent composition, though variation is possible depending on factors including the multiplicity, type and levels of enzymes incorporated.
- Preferably water-soluble calcium or magnesium salts are employed, including for example calcium chloride, calcium hydroxide, calcium formate, calcium malate, calcium maleate, calcium hydroxide and calcium acetate; more generally, calcium sulfate or magnesium salts corresponding to the exemplified calcium salts may be used. Further increased levels of Calcium and/or Magnesium may of course be useful, for example for promoting the grease-cutting action of certain types of surfactant.
- Borate stabilizers when used, may be at levels of up to 10% or more of the composition though more typically, levels of up to about 3% by weight of boric acid or other borate compounds such as borax or orthoborate are suitable for liquid detergent use.
- Substituted boric acids such as phenylboronic acid, butaneboronic acid, p-bromophenylboronic acid or the like can be used in place of boric acid and reduced levels of total boron in detergent compositions may be possible though the use of such substituted boron derivatives.
- Stabilizing systems of certain cleaning compositions may further comprise from 0 to about 10%, preferably from about 0.01% to about 6% by weight, of chlorine bleach scavengers, added to prevent chlorine bleach species present in many water supplies from attacking and inactivating the enzymes, especially under alkaline conditions.
- chlorine bleach scavengers While chlorine levels in water may be small, typically in the range from about 0.5 ppm to about 1.75 ppm, the available chlorine in the total volume of water that comes in contact with the enzyme, for example during dish- or fabric-washing, can be relatively large; accordingly, enzyme stability to chlorine in-use is sometimes problematic.
- Suitable chlorine scavenger anions are widely known and readily available, and, if used, can be salts containing ammonium cations with sulfite, bisulfite, thiosulfite, thiosulfate, iodide, etc.
- Antioxidants such as carbamate, ascorbate, etc., organic amines such as ethylenediaminetetracetic acid (EDTA) or alkali metal salt thereof, monoethanolamine (MEA), and mixtures thereof can likewise be used.
- EDTA ethylenediaminetetracetic acid
- MEA monoethanolamine
- special enzyme inhibition systems can be inco ⁇ orated such that different enzymes have maximum compatibility.
- scavengers such as bisulfate, nitrate, chloride, sources of hydrogen peroxide such as sodium perborate tetrahydrate, sodium perborate monohydrate and sodium percarbonate, as well as phosphate, condensed phosphate, acetate, benzoate, citrate, formate, lactate, malate, tartrate, salicylate, etc., and mixtures thereof can be used if desired.
- the chlorine scavenger function can be performed by ingredients separately listed under better recognized functions, (e.g., hydrogen peroxide sources), there is no absolute requirement to add a separate chlorine scavenger unless a compound performing that function to the desired extent is absent from an enzyme-containing embodiment of the invention; even then, the scavenger is added only for optimum results.
- the formulator will exercise a chemist's normal skill in avoiding the use of any enzyme scavenger or stabilizer which is majorly incompatible, as formulated, with other reactive ingredients, if used.
- such salts can be simply admixed with the detergent composition but are prone to adsorb water and/or liberate ammonia during storage. Accordingly, such materials, if present, are desirably protected in a particle such as that described in US 4,652,392, Baginski et al.
- Detergent Salts are desirably protected in a particle such as that described in US 4,652,392, Baginski et al.
- the present invention may include a suitable builder or detergency salt.
- the level of detergent salt/builder can vary widely depending upon the end use of the composition and its desired physical form.
- the compositions will typically comprise at least about 1% builder and more typically from about 10% to about 80%, even more typically from about 15% to about 50%) by weight, of the builder. Lower or higher levels, however, are not meant to be excluded.
- Inorganic or P-containing detergent salts include, but are not limited to, the alkali metal, ammonium and alkanolammonium salts of polyphosphates (exemplified by the tripolyphosphates, pyrophosphates, and glassy polymeric meta- phosphates), phosphonates, phytic acid, silicates, carbonates (including bicarbonates and sesquicarbonates), sulphates, and aluminosilicates.
- polyphosphates exemplified by the tripolyphosphates, pyrophosphates, and glassy polymeric meta- phosphates
- phosphonates phosphonates
- phytic acid e.g., silicates
- carbonates including bicarbonates and sesquicarbonates
- sulphates sulphates
- aluminosilicates aluminosilicates.
- non-phosphate salts are required in some locales.
- compositions herein function even in the presence of the so-called “weak” builders (as compared with phosphates) such as citrate, or in the so-called “underbuilt” situation that may occur with zeolite or layered silicate builders.
- silicate builders are the alkali metal silicates, particularly those having a SiO 2 :Na 2 O ratio in the range 1.6:1 to 3.2:1 and layered silicates, such as the layered sodium silicates described in U.S. Patent 4,664,839, issued May 12, 1987 to H. P. Rieck.
- NaSKS-6 is the trademark for a crystalline layered silicate marketed by Hoechst (commonly abbreviated herein as "SKS-6").
- Hoechst commonly abbreviated herein as "SKS-6”
- the Na SKS-6 silicate builder does not contain aluminum.
- NaSKS-6 has the delta-Na 2 Si ⁇ 5 mo ⁇ hology form of layered silicate.
- SKS-6 is a highly preferred layered silicate for use herein, but other such layered silicates, such as those having the general formula NaMSi x O x + ⁇ -yH 2 O wherein M is sodium or hydrogen, x is a number from 1.9 to 4, preferably 2, and y is a number from 0 to 20, preferably 0 can be used herein.
- Various other layered silicates from Hoechst include NaSKS-5, NaSKS-7 and NaSKS-11, as the alpha, beta and gamma forms.
- delta-Na 2 Si ⁇ 5 (NaSKS-6 form) is most preferred for use herein.
- Other silicates may also be useful such as for example magnesium silicate, which can serve as a crispening agent in granular formulations, as a stabilizing agent for oxygen bleaches, and as a component of suds control systems.
- carbonate salts as builders are the alkaline earth and alkali metal carbonates as disclosed in German Patent Application No. 2,321,001 published on November 15, 1973.
- Aluminosilicate builders may also be added to the present invention as a detergent salt.
- Aluminosilicate builders are of great importance in most currently marketed heavy duty granular detergent compositions.
- Aluminosilicate builders include those having the empirical formula:
- aluminosilicate ion exchange materials are commercially available. These aluminosilicates can be crystalline or amo ⁇ hous in structure and can be naturally-occurring aluminosilicates or synthetically derived. A method for producing aluminosilicate ion exchange materials is disclosed in U.S. Patent 3,985,669, Krummel, et al, issued October 12, 1976. Preferred synthetic crystalline aluminosilicate ion exchange materials useful herein are available under the designations Zeolite A, Zeolite P (B), Zeolite MAP and Zeolite X. In an especially preferred embodiment, the crystalline aluminosilicate ion exchange material has the formula:
- x is from about 20 to about 30, especially about 27.
- This material is known as Zeolite A.
- the aluminosilicate has a particle size of about 0.1-10 microns in diameter.
- Organic detergent builders suitable for the piuposes of the present invention include, but are not restricted to, a wide variety of polycarboxylate compounds.
- polycarboxylate refers to compounds having a plurality of carboxylate groups, preferably at least 3 carboxylates.
- Polycarboxylate builder can generally be added to the composition in acid form, but can also be added in the form of a neutralized salt. When utilized in salt form, alkali metals, such as sodium, potassium, and lithium, or alkanolammonium salts are preferred.
- polycarboxylate builders include a variety of categories of useful materials.
- One important category of polycarboxylate builders encompasses the ether polycarboxylates, including oxydisuccinate, as disclosed in Berg, U.S. Patent 3,128,287, issued April 7, 1964, and Lamberti et al, U.S. Patent 3,635,830, issued January 18, 1972. See also "TMS/TDS" builders of U.S. Patent 4,663,071, issued to Bush et al, on May 5, 1987.
- Suitable ether polycarboxylates also include cyclic compounds, particularly alicyclic compounds, such as those described in U.S. Patents 3,923,679; 3,835,163; 4,158,635; 4,120,874 and 4,102,903.
- ether hydroxypolycarboxylates copolymers of maleic anhydride with ethylene or vinyl methyl ether, 1, 3, 5- trihydroxy benzene-2, 4, 6-trisulphonic acid, and carboxymethyloxysuccinic acid
- various alkali metal, ammonium and substituted ammonium salts of polyacetic acids such as ethylenediamine tetraacetic acid and nitrilotriacetic acid
- polycarboxylates such as mellitic acid, succinic acid, oxydisuccinic acid, polymaleic acid, benzene 1,3,5-tricarboxylic acid, carboxymethyloxysuccinic acid, and soluble salts thereof.
- Citrate builders e.g., citric acid and soluble salts thereof (particularly sodium salt), are polycarboxylate builders of particular importance. Oxydisuccinates are also especially useful in such compositions and combinations.
- succinic acid builders include the C5-C 2 Q alkyl and alkenyl succinic acids and salts thereof.
- a particularly preferred compound of this type is dodecenylsuccinic acid.
- succinate builders include: laurylsuccinate, myristylsuccinate, palmitylsuccinate, 2- dodecenylsuccinate (preferred), 2-pentadecenylsuccinate, and the like. Laurylsuccinates are the preferred builders of this group, and are described in European Patent Application 86200690.5/0,200,263, published November 5, 1986.
- Fatty acids e.g., C ⁇ -Cjg monocarboxylic acids
- the aforesaid builders especially citrate and/or the succinate builders, to provide additional builder activity.
- Such use of fatty acids will generally result in a diminution of sudsing, which should be taken into account by the formulator.
- Detersive surfactants included in the fully-formulated detergent compositions afforded by the present invention comprises at least 0.01%, preferably from about 0.5% to about 50%), by weight of detergent composition depending upon the particular surfactants used and the desired effects.
- the detersive surfactant comprises from about 0.5% to about 20% by weight of the composition.
- the detersive surfactant can be nonionic, anionic, ampholytic, zwitterionic, or cationic. Mixtures of these surfactants can also be used.
- Preferred detergent compositions comprise anionic detersive surfactants or mixtures of anionic surfactants with other surfactants, especially nonionic surfactants.
- Nonlimiting examples of surfactants useful herein include the conventional Cn-Cjg alkyl benzene sulfonates and primary, secondary and random alkyl sulfates, the C10-C18 alkyl alkoxy sulfates, the CJO-C I S alkyl polyglycosides and their corresponding sulfated polyglycosides, Cj -Ci8 alpha-sulfonated fatty acid esters, C ⁇ 2 -C ⁇ g alkyl and alkyl phenol alkoxylates (especially ethoxylates and mixed ethoxy/propoxy), Cj -Ci8 betaines and sulfobetaines ("sultaines”), Cio-Cjg amine oxides, and the like. Other conventional useful surfactants are listed in standard texts.
- Particularly preferred surfactants in the preferred automatic dishwashing compositions (ADD) of the present invention are low foaming nonionic surfactants (LFNI).
- LFNI low foaming nonionic surfactants
- LFNI may be present in amounts from 0.01 % to about 10% by weight, preferably from about 0.1% to about 10%, and most preferably from about 0.25% to about 4%.
- LFNIs are most typically used in ADDs on account of the improved water-sheeting action (especially from glass) which they confer to the ADD product. They also encompass non-silicone, nonphosphate polymeric materials further illustrated hereinafter which are known to defoam food soils encountered in automatic dishwashing.
- Preferred LFNIs include nonionic alkoxylated surfactants, especially ethoxylates derived from primary alcohols, and blends thereof with more sophisticated surfactants, such as the polyoxypropylene/polyoxyethylene/polyoxypropylene (PO/EO/PO) reverse block polymers.
- PO/EO/PO polymer-type surfactants are well-known to have foam suppressing or defoaming action, especially in relation to common food soil ingredients such as egg.
- the invention encompasses preferred embodiments wherein LFNI is present, and wherein this component is solid at about 95°F (35°C), more preferably solid at about 77°F (25°C).
