[go: up one dir, main page]

WO1997004260A1 - Low power pilot valve actuated by transverse or perpendicular action - Google Patents

Low power pilot valve actuated by transverse or perpendicular action Download PDF

Info

Publication number
WO1997004260A1
WO1997004260A1 PCT/AU1996/000461 AU9600461W WO9704260A1 WO 1997004260 A1 WO1997004260 A1 WO 1997004260A1 AU 9600461 W AU9600461 W AU 9600461W WO 9704260 A1 WO9704260 A1 WO 9704260A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
actuator
magnet
force
open
Prior art date
Application number
PCT/AU1996/000461
Other languages
French (fr)
Inventor
Gary Keith Thorpe
Original Assignee
Nu-Valve Pty. Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nu-Valve Pty. Limited filed Critical Nu-Valve Pty. Limited
Priority to AU65091/96A priority Critical patent/AU680796B2/en
Priority to NZ313098A priority patent/NZ313098A/en
Priority to US08/983,103 priority patent/US5954311A/en
Publication of WO1997004260A1 publication Critical patent/WO1997004260A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03DWATER-CLOSETS OR URINALS WITH FLUSHING DEVICES; FLUSHING VALVES THEREFOR
    • E03D3/00Flushing devices operated by pressure of the water supply system flushing valves not connected to the water-supply main, also if air is blown in the water seal for a quick flushing
    • E03D3/02Self-closing flushing valves
    • E03D3/06Self-closing flushing valves with diaphragm valve and pressure chamber for retarding the valve-closing movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/10Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid with additional mechanism between armature and closure member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/12Actuating devices; Operating means; Releasing devices actuated by fluid
    • F16K31/36Actuating devices; Operating means; Releasing devices actuated by fluid in which fluid from the circuit is constantly supplied to the fluid motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/12Actuating devices; Operating means; Releasing devices actuated by fluid
    • F16K31/36Actuating devices; Operating means; Releasing devices actuated by fluid in which fluid from the circuit is constantly supplied to the fluid motor
    • F16K31/38Actuating devices; Operating means; Releasing devices actuated by fluid in which fluid from the circuit is constantly supplied to the fluid motor in which the fluid works directly on both sides of the fluid motor, one side being connected by means of a restricted passage and the motor being actuated by operating a discharge from that side
    • F16K31/385Actuating devices; Operating means; Releasing devices actuated by fluid in which fluid from the circuit is constantly supplied to the fluid motor in which the fluid works directly on both sides of the fluid motor, one side being connected by means of a restricted passage and the motor being actuated by operating a discharge from that side the fluid acting on a diaphragm
    • F16K31/3855Actuating devices; Operating means; Releasing devices actuated by fluid in which fluid from the circuit is constantly supplied to the fluid motor in which the fluid works directly on both sides of the fluid motor, one side being connected by means of a restricted passage and the motor being actuated by operating a discharge from that side the fluid acting on a diaphragm the discharge being effected through the diaphragm and being blockable by a mechanically-actuated member making contact with the diaphragm
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/12Actuating devices; Operating means; Releasing devices actuated by fluid
    • F16K31/36Actuating devices; Operating means; Releasing devices actuated by fluid in which fluid from the circuit is constantly supplied to the fluid motor
    • F16K31/40Actuating devices; Operating means; Releasing devices actuated by fluid in which fluid from the circuit is constantly supplied to the fluid motor with electrically-actuated member in the discharge of the motor
    • F16K31/402Actuating devices; Operating means; Releasing devices actuated by fluid in which fluid from the circuit is constantly supplied to the fluid motor with electrically-actuated member in the discharge of the motor acting on a diaphragm
    • F16K31/404Actuating devices; Operating means; Releasing devices actuated by fluid in which fluid from the circuit is constantly supplied to the fluid motor with electrically-actuated member in the discharge of the motor acting on a diaphragm the discharge being effected through the diaphragm and being blockable by an electrically-actuated member making contact with the diaphragm

Definitions

  • This invention relates to fluid control valves, and in particular to improvements in the pilot stage of a hydraulically assisted fluid control valve.
  • Such valves find applications in domestic toilet cisterns, stock water troughs and as electrically controlled shut off valves for garden water timers, for example.
  • Hydraulically assisted pilot operated valves are common in household appliances, such as in washing machines. These valves normally have a water inlet, a flexible sealing diaphragm and a water outlet.
  • the flexible sealing diaphragm normally has some small apertures to permit the incoming water pressure to communicate with an upper chamber to force the valve closed.
  • To permit the valve to open the diaphragm also has a slightly larger aperture communicating between the upper chamber and the valve discharge. This aperture is normally closed by a lightly spring loaded metallic plunger which is forced away from the aperture by means of an electromagnet to permit the valve to open.
  • FIG. 9a Such a prior art valve is shown diagrammatically in figure 9a herewith.
  • the water under pressure enters the inlet chamber marked “A” which communicates with the upper chamber marked “B” through the communicating holes 26 in the flexible sealing diaphragm 1 and its rigid diaphragm support 2.
  • the bleed hole(or orifice) 15 to the valve discharge chamber marked “C” is normally sealed by the metallic plunger 34 which has an elastomeric sealing surface where it contacts the rigid diaphragm support 2.
  • valve With this type of valve the valve requires a continuous supply of electric current to remain open.
  • the force which must be applied to the metallic plunger 34 to open the valve is the product of the water pressure and the area of the bleed hole 15.
  • the bleed hole diameter is 1 mm so at a water pressure of 1 MPa a force of 0.8 Newtons is required to open the valve.
  • An object of the invention is to overcome the limitations of the above mentioned valves by providing a valve which is suitable for use in low voltage battery operated applications.
  • the present invention is a valve of the kind that is caused to open and close in consequence of the opening and closing of a bleed orifice by a movable pilot valve element, characterised in that said element is displaced from sealing relationship with the orifice by a torque resulting from a force applied to the element along a line of action which does not extend through the orifice.
  • said force is applied to the body at a point and in a direction such that the minimum distance between the line of action of the force and the orifice is at least 3 times the maximum cross-sectional dimension of the orifice.
  • the invention in a second aspect relates to the use of curved surfaces and lever arms to provide a mechanical advantage to enable a major reduction in the forces required to open the bleed hole in pilot operated hydraulic valves to permit the valve to open or close.
  • the curved sealing surface may be in the form of a ribbon wrapped around a curved rocker actuated by a lever or a hollow cylindrical tyre wrapped around a disk operating magnet actuated under the force of another actuating magnet.
  • valves which use electromagnetic actuators which are capable of operating from a 1.5 volt dry cell battery for extended periods of time as the valve may be latched open or closed when the current to the electromagnet is turned off.
  • Figure 1 a is a cross-sectional view of a first embodiment of a valve according to the present invention, with the valve closed.
  • Figure 1b is a cross-sectional view of the valve shown in Figure 1a, with the valve shown at the point about to open.
  • Figure 1c a cross-sectional view of the valve shown in Figure 1a, with the valve open.
  • Figures 2a through 2c show enlarged views of the valve shown in Figures 1a through 1c, respectively showing the 'valve closed', 'at the point about to open' and 'with the valve open'.
  • Figure 2d shows an enlarged view of a portion of the valve components shown in Figures 1c and 2c.
  • Figure 3 shows a second embodiment of a valve according to the present invention, where the solenoid actuator shown in the first embodiment has been replaced by a float actuator.
  • Figure 4 shows a third embodiment of a valve according to the present invention, where the float actuator shown in the second embodiment has been replaced by a pressure sensing actuator.
  • Figures 5a through 5c show a fourth embodiment of the valve where the seal ribbon and curved rocker of the first embodiment of the valve as shown in Figures 2a through 2c, has been replaced by a cylindrical tyre placed around a disk magnet.
  • Figure 5d shows an enlarged view of a portion of the valve components shown in Figure 5b.
  • Figures 6a through 6d show the valve embodiment of figures 5a through 5d with actuating magnets added to impart forces on the disk magnet and tyre.
  • Figures 7a through 7d show the valve embodiment of figures 5a through 5d where one or more electro magnets are used to impart forces on the disk magnet and tyre.
  • Figures 8a and 8b show a fifth embodiment of the valve with the arrangement of communication ports in the valve body altered to those shown in the previous embodiments.
  • FIGS. 9a and 9b show a prior art solenoid operated valve
  • Figures 1a through 1c show an electrically operated valve assembly where the use of a lever arm and rocker, to clear a seal ribbon from a bleed hole in a valve diaphragm to allow the valve to open, permits the use of a very small solenoid and permits the valve to remain open or closed after the supply of electric current is discontinued.
  • the valve body 14 and the sealing diaphragm 1 are the same as for the prior art solenoid operated valve shown in figures 9a and 9b.
  • the diaphragm support 2 is similar to a conventional valve but differs in shape on its upper surface.
  • valve operation is the same as a conventional valve in that it has a communicating port 26, which is shown more clearly in figure 2d, and a bleed hole 15 to admit and release water from the upper chamber "B".
  • This invention does not have a metallic plunger to open and close the bleed hole as in the prior art valve, but instead uses a mechanical advantage and a rolling seal device to reduce the magnitude of the force which must be applied by an electric solenoid to open and close the valve.
  • the bleed hole is normally sealed with a seal ribbon 3 of elastomeric or other similar material. This is held in place by its attachment to the diaphragm support 2 and to a rocker device 4 which is attached to a lever 5.
  • the electric solenoid 13 imparts a force on a magnetic material 8 which is normally a permanent magnet to force the plunger 7 forward to bear on the lever 5 which is also of a magnetically attractive material.
  • This force exerts a couple (or torque) on the rocker 4 to roll the seal ribbon 4 away from the bleed hole 15.
  • the mechanical advantage is very high as the moment which has to be applied to the seal ribbon to uncover the bleed hole is only the product of the water pressure and the area of the bleed hole multiplied by half of the bleed hole diameter. For a valve with a 1 mm bleed hole and a water pressure of 1 MPa this moment is in the order of 4 x 10-4 Newton metres.
  • the force which must be exerted by the solenoid 13 on the plunger 7 is only in the order of 0.02 Newtons to open the valve.
  • Such a force is readily applied by a solenoid operating at voltages as low as 1.5 Volts.
  • the plunger 7 is made of a permanent magnet material or altematively of a non magnetic material with one or more permanent magnets mounted within it.
  • the plunger 7 shown is figure 1a is of a non magnetic material with two magnets 8 and 9 mounted within it.
  • the magnetic field generated exerts a force on the permanent magnet 8 to urge the plunger 7 forward against the lever 5.
