[go: up one dir, main page]

WO1996013258A1 - C-glycoside analogues of n-(4-hydroxyphenyl)retinamide-o-glucuronide - Google Patents

C-glycoside analogues of n-(4-hydroxyphenyl)retinamide-o-glucuronide Download PDF

Info

Publication number
WO1996013258A1
WO1996013258A1 PCT/US1995/012258 US9512258W WO9613258A1 WO 1996013258 A1 WO1996013258 A1 WO 1996013258A1 US 9512258 W US9512258 W US 9512258W WO 9613258 A1 WO9613258 A1 WO 9613258A1
Authority
WO
WIPO (PCT)
Prior art keywords
retinamide
glucuronide
retinamido
mmol
mixture
Prior art date
Application number
PCT/US1995/012258
Other languages
French (fr)
Inventor
Robert W. Curley, Jr.
Michael J. Robarge
Original Assignee
The Ohio State Research Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/316,140 external-priority patent/US5516792A/en
Application filed by The Ohio State Research Foundation filed Critical The Ohio State Research Foundation
Priority to EP95935115A priority Critical patent/EP0732921A4/en
Priority to JP8511156A priority patent/JPH09509680A/en
Publication of WO1996013258A1 publication Critical patent/WO1996013258A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H13/00Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids
    • C07H13/02Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids by carboxylic acids
    • C07H13/04Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids by carboxylic acids having the esterifying carboxyl radicals attached to acyclic carbon atoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H13/00Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids
    • C07H13/02Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids by carboxylic acids
    • C07H13/04Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids by carboxylic acids having the esterifying carboxyl radicals attached to acyclic carbon atoms
    • C07H13/06Fatty acids

Definitions

  • retinoic acid a vitamin A metabolite, and certain retinoic acid analogues
  • retinoic acid appear to be necessary for the maintenance of normal epithelial tissue differentiation and can reverse the metaplastic condition of hamster tracheal in vitamin A deficient epithelial tissue.
  • retinoic acid and certain amide analogues have been proposed as cancer chemopreventive agents, and display cancer preventive activity (Moon et al . Cancer Res . (1979) 3_9., 1339-1346) .
  • retinoic acid analogues such as retinyl acetate, 13 -cis- retinoic acid, glucuronide analogues of retinoic acid also display cancer preventive activity, including breast cancer preventative activity (Hill, D.L. et al. Ann. Rev. Nutrition (1992) 12., 161-181 and Mehta, R.G. et al . Oncology (1991) _____.1505-1509).
  • the glucuronide N- (4-hydroxyphenyl)retinamide-O-glucuronide (hereinafter "4-HPR-O-glucuronide”) has a greater antiproliferative activity and less toxicity in both MCF-7 human mammary cell tumor culture than the 4-HPR. (Bhatnagar, R. et al . Biochem. Pharmacol . (1991) 11, 1471-1477.)
  • the 4-HPR-O-glucuronide is unstable; it is hydrolyzed in acidic media and also by the enzyme 0-glucuronidase.
  • the propensity to acid hydrolysis may limit the clinical usefulness of 4-HPR-O- glucuronide since oral administration of the drug may reduce the total available concentration of the active drug.
  • /3-glucuronidase is present in virtually all mammalian cells, including the blood, liver and intestine, the in vivo half life is quite limited. It is desirable to have stable chemopreventive drugs, for the prevention and treatment of breast cancer, which resist acid and 3-glucuronidase hydrolysis.
  • the present invention provides breast cancer chemopreventive and treatment arylamide analogues of retinoic acid, more particularly C- glycoside analogues of N- (4-hydroxyphenyl)retinamide-O-glucuronide and N-glycoside analogues of retinoyl ⁇ -glucuronide that resist both ⁇ - glucuronidase mediated enzymatic hydrolysis as well as acid catalyzed hydrolysis.
  • the drugs include 4- (retinamido)phenyl-C- glucuronide; 4- (retinamido)phenyl-C-glucoside; 4- (retinamido)benzyl-C- xyloside; 4- (retinamido)benzyl-C-glucoside; 4- (retinamido)benzyl- C-glucuronide; 4- (retinamido)phenyl-C-xyloside, 1- (B-D-glucopyranosyl) retinamide and 1- (D-glucopyranosyluronosyl) retinamide.
