WO1996037668A1 - Barriere d'air et son utilisation dans des toitures - Google Patents
Barriere d'air et son utilisation dans des toitures Download PDFInfo
- Publication number
- WO1996037668A1 WO1996037668A1 PCT/EP1996/002028 EP9602028W WO9637668A1 WO 1996037668 A1 WO1996037668 A1 WO 1996037668A1 EP 9602028 W EP9602028 W EP 9602028W WO 9637668 A1 WO9637668 A1 WO 9637668A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- ester
- air barrier
- air
- chain
- Prior art date
Links
- 230000004888 barrier function Effects 0.000 title claims abstract description 69
- 239000002346 layers by function Substances 0.000 claims abstract description 39
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 33
- 229920000642 polymer Polymers 0.000 claims abstract description 20
- 229920002635 polyurethane Polymers 0.000 claims abstract description 8
- 239000004814 polyurethane Substances 0.000 claims abstract description 8
- 238000000034 method Methods 0.000 claims abstract description 3
- 239000010410 layer Substances 0.000 claims description 78
- 150000002148 esters Chemical class 0.000 claims description 34
- 238000009413 insulation Methods 0.000 claims description 30
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 claims description 23
- 239000000835 fiber Substances 0.000 claims description 18
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 16
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 claims description 16
- 150000002009 diols Chemical class 0.000 claims description 16
- 239000004744 fabric Substances 0.000 claims description 15
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 8
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 claims description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 8
- 229910052799 carbon Inorganic materials 0.000 claims description 8
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 8
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 claims description 8
- RXOHFPCZGPKIRD-UHFFFAOYSA-N naphthalene-2,6-dicarboxylic acid Chemical compound C1=C(C(O)=O)C=CC2=CC(C(=O)O)=CC=C21 RXOHFPCZGPKIRD-UHFFFAOYSA-N 0.000 claims description 8
- 229910052760 oxygen Inorganic materials 0.000 claims description 8
- 239000001301 oxygen Substances 0.000 claims description 8
- 239000000126 substance Substances 0.000 claims description 7
- 239000002356 single layer Substances 0.000 claims description 6
- 150000001408 amides Chemical class 0.000 claims description 4
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 4
- 238000009434 installation Methods 0.000 claims description 4
- 239000011810 insulating material Substances 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims description 4
- -1 polyacrylic Polymers 0.000 claims description 4
- 125000004432 carbon atom Chemical group C* 0.000 claims description 3
- 150000001991 dicarboxylic acids Chemical class 0.000 claims description 3
- 239000006260 foam Substances 0.000 claims description 3
- 150000002334 glycols Chemical class 0.000 claims description 3
- 239000002557 mineral fiber Substances 0.000 claims description 3
- 229920000151 polyglycol Polymers 0.000 claims description 3
- 239000010695 polyglycol Substances 0.000 claims description 3
- 239000012209 synthetic fiber Substances 0.000 claims description 3
- 229920002994 synthetic fiber Polymers 0.000 claims description 3
- 244000198134 Agave sisalana Species 0.000 claims description 2
- 244000025254 Cannabis sativa Species 0.000 claims description 2
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 claims description 2
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 claims description 2
- 229920003043 Cellulose fiber Polymers 0.000 claims description 2
- 240000000491 Corchorus aestuans Species 0.000 claims description 2
- 235000011777 Corchorus aestuans Nutrition 0.000 claims description 2
- 235000010862 Corchorus capsularis Nutrition 0.000 claims description 2
- 229920000742 Cotton Polymers 0.000 claims description 2
- 239000004952 Polyamide Substances 0.000 claims description 2
- 235000009120 camo Nutrition 0.000 claims description 2
- 239000000919 ceramic Substances 0.000 claims description 2
- 235000005607 chanvre indien Nutrition 0.000 claims description 2
- 239000003365 glass fiber Substances 0.000 claims description 2
- 239000011487 hemp Substances 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims description 2
- 229920002647 polyamide Polymers 0.000 claims description 2
- 229920000728 polyester Polymers 0.000 claims description 2
- 229920000915 polyvinyl chloride Polymers 0.000 claims description 2
- 239000004800 polyvinyl chloride Substances 0.000 claims description 2
- 239000011435 rock Substances 0.000 claims description 2
- 239000002893 slag Substances 0.000 claims description 2
- 239000002023 wood Substances 0.000 description 16
- 238000009415 formwork Methods 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 6
- 239000012774 insulation material Substances 0.000 description 5
- 241000233866 Fungi Species 0.000 description 4
- 238000009833 condensation Methods 0.000 description 4
- 230000005494 condensation Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000011490 mineral wool Substances 0.000 description 4
- 230000035699 permeability Effects 0.000 description 4
- 235000002233 Penicillium roqueforti Nutrition 0.000 description 3
- 239000007799 cork Substances 0.000 description 3
- 239000000428 dust Substances 0.000 description 3
- 239000012634 fragment Substances 0.000 description 3
- 230000036541 health Effects 0.000 description 3
- 230000035515 penetration Effects 0.000 description 3
- 238000009423 ventilation Methods 0.000 description 3
- 210000002268 wool Anatomy 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 2
- 206010061217 Infestation Diseases 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 239000010426 asphalt Substances 0.000 description 2
- 238000009395 breeding Methods 0.000 description 2
- 230000001488 breeding effect Effects 0.000 description 2
- 238000005253 cladding Methods 0.000 description 2
- 230000006735 deficit Effects 0.000 description 2
- 238000007791 dehumidification Methods 0.000 description 2
- 239000003344 environmental pollutant Substances 0.000 description 2
- 238000007765 extrusion coating Methods 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 230000002538 fungal effect Effects 0.000 description 2
- 239000000417 fungicide Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 150000002366 halogen compounds Chemical class 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 231100000719 pollutant Toxicity 0.000 description 2
- 239000004575 stone Substances 0.000 description 2
- 230000036642 wellbeing Effects 0.000 description 2