  • the permanent magnet 9 is attracted to the lever 5
  • the supply of electric current to the solenoid 13 may be discontinued and the valve will remain open as there is no restoring force on the ribbon 3 to close the valve.
  • the plunger 7 will be attracted back to the solenoid.
  • the lever 5 is also attracted back as it is magnetically attracted to the plunger. This attractive force exerts a couple on the rocker 4 to lay the seal ribbon 3 back over the bleed hole 15 to close it off and thus close the valve.
  • the lever 5 has a bend in it as shown in figure 1a, however, in other embodiments may be just a straight lever. With the bend in the lever 5, the rising of the diaphragm support 2 as the valve opens, exerts yet more displacement on the lever 5 and rotation of the rocker 4 to positively open the valve and prevent "dither" where the valve is only partially opened or opens very slowly as a device other than an electric solenoid is used to apply a force to the lever.
  • a magnetic material or permanent magnets 10 and 11 are attached to the valve housing as shown in figure 1 a. These magnetic materials serve the purpose of latching the valve open or closed when the current is cut off from the solenoid.
  • valve as described uses a magnetic attraction between the lever 5 and the plunger 7 to exert a couple on the rocker 4 to close the valve, this might also be achieved by having a physical connection between the plunger 7 and the lever 5.
  • valve as described uses permanent magnets 10 and 11 to latch the plunger 7 forward or retracted
  • the latch might also be achieved by the attraction of the plunger to a magnetic material other than a permanent magnet.
  • the valve as described uses one or more permanent magnets in the plunger to react with the solenoid to provide a force to the plunger, this force might also be achieved by the solenoid reacting with a magnetically attractive material in the plunger which is not a permanent magnet.
  • the forward and retraction motion of the plunger may be achieved by having two solenoids separated and energised separately, so that one solenoid attracts the plunger forward and the other attracts it back.
  • valve may also be made to either open or close on the cessation of current flow through the solenoid, by the use of a spring to apply a permanent force to the plunger to either urge it forward or urge it retracted.
  • valve as described has the communication passage 26 between chambers "A" and "B" passing through the diaphragm 1 and the diaphragm support 2 this passage may just as effectively pass through another part of the valve body.
  • the valve as described to this stage exerts a force on the lever by the interaction of an electric solenoid with the plunger.
  • FIG 3 shows a second embodiment of the valve where a float is used to provide the force, rather than a solenoid actuator.
  • the valve components are the same as shown in figure 1a.
  • the solenoid has been replaced by a float housing 16 and 26 which contains a float 27 which is attached by a carrier 28 to a permanent magnet 20 which in this diagram is a ring magnet.
  • the float housing communicates with the fluid whose level is to be maintained by means of a tube attached to the port 25 on the housing.
  • the valve physical connection may be used in lieu of some of the magnetic connections to operate the valve.
  • some of the permanent magnets may be substituted with magnetically attractive materials.
  • the plunger may have only one magnet or may be comprised solely of magnetically attractive material.
  • Figure 4 shows a third embodiment of the valve where a fluid pressure actuator is used to supply the force to open or close the valve.
  • a fluid pressure actuator is used to supply the force to open or close the valve.
  • Figure 5 shows a fourth embodiment of the valve pilot stage where the rotational uncovering of the bleed hole is used to reduce the forces required to open the valve.
  • valve body and diaphragm 4 are the same as with the previously described embodiments. It can also be seen that the diaphragm support 2 is essentially the same as previously described, except that it does not have attachment points for the seal ribbon.
  • the curved surface to reduce the forces required to open the bleed hole were achieved by the use of a seal ribbon and curved rocker.
  • the seal ribbon and curved rocker are combined into one component which is a hollow cylinder 28 wrapped around a permanent disk magnet 27.
  • the seal ribbon and rocker becomes a tyre 28 fitted to the permanent tyre magnet 27.
  • a force exerted on the tyre magnet 27 causes the tyre 28 to roll over the bleed hole 15.
  • the mechanical advantage can still be very high. For example if the tyre has a diameter of 20 mm, the force required to be exerted on the tyre magnet to open the valve for a bleed hole diameter of 1 mm and a water pressure of 1 MPa is in the order of 0.04 Newtons.
  • valve The operation of the valve is shown diagrammatically in figures 5 a through 5 c.
  • the pressure in the upper chamber “B” rises and closes the valve.
  • the pressure in "B” falls and allows the valve to close.
  • Figure 6 shows the operation of this valve when an external device is used to exert a magnetic force on the permanent magnet 27.
  • a small permanent returning magnet 29 is used to urge the tyre magnet 27 and tyre 28 over the bleed hole 15.
  • Another actuator magnet 30 is attached to the actuating device which may be a float or pressure operated actuating device as previously described.
  • the actuating magnet 30 In the closed position the actuating magnet 30 is sufficiently removed from the tyre magnet 27 that the net repulsive force on the tyre magnet by the returning magnet caused the tyre to be forced over the bleed hole 15 to close the valve.
  • the actuating magnet 30 As the actuating magnet 30 rises, it exerts a repulsive force on the tyre magnet to overcome the repulsive force of the returning magnet, and thus roll the tyre off the bleed hole to allow the valve to open.
  • valve is described as having a returning magnet 29 this may be omitted if the valve is orientated so that gravity forces are used to roll the tyre over the bleed hole.
  • FIG. 7a through 7c Another version of the valve is shown in figures 7a through 7c. With reference to these diagrams the components are as previously described. The additional components are a small electromagnet 31 and keeper magnets 32 and 33.
  • the keeper magnets need not necessarily be permanent magnets and may simply be of a magnetically attractive material.
  • electro magnet Other arrangements of the electro magnet are possible so that more than one may be used to apply the forces to the tyre magnet. With suitable locations of electromagnet it is possible to replace the permanent tyre magnet with a magnetically attractive material.
  • FIG. 8a and 8b Another embodiment of this valve is described in figures 8a and 8b, where the principles remain the same but the valve has a different physical layout.
  • the communication port between chambers “A” and “B” is located within the diaphragm support.
  • the bleed hole 15 between chambers “B” and “C” is within the valve body but the operating principles are still the same where the tyre is rolled over the bleed hole to close the valve and away from the bleed hole to open the valve.
  • the surface of the sealing element ie. the seal ribbon or tyre which closes over the bleed hole is a convexly curved, to allow the sealing element to easily roll on and off the bleed hole.
  • the sealing element surface may be substantially flat or convexly curved with a large radius. In such embodiments the sealing element surface may be tilted over the bleed hole to allow for opening and closing of the valve.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