  • Figure 1 is a graph showing competition for human retinoic acid receptors/BCV between [ 3 H] -retinoic acid and: unlabeled retinoic acid, represented by the squares, and 1- (B-D-glucopyranosyl) retinamide, represented by the triangles or 1- (D-glucopyranosyluronosyl) retinamide represented by the diamonds. Values represent the means of three determinations;
  • Figure 2 is a graph showing competition for human retinoic acid receptors alpha/BCV between [ 3 H] -retinoic acid and: unlabeled retinoic acid, represented by squares, and 1- (B-D-glucopyranosyl) retinamide, represented by the triangles, or l- (D-glucopyranosyluronosyl) retinamide represented by the diamonds.
  • Figure 3 is a graph showing competition for human retinoic acid receptors beta/BCV between [ 3 H] -retinoic acid and: unlabeled retinoic acid, represented by closed squares, and 1- (B-D-glucopyranosyl) retinamide, represented by the triangles, or 1- (D- glucopyranosyluronosyl) retinamide represented by the diamonds. Values represent the means of three determinations.
  • the present invention provides breast cancer chemopreventive drugs that may also be used for the treatment of cancer, that are arylamide analogues of retinoic acid, more particularly C-glycoside analogues of N- (4-hydroxyphenyl)retinamide-O-glucuronide and analogues of retinoyl ⁇ -glucuronide that are not hydrolysed by acid nor the enzyme 3-glucuronidase.
  • the drugs include 4- (retinamido)phenyl-C-glucuronide; 4- (retinamido)phenyl-C-glucoside; 4- (retinamido)benzyl-C-xyloside; 4- (retinamido)benzyl-C-glucoside; 4- (retinamido)benzyl-C-glucuronide; 4- (retinamido)phenyl-C-xyloside.
  • the structure of the N- (4-hydroxyphenyl) retinamide-O-glucuronide analogues is represented below:
  • the molecule is 4- (retinamido)phenyl-C- glucuronide.
  • the molecule is 4- (retinamido)benzyl-C- xyloside.
  • the molecule is 4- (retinamido)benzyl-C-glucoside.
  • the structure of the retinoyl ⁇ -glucuronide analogues is represented below:
  • R' is H, COOH or CH 2 OH.
  • the drugs may be prepared according to the following examples. PREPARATION OF THE DRUGS Example 1: 4- (Retinamido)phenyl-C-glucuronide
  • acetobromoglucose (12.1 mmol) was dissolved in 125 ml of ether and added over 1 hour to phenylmagnesium bromide prepared from 5.6 g (0.23 g atom, 19 equiv.) of magnesium turnings and 25 ml (237 mmol, 19 equiv.) of bromobenzene in 250 ml of ether.
  • the mixture was heated at reflux for 6 hours then poured into 400 ml H 2 0.
  • the 20 ml glacial acetic acid was added to dissolve the magnesium salts. The mixture was shaken and the layers were separated.
  • aqueous layer was concentrated to dryness and the residue was reacted with 70 ml of acetic anhydride and 100 ml of pyridine overnight.
  • the mixture was poured into 750 ml H 2 0 and the precipitate was isolated by filtration and recrystallized from 2-propanol, to yield 2.236 g (45%), of tetra-0- acetylphenyl-C-glucoside.
  • Retinoyl chloride was prepared from 264 mg (0.88 mmol) retinoic acid, and 73 ⁇ L of pyridine, 65 ⁇ h (0.88 mmol) of thionyl chloride in 10 ml of ether at 0°C. The mixture was allowed to warm to room temperature over 1 hour. Then 360 mg (0.88 mmol) of 4- (methyltri-O- acetyl) aminophenyl-C-glucuronide was added in 15 ml of benzene containing 100 ⁇ L of pyridine.
  • Example 2 4- (Retinamido)phenyl-C-glucoside First, 14 g of glucose pentaacetate, from Sigma Chemical Company, was converted to 10.88 g of acetobromoglucose as described in Example 1.
  • aqueous layer was concentrated to dryness and the residue was reacted with 70 ml of acetic anhydride and 100 ml of pyridine overnight.
  • the mixture was poured into 750 ml H 2 0 and the precipitate was isolated by filtration and recrystallized from 2-propanol, to yield 2.236 g (45%), of tetra-O-acetylphenyl-C-glucoside.
  • 5.63 g. (13.8 mmol) tetra-O-acetyl phenyl-C-glucoside was dissolved in 150 ml of acetic anhydride and then 25.58 g (110.4 mmol, 8.0 equiv.) copper (II) nitrate was added.
  • retinoyl chloride was prepared by dissolving 192 mg (0.64 mmol) of retinoic acid in 10 ml of ether containing 100 ml of pyridine and cooled to 0°C. Then 47 ⁇ l_ (0.64 mmol) thionyl chloride was added. The mixture was allowed to come to room temperature over 90 minutes and then 270 mg (0.64 mmol) of the 4- (tetra-O-acetyl) aminophenyl-C- glucoside was added in 9 ml benzene and 1 ml pyridine.
  • xylose from Sigma Chemical Company
  • 12.5 g of sodium acetate (anhydrous) and 200 ml of acetic anhydride were heated to reflux for 1 hour and poured into 1 L of ice water.
  • Xylose tetraacetate was isolated by filtration and recrystallized from 95% ethanol to yield 56.75 g (54%).
  • the crude acetochloroxylose was dissolved in 100 ml ether and added to a refluxing solution of phenylmagnesium bromide prepared from 18 ml (169 mmol, 10.8 equiv.) of bromobenzene and 4.12 g (0.169 g atom, 10.8 equiv) of magnesium turnings in 250 ml of ether.
  • the mixture was heated at reflux for 5 hours and poured into 150 ml H 2 0 containing 15 ml of glacial acetic acid.
  • the aqueous layer was concentrated to dryness and the residue was reacted with 75 ml acetic anhydride and 75 ml of pyridine for 20 hours.
  • the mixture was poured into 300 ml H 2 0.
  • the product was isolated by filtration and recrystallized from 2-propanol, to yield 1.28 g (24%), tri-O-acetylphenyl-C-xyloside having a melting point of 161-162°C
  • the ether extracts were washed twice with 150 ml with water then washed twice with 50 ml saturated NaHC0 3 , then washed with 50 ml brine, dried using MgS0 4 and concentrated to yield 1.347 g (99%) of a 1:1 mixture of o- and p-tri-0- acetyl nitrophenyl-C-xylosides.
  • Retinoyl chloride was prepared by dissolving 320 mg (1.07 mmol) retinoic acid suspended in 10 ml ether containing 200 ⁇ l of pyridine. The mixture was cooled to 0°C. and 77 ⁇ l (1.07 mmol) of thionyl chloride was added. The mixture was allowed to warm to room temperature over 1.5 hours. The acetylated aminophenyl-C-xyloside was suspended in 16 ml benzene and 800 ⁇ l pyridine was added.
  • the mixture was shaken and separated.
  • the ether layer was washed twice with 50 ml saturated NaHC0 3 , once with 50 ml brine, dried using MgS0 4 , and concentrated.
  • the residue was dissolved in 80 ml glacial acetic acid containing 0.1 g of 10% palladium on carbon and shaken under 40 PSI of hydrogen for 19 hours.
  • the catalyst was removed by filtration and the filtrate was concentrated to dryness.
  • the residue was acetylated with 30 ml of pyridine and 30 ml of acetic anhydride over 16 hours.
  • the reaction was poured into 100 ml of water and extracted twice with 50 ml of ether.
  • the ether extracts were washed twice with 50 ml water, once with 50 ml 5% HC1, once with 50 ml saturated NaHC0 3 , once with 50 ml brine.
  • the extracts were dried using MgS0 4 , concentrated, and crystallized from 2- propanol to yield 194 mg (16%) , tetra-O-acetyl benzyl-C-glucoside having a melting point of 118-119°C.
  • the crude nitrobenzyl-C-glucoside was dissolved in 30 ml of methanol and 340 mg of potassium carbonate was added. The mixture was stirred at room temperature overnight, concentrated, and dissolved in 100 ml of water containing 1 g of freshly reduced platinum (IV) oxide. The mixture was heated to 80°C and oxygen was bubbled in for 10 hours. The catalyst was removed by filtration and the filtrate concentrated to dryness. The residue was heated to reflux in 100 ml of 2% H 2 S0 4 in methanol for 1 hour. Excess H 2 S0 4 was neutralized with 10 ml of pyridine.
  • the mixture was concentrated to dryness and the residue was reacted with 30 ml of pyridine and 60 ml of acetic anhydride for 16 hours.
  • the mixture was poured into 300 ml of ice water and extracted twice with 100 ml ether.
  • the ether layers were washed twice with 200 ml with water, once with 100 ml saturated NaCH0 3 , dried using MgS0 4 , and concentrated to yield 1.107 g (66%) of a 1 to 1 mixture ortho and para methyl tri-O-acetyl nitrobenzyl-C-glucuronides.
  • the 1.107 g (2.44 mmol) of the 4-nitrobenzyl-C-glucuronide mixture was dissolved in 100 ml of methanol and 100 mg of 10% palladium on carbon was added. The mixture was shaken under 40 PSI of hydrogen for 1 hour, the catalyst was removed by filtration, and the filtrate was concentrated and chromatographed on silica gel using 1:1 ethyl acetate/hexanes as elutant to yield 310 mg (30%) of methyl tri-O- acetyl-4-aminobenzyl-C-glucuronide.
  • the retinoylated benzyl-C-glucuronide was prepared as in Example 1. From 219 mg (0.73 mmol) of retinoic acid and 310 mg (0.73 mmol) of the protected 4-aminobenzyl-C-glucuronide, 303 mg (59%) of the protected retinamidobenzyl-C-glucuronide having a melting point 80-82°C was obtained after chromatography.
  • the crude nitro benzyl-C-glucoside was dissolved in 25 ml of methanol containing 50 mg of 10% palladium on carbon and was shaken under 40 PSI of hydrogen for 1 hour. The catalyst was removed by filtration. The filtrate was concentrated and chromatographed on silica gel using 1:1 ethyl acetate/hexanes as elutant, to yield 173.2 mg (33%), 4- (tetra-O- acetyl) aminobenzyl-C-glucoside having a melting point of 145-146°C.
  • the retinamide was prepared as in Example 2.
  • xylose from Sigma Chemical Company
  • xylose tetracetate as described in Example 3.
  • 2.07g (6.5 mmol) of the xylose tetracetate was dissolved in 125 ml dry chloroform and 3.3 g (24.8 mmol, 3.8 equiv.) aluminum chloride was added.
  • the mixture was stirred at room temperature for 1.5 hours then washed once with 50 ml saturated NaHC0 3 , once with 50 ml water, and once with 50 ml brine, then dried using MgS0 , and the solvent removed.
  • the product from multiple runs of a synthesis step may have been pooled to obtain the quantities used in subsequent steps.
  • Example 7 preparation of 1- ( ⁇ -D-glucopyranosyl) retinamide Preparation of (2,3,4,6-tetra-0-acetylglucopyranosyl azide)
  • 2,3,4,6-tetra-0-acetylglucopyranosyl bromide was prepared from glucose pentaacetate by dissolving 50 gm of glucose pentaacetate, available from Sigma Chemical Company, in 200 mL of 30% HBr/acetic acid; the mixture was allowed to stand overnight in the refrigerator. The solvent was removed under reduced pressure, the residue dissolved in CHCI 3 , and the CHC1 3 solution was washed with H 2 0, saturated NaHC0 3 , saturated NaCl, and dried over Na 2 S0 4 . The drying agent was removed by filtration and the residue crystallized from ethanol. The acetobromoglucose has a melting point of 89°C.
  • the residue was recrystallized from ethanol to yield 6.1 g, that is, 82% of 2,3,4,6-tetra-0-acetylglucopyranosyl azide.
  • Retinoyl chloride was prepared from 3.24 g (10.8 mmol) retinoic acid, 1. 1 ml of pyridine, and 0.79 ml (10.8 mmol) of thionyl chloride in 60 ml of ether at 0°C. The mixture was allowed to warm to room temperature over 1 hour, and 3.82g, 11 mmol of 2, 3,4,6-tetra-0- acetylglucopyranosyl amine was added in 50 ml of benzene containing 3 ml of pyridine. The mixture was stirred at room temperature for 72 hours, diluted with 200 ml of ethyl acetate, and extracted three times with 150 ml H 2 0 and brine.
  • 1- (B-D-glucopyranosyl) retinamide has the following characteristics: melting point of 166°C (decomposition); IR (KBr) 3369, 2927, 1662 cm “1 ; UV (CH 3 0H) ⁇ , ⁇ 349 nm ( ⁇ 24043); ⁇ H NMR (DMS0-d s ) ⁇ 1.00 (s, 6H, C(CH 3 ) 2 ), 1.42 (m, 2H, retinoid H-2) 11 , 1.55 (m, 2H, retinoid H-3) , 1.70 (s, 3H, retinoid 5-CH 3 ) , 1.95 (br s, 5H, retinoid 9CH 3 and H-4) , 2.28 (s, 3H, retinoid 13-CH 3 ) , 3.15 (br s, 4H, -OH), 3.4-3.7 (m, 6H, pyranose H's), 4.75 (br t, 1H, J-9Hz
  • Example 8 l- (D-glucopyranosyluronosyl) retinamide: First methyl-1,2,3,4-tetra-0-acetylglucuronate was prepared from glucurono-6,3-lactone by dissolving 40 gm of glucurono-6,3-lactone, available from Aldrich Chemical Co., in 300 mL of CH 3 OH containing 100 mg NaOH and allowed to stand one hour. The solvent was removed under reduced pressure and the residue dissolved in 100 mL pyridine and 150 mL acetic anhydride; the mixture was stored in the refrigerator.
  • the resulting solid methyl-1,2,3,4-tetra-0-acetylglucuronate was filtered and recrystallized from 95% ethanol.
  • the methyl-1,2,3,4-tetra-0- acetylglucuronate has a melting point of 178°C.
  • Methyl 1-bromo-2,3,4-tetra-0-acetylglucuronate was prepared from methyl-1,2,3,4-tetra-0-acetylglucuronate. 50 gmethyl-1,2,3,4-tetra-0- acetylglucuronate was dissolved in 200 mL of 30% HBr/acetic acid; the mixture was allowed to stand overnight in the refrigerator.
  • the solvent was removed under reduced pressure, the residue was dissolved in CHC1 3 and the CHC1 3 solution was washed with H 2 0, saturated NaHC0 3 , saturated NaCl and dried over Na 2 S0 4 .
  • the drying agent was removed by filtration and the residue crystallized from ethanol.
  • the methyl 1- bromo-2,3,4-tetra-0-acetylglucuronate has a melting point of 107°C.
  • Methyl 2,3,4-tri-0-acetylglicopyranuronosyl bromide (7.94 g, 20 mmol) was dissolved in 250 ml of dimethylformamide and 2.6 g, that is 40 mmol sodium azide was added. The mixture was stirred at room temperature for 24 hours and then poured into 500 ml of H 2 0. The organic soluble material was extracted three times with 150 ml ethyl acetate. The combined ethyl acetate extracts were washed twice with 100 ml H 2 0, brine, dried over MgS0 4 , and concentrated to dryness.
  • Retinoyl chloride was prepared by reacting 4.5 g, 15 mmol retinoic acid , 2 ml of pyridine, and 1.09 ml, that is, 15 mmol of thionyl chloride in 85 ml of ether at 0°C. The mixture was cooled to - 15°C and 5.66 g, that is, 17 mmol methyl 2,3,4-tri-0- acetylglucopyranuronosyl amine was added in 70 ml of benzene containing 3.3 ml of pyridine.
  • the ethyl acetate extracts were dried over MgS0 4 and concentrated to yield 1.58 g of 1- (D-glucopyranosyluronosyl) retinamide, (83%) .
  • the 1- (D-glucopyranosyluronosyl) retinamide was purified by chromatography on RP-18 with 80% MeOH/H 2 0.
  • the 1- (D- glucopyranosyluