WO1997000007A1 - Procede pour agir sur les couches basses de l'atmosphere - Google Patents
Procede pour agir sur les couches basses de l'atmosphere Download PDFInfo
- Publication number
- WO1997000007A1 WO1997000007A1 PCT/GB1995/002147 GB9502147W WO9700007A1 WO 1997000007 A1 WO1997000007 A1 WO 1997000007A1 GB 9502147 W GB9502147 W GB 9502147W WO 9700007 A1 WO9700007 A1 WO 9700007A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- atmosphere
- inversion layer
- temperature
- wind direction
- acting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01G—HORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
- A01G15/00—Devices or methods for influencing weather conditions
Definitions
- This invention relates to the general field of meteorology and more particularly to purposefully acting upon the layer of temperature surface inversion in the atmosphere which impedes the development of convective clouds.
- the method can in particular be used both to prevent the formation of smog and its dispersal and for the protection of environments against exposure to dangerous chemicals and radionuclides should an industrial accident occur.
- a known method of acting upon the lower layers of the atmosphere has been developed whereby the amount of precipitation is increased by creating artificial convective clouds with the help of a ground installation of Meteotron type.
- the installation includes 97 to 105 burners arranged either in the form of a 125 metre square or in the form of a hexagon with a 36 metre radius or in the form of a three-branch spiral. Depending on the configuration used the burners cover an area of 4,000- 16,000 square metres. Oil is supplied at (10 to 15-16 litres/min) to each of the burners at a pressure of 60kg/cm2, which provides a power level for the installation of 6,000 to 1,000,000 kW.
- the burners are turned on individually with the help of a remote-control system. To create a stable convective flow, the upwardly directed burners operate in two modes : 5 to 10 minutes and 35 to 40 minutes.
- the main disadvantages of this known method are as follows:
- tubo-jet engines are used to create a convective flow in the atmosphere (one to ten at a time) ; the power of the installation based on the use of four and ten engines is about 200,00 and 500,000 kW, respectively.
- the main element in the construction is a special nozzle into which flows from all the engines used in the installation are directed. This special nozzle is vertically oriented and equipped with an afterburner where the air jet is heated.
- the air velocity at the nozzle outlet is 425 to 570 metres/second and the nozzle outlet diameter is 2.26 to 2.66m.
- the amount of pollutants (kg) formed during the combustion of 1000kg of fuel in the turbo-jet engines is 3.3 for CO; 5.0 for N0 2 ; 0.3 for soot; 1.0 for S0 2 ; and 4.0 for C--H-..
- the main disadvantages of this installation which is known as the Supermeteotron are as follows: 1) atmospheric pollution by fuel combustion products;
- the problem to be solved by the present invention is to reduce energy consumption and create an artificial convective cell which will destroy or disperse the intercepting layer of temperature inversion in the atmosphere.
- a method of acting on the lower layers of the atmosphere comprising the steps of determining the parameters of the temperature surface inversion layer in the atmosphere exposing said layer to a preheated upward air jet, calculating the average wind direction from the ground surface to the upper boundary of the temperature inversion layer and inclining the heated air jet at an angle of no less than 5° relative to said average wind direction.
- additional air jets can be formed whose inclination angles relative to the average wind direction are not equal to each other, the sources of the air jets being spaced apart at more than 1.5m from each other. Furthermore, descending air flows can be formed on the windward side of the action zone by the main rotor of a helicopter or an airplanes wake or with the help of a course-dispersed powder with a specific surface no less than 10 3 m2/g which is dropped from above the upper boundary of the temperature inversion layer, or by both at the same time.
- the principal distinction of the present invention over Jpiown methods is that the action on the inversion layer is not exerted to initiate additional precipitation but instead provides local ventilation of the lowest atmospheric layer by creating an artificial convective cell.
- a method of directly comparing the states of the intercepting layer using radar or radio sounding data is used.
- a regularity governing the movement of a vortex formation in the atmosphere can be used whereby the vortex formation in the atmosphere is shifting relative to the point of deceleration of the tangential rotation component at its highest absolute value.
- the movement velocity and direction regularly vary depending on the potential of forces acting on the dynamic system of a "vortex-external wind" .
- Atmospheric sounding data is used to determine the vertical profile of the wind, the height and thickness of the intercepting layer in the atmosphere (temperature inversion or isothermal layer) , to calculate wind velocities and direction, and the average wind and its direction from the land surface to the upper boundary of the temperature inversion layer.
- the nozzle of the installation which forms a heated air flow is inclined relative to the average wind direction at an angle no less than 5° (at wind velocities up to 10 metres/second) . If the wind velocity is of the order of 15 to 20 metres/second, the nozzle can be inclined at an angle of 20 to 40°.
- the installation is then actuated. Maximum power mode is maintained for 20 to 60 minutes. To ensure greater efficiency, it is expedient to use several installations spaced at no less than 1.5 metres from one another, whose nozzles are inclined relative to the average wind direction at different angles.
- self-developing descending air flows can be formed using an airplane's wake or the air flow created by a helicopter's main rotor.
- Descending flows can also be formed with the help of a course-dispersed powder of no less than 10 3 m2/g specific surface which is dropped from above the upper boundary of the temperature inversion layer.
- the powder is dropped in special containers weighing 10 to 20 kg each.
- the aircraft approaches from the windward side of the forming artificial convective cell at a distance from it of no less than 10m and, making circular counter ⁇ clockwise revolutions, drops containers containing the course-dispersed powder which open at the flight height, i.e. above the upper boundary of the temperature inversion layer (intercepting layer) .
- the entire procedure is repeated in the same order. If temperature and wind conditions are constant, the repeated procedure is reduced by periodically switching the installation on and off.
- the state of the intercepting layer is controlled using known methods such as thermal location, radio sounding, etc.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Atmospheric Sciences (AREA)
- Environmental Sciences (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| AU34787/95A AU3478795A (en) | 1995-06-15 | 1995-09-08 | Method of acting on the lower layers of the atmosphere |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| RU95109090 | 1995-06-15 | ||
| RU95109090 | 1995-06-15 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO1997000007A1 true WO1997000007A1 (fr) | 1997-01-03 |
Family
ID=20168446
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/GB1995/002147 Ceased WO1997000007A1 (fr) | 1995-06-15 | 1995-09-08 | Procede pour agir sur les couches basses de l'atmosphere |
Country Status (2)
| Country | Link |
|---|---|
| AU (1) | AU3478795A (fr) |
| WO (1) | WO1997000007A1 (fr) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2008096221A1 (fr) * | 2007-02-04 | 2008-08-14 | Zbigniew Majewski | Procédé de fabrication de pluie |
| US11098291B2 (en) | 2012-03-23 | 2021-08-24 | Codexis, Inc. | Biocatalysts and methods for synthesizing derivatives of tryptamine and tryptamine analogs |
| DE102020204926A1 (de) | 2020-04-17 | 2021-10-21 | Volkswagen Aktiengesellschaft | Verfahren zum Betreiben eines Fluggeräts, Fluggerät sowie Fluggerätflotte |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR1330482A (fr) * | 1962-08-02 | 1963-06-21 | Exxon Research Engineering Co | Procédé pour provoquer une circulation d'air sur de grandes régions de terrains |
| US3952950A (en) * | 1972-05-19 | 1976-04-27 | Linde Aktiengesellschaft | Apparatus for defogging a roadway, landing strip or the like |
| DE3503138A1 (de) * | 1985-01-31 | 1986-08-07 | Heinz 4100 Duisburg Pinders | Verfahren zur verminderung von smog nach dem kamin-umkehr/injektor effekt |
-
1995
- 1995-09-08 WO PCT/GB1995/002147 patent/WO1997000007A1/fr not_active Ceased