A valve (1, 2) of the kind that is caused to open and close in consequence of the opening and closing of a bleed orifice (15) by a movable pilot valve element (3, 4, 5), characterised in that said element (3, 4, 5) is displaced from sealing relationship with the orifice (15) by a torque resulting from a force applied (7, 9) to the element (3, 4, 5) along a line of action which does not extend through the orifice (15). Another embodiment of the pilot valve element consists of a cylindrical magnet housed in an elastomeric tyre actuated by a permanent magnet or electromagnet (Figures 5-8). Actuators of the torque causing force include a solenoid (Figures 1-2), float (Figure 3), and fluid pressure (Figure 4).

Description

LOW POWER PILOT VALVE ACTUATED BY TRANSVERSE OR PERPENDICULAR ACΗON
TECHNICAL FIELD
This invention relates to fluid control valves, and in particular to improvements in the pilot stage of a hydraulically assisted fluid control valve. Such valves find applications in domestic toilet cisterns, stock water troughs and as electrically controlled shut off valves for garden water timers, for example.
BACKGROUND
Hydraulically assisted pilot operated valves are common in household appliances, such as in washing machines. These valves normally have a water inlet, a flexible sealing diaphragm and a water outlet. The flexible sealing diaphragm normally has some small apertures to permit the incoming water pressure to communicate with an upper chamber to force the valve closed. To permit the valve to open the diaphragm also has a slightly larger aperture communicating between the upper chamber and the valve discharge. This aperture is normally closed by a lightly spring loaded metallic plunger which is forced away from the aperture by means of an electromagnet to permit the valve to open.
Such a prior art valve is shown diagrammatically in figure 9a herewith. The water under pressure enters the inlet chamber marked "A" which communicates with the upper chamber marked "B" through the communicating holes 26 in the flexible sealing diaphragm 1 and its rigid diaphragm support 2. The bleed hole(or orifice) 15 to the valve discharge chamber marked "C", is normally sealed by the metallic plunger 34 which has an elastomeric sealing surface where it contacts the rigid diaphragm support 2.
As the bleed hole 15 from chamber "B" to chamber "C" is sealed the water pressure forces the diaphragm 1 and its support 2 to seal on the valve body 14 and thus prevents the flow of fluid through the valve. When an electric current is passed through the solenoid 13 the metallic plunger 34 is drawn away from the diaphragm 1 and its support 2 to open the bleed hole 15. Since the bleed hole 15 is normally slightly larger in area than the communicating ports 26 the pressure in chamber "B" is reduced and thus the valve may open as shown in figure 9b.
When the electric current is cut off from the solenoid 13 the metallic plunger 34 once again seals the bleed hole 15 and the valve closes.
With this type of valve the valve requires a continuous supply of electric current to remain open.
With this type of valve the force which must be applied to the metallic plunger 34 to open the valve is the product of the water pressure and the area of the bleed hole 15. Typically the bleed hole diameter is 1 mm so at a water pressure of 1 MPa a force of 0.8 Newtons is required to open the valve.
The high forces to unseat the metallic plunger and the requirement of a continuous supply of electric current makes unsuitable for low voltage battery operated applications, such as garden irrigation systems, which are expected to operate for many months from a small dry cell battery.
Other known valves which are also not suitable for low voltage battery operated applications are disclosed in German Patent Application No. 3927611 , International Patent Application Nos. PCT/G B92/00986 and PCT/US87/00214, Australian Patent Application Nos. 18576/88 and 55204/94 and United Kingdom Patent Application No.2149148.
An object of the invention is to overcome the limitations of the above mentioned valves by providing a valve which is suitable for use in low voltage battery operated applications. SUMMARY OF INVENTION
In a first aspect the present invention is a valve of the kind that is caused to open and close in consequence of the opening and closing of a bleed orifice by a movable pilot valve element, characterised in that said element is displaced from sealing relationship with the orifice by a torque resulting from a force applied to the element along a line of action which does not extend through the orifice.
In preferred embodiments said force is applied to the body at a point and in a direction such that the minimum distance between the line of action of the force and the orifice is at least 3 times the maximum cross-sectional dimension of the orifice.
In a second aspect the invention relates to the use of curved surfaces and lever arms to provide a mechanical advantage to enable a major reduction in the forces required to open the bleed hole in pilot operated hydraulic valves to permit the valve to open or close. The curved sealing surface may be in the form of a ribbon wrapped around a curved rocker actuated by a lever or a hollow cylindrical tyre wrapped around a disk operating magnet actuated under the force of another actuating magnet.
With the major reduction in forces it becomes possible to construct valves which use electromagnetic actuators which are capable of operating from a 1.5 volt dry cell battery for extended periods of time as the valve may be latched open or closed when the current to the electromagnet is turned off.
The major reduction in forces enables the use of other actuators such as very small floats or pressure sensors to switch the valve to the open or close state. BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 a is a cross-sectional view of a first embodiment of a valve according to the present invention, with the valve closed.
Figure 1b is a cross-sectional view of the valve shown in Figure 1a, with the valve shown at the point about to open.
Figure 1c a cross-sectional view of the valve shown in Figure 1a, with the valve open.
Figures 2a through 2c show enlarged views of the valve shown in Figures 1a through 1c, respectively showing the 'valve closed', 'at the point about to open' and 'with the valve open'.
Figure 2d shows an enlarged view of a portion of the valve components shown in Figures 1c and 2c.
Figure 3 shows a second embodiment of a valve according to the present invention, where the solenoid actuator shown in the first embodiment has been replaced by a float actuator.
Figure 4 shows a third embodiment of a valve according to the present invention, where the float actuator shown in the second embodiment has been replaced by a pressure sensing actuator.
Figures 5a through 5c show a fourth embodiment of the valve where the seal ribbon and curved rocker of the first embodiment of the valve as shown in Figures 2a through 2c, has been replaced by a cylindrical tyre placed around a disk magnet.
Figure 5d shows an enlarged view of a portion of the valve components shown in Figure 5b.
Figures 6a through 6d show the valve embodiment of figures 5a through 5d with actuating magnets added to impart forces on the disk magnet and tyre.
Figures 7a through 7d show the valve embodiment of figures 5a through 5d where one or more electro magnets are used to impart forces on the disk magnet and tyre.
Figures 8a and 8b show a fifth embodiment of the valve with the arrangement of communication ports in the valve body altered to those shown in the previous embodiments.
Figures 9a and 9b show a prior art solenoid operated valve
MODE OF CARRYING OUT INVENTION
Figures 1a through 1c show an electrically operated valve assembly where the use of a lever arm and rocker, to clear a seal ribbon from a bleed hole in a valve diaphragm to allow the valve to open, permits the use of a very small solenoid and permits the valve to remain open or closed after the supply of electric current is discontinued. With reference to figure 1a it can be seen that the valve body 14 and the sealing diaphragm 1 are the same as for the prior art solenoid operated valve shown in figures 9a and 9b.
The diaphragm support 2 is similar to a conventional valve but differs in shape on its upper surface.
The valve operation is the same as a conventional valve in that it has a communicating port 26, which is shown more clearly in figure 2d, and a bleed hole 15 to admit and release water from the upper chamber "B". This invention does not have a metallic plunger to open and close the bleed hole as in the prior art valve, but instead uses a mechanical advantage and a rolling seal device to reduce the magnitude of the force which must be applied by an electric solenoid to open and close the valve.
The bleed hole is normally sealed with a seal ribbon 3 of elastomeric or other similar material. This is held in place by its attachment to the diaphragm support 2 and to a rocker device 4 which is attached to a lever 5.
Referring to figures 1a, 1b, 1c, and to figures 2a, 2b, 2c and 2d which are at a greater scale to show more detail the operation of the valve will be explained.
The electric solenoid 13 imparts a force on a magnetic material 8 which is normally a permanent magnet to force the plunger 7 forward to bear on the lever 5 which is also of a magnetically attractive material.
This force exerts a couple (or torque) on the rocker 4 to roll the seal ribbon 4 away from the bleed hole 15.
The mechanical advantage is very high as the moment which has to be applied to the seal ribbon to uncover the bleed hole is only the product of the water pressure and the area of the bleed hole multiplied by half of the bleed hole diameter. For a valve with a 1 mm bleed hole and a water pressure of 1 MPa this moment is in the order of 4 x 10-4 Newton metres.
For a valve where the lever arm 5 length is in the order of 20 mm, the force which must be exerted by the solenoid 13 on the plunger 7 is only in the order of 0.02 Newtons to open the valve. Such a force is readily applied by a solenoid operating at voltages as low as 1.5 Volts.
The plunger 7 is made of a permanent magnet material or altematively of a non magnetic material with one or more permanent magnets mounted within it. The plunger 7 shown is figure 1a is of a non magnetic material with two magnets 8 and 9 mounted within it. When the current flows through the solenoid the magnetic field generated exerts a force on the permanent magnet 8 to urge the plunger 7 forward against the lever 5. At this point the permanent magnet 9 is attracted to the lever 5
As the plunger moves forward and rolls the seal ribbon 3 away from the bleed hole 15 through the couple exerted on the rocker 4, the pressure in the chamber "B" is released permitting the diaphragm support 2 to rise and open the valve to permit the flow of fluid through the valve.
Once the plunger 7 is full forward and the seal ribbon is released from the bleed hole 15, the supply of electric current to the solenoid 13 may be discontinued and the valve will remain open as there is no restoring force on the ribbon 3 to close the valve.
If the direction of the magnetic field from the solenoid is reversed, by either reversing the electric current direction or having a second winding in the solenoid with the current flowing in the opposite direction to the first, then the plunger 7 will be attracted back to the solenoid. As the plunger 7 is attracted back to the solenoid the lever 5 is also attracted back as it is magnetically attracted to the plunger. This attractive force exerts a couple on the rocker 4 to lay the seal ribbon 3 back over the bleed hole 15 to close it off and thus close the valve.
In this embodiment of the valve, the lever 5 has a bend in it as shown in figure 1a, however, in other embodiments may be just a straight lever. With the bend in the lever 5, the rising of the diaphragm support 2 as the valve opens, exerts yet more displacement on the lever 5 and rotation of the rocker 4 to positively open the valve and prevent "dither" where the valve is only partially opened or opens very slowly as a device other than an electric solenoid is used to apply a force to the lever.
In a yet more detailed version of the valve a magnetic material or permanent magnets 10 and 11 are attached to the valve housing as shown in figure 1 a. These magnetic materials serve the purpose of latching the valve open or closed when the current is cut off from the solenoid.
When the plunger 7 is fully forward and the current to the solenoid is cut off the magnetic attraction between permanent magnets 9 and 10 is greater than the attraction between magnets 8 and 11 , and thus the plunger is retained in its forward position and the valve remains open and resistant to accidental closure due to vibration or inertia forces due to the physical movement of the valve.
When the plunger 7 is fully retracted and the current to the solenoid is cut off the magnetic attraction between permanent magnets 8 and 11 is greater than the attraction between magnets 9 and 10, and thus the plunger is retained in its retracted position and the valve remains closed and resistant to accidental opening due to vibration or inertia forces due to the physical movement of the valve.
Although the valve as described uses a magnetic attraction between the lever 5 and the plunger 7 to exert a couple on the rocker 4 to close the valve, this might also be achieved by having a physical connection between the plunger 7 and the lever 5.
Although the valve as described uses permanent magnets 10 and 11 to latch the plunger 7 forward or retracted, the latch might also be achieved by the attraction of the plunger to a magnetic material other than a permanent magnet.
Although the valve as described uses one or more permanent magnets in the plunger to react with the solenoid to provide a force to the plunger, this force might also be achieved by the solenoid reacting with a magnetically attractive material in the plunger which is not a permanent magnet. In this case the forward and retraction motion of the plunger may be achieved by having two solenoids separated and energised separately, so that one solenoid attracts the plunger forward and the other attracts it back. Although the valve as described remains open or closed on the cessation of current flow through the solenoid, the valve may also be made to either open or close on the cessation of current flow through the solenoid, by the use of a spring to apply a permanent force to the plunger to either urge it forward or urge it retracted.
Although the valve as described has the communication passage 26 between chambers "A" and "B" passing through the diaphragm 1 and the diaphragm support 2 this passage may just as effectively pass through another part of the valve body.
The valve as described to this stage exerts a force on the lever by the interaction of an electric solenoid with the plunger.
When used as a level control valve this force may well be provided by other means.