- DCEPGADSNJKOJK-UHFFFAOYSA-N 2,2,2-trifluoroacetyl fluoride Chemical compound FC(=O)C(F)(F)F DCEPGADSNJKOJK-UHFFFAOYSA-N 0.000 description 1
- SYNPRNNJJLRHTI-UHFFFAOYSA-N 2-(hydroxymethyl)butane-1,4-diol Chemical compound OCCC(CO)CO SYNPRNNJJLRHTI-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 241000218657 Picea Species 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229920005830 Polyurethane Foam Polymers 0.000 description 1
- 239000002390 adhesive tape Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000003490 calendering Methods 0.000 description 1
- IYRWEQXVUNLMAY-UHFFFAOYSA-N carbonyl fluoride Chemical compound FC(F)=O IYRWEQXVUNLMAY-UHFFFAOYSA-N 0.000 description 1
- 239000008199 coating composition Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000011491 glass wool Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 230000005802 health problem Effects 0.000 description 1
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 1
- 239000002917 insecticide Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000008239 natural water Substances 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- DAFIBNSJXIGBQB-UHFFFAOYSA-N perfluoroisobutene Chemical group FC(F)=C(C(F)(F)F)C(F)(F)F DAFIBNSJXIGBQB-UHFFFAOYSA-N 0.000 description 1
- 239000000575 pesticide Substances 0.000 description 1
- 230000035479 physiological effects, processes and functions Effects 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 231100000572 poisoning Toxicity 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920006327 polystyrene foam Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 239000011496 polyurethane foam Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000003223 protective agent Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000007665 sagging Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 239000010875 treated wood Substances 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/12—Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B19/00—Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
- B32B27/304—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
- B32B27/308—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/34—Layered products comprising a layer of synthetic resin comprising polyamides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/36—Layered products comprising a layer of synthetic resin comprising polyesters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/02—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
- B32B5/022—Non-woven fabric
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/02—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
- B32B5/026—Knitted fabric
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/18—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/22—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
- B32B5/24—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
- B32B5/245—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it being a foam layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/04—Interconnection of layers
- B32B7/12—Interconnection of layers using interposed adhesives or interposed materials with bonding properties
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06N—WALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
- D06N5/00—Roofing materials comprising a fibrous web coated with bitumen or another polymer, e.g. pitch
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04D—ROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
- E04D12/00—Non-structural supports for roofing materials, e.g. battens, boards
- E04D12/002—Sheets of flexible material, e.g. roofing tile underlay
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2260/00—Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
- B32B2260/04—Impregnation, embedding, or binder material
- B32B2260/046—Synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/02—Synthetic macromolecular fibres
- B32B2262/0223—Vinyl resin fibres
- B32B2262/0238—Vinyl halide, e.g. PVC, PVDC, PVF, PVDF
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/02—Synthetic macromolecular fibres
- B32B2262/0246—Acrylic resin fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/02—Synthetic macromolecular fibres
- B32B2262/0261—Polyamide fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/02—Synthetic macromolecular fibres
- B32B2262/0276—Polyester fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/06—Vegetal fibres
- B32B2262/062—Cellulose fibres, e.g. cotton
- B32B2262/065—Lignocellulosic fibres, e.g. jute, sisal, hemp, flax, bamboo
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2305/00—Condition, form or state of the layers or laminate
- B32B2305/02—Cellular or porous
- B32B2305/026—Porous
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2305/00—Condition, form or state of the layers or laminate
- B32B2305/38—Meshes, lattices or nets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/30—Properties of the layers or laminate having particular thermal properties
- B32B2307/304—Insulating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/724—Permeability to gases, adsorption
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2419/00—Buildings or parts thereof
- B32B2419/06—Roofs, roof membranes
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06N—WALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
- D06N2203/00—Macromolecular materials of the coating layers
- D06N2203/06—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- D06N2203/061—Polyesters
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06N—WALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
- D06N2203/00—Macromolecular materials of the coating layers
- D06N2203/06—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- D06N2203/065—Polyamides
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06N—WALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
- D06N2203/00—Macromolecular materials of the coating layers
- D06N2203/06—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- D06N2203/068—Polyurethanes
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06N—WALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
- D06N2209/00—Properties of the materials
- D06N2209/12—Permeability or impermeability properties
- D06N2209/121—Permeability to gases, adsorption
Definitions
- the invention relates to an air barrier for installation in roofs to prevent heat convection losses and to improve the indoor climate, which is a laminate with at least one non-porous, watertight, water vapor-permeable functional layer, the use thereof in roofs and a method for producing heat-insulated, heat con roofs avoiding vection loss.