- a preferred LFNI has a melting point between about 77°F (25°C) and about 140°F (60°C), more preferably between about 80°F (26.6°C) and 110°F (43.3°C).
- the LFNI is an ethoxylated surfactant derived from the reaction of a monohydroxy alcohol or alkylphenol containing from about 8 to about 20 carbon atoms, with from about 6 to about 15 moles of ethylene oxide per mole of alcohol or alkyl phenol on an average basis.
- a particularly preferred LFNI is derived from a straight chain fatty alcohol containing from about 16 to about 20 carbon atoms (Ci 6-C 2 o alcohol), preferably a Ci g alcohol, condensed with an average of from about 6 to about 15 moles, preferably from about 7 to about 12 moles, and most preferably from about 7 to about 9 moles of ethylene oxide per mole of alcohol.
- the ethoxylated nonionic surfactant so derived has a narrow ethoxylate distribution relative to the average.
- the LFNI can optionally contain propylene oxide in an amount up to about 15% by weight.
- Other preferred LFNI surfactants can be prepared by the processes described in U.S. Patent 4,223,163, issued September 16, 1980, Builloty, inco ⁇ orated herein by reference.
- Highly preferred ADDs herein wherein the LFNI is present make use of ethoxylated monohydroxy alcohol or alkyl phenol and additionally comprise a polyoxyethylene, polyoxypropylene block polymeric compound; the ethoxylated monohydroxy alcohol or alkyl phenol fraction of the LFNI comprising from about 20%) to about 100%, preferably from about 30% to about 70%, of the total LFNI.
- Suitable block polyoxyethylene-polyoxypropylene polymeric compounds that meet the requirements described hereinbefore include those based on ethylene glycol, propylene glycol, glycerol, trimethylolpropane and ethylenediamine as initiator reactive hydrogen compound.
- Certain of the block polymer surfactant compounds designated PLURONIC® and TETRONIC® by the BASE- Wyandotte Co ⁇ ., Wyandotte, Michigan, are suitable in ADD compositions of the invention.
- a particularly preferred LFNI contains from about 40% to about 70% of a polyoxypropylene/polyoxyethylene/polyoxypropylene block polymer blend comprising about 75%, by weight of the blend, of a reverse block co-polymer of polyoxyethylene and polyoxypropylene containing 17 moles of ethylene oxide and 44 moles of propylene oxide; and about 25%, by weight of the blend, of a block co- polymer of polyoxyethylene and polyoxypropylene initiated with trimethylolpropane and containing 99 moles of propylene oxide and 24 moles of ethylene oxide per mole of trimethylolpropane.
- LFNI LFNI
- Cloud points of 1% solutions in water are typically below about 32°C and preferably lower, e.g., 0°C, for optimum control of sudsing throughout a full range of water temperatures.
- LFNIs which may also be used include those POLY-TERGENT® SLF-18 nonionic surfactants from Olin Co ⁇ ., and any biodegradable LFNI having the melting point properties discussed hereinabove.
- ADD compositions comprising mixed surfactants wherein the sudsing (absent any silicone suds controlling agent) is less than 2 inches, preferably less than 1 inch, as determined by the disclosure below.
- the equipment useful for these measurements are: a Whirlpool Dishwasher (model 900) equipped with clear plexiglass door, IBM computer data collection with Labview and Excel Software, proximity sensor (Newark Co ⁇ . - model 95F5203) using SCXI interface, and a plastic ruler.
- the data is collected as follows.
- the proximity sensor is affixed to the bottom dishwasher rack on a metal bracket.
- the sensor faces downward toward the rotating dishwasher arm on the bottom of the machine (distance approximately 2 cm. from the rotating arm).
- Each pass of the rotating arm is measured by the proximity sensor and recorded.
- the pulses recorded by the computer are converted to rotations per minute (RPM) of the bottom arm by counting pulses over a 30 second interval.
- RPM rotations per minute
- the plastic ruler is clipped to the bottom rack of the dishwasher and extends to the floor of the machine. At the end of the wash cycle, the height of the suds is measured using the plastic ruler (viewed through the clear door) and recorded as suds height.
- the machine is filled with water (adjust water for appropriate temperature and hardness) and proceed through a rinse cycle.
- the RPM is monitored throughout the cycle (approximately 2 min.) without any ADD product (or surfactants) being added (a quality control check to ensure the machine is functioning properly).
- the water is again adjusted for temperature and hardness, and then the ADD product is added to the bottom of the machine (in the case of separately evaluated surfactants, the ADD base formula is first added to the bottom of the machine then the surfactants are added by placing the surfactant-containing glass vials inverted on the top rack of the machine).
- the RPM is then monitored throughout the wash cycle. At the end of the wash cycle, the suds height is recorded using the plastic ruler.
- the machine is again filled with water (adjust water for appropriate temperature and hardness) and runs through another rinse cycle. The RPM is monitored throughout this cycle.
- An average RPM is calculated for the 1st rinse, main wash, and final rinse.
- the %RPM efficiency is then calculated by dividing the average RPM for the test surfactants into the average RPM for the control system (base ADD formulation without the nonionic surfactant).
- the RPM efficiency and suds height measurements are used to dimension the overall suds profile of the surfactant.
- Hydrogen peroxide sources are described in detail in the herein inco ⁇ orated Kirk Othmer's Encyclopedia of Chemical Technology, 4th Ed (1992, John Wiley & Sons), Vol. 4, pp. 271-300 "Bleaching Agents (Survey)", and include the various forms of sodium perborate and sodium percarbonate, including various coated and modified forms.
- An "effective amount" of a source of hydrogen peroxide is any amount capable of measurably improving stain removal (especially of tea stains) from soiled dishware compared to a hydrogen peroxide source-free composition when the soiled dishware is washed by the consumer in a domestic automatic dishwasher in the presence of alkali.
- a source of hydrogen peroxide herein is any convenient compound or mixture which under consumer use conditions provides an effective amount of hydrogen peroxide. Levels may vary widely and are usually in the range from about 0.1% to about 70%, more typically from about 0.5% to about 30%, by weight of the ADD compositions herein.
- the preferred source of hydrogen peroxide used herein can be any convenient source, including hydrogen peroxide itself.
- perborate e.g., sodium perborate (any hydrate but preferably the mono- or tetra-hydrate), sodium carbonate peroxyhydrate or equivalent percarbonate salts, sodium pyrophosphate peroxyhydrate, urea peroxyhydrate, or sodium peroxide
- sources of available oxygen such as persulfate bleach (e.g., OXONE, manufactured by DuPont).
- Sodium perborate monohydrate and sodium percarbonate are particularly preferred. Mixtures of any convenient hydrogen peroxide sources can also be used.
- a preferred percarbonate bleach comprises dry particles having an average particle size in the range from about 500 micrometers to about 1,000 micrometers, not more than about 10% by weight of said particles being smaller than about 200 micrometers and not more than about 10% by weight of said particles being larger than about 1,250 micrometers.
- the percarbonate can be coated with a silicate, borate or water-soluble surfactants.
- Percarbonate is available from various commercial sources such as FMC, Solvay and Tokai Denka.
- compositions of the present invention may also comprise as the bleaching agent a chlorine-type bleaching material.
- a chlorine-type bleaching material include for example sodium dichloroisocyanurate (“NaDCC").
- ADD compositions herein may comprise only the nonionic surfactant and builder
- fully-formulated ADD compositions typically will also comprise other automatic dishwashing detergent adjunct materials to improve or modify performance. These materials are selected as appropriate for the properties required of an automatic dishwashing composition.
- low spotting and filming is desired — preferred compositions have spotting and filming grades of 3 or less, preferably less than 2, and most preferably less than 1, as measured by the standard test of The American Society for Testing and Materials (“ASTM”) D3556- 85 (Reapproved 1989) "Standard Test Method for Deposition on Glassware During Mechanical Dishwashing".
- the peroxygen bleach component in the composition is formulated with an activator (peracid precursor).
- the activator is present at levels of from about 0.01% to about 15%, preferably from about 0.5%) to about 10%, more preferably from about 1% to about 8%, by weight of the composition.
- Preferred activators are selected from the group consisting of tetraacetyl ethylene diamine (TAED), benzoylcaprolactam (BzCL), 4-nitrobenzoylcaprolactam, 3-chlorobenzoyl- caprolactam, benzoyloxybenzenesulphonate (BOBS), nonanoyloxybenzene- sulphonate (NOBS), phenyl benzoate (PhBz), decanoyloxybenzenesulphonate (CJO- OBS), benzoylvalerolactam (BZVL), octanoyloxybenzenesulphonate (Cg-OBS), perhydrolyzable esters and mixtures thereof, most preferably benzoylcaprolactam and benzoylvalerolactam.
- Particularly preferred bleach activators in the pH range from about 8 to about 9.5 are those selected having an OBS or VL leaving group.
- Preferred bleach activators are those described in U.S. Patent 5,130,045, Mitchell et al, and 4,412,934, Chung et al, and copending patent applications U. S. Serial Nos. 08/064,624, 08/064,623, 08/064,621, 08/064,562, 08/064,564, 08/082,270 and copending application to M. Burns, A. D. Willey, R. T. Hartshorn, C. K. Ghosh, entitled "Bleaching Compounds Comprising Peroxyacid Activators Used With Enzymes" and having U.S. Serial No. 08/133,691 (P&G Case 4890R), all of which are inco ⁇ orated herein by reference.
- the mole ratio of peroxygen bleaching compound (as AvO) to bleach activator in the present invention generally ranges from at least 1 :1, preferably from about 20:1 to about 1 :1, more preferably from about 10:1 to about 3:1.
- Quaternary substituted bleach activators may also be included.
- the present detergent compositions preferably comprise a quaternary substituted bleach activator (QSBA) or a quaternary substituted peracid (QSP); more preferably, the former.
- QSBA quaternary substituted bleach activator
- QSP quaternary substituted peracid
- a diacyl peroxide it will preferably be one which exerts minimal adverse impact on spotting/filming.
- compositions and methods utilize metal-containing bleach catalysts that are effective for use in ADD compositions.
- Preferred are manganese and cobalt-containing bleach catalysts.
- One type of metal-containing bleach catalyst is a catalyst system comprising a transition metal cation of defined bleach catalytic activity, such as copper, iron, titanium, ruthenium tungsten, molybdenum, or manganese cations, an auxiliary metal cation having little or no bleach catalytic activity, such as zinc or aluminum cations, and a sequestrate having defined stability constants for the catalytic and auxiliary metal cations, particularly ethylenediaminetetraacetic acid, ethylenediaminetetra (methylenephosphonic acid) and water-soluble salts thereof.
- a transition metal cation of defined bleach catalytic activity such as copper, iron, titanium, ruthenium tungsten, molybdenum, or manganese cations
- an auxiliary metal cation having little or no bleach catalytic activity such as zinc or aluminum cations
- a sequestrate having defined stability constants for the catalytic and auxiliary metal cations, particularly ethylenediaminetetraacetic acid
- bleach catalysts include the manganese-based complexes disclosed in U.S. Pat. 5,246,621 and U.S. Pat. 5,244,594. Preferred examples of theses catalysts include Mn ⁇ 2 (u-O)3(l,4,7-trimethyl-l,4,7-triazacyclononane) 2 - (PF 6 ) 2 ("MnTACN"), Mn ⁇ 2 (u-O) ⁇ (u-O Ac) ( 1 ,4,7-trimethyl- 1 ,4,7-triazacyclono- nane) -(C104) 2 , Mn IV 4(u-O)6(l ,4,7-triazacyclononane)4-(ClO4) 2 , Mn m Mn IV 4(u- O) ⁇ (u-O Ac) 2 ( 1 ,4,7-trimethyl- 1 ,4,7-triazacyclononane) 2 -(ClO4)3 , and mixtures thereof.
- MnTACN Mn
- ligands suitable for use herein include l,5,9-trimethyl-l,5,9-triazacyclododecane, 2- methyl-l,4,7-triazacyclononane, 2-methyl-l,4,7-triazacyclononane, and mixtures thereof.