Figure 3 shows a second embodiment of the valve where a float is used to provide the force, rather than a solenoid actuator. With reference to figure 3 it can be seen that the valve components are the same as shown in figure 1a. In the case of this float operated valve, the solenoid has been replaced by a float housing 16 and 26 which contains a float 27 which is attached by a carrier 28 to a permanent magnet 20 which in this diagram is a ring magnet. The float housing communicates with the fluid whose level is to be maintained by means of a tube attached to the port 25 on the housing.
As the level of fluid in the housing rises so does the float and the magnetic attraction between the ring magnet 20 and the plunger magnet 8 causes the plunger to rise thus exerting an attractive force upwards on the lever 5 by means of the magnet 9 which in turn exerts a couple on the rocker 4 to place the seal ribbon 3 over the bleed hole and thus close the valve.
As the fluid level falls the reverse action occurs and the valve opens.
Because of the very low forces required by the lever to actuate the valve the float size required to operate the valve is very small.
As with the previous electrically operated version of the valve physical connection may be used in lieu of some of the magnetic connections to operate the valve. As with the previous electrically operated version, some of the permanent magnets may be substituted with magnetically attractive materials. As with the previous electrically operated version of the valve, the plunger may have only one magnet or may be comprised solely of magnetically attractive material.
Figure 4 shows a third embodiment of the valve where a fluid pressure actuator is used to supply the force to open or close the valve. With reference to figure 4 it can be seen that when the fluid pressure is applied to the tube 25 it exerts a force on the bellows assembly 21 and 22, which retains a permanent magnet 20 to interact with the plunger 7 in the same manner as for the float operated valve of the second embodiment. The force on the bellows assembly is resisted by a spring 18 which is adjusted by its retainer 19 and an adjusting screw 24. As the pressure rises the motion of the bellows assembly is to compress the spring and thus the permanent magnet moves to urge the plunger retracted and so closes the valve.
Figure 5 shows a fourth embodiment of the valve pilot stage where the rotational uncovering of the bleed hole is used to reduce the forces required to open the valve.
With reference to figure 5 it can be seen that the valve body and diaphragm 4 are the same as with the previously described embodiments. It can also be seen that the diaphragm support 2 is essentially the same as previously described, except that it does not have attachment points for the seal ribbon.
In the previously described valves the curved surface to reduce the forces required to open the bleed hole were achieved by the use of a seal ribbon and curved rocker. In this embodiment of the valve, the seal ribbon and curved rocker are combined into one component which is a hollow cylinder 28 wrapped around a permanent disk magnet 27. In physical terms the seal ribbon and rocker becomes a tyre 28 fitted to the permanent tyre magnet 27.
A force exerted on the tyre magnet 27 causes the tyre 28 to roll over the bleed hole 15. The mechanical advantage can still be very high. For example if the tyre has a diameter of 20 mm, the force required to be exerted on the tyre magnet to open the valve for a bleed hole diameter of 1 mm and a water pressure of 1 MPa is in the order of 0.04 Newtons.
The operation of the valve is shown diagrammatically in figures 5 a through 5 c. When the tyre 28 is rolled over the bleed hole 15, the pressure in the upper chamber "B" rises and closes the valve. When the tyre is rolled away from the bleed hole the pressure in "B" falls and allows the valve to close.
Figure 6 shows the operation of this valve when an external device is used to exert a magnetic force on the permanent magnet 27.
With reference to figures 6a through 6c, a small permanent returning magnet 29 is used to urge the tyre magnet 27 and tyre 28 over the bleed hole 15. Another actuator magnet 30 is attached to the actuating device which may be a float or pressure operated actuating device as previously described.
In the closed position the actuating magnet 30 is sufficiently removed from the tyre magnet 27 that the net repulsive force on the tyre magnet by the returning magnet caused the tyre to be forced over the bleed hole 15 to close the valve.
As the actuating magnet 30 rises, it exerts a repulsive force on the tyre magnet to overcome the repulsive force of the returning magnet, and thus roll the tyre off the bleed hole to allow the valve to open.
Although the operation is described as repulsion between the various magnets, an attractive mode may also be used with suitable placement of the magnets. Although all of the magnetic elements are described as permanent magnets magnetically attractive materials may be substituted for some of the magnets.
Although the valve is described as having a returning magnet 29 this may be omitted if the valve is orientated so that gravity forces are used to roll the tyre over the bleed hole.
Another version of the valve is shown in figures 7a through 7c. With reference to these diagrams the components are as previously described. The additional components are a small electromagnet 31 and keeper magnets 32 and 33.
In operation an electric current is passed through the electro magnet to repel the tyre magnet 27 and tyre 28 off the bleed hole 15, and thus permit the valve to open. When the tyre is forced off the bleed hole, the tyre magnet comes within the attractive force of the keeper magnet 32, which retains the tyre magnet and latches the valve in the open state. The current to the electro magnet may now be turned off and the valve will remain open.
When an electric current is passed through the electro magnet in the opposite direction the tyre magnet is attracted over the bleed hole to be retained by the keeper magnet 33 and close the valve. The current to the electro magnet may now be turned off and the valve will remain closed.
The keeper magnets need not necessarily be permanent magnets and may simply be of a magnetically attractive material.
Other arrangements of the electro magnet are possible so that more than one may be used to apply the forces to the tyre magnet. With suitable locations of electromagnet it is possible to replace the permanent tyre magnet with a magnetically attractive material.
Another embodiment of this valve is described in figures 8a and 8b, where the principles remain the same but the valve has a different physical layout. With reference to figure 8a and 8b it can be seen that the communication port between chambers "A" and "B" is located within the diaphragm support. The bleed hole 15 between chambers "B" and "C" is within the valve body but the operating principles are still the same where the tyre is rolled over the bleed hole to close the valve and away from the bleed hole to open the valve.
In the above described embodiments, the surface of the sealing element ie. the seal ribbon or tyre which closes over the bleed hole is a convexly curved, to allow the sealing element to easily roll on and off the bleed hole. However, it should be understood that in other not shown embodiments the sealing element surface may be substantially flat or convexly curved with a large radius. In such embodiments the sealing element surface may be tilted over the bleed hole to allow for opening and closing of the valve.