- the structural thermal insulation of residential buildings can be significantly improved in that the roofs are provided with heat-insulating material. As a result, the amount of heat lost through the envelope of a building (transmission heat loss) can be significantly reduced.
- transmission heat loss In order to also prevent the loss of convection heat, which is caused, for example, by joints, gaps, openings and cracks in the formwork of the roof, it is required that the heat-transferring surrounding surface of a building must be permanently impermeable to air.
- waterproof, fiber-reinforced or unreinforced polyolefin or aluminum foils are usually applied on the room side, which shut off any natural water vapor transport and give the hermetically sealed living space the typical so-called plastic bag image.
- the air barrier can be located above and / or below the rafters or the thermal insulation layer. It can now be seen that the internal formwork, which is designed as wood paneling or wood paneling, is exposed to a high level of atmospheric humidity, especially in warm air. This means that there is a risk of infestation of the wood with fungi such as blue mold sponge formation, especially on cold bridges; a circumstance which obviously leads to health impairment of the users of the roof space.
- Those that can consist of organic and / or inorganic insulation materials are used as the insulation layer.
- Glass, stone, slag wool in the form of mat-like fabric or felt are suitable as inorganic fibrous insulation materials. These are characterized by low weight, high thermal insulation, sound-absorbing properties, non-combustibility, resistance to putrefaction and the ability to due to their porosity and fibrousness absorb moisture on the inside and release it again on the outside.
- the rock wool used as a thermal insulation layer has the disadvantage of dust or fragments trickling out due to the aging process and the permanent thermal-mechanical stress.
- DE-OS 42 01 353 discloses an insulating formwork for roofs and walls, which is covered with surfaces of formwork elements lying next to one another with layers applied on the inside or outside, as well as insulation layers arranged in the formwork elements, the formwork elements having recesses on at least one side which are covered with a barrier layer.
- this insulating formwork is subject to an aging process and, in order to prevent fungal and mold infestation, must be treated with the unwanted impregnating and protecting agents in house construction.
- Air barriers are usually air-impermeable plastic films which are arranged on the cold roof on the side of the thermal insulation layer facing the top floor apartment and are attached to the or below the spar by means of slats.
- the ceiling formwork is attached to the slats.
- Air locks on warm roofs are mostly laid on the side of the thermal insulation layer facing the top floor apartment and can be covered by means of roof formwork coupled to rafters towards the top floor apartment.
- the outside is to be equated with the side facing away from the top floor apartment, for example the rafters
- inside is to be equated with the side facing the top floor apartment, for example the rafters.
- the loss of moisture is exacerbated by the fact that today, for reasons of energy saving, heating is often less and more uneven, so that strong condensation can be found in cold and cooled rooms, since a colder room air is more quickly saturated with water vapor and thus absorb less moisture can
- the interior air in the attic apartments provided with chemically treated wood is strongly enriched with the fungicides and insecticides diffusing out of the wood, so that the user is forced to ventilate frequently in order to avoid health problems due to the high concentrations of pollutants in the room air , a circumstance that increases heating costs inappropriately.
- US Pat. No. 4,684,568 proposes the use of a water-vapor-permeable, waterproof film, a polypropylene resin being applied to the surface of a fabric layer, so that the fabric layer becomes water- and vapor-impermeable. Subsequent calendering produces the water vapor permeability of the film while maintaining the water tightness.
- the water-vapor-permeable layer should not only be water-vapor-permeable and watertight, but also because of the high mechanical and thermal loading of the film in the roof area, it must additionally have a high tear strength and a high melting point, so that the Back pressure and suction forces caused by wind, especially in the case of cold roofs, do not lead to crack formation and fatigue of the film for a long time.
- the prior art completely overlooks the fact that the lower the inclination of a roof, the greater the requirements for the thermal resistance and durability of the water vapor permeability of the film, even in inhospitable weather such as frost and driving rain. The trouble will be not recognized by this state of the art, let alone solved.