- the bleach catalysts useful in automatic dishwashing compositions and concentrated powder detergent compositions may also be selected as appropriate for the present invention.
- suitable bleach catalysts see U.S. Pat. 4,246,612 and U.S. Pat. 5,227,084.
- bleach catalysts are described, for example, in European patent application, publication no. 408,131 (cobalt complex catalysts), European patent applications, publication nos. 384,503, and 306,089 (metallo-po ⁇ hyrin catalysts), U.S. 4,728,455 (manganese/multidentate ligand catalyst), U.S. 4,711,748 and European patent application, publication no. 224,952, (absorbed manganese on aluminosilicate catalyst), U.S. 4,601,845 (aluminosilicate support with manganese and zinc or magnesium salt), U.S. 4,626,373 (manganese/ligand catalyst), U.S. 4,1 19,557 (ferric complex catalyst), German Pat.
- the preferred cobalt catalyst of this type useful herein are cobalt pentaamine chloride salts having the formula [Co(NH3)5Cl] Y v , and especially [Co(NH 3 ) 5 Cl]Cl 2 .
- T are selected from the group consisting of chloride, iodide, I 3 ", formate, nitrate, nitrite, sulfate, sulfite, citrate, acetate, carbonate, bromide, PFg", BF4", B(Ph)4", phosphate, phosphite, silicate, tosylate, methanesulfonate, and combinations thereof.
- T can be protonated if more than one anionic group exists in T, e.g., HPO42-, HCO 3 ", H 2 PO4 ⁇ , etc.
- T may be selected from the group consisting of non-traditional inorganic anions such as anionic surfactants (e.g., linear alkylbenzene sulfonates (LAS), alkyl sulfates (AS), alkylethoxysulfonates (AES), etc.) and or anionic polymers (e.g., polyacrylates, polymethacrylates, etc.).
- anionic surfactants e.g., linear alkylbenzene sulfonates (LAS), alkyl sulfates (AS), alkylethoxysulfonates (AES), etc.
- anionic polymers e.g., polyacrylates, polymethacrylates, etc.
- the M moieties include, but are not limited to, for example, F", SO4"2, NCS” , SCN", S 2 O 3 ⁇ 2, NH3, PO43-, and carboxylates (which preferably are mono- carboxylates, but more than one carboxylate may be present in the moiety as long as the binding to the cobalt is by only one carboxylate per moiety, in which case the other carboxylate in the M moiety may be protonated or in its salt form).
- carboxylates which preferably are mono- carboxylates, but more than one carboxylate may be present in the moiety as long as the binding to the cobalt is by only one carboxylate per moiety, in which case the other carboxylate in the M moiety may be protonated or in its salt form).
- M can be protonated if more than one anionic group exists in M (e.g., HPO4 2 -, HCO 3 -, H2PO4-, HOC(O)CH 2 C(O)O-, etc.)
- Preferred M moieties are substituted and unsubstituted C1-C30 carboxylic acids having the formulas:
- R is preferably selected from the group consisting of hydrogen and Cl"C 3 o (preferably Cj-Cig) unsubstituted and substituted alkyl, Cg-C 3 Q (preferably C ⁇ -Cjg) unsubstituted and substituted aryl, and C 3 -C 3 Q (preferably C5- Cjg) unsubstituted and substituted heteroaryl, wherein substituents are selected from the group consisting of -NR' 3 , -NR'4+, -C(O)OR', -OR', -C(O)NR' 2 , wherein R' is selected from the group consisting of hydrogen and C1 -C6 moieties.
- Such substituted R therefore include the moieties -(CH 2 ) n OH and -(CH ) n NR'4 + , wherein n is an integer from 1 to about 16, preferably from about 2 to about 10, and most preferably from about 2 to about 5.
- M are carboxylic acids having the formula above wherein R is selected from the group consisting of hydrogen, methyl, ethyl, propyl, straight or branched C4-C ⁇ 2 alkyl, and benzyl. Most preferred R is methyl.
- Preferred carboxylic acid M moieties include formic, benzoic, octanoic, nonanoic, decanoic, dodecanoic, malonic, maleic, succinic, adipic, phthalic, 2-ethylhexanoic, naphthenoic, oleic, palmitic, triflate, tartrate, stearic, butyric, citric, acrylic, aspartic, fumaric, lauric, linoleic, lactic, malic, and especially acetic acid.
- the B moieties include carbonate, di- and higher carboxylates (e.g., oxalate, malonate, malic, succinate, maleate), picolinic acid, and alpha and beta amino acids (e.g., glycine, alanine, beta-alanine, phenylalanine).
- carboxylates e.g., oxalate, malonate, malic, succinate, maleate
- picolinic acid e.g., glycine, alanine, beta-alanine, phenylalanine.
- Cobalt bleach catalysts useful herein are known, being described for example along with their base hydrolysis rates, in M. L. Tobe, "Base Hydrolysis of Transition-Metal Complexes", Adv. Inorg. Bioinorg. Mech.. (1983), 2, pages 1-94.
- cobalt pentaamine acetate salts having the formula [Co(NH 3 )5OAc] T v , wherein OAc represents an acetate moiety, and especially cobalt pentaamine acetate chloride, [Co(NH 3 )5OAc]Cl ; as well as [Co(NH 3 ) 5 OAc](OAc) 2 ; [Co(NH 3 ) 5 OAc](PF 6 ) 2 ; [Co(NH 3 ) 5 OAc](SO 4 ); [Co. (NH 3 ) 5 OAc](BF 4 ) 2 ; and [Co(NH 3 ) 5 OAc](NO 3 ) 2 .
- catalysts may be coprocessed with adjunct materials so as to reduce the color impact if desired for the aesthetics of the product, or to be included in enzyme-containing particles as exemplified hereinafter, or the compositions may be manufactured to contain catalyst "speckles".
- the cleaning compositions and cleaning processes herein can be adjusted to provide on the order of at least one part per hundred million of the active bleach catalyst species in the aqueous washing medium, and will preferably provide from about 0.01 ppm to about 25 ppm, more preferably from about 0.05 ppm to about 10 ppm, and most preferably from about 0.1 ppm to about 5 ppm, of the bleach catalyst species in the wash liquor.
- typical automatic dishwashing compositions herein will comprise from about 0.0005% to about 0.2%, more preferably from about 0.004% to about 0.08%, of bleach catalyst by weight of the cleaning compositions.
- compositions herein will be buffered, i.e., they are relatively resistant to pH drop in the presence of acidic soils. However, other compositions herein may have exceptionally low buffering capacity, or may be substantially unbuffered. Techniques for controlling or varying pH at recommended usage levels more generally include the use of not only buffers, but also additional alkalis, acids, pH-jump systems, dual compartment containers, etc., and are well known to those skilled in the art.
- the preferred ADD compositions herein comprise a pH-adjusting component selected from water-soluble alkaline inorganic salts and water-soluble organic or inorganic builders.
- the pH-adjusting components are selected so that when the ADD is dissolved in water at a concentration of l 000 - 10,000 ppm, the pH remains in the range of above about 8, preferably from about 9.5 to about 1 1.
- the preferred nonphosphate pH-adjusting component of the invention is selected from the group consisting of:
- sodium carbonate or sesquicarbonate sodium silicate, preferably hydrous sodium silicate having SiO 2 :Na 2 O ratio of from about 1 :1 to about 2:1, and mixtures thereof with limited quantities of sodium metasilicate;
- sodium citrate sodium citrate
- citric acid sodium bicarbonate
- sodium borate preferably borax
- sodium hydroxide sodium hydroxide
- Preferred embodiments contain low levels of silicate (i.e. from about 3% to about 10% SiO 2 ).
- Illustrative of highly preferred pH-adjusting component systems are binary mixtures of granular sodium citrate with anhydrous sodium carbonate, and three- component mixtures of granular sodium citrate trihydrate, citric acid monohydrate and anhydrous sodium carbonate.
- the amount of the pH adjusting component in the instant ADD compositions is preferably from about 1% to about 50%), by weight of the composition.
- the pH-adjusting component is present in the ADD composition in an amount from about 5%> to about 40%, preferably from about 10% to about 30%), by weight.
- compositions herein having a pH between about 9.5 and about 11 of the initial wash solution particularly preferred ADD embodiments comprise, by weight of ADD, from about 5% to about 40%, preferably from about 10% to about 30%, most preferably from about 15% to about 20%, of sodium citrate with from about 5% to about 30%, preferably from about 7% to 25%, most preferably from about 8% to about 20% sodium carbonate.
- ADD a pH between about 9.5 and about 11 of the initial wash solution
- particularly preferred ADD embodiments comprise, by weight of ADD, from about 5% to about 40%, preferably from about 10% to about 30%, most preferably from about 15% to about 20%, of sodium citrate with from about 5% to about 30%, preferably from about 7% to 25%, most preferably from about 8% to about 20% sodium carbonate.
- the present automatic dishwashing detergent compositions may further comprise water-soluble silicates.
- Water-soluble silicates herein are any silicates which are soluble to the extent that they do not adversely affect spotting/filming characteristics of the ADD composition.
- silicates are sodium metasilicate and, more generally, the alkali metal silicates, particularly those having a SiO 2 :Na 2 O ratio in the range 1.6:1 to 3.2:1; and layered silicates, such as the layered sodium silicates described in U.S. Patent 4,664,839, issued May 12, 1987 to H. P. Rieck.
- NaSKS-6® is a crystalline layered silicate marketed by Hoechst (commonly abbreviated herein as "SKS-6").
- Hoechst commonly abbreviated herein as "SKS-6"
- Na SKS-6 and other water-soluble silicates useful herein do not contain aluminum.
- NaSKS-6 is the ⁇ -Na 2 Si ⁇ 5 form of layered silicate and can be prepared by methods such as those described in German DE-A-3 ,417,649 and DE-A-3 ,742,043.
- SKS-6 is a preferred layered silicate for use herein, but other such layered silicates, such as those having the general formula NaMSi x O 2x - ⁇ -i yH 2 O wherein M is sodium or hydrogen, x is a number from 1.9 to 4, preferably 2, and y is a number from 0 to 20, preferably 0 can be used.
- Various other layered silicates from Hoechst include NaSKS-5, NaSKS-7 and NaSKS-11, as the ⁇ -, ⁇ - and ⁇ - forms.
- Other silicates may also be useful, such as for example magnesium silicate, which can serve as a crispening agent in granular formulations, as a stabilizing agent for oxygen bleaches, and as a component of suds control systems.
- Silicates particularly useful in automatic dishwashing (ADD) applications include granular hydrous 2-ratio silicates such as BRITESIL® H20 from PQ Co ⁇ ., and the commonly sourced BRITESIL® H24 though liquid grades of various silicates can be used when the ADD composition has liquid form. Within safe limits, sodium metasilicate or sodium hydroxide alone or in combination with other silicates may be used in an ADD context to boost wash pH to a desired level.
- Material Care Agents such as BRITESIL® H20 from PQ Co ⁇ .
- the preferred ADD compositions may contain one or more material care agents which are effective as corrosion inhibitors and/or anti-tarnish aids.
- material care agents include metasilicate, silicate, bismuth salts, manganese salts, paraffin, triazoles, pyrazoles, thiols, mercaptans, aluminum fatty acid salts, and mixtures thereof.
- Suitable corrosion inhibitors include paraffin oil, typically a predominantly branched aliphatic hydrocarbon having a number of carbon atoms in the range of from about 20 to about 50; preferred paraffin oil is selected from predominantly branched C 2 5- 45 species with a ratio of cyclic to noncyclic hydrocarbons of about 32:68.
- a paraffin oil meeting those characteristics is sold by Wintershall, Salzbergen, Germany, under the trade name WINOG 70.
- the addition of low levels of bismuth nitrate i.e., Bi(NO 3 ) 3
- Bi(NO 3 ) 3 bismuth nitrate
- corrosion inhibitor compounds include benzotriazole and comparable compounds; mercaptans or thiols including thionaphtol and thioanthranol; and finely divided Aluminum fatty acid salts, such as aluminum tristearate.