Claims

CLAIMS:
1. A valve of the kind that is caused to open and close in consequence of the opening and closing of a bleed orifice by a movable pilot valve element, characterised in that said element is displaced from sealing relationship with the orifice by a torque resulting from a force applied to the element along a line of action which does not extend through the orifice.
2. A valve as claimed in claim 1 , wherein said element has a convexly curved sealing surface.
3. A valve as claimed in claim 2, wherein said element is a seal ribbon.
4. A valve as claimed in claim 3, wherein said seal ribbon is associated with a rocker connected at one end of a lever, the opposite end of said lever being connected to an actuator adapted to provide said force.
5. A valve as claimed in claim 2, wherein said element is a hollow cylinder mounted on a cylindrical body.
6. A valve as claimed in claim 5, wherein said hollow cylinder is an elastomeric tyre and at least a portion of said cylindrical body is a magnet.
7. A valve as claimed in claim 1 , wherein said force is exerted by means of an actuator.
8. A valve as claimed in claim 7, wherein said actuator is a solenoid actuator.
9. A valve as claimed in claim 8, wherein said a solenoid actuator may be electrically operated at a low voltage.
10. A valve as claimed in claim 9, wherein said solenoid actuator may be latched in an open position when electric current is switched off.
11. A valve as claimed in claim 7, wherein said actuator is a float actuator.
12. A valve as claimed in claim 7, wherein said actuator is a fluid pressure actuator.
PCT/AU1996/000461 1995-07-19 1996-07-19 Low power pilot valve actuated by transverse or perpendicular action WO1997004260A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU65091/96A AU680796B2 (en) 1995-07-19 1996-07-19 Low power pilot valve actuated by transverse or perpendicular action
NZ313098A NZ313098A (en) 1995-07-19 1996-07-19 Low power pilot valve actuated by transverse or perpendicular action
US08/983,103 US5954311A (en) 1996-07-19 1996-07-19 Low power pilot valve actuated by transverse or perpendicular action

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AUPN4225A AUPN422595A0 (en) 1995-07-19 1995-07-19 "Rocker-arm" pilot valve
AUPN4225 1995-07-19

Publications (1)

Publication Number Publication Date
WO1997004260A1 true WO1997004260A1 (en) 1997-02-06

Family

ID=3788560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AU1996/000461 WO1997004260A1 (en) 1995-07-19 1996-07-19 Low power pilot valve actuated by transverse or perpendicular action

Country Status (3)

Country Link
AU (1) AUPN422595A0 (en)
NZ (1) NZ313098A (en)
WO (1) WO1997004260A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999009266A1 (en) * 1997-08-14 1999-02-25 Isidro Gonzalez Benavides Disinfecting-deodorizing flushometer having a single mobile part and operated through a sensor or electronic button
WO2000039489A1 (en) * 1998-12-23 2000-07-06 Goyen Controls Co Pty Limited Air flow control valve
WO2000050795A1 (en) * 1999-02-23 2000-08-31 Nu-Valve Pty Ltd. Improved magnetically operated valve