- the invention is therefore based on the object of providing an air lock for installation in roofs which has the above-mentioned. Does not have disadvantages of the prior art.
- the air barrier it should be possible for the air barrier to offer protection against the trickling of components of the thermal insulation layer and to ensure sufficient tear resistance against wind suction and wind pressure, without losing the ability to be water vapor permeable and watertight.
- the air barrier according to the invention for installation in roofs to prevent heat convection losses and to improve the indoor climate, which is a laminate with at least one non-porous, waterproof, water vapor-permeable functional layer, which is characterized in that the functional layer is based on copolyether ester-based polymers, Contains polyurethane base and / or copolyether amide base.
- Another object of the invention is the use of the air barrier according to the invention in ventilated or unventilated pitched roofs.
- Another object of the invention relates to the method for producing a heat-insulated roof which avoids heat convection loss and which is characterized in that the air barrier according to the invention is located on the roof Attic apartment facing side of the thermal insulation layer or rafters, is relocated.
- the air barrier according to the invention as a vapor retardant wind barrier which is optimized in terms of building physiology, owing to its sufficient water vapor permeability of more than 2000 g / m 2 with a 10 m functional layer (modified 24 hours according to ASTM E 96-66), the passage of air humidity, in particular at very warm room temperature from the interior to the outside is made possible in such an excellent manner that moisture precipitation can often be avoided, in particular on room enclosing surfaces with a low internal surface temperature, for example on outer wall ceilings or corners.
- the water vapor transport capacity is so high that the air barrier meets the requirements for living comfort, on the other hand, it is certain that there will be no undesired condensation in the thermal insulation layer.
- Laminate means both a single-layer film and an at least two-layer or multilayer film.
- the air barrier according to the invention can be designed as a single-layer laminate, two-layer or multi-layer laminate, the single-layer laminate as a film consisting only of the functional layer.
- brittle thermal insulation materials when brittle thermal insulation materials are used, the trickling of dust and larger fragments caused by the natural brittleness of the material and their penetration into the living area of the attic apartment are sufficiently avoided, so that there is no health impairment due to inhalation.
- the embodiment of the air barrier according to the invention in which the functional layer comprises a film or a film which can be produced with copolyether ester-based polymers is advantageous.
- the functional layer can also comprise a fleece, a felt, a knitted fabric and / or a fabric as a support layer, which is thread or lattice reinforced by means of threads or ribbons.
- the fleece, the felt, the knitted fabric and / or the fabric can be partially or completely impregnated and / or coated with the copolyetherester-based, polyurethane-based and / or copolyetheramide-based polymers by extrusion coating.
- the coating composition which contains the copolyetherester-based, polyurethane-based and / or copolyetheramide-based polymers, is introduced as granules into an extruder, heated, melted and pressed through a slot die.
- the resulting molten web is immediately after leaving the slot die on the e.g. Fleece, which can be warmed, pressed on and smoothed with the aid of pairs of rollers.
- a water vapor-permeable support layer can be applied to at least one side of the functional layer, the water vapor-permeable support layer preferably being porous. It turns out that the support layer protects the functional layer from the mechanical damage which may occur when the air barrier is installed by the craftsmen.
- the support layer can also be a lattice and / or thread reinforced water vapor permeable foam layer.
- the support layer is a fleece, felt, foam and / or fabric, which can be made of natural fibers or man-made fibers. All possible naturally occurring materials such as cotton, linen jute, hemp and / or sisal are suitable as natural fibers.
- the synthetic fibers such as polyester, polyamide, polyacrylic, polyvinyl chloride fibers or mixtures thereof, as well as regenerated and / or modified cellulose fibers have proven to be particularly suitable as chemical fibers.
- the air barrier according to the invention By arranging a support layer produced with synthetic chemical fibers on the functional layer, it is possible to use the air barrier according to the invention in agricultural wet farms such as cowshed and pig stables, because firstly larger rafter distances are provided with the air barrier according to the invention without further support and, secondly, man-made fibers generally do not provide a breeding ground for the fungi and sponges that are frequently found in animal houses.
- the support layer can also be a water vapor permeable, preferably porous insulation layer, for example a temperature and / or sound-insulating layer, with organic and / or inorganic insulating materials, preferably glass fibers, rock or mineral fibers, slag fibers and / or ceramic fibers.
- An insulation layer is to be understood as a layer which is permeable to water vapor.
- the air barrier according to the invention can have a water vapor permeable, preferably porous insulation layer which is applied to at least one side of the functional layer and / or on the side of the support layer facing away from the functional layer.
- the insulation layer can be designed as a temperature and / or soundproofing.
- organic porous insulation materials those made of cork are preferred.
- Organic fibrous insulation materials such as wood wool, bitumen felt and / or bitumen cork felt are suitable because of their good processability, sound and heat insulating properties and weather resistance.