- the formulator will recognize that such materials will generally be used judiciously and in limited quantities so as to avoid any tendency to produce spots or films on glassware or to compromise the bleaching action of the compositions. For this reason, mercaptan anti-tarnishes which are quite strongly bleach-reactive and common fatty carboxylic acids which precipitate with calcium in particular are preferably avoided.
- Adjunct Materials include benzotriazole and comparable compounds; mercaptans or thiols including thionaphtol and thioanthranol; and finely divided Aluminum fatty acid salts, such as aluminum tristearate.
- Detersive ingredients or adjuncts optionally included in the instant compositions can include one or more materials for assisting or enhancing cleaning performance, treatment of the substrate to be cleaned, or designed to improve the aesthetics of the compositions.
- Adjuncts which can also be included in compositions of the present invention, at their conventional art-established levels for use (generally, adjunct materials comprise, in total, from about 30% to about 99.9%, preferably from about 10% to about 95%, by weight of the compositions), include other active ingredients such as non-phosphate builders, chelants, enzymes, suds suppressors, dispersant polymers (e.g., from BASF Co ⁇ .
- filler materials can also be present in the instant ADDs. These include sucrose, sucrose esters, sodium sulfate, potassium sulfate, etc., in amounts up to about 70%), preferably from 0% to about 40% of the ADD composition.
- Preferred filler is sodium sulfate, especially in good grades having at most low levels of trace impurities.
- Sodium sulfate used herein preferably has a purity sufficient to ensure it is non-reactive with bleach; it may also be treated with low levels of sequestrants, such as phosphonates or EDDS in magnesium-salt form. Note that preferences, in terms of purity sufficient to avoid decomposing bleach, applies also to pH-adjusting component ingredients, specifically including any silicates used herein.
- Hydrotrope materials such as sodium benzene sulfonate, sodium toluene sulfonate, sodium cumene sulfonate, etc., can be present, e.g., for better dispersing surfactant.
- Bleach-stable perfumes (stable as to odor); and bleach-stable dyes such as those disclosed in U.S. Patent 4,714,562, Roselle et al, issued December 22, 1987 can also be added to the present compositions in appropriate amounts.
- ADD compositions herein can contain water-sensitive ingredients or ingredients which can co-react when brought together in an aqueous environment, it is desirable to keep the free moisture content of the ADDs at a minimum, e.g., 7% or less, preferably 5% or less of the ADD; and to provide packaging which is substantially impermeable to water and carbon dioxide. Coating measures have been described herein to illustrate a way to protect the ingredients from each other and from air and moisture. Plastic bottles, including refillable or recyclable types, as well as conventional barrier cartons or boxes are another helpful means of assuring maximum shelf-storage stability. As noted, when ingredients are not highly compatible, it may further be desirable to coat at least one such ingredient with a low-foaming nonionic surfactant for protection. There are numerous waxy materials which can readily be used to form suitable coated particles of any such otherwise incompatible components; however, the formulator prefers those materials which do not have a marked tendency to deposit or form films on dishes including those of plastic construction.
- silicate 5 2 nonionic surfactants 1.0 2.0
- Chymotrypsin-like Protease 1 (4% active) 0.43 0.75
- the ADD's of the above dishwashing detergent composition examples are used to wash milk-soiled glasses, by loading the soiled dishes in a domestic automatic dishwashing appliance and washing using either cold fill, 60°C peak, or uniformly 45- 50°C wash cycles with a product concentration of the exemplary compositions of from about 1,000 to about 8,000 ppm, with excellent cleaning and spotting and filming results.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Detergent Compositions (AREA)
Abstract
Priority Applications (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP50193999A JP2002502460A (ja) | 1997-06-04 | 1998-06-02 | タンパク質主体の汚れをクリーニングするための混合プロテアーゼ酵素系及びそれを含む組成物 |
| BR9810081-5A BR9810081A (pt) | 1997-06-04 | 1998-06-02 | Sistemas de enzima protease mista para limpeza de sujeiras à base de proteìna e composições incorporando os mesmos |
| CA002291646A CA2291646A1 (fr) | 1997-06-04 | 1998-06-02 | Systemes d'enzymes proteases mixtes pour eliminer les taches a base de proteines et compositions incorporant de tels systemes |
| EP98920698A EP0988367A1 (fr) | 1997-06-04 | 1998-06-02 | Systemes d'enzymes proteases mixtes pour eliminer les taches a base de proteines et compositions incorporant de tels systemes |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US4857297P | 1997-06-04 | 1997-06-04 | |
| US60/048,572 | 1997-06-04 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO1998055579A1 true WO1998055579A1 (fr) | 1998-12-10 |
Family
ID=21955302
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/IB1998/000845 WO1998055579A1 (fr) | 1997-06-04 | 1998-06-02 | Systemes d'enzymes proteases mixtes pour eliminer les taches a base de proteines et compositions incorporant de tels systemes |
Country Status (5)
| Country | Link |
|---|---|
| EP (1) | EP0988367A1 (fr) |
| JP (1) | JP2002502460A (fr) |
| BR (1) | BR9810081A (fr) |
| CA (1) | CA2291646A1 (fr) |
| WO (1) | WO1998055579A1 (fr) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1433839A1 (fr) * | 2002-12-24 | 2004-06-30 | Dalli-Werke GmbH & Co. KG | Compositions de lavage et nettoyage optimisées pour un effet amélioré de blanchiment à basse température |
| DE10360841A1 (de) * | 2003-12-20 | 2005-07-14 | Henkel Kgaa | Helle, stabile, staub- und geruchsarme Enzymgranulate |
| US7879788B2 (en) * | 2007-10-30 | 2011-02-01 | Danisco Us Inc. | Methods of cleaning using a streptomyces 1AG3 serine protease |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4511490A (en) * | 1983-06-27 | 1985-04-16 | The Clorox Company | Cooperative enzymes comprising alkaline or mixtures of alkaline and neutral proteases without stabilizers |
| WO1988003946A1 (fr) * | 1986-11-25 | 1988-06-02 | Novo Industri A/S | Additif detergent enzymatique |
| WO1989006270A1 (fr) * | 1988-01-07 | 1989-07-13 | Novo-Nordisk A/S | Detergent enzymatique |
| EP0622450A2 (fr) * | 1993-04-29 | 1994-11-02 | Amway Corporation | Compositions détergentes et méthodes pour leur fabrication |
| WO1995010591A1 (fr) * | 1993-10-14 | 1995-04-20 | The Procter & Gamble Company | Compositions de nettoyage contenant une protease |
| WO1995010615A1 (fr) * | 1993-10-14 | 1995-04-20 | Genencor International, Inc. | Variants de subtilisine |
-
1998
- 1998-06-02 WO PCT/IB1998/000845 patent/WO1998055579A1/fr not_active Application Discontinuation
- 1998-06-02 EP EP98920698A patent/EP0988367A1/fr not_active Withdrawn
- 1998-06-02 CA CA002291646A patent/CA2291646A1/fr not_active Abandoned
- 1998-06-02 BR BR9810081-5A patent/BR9810081A/pt not_active IP Right Cessation
- 1998-06-02 JP JP50193999A patent/JP2002502460A/ja active Pending
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4511490A (en) * | 1983-06-27 | 1985-04-16 | The Clorox Company | Cooperative enzymes comprising alkaline or mixtures of alkaline and neutral proteases without stabilizers |
| WO1988003946A1 (fr) * | 1986-11-25 | 1988-06-02 | Novo Industri A/S | Additif detergent enzymatique |
| WO1989006270A1 (fr) * | 1988-01-07 | 1989-07-13 | Novo-Nordisk A/S | Detergent enzymatique |
| EP0622450A2 (fr) * | 1993-04-29 | 1994-11-02 | Amway Corporation | Compositions détergentes et méthodes pour leur fabrication |
| WO1995010591A1 (fr) * | 1993-10-14 | 1995-04-20 | The Procter & Gamble Company | Compositions de nettoyage contenant une protease |
| WO1995010615A1 (fr) * | 1993-10-14 | 1995-04-20 | Genencor International, Inc. | Variants de subtilisine |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1433839A1 (fr) * | 2002-12-24 | 2004-06-30 | Dalli-Werke GmbH & Co. KG | Compositions de lavage et nettoyage optimisées pour un effet amélioré de blanchiment à basse température |
| DE10360841A1 (de) * | 2003-12-20 | 2005-07-14 | Henkel Kgaa | Helle, stabile, staub- und geruchsarme Enzymgranulate |
| US7879788B2 (en) * | 2007-10-30 | 2011-02-01 | Danisco Us Inc. | Methods of cleaning using a streptomyces 1AG3 serine protease |
| US8076468B2 (en) | 2007-10-30 | 2011-12-13 | Danisco Us Inc | Nucleic acid molecules encoding Streptomyces 1AG3 serine proteases |
Also Published As
| Publication number | Publication date |
|---|---|
| BR9810081A (pt) | 2000-08-08 |
| CA2291646A1 (fr) | 1998-12-10 |
| EP0988367A1 (fr) | 2000-03-29 |
| JP2002502460A (ja) | 2002-01-22 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6482994B2 (en) | Ether-capped poly(oxyalkylated) alcohol surfactants | |
| EP0832176B1 (fr) | Compositions detergentes pour lave-vaisselle automatiques, contenant des catalyseurs au cobalt | |
| EP0807160B1 (fr) | Methode pour laver automatiqement la vaisselle maculee de tache de the, o une composition comprenant des catalyseurs cobalt (iii) est utilisee | |
| EP0874895B1 (fr) | Compositions pour lave-vaisselle a base de phosphates et de catalyseurs | |
| EP0832175B1 (fr) | Compositions d'agents de blanchiment comprenant des catalyseurs au cobalt | |
| AU711742B2 (en) | Automatic dishwashing compositions comprising cobalt catalysts | |
| CA2265825C (fr) | Compositions peu moussantes pour lave-vaisselle automatiques | |
| US6326341B1 (en) | Low foaming automatic dishwashing compositions | |
| US5912218A (en) | Low foaming automatic dishwashing compositions | |
| US6440927B1 (en) | Multi-layer detergent tablet having both compressed and non-compressed portions | |
| EP0925342B1 (fr) | Compositions pour lave-vaisselle, contenant des tensioactifs non ioniques faiblement moussants et agissant en conjonction avec des enzymes | |
| EP0988366B1 (fr) | Particules d'enzyme detersives avec couche barriere de carboxylate hydrosoluble et compositions renfermant de telles particules | |
| EP0988367A1 (fr) | Systemes d'enzymes proteases mixtes pour eliminer les taches a base de proteines et compositions incorporant de tels systemes | |
| MXPA99011302A (en) | Mixed protease enzyme systems for cleaning protein based soils and compositions incorporating same | |
| MXPA99011301A (en) | Detersive enzyme particles having water-soluble carboxylate barrier layer and compositions including same | |
| CA2297722A1 (fr) | Tensioactifs a base d'alcools poly(oxyalkyles) coiffes par un ether | |
| MXPA00001176A (es) | Agentes tensioactivos de alcohol poli(oxialquilado) de extremos bloqueados con eter |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A1 Designated state(s): BR CA CN JP MX US |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
| DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| ENP | Entry into the national phase |
Ref document number: 2291646 Country of ref document: CA Ref country code: CA Ref document number: 2291646 Kind code of ref document: A Format of ref document f/p: F |
|
| ENP | Entry into the national phase |
Ref country code: JP Ref document number: 1999 501939 Kind code of ref document: A Format of ref document f/p: F |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 09445271 Country of ref document: US |
|
| WWE | Wipo information: entry into national phase |
Ref document number: PA/a/1999/011302 Country of ref document: MX |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 1998920698 Country of ref document: EP |
|
| WWP | Wipo information: published in national office |
Ref document number: 1998920698 Country of ref document: EP |
|
| WWW | Wipo information: withdrawn in national office |
Ref document number: 1998920698 Country of ref document: EP |