- 1995-09-08 AU AU34787/95A patent/AU3478795A/en not_active Abandoned
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR1330482A (fr) * | 1962-08-02 | 1963-06-21 | Exxon Research Engineering Co | Procédé pour provoquer une circulation d'air sur de grandes régions de terrains |
| US3952950A (en) * | 1972-05-19 | 1976-04-27 | Linde Aktiengesellschaft | Apparatus for defogging a roadway, landing strip or the like |
| DE3503138A1 (de) * | 1985-01-31 | 1986-08-07 | Heinz 4100 Duisburg Pinders | Verfahren zur verminderung von smog nach dem kamin-umkehr/injektor effekt |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2008096221A1 (fr) * | 2007-02-04 | 2008-08-14 | Zbigniew Majewski | Procédé de fabrication de pluie |
| US11098291B2 (en) | 2012-03-23 | 2021-08-24 | Codexis, Inc. | Biocatalysts and methods for synthesizing derivatives of tryptamine and tryptamine analogs |
| DE102020204926A1 (de) | 2020-04-17 | 2021-10-21 | Volkswagen Aktiengesellschaft | Verfahren zum Betreiben eines Fluggeräts, Fluggerät sowie Fluggerätflotte |
| DE102020204926B4 (de) | 2020-04-17 | 2023-01-05 | Volkswagen Aktiengesellschaft | Verfahren zum Betreiben eines Fluggeräts, Fluggerät sowie Fluggerätflotte |
Also Published As
| Publication number | Publication date |
|---|---|
| AU3478795A (en) | 1997-01-15 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Newton | Severe convective storms | |
| Morton | Geophysical vortices | |
| Danielsen | In situ evidence of rapid, vertical, irreversible transport of lower tropospheric air into the lower tropical stratosphere by convective cloud turrets and by larger‐scale upwelling in tropical cyclones | |
| Christie et al. | The morning glory of the Gulf of Carpentaria | |
| Ball | The theory of strong katabatic winds | |
| Guéenard et al. | Dynamics of the MAP IOP 15 severe Mistral event: Observations and high‐resolution numerical simulations | |
| WO1997000007A1 (fr) | Procede pour agir sur les couches basses de l'atmosphere | |
| Briggs | Plume rise: a recent critical review | |
| Blackadar | A survey of wind characteristics below 1500 ft | |
| Gierens et al. | A numerical study of the contrail‐to‐cirrus transition | |
| Carney | Hazardous Mountain Winds: And Their Visual Indicators | |
| RU2694200C1 (ru) | Способ разрушения слоя инверсии температуры в тропосфере | |
| Carlis et al. | Numerical simulations of island-scale airflow over Maui and the Maui vortex under summer trade wind conditions | |
| Countryman et al. | Fire weather and fire behavior in the 1966 Loop Fire | |
| Kirianov | Volcanic ash in Kamchatka as a source of potential hazard to air traffic | |
| GB2182012A (en) | Microprocessor controlled gas turbine aero engine and navigation system | |
| Ehernberger | Stratospheric turbulence measurements and models for aerospace planedesign | |
| Kimura | Formation mechanism of the nocturnal mesoscale vortex in Kanto Plain | |
| McCormick | Lidar measurements of Mount St. Helens effluents | |
| Goens | Fire whirls | |
| Weil et al. | A correlation of ground-level concentrations of sulfur dioxide downwind of the Keystone stacks | |
| RU2803352C1 (ru) | Способ создания искусственных облаков и осадков | |
| KR20100081265A (ko) | 지상가열을 이용한 인공강수 촉진 시스템 및 그 방법 | |
| Baker | Trade cumulus observations | |
| RU2138945C1 (ru) | Способ активного воздействия на конвективные облака |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A1 Designated state(s): AM AU BB BG BR BY CA CN CZ EE FI GB GE HU JP KE KG KP KR KZ LK LR LT LV MD MG MN MW MX NO NZ PL RO SD SI SK TJ TT UA US UZ VN |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): KE MW SD SZ UG AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG |
|
| DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| ENP | Entry into the national phase |
Ref country code: US Ref document number: 1997 776947 Date of ref document: 19970423 Kind code of ref document: A Format of ref document f/p: F |
|
| 122 | Ep: pct application non-entry in european phase |