- the support layer made of mineral fibers has a bulk density of 25 to 200 kg / m3, glass wool 14 to 100 kg / m3, polystyrene foam 15 to 60 kg / m3, polyurethane foam at least 15 kg / m3, cork boards from 80 to 200 kg / m3, made of wood wool from 360 to 570 kg / m3 (measured according to DIN 18 161). Furthermore, the support layer can have a thread-reinforced, lattice-reinforced structure with the formation of bands or strips of textile material.
- a fleece, felt, fabric and / or knitted fabric layer can be arranged between the insulation layer of the functional layer, which is permeable to moisture parallel to the functional layer and perpendicular to the surface of the functional layer, so that the moisture after permeating through the functional layer evenly distributed within the fleece, felt, fabric and / or hosiery layer before it passes through the insulation layer, which at least facilitates uniform moisture penetration through the insulation layer.
- the functional layer has a layer thickness of 10 to 1000 m, preferably 100 to 200 m, even more preferably 50 to 100 m.
- a layer thickness of the laminate of 50 to 100 m is advantageous, but if it is used as a multilayer film, a layer thickness of the functional layer of 10 to 25 m is particularly advantageous.
- the air barrier according to the invention can be designed in the form of a sheet, sheet or plate.
- the sheet-like or web-shaped air barrier can be rolled up, easily transported as rolls, and is characterized by a pleasant, uncomplicated, uncomplicated handling that is caused by quick and easy unrolling on roofs.
- the air barrier according to the invention can have a layer thickness of 40 to 1000 m, preferably 50 to 500 m, more preferably 80 to 100 m.
- the polymers can be copolyether esters which are derived from longer-chain polyglycols, short-chain glycols with 2 to 4 carbon atoms and dicarboxylic acids, the polymers preferably being copolyether esters which consist of a multiplicity of recurring intralinear long-chain and short-chain ester units , which are linked head to tail statistically via ester linkages, the long-chain ester units of the formula
- G represents a divalent radical which remains after the removal of terminal hydroxyl groups from at least one long-chain glycol with an average molecular weight of 600 to 6000 and an atomic ratio of carbon to oxygen between 2.0 and 4.3, at least 20% by weight of the long-chain glycol have an atomic ratio of carbon to oxygen between 2.0 and 2.4 and make up 15 to 50% by weight of the copolyetherester
- R represents a divalent radical which, after removal of carboxyl groups from at least one Dicarboxylic acid of a molecular weight of less than 300 remains
- D represents a divalent radical which remains after the removal of hydroxyl groups from at least one diol of a molecular weight of less than 250, with at least 80 mol% of the dicarboxylic acid used from terephthalic acid or its ester-forming equivalents and at least 80 mol% of the diol with d
- a small molecular weight consists of 1,
- the polymers can be copolyether esters, in which the consist of a multiplicity of recurring intralinear long-chain and short-chain ester units, which are linked statistically via ester bonds head to tail, the long-chain ester units of the formula
- G represents a divalent radical which, after removal of terminal hydroxyl groups from at least one long-chain glycol, has an average molecular weight of 600 to 4,000 and an atomic ratio of carbon to oxygen of between 2 and 4.3, at least 20% by weight .% of the long-chain glycol have an atomic ratio of carbon to oxygen between 2.0 and 2.4 and make up 15 to 50% by weight of the copolyetherester
- R represents a divalent radical which, after the removal of carboxyl groups from at least one dicarboxylic acid, is one Molecular weight of less than 300 remains
- D represents a divalent radical which remains after the removal of hydroxyl groups from at least one diol with a molecular weight of less than 250, at least 70 mol% of the dicarboxylic acid used being 2,6-naphthalenedicarboxylic acid or its ester-forming Equivalents exist and at least 70 mol% d es diols with the small molecular weight from 1,4 butanediol or its ester
- the use of the non-porous, water vapor permeable, waterproof functional layer made of copolyetherester polymers means that there is no longer any need to ventilate the premises because the moisture can diffuse outward through the functional layer to a high degree .
- This also eliminates for the user the idea of life in hermetically sealed living spaces, namely the plastic bag type, which is usually conveyed when using conventional air-impermeable foils.
- the wooden cladding of the interior of the attic apartment which is to be treated with wax or oil or chemically impregnated, no longer, at least to a very limited extent, conveys a pleasant feeling of wellbeing and well-being as well as an excellent indoor and indoor climate, because not only no or insignificant concentrations of pollutants are present in the room air, but also because the sticky, humid, humid room air that occurs when using conventional air barriers is not to be found, so that frequent ventilation is unnecessary for this reason.
- the air barrier according to the invention is also distinguished by high environmental compatibility.
- the polytetrafluoroethylene frequently used as a functional layer of covers, as disclosed in US Pat. No. 4,452,848, is distinguished in the case of domestic fires by the formation of partially highly toxic halogen compounds, such as fluorine-containing decomposition products.
- Fluorophosgene, carbonyl fluoride, tetrafluoroethylene, perfluoroisobutylene, hydrogen fluoride, trifluoroacetyl fluoride or perfluorisobutene which not only increases the risk of smoke poisoning of the residents but also makes extinguishing house fires very difficult for the extinguishing personnel.
- the air barrier according to the invention proves to be essentially free of harmful halogen compounds in the event of fire.
- the use of the air barrier according to the invention in ventilated or non-ventilated flat roofs is outstandingly suitable, which has at least one non-porous, waterproof, water vapor-permeable functional layer which contains copolyether ester-based, polyurethane-based and / or copolyether amide-based polymers.
- the air barrier according to the invention can be laid on the side of the thermal insulation layer or rafters facing the top floor apartment, the air barrier preferably being designed as a single-layer laminate, which is the non-porous film , comprises a waterproof, water vapor permeable functional layer which contains copolyether ester-based, polyurethane-based and / or copolyether amide-based polymers.
- Another object of the invention relates to a method for producing a heat-insulated roof of the non-ventilated type which avoids heat convection loss, which is characterized in that the air barrier according to the invention is laid on the side of the thermal insulation layer facing the top floor apartment.
- the air barrier according to the invention can be designed as a film made of the non-porous, watertight, water vapor-permeable functional layer or as a film with at least one non-porous, watertight, water vapor-permeable functional layer on the support layer, which contains copolyetherester-based, polyurethane-based and / or copolyetheramide-based polymers.
- a web-like two-layer air barrier made of a film which contains copolyether esters as a polymer, which are derived from longer-chain polyglycols, short-chain glycols with 2 to 4 carbon atoms and dicarboxylic acids, is made from a rock wool layer on the side of the thermal insulation layer made of rock wool layers facing the attic apartment arranged that the overlaps of the web-shaped air barrier is approximately 20 to 25 cm. The overlaps are glued on one side with an adhesive tape over the entire layer. The layer thickness of the air barrier is 0.4 mm.
- the air barrier is attached to the rafters using slats.
- a wooden wall made of spruce wood is then applied and serves as the interior wall and ceiling.
- the high air humidity of more than 75% in the attic apartment which is caused by air humidifiers for a short time, quickly decreases to between 35 to 65%, which is tolerable and homely for humans, and the formation of blue mold and sponge during the test series in particular do not occur on cold bridges, particularly in the area of the lower, cool corners of the rooms.
- the results show that - apart from the ventilation of the attic apartment necessary for gas exchange - the necessary regular dehumidification of the premises is unnecessary due to the heat-lossy opening of the windows. Even if the thermal insulation layer made of stone wool is used, the trickling out of dust and fragments into the living area is eliminated.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Laminated Bodies (AREA)
Abstract
L'invention concerne une barrière d'air à intégrer dans des toitutes en vue d'empêcher des déperditions de convection thermique et d'améliorer le climat ambiant. Cette barrière d'air est constituée par un stratifié comportant au moins une couche fonctionnelle non poreuse étanche à l'eau mais perméable à la vapeur d'eau. Cette couche fonctionnelle contient des polymères à base de copolyétherester, de polyuréthane et/ou de copolyétheramide. L'invention concerne également un procédé pour fabriquer des toitures calorifugées du type ventilé et non ventilé pour empêcher les déperditions de convection thermique.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| AU58953/96A AU5895396A (en) | 1995-05-22 | 1996-05-11 | Air barrier and use thereof in roofs |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE19518686.9 | 1995-05-22 | ||
| DE19518686 | 1995-05-22 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO1996037668A1 true WO1996037668A1 (fr) | 1996-11-28 |
Family
ID=7762526
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/EP1996/002028 WO1996037668A1 (fr) | 1995-05-22 | 1996-05-11 | Barriere d'air et son utilisation dans des toitures |
Country Status (2)
| Country | Link |
|---|---|
| AU (1) | AU5895396A (fr) |
| WO (1) | WO1996037668A1 (fr) |
Cited By (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1998005604A1 (fr) * | 1996-08-03 | 1998-02-12 | Akzo Nobel N.V. | Materiaux isolants conformes aux regles du metier, utilises dans le batiment |
| DE19725451A1 (de) * | 1997-06-16 | 1998-12-24 | Caplast Kunststoffverarbeitung | Verbund aus Trägerschicht und geschäumter Kunststoffschicht, insbesondere für Unterspannbahnen |
| BE1013333A3 (nl) * | 2000-02-29 | 2001-12-04 | Vetex Nv | Werkwijze voor het coaten van een soepel substraat door middel van een coating van thermoplastisch polyurethaan. |
| EP1369226A1 (fr) * | 2002-05-31 | 2003-12-10 | Fagerdala World Foams Ab | Feuille stratifiée |
| WO2005058599A1 (fr) * | 2003-12-18 | 2005-06-30 | Ewald Dörken Ag | Procede de production d'une bande continue du type faux plafond pour toitures |
| WO2006047130A1 (fr) * | 2004-10-25 | 2006-05-04 | Omnova Solutions Inc. | Lamine transmetteur d'humidite |
| US8309211B2 (en) * | 2003-11-06 | 2012-11-13 | Building Materials Investment Corporation | Breathable non-asphaltic roofing underlayment |
| US8323770B2 (en) | 2005-06-17 | 2012-12-04 | Building Materials Investment Corporation | Breathable non-asphaltic roofing underlayment having tailorable breathability |
| US8524822B2 (en) | 2005-01-11 | 2013-09-03 | W. R. Grace & Co.—Conn. | Vapor permeable liquid-applied membrane |
| WO2016134941A1 (fr) * | 2015-02-24 | 2016-09-01 | Dsm Ip Assets B.V. | Membrane de toiture et processus de production de la membrane de toiture |
Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0167714A2 (fr) * | 1984-07-13 | 1986-01-15 | Ewald Dörken GmbH & Co. KG | Membrane en matière plastique pour sous-toiture |
| EP0169308A2 (fr) * | 1984-07-13 | 1986-01-29 | Ewald Dörken GmbH & Co. KG | Membrane en matière plastique pour sous-toiture |
| DE8601670U1 (de) * | 1986-01-23 | 1986-03-06 | Hoechst Ag, 6230 Frankfurt | Dachunterspannbahn |
| EP0183266A2 (fr) * | 1984-11-29 | 1986-06-04 | Metzeler Schaum Gmbh | Membrane de sous-toiture pour toits inclinés |
| JPH0490337A (ja) * | 1990-08-06 | 1992-03-24 | Tokuyama Soda Co Ltd | 積層体及びその製造方法 |
| DE4221562A1 (de) * | 1992-07-01 | 1994-01-13 | Metzeler Schaum Gmbh | Wärmedämmung für geneigte Dächer |
| DE4322745A1 (de) * | 1993-07-08 | 1995-01-12 | Ploucquet C F Gmbh | Dachdämmplatte |
| EP0708212A1 (fr) * | 1994-10-20 | 1996-04-24 | Ewald Dörken Ag | Membrane de sous-toiture, en particulier pour toits inclinés isolés thermiquement |
-
1996
- 1996-05-11 WO PCT/EP1996/002028 patent/WO1996037668A1/fr active Application Filing
- 1996-05-11 AU AU58953/96A patent/AU5895396A/en not_active Abandoned
Patent Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0167714A2 (fr) * | 1984-07-13 | 1986-01-15 | Ewald Dörken GmbH & Co. KG | Membrane en matière plastique pour sous-toiture |
| EP0169308A2 (fr) * | 1984-07-13 | 1986-01-29 | Ewald Dörken GmbH & Co. KG | Membrane en matière plastique pour sous-toiture |
| EP0183266A2 (fr) * | 1984-11-29 | 1986-06-04 | Metzeler Schaum Gmbh | Membrane de sous-toiture pour toits inclinés |
| DE8601670U1 (de) * | 1986-01-23 | 1986-03-06 | Hoechst Ag, 6230 Frankfurt | Dachunterspannbahn |
| JPH0490337A (ja) * | 1990-08-06 | 1992-03-24 | Tokuyama Soda Co Ltd | 積層体及びその製造方法 |
| DE4221562A1 (de) * | 1992-07-01 | 1994-01-13 | Metzeler Schaum Gmbh | Wärmedämmung für geneigte Dächer |
| DE4322745A1 (de) * | 1993-07-08 | 1995-01-12 | Ploucquet C F Gmbh | Dachdämmplatte |
| EP0708212A1 (fr) * | 1994-10-20 | 1996-04-24 | Ewald Dörken Ag | Membrane de sous-toiture, en particulier pour toits inclinés isolés thermiquement |
Non-Patent Citations (2)
| Title |
|---|
| "NEUE UNTERSPANNBAHN MACHT DACHBELÜFTUNG ÜBERFLÜSSIG", BAUEN MIT KUNSTSTOFFEN, no. 1, 1986, DARMSTADT,DEUTSCHLAND, pages 23, XP002014530 * |
| DATABASE WPI Section Ch Week 9219, Derwent World Patents Index; Class A17, AN 92-154500, XP002014531 * |
Cited By (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1998005604A1 (fr) * | 1996-08-03 | 1998-02-12 | Akzo Nobel N.V. | Materiaux isolants conformes aux regles du metier, utilises dans le batiment |
| DE19725451A1 (de) * | 1997-06-16 | 1998-12-24 | Caplast Kunststoffverarbeitung | Verbund aus Trägerschicht und geschäumter Kunststoffschicht, insbesondere für Unterspannbahnen |
| BE1013333A3 (nl) * | 2000-02-29 | 2001-12-04 | Vetex Nv | Werkwijze voor het coaten van een soepel substraat door middel van een coating van thermoplastisch polyurethaan. |
| EP1369226A1 (fr) * | 2002-05-31 | 2003-12-10 | Fagerdala World Foams Ab | Feuille stratifiée |
| US8309211B2 (en) * | 2003-11-06 | 2012-11-13 | Building Materials Investment Corporation | Breathable non-asphaltic roofing underlayment |
| EA008639B1 (ru) * | 2003-12-18 | 2007-06-29 | Эвальд Деркен Аг | Способ изготовления нижнего покровного полотна для крыш |
| US8263184B2 (en) | 2003-12-18 | 2012-09-11 | Ewald Doerken Ag | Process for the production of an underlay for roofs |
| WO2005058599A1 (fr) * | 2003-12-18 | 2005-06-30 | Ewald Dörken Ag | Procede de production d'une bande continue du type faux plafond pour toitures |
| WO2006047130A1 (fr) * | 2004-10-25 | 2006-05-04 | Omnova Solutions Inc. | Lamine transmetteur d'humidite |
| US8524822B2 (en) | 2005-01-11 | 2013-09-03 | W. R. Grace & Co.—Conn. | Vapor permeable liquid-applied membrane |
| US8323770B2 (en) | 2005-06-17 | 2012-12-04 | Building Materials Investment Corporation | Breathable non-asphaltic roofing underlayment having tailorable breathability |
| WO2016134941A1 (fr) * | 2015-02-24 | 2016-09-01 | Dsm Ip Assets B.V. | Membrane de toiture et processus de production de la membrane de toiture |
| CN107429046A (zh) * | 2015-02-24 | 2017-12-01 | 帝斯曼知识产权资产管理有限公司 | 屋顶隔膜以及生产屋顶隔膜的方法 |
Also Published As
| Publication number | Publication date |
|---|---|
| AU5895396A (en) | 1996-12-11 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP1362694B1 (fr) | Barrière d'humidité imperméable au vent pour bâtiments | |
| US20070015424A1 (en) | Building material having adaptive vapor retarder | |
| US8720145B2 (en) | Mounting arrangement for a foundation wall vapor barrier | |
| CH702833A1 (de) | Wand zum Trennen der Innenseite eines Gebäudes von der Aussenseite. | |
| WO1996037668A1 (fr) | Barriere d'air et son utilisation dans des toitures | |
| EP3105386B1 (fr) | Construction isolée | |
| EP0827561B1 (fr) | Bande de revetement isolant de toits et son utilisation | |
| EP3045306B1 (fr) | Couche superficielle, panneau isolant et systeme composite d'isolation thermique | |
| EP0097361A1 (fr) | Eléments de paroi pour maisons préfabriquées | |
| RU2604840C2 (ru) | Лист, обеспечивающий водонепроницаемость стен и чердачных помещений зданий, а также изолирующие панели, подходящие для ограничения распространения микроорганизмов и насекомых | |
| DE29623295U1 (de) | Unterspannbahn | |
| EP1824902B1 (fr) | Film pare-vapeur | |
| EP3105385B1 (fr) | Couche de protection hygrovariable et utilisation d'une couche de protection hygrovariable | |
| WO1996037665A1 (fr) | Stratifie bloquant le passage d'air a travers des parois et son utilisation | |
| JP4022363B2 (ja) | 結露防止壁構造 | |
| DE202008000335U1 (de) | Wand- oder Deckenbelag | |
| Straube et al. | Indoor air quality and hygroscopically active materials | |
| KR200417640Y1 (ko) | 건축물 내, 외장용 차음, 단열, 유독성물질 방지, 방습재 | |
| DE19531186A1 (de) | Dachaufbau | |
| DE19604571C2 (de) | Formkörper für die Außendämmung von Bauwerken | |
| US20240175230A1 (en) | Tape mounting system for a foundation covering | |
| KR20090125862A (ko) | 결로예방하는 투습 단열초배지 제조방법 | |
| AT402832B (de) | Dampfbremse | |
| DE202009015915U1 (de) | Konstruktives Einbausystem | |
| WO2015179901A1 (fr) | Membranes pour le bâtiment |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A1 Designated state(s): AL AM AU BB BG BR CA CN CZ EE FI GE HU IS JP KG KP KR LK LR LT LV MD MG MK MN MX NO NZ PL RO SG SI SK TR TT UA US UZ VN AM AZ BY KG KZ MD RU TJ TM |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| 122 | Ep: pct application non-entry in european phase |