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1545150A (en) * 1924-03-18 1925-07-07 Lundberg Elof Karl Hjalmar Self-closing valve
AU2071329A (en) * 1929-06-18 1930-09-30 Harold William Levy Improvements in flushing valves
GB645013A (en) * 1945-11-30 1950-10-25 Rene Eugene Leon Trubert Improvements in, or relating to, ball valves
US3982562A (en) * 1974-10-04 1976-09-28 Allied Chemical Corporation Pressure control apparatus
GB2085123A (en) * 1980-10-03 1982-04-21 Owatonna Tool Co Valve
AU1002388A (en) * 1987-01-12 1988-07-14 Abx Switching microelectrovalve having a single membrane
AU3667289A (en) * 1988-06-30 1990-01-04 Abx Switching microelectrovalve having a single diaphragm
US4951915A (en) * 1990-01-10 1990-08-28 Piao Lin C Electronic water flow control device
AU6775090A (en) * 1990-02-02 1991-08-08 Agroteam Consultants Ltd. Moisture-responsive valve assembly
AU8678991A (en) * 1990-11-02 1992-05-07 Eldom Rothrist Ag Apparatus for the preparation of hot drinks
US5226629A (en) * 1992-05-19 1993-07-13 Paul Millman Remote controlled faucet
AU3525893A (en) * 1992-03-18 1993-09-23 Automatic Switch Company Valve and operator therefor
AU5798194A (en) * 1993-04-02 1994-10-06 Aran Engineering Development Ltd. A valve

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1545150A (en) * 1924-03-18 1925-07-07 Lundberg Elof Karl Hjalmar Self-closing valve
AU2071329A (en) * 1929-06-18 1930-09-30 Harold William Levy Improvements in flushing valves
GB645013A (en) * 1945-11-30 1950-10-25 Rene Eugene Leon Trubert Improvements in, or relating to, ball valves
US3982562A (en) * 1974-10-04 1976-09-28 Allied Chemical Corporation Pressure control apparatus
GB2085123A (en) * 1980-10-03 1982-04-21 Owatonna Tool Co Valve
AU1002388A (en) * 1987-01-12 1988-07-14 Abx Switching microelectrovalve having a single membrane
AU3667289A (en) * 1988-06-30 1990-01-04 Abx Switching microelectrovalve having a single diaphragm
US4951915A (en) * 1990-01-10 1990-08-28 Piao Lin C Electronic water flow control device
AU6775090A (en) * 1990-02-02 1991-08-08 Agroteam Consultants Ltd. Moisture-responsive valve assembly
AU8678991A (en) * 1990-11-02 1992-05-07 Eldom Rothrist Ag Apparatus for the preparation of hot drinks
AU3525893A (en) * 1992-03-18 1993-09-23 Automatic Switch Company Valve and operator therefor
US5226629A (en) * 1992-05-19 1993-07-13 Paul Millman Remote controlled faucet
AU5798194A (en) * 1993-04-02 1994-10-06 Aran Engineering Development Ltd. A valve

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999009266A1 (en) * 1997-08-14 1999-02-25 Isidro Gonzalez Benavides Disinfecting-deodorizing flushometer having a single mobile part and operated through a sensor or electronic button
WO2000039489A1 (en) * 1998-12-23 2000-07-06 Goyen Controls Co Pty Limited Air flow control valve
WO2000050795A1 (en) * 1999-02-23 2000-08-31 Nu-Valve Pty Ltd. Improved magnetically operated valve

Also Published As

Publication number Publication date
NZ313098A (en) 1998-10-28
AUPN422595A0 (en) 1995-08-10

Similar Documents

Publication Publication Date Title
US5954311A (en) Low power pilot valve actuated by transverse or perpendicular action
AU2011201570B2 (en) Pneumatically actuated valve
US5758863A (en) Valve controlled by fluid
US5711346A (en) Fluid control element
US20060180208A1 (en) Springless compressor valve
KR20000077140A (en) Pilot solenoid control valve with pressure responsive diaphragm
CN113669461B (en) A bistable solenoid valve
GB2390414B (en) Electromagnetic actuator and integrated actuator and fluid flow control valve
CN107830182A (en) A kind of magnetic valve with magnet
WO1996011350A1 (en) Solenoid actuated bi-stable pilot valve
WO1997004260A1 (en) Low power pilot valve actuated by transverse or perpendicular action
AU680796B2 (en) Low power pilot valve actuated by transverse or perpendicular action
KR19990008469A (en) Lift valve with pressure balanced pilot operated valve member
JPH08508329A (en) Front control valve
GB2320311A (en) Magnetically latched diverter valves
KR200191669Y1 (en) Solenoid valve with return prevention function in case of power failure and manual open / close operation
CN105736757B (en) A kind of changeover module in band interlocking water route
JP2007016935A (en) Valve mechanism
JPH057589B2 (en)
US20250003518A1 (en) Electromagnetic Check Valve with a Deformable Ferromagnetic Plugging Element for Fluid Flow Control
EP1024504B1 (en) Improved electromagnetic actuator for washing and similar machines
KR100453993B1 (en) Piezo valve
JPH0245574Y2 (en)
KR100546029B1 (en) Poppet Type Micro Valve
US20050257842A1 (en) Control valve for controlling flow of hydraulic fluid

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE HU IL IS JP KE KG KP KR KZ LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 313098

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 08983103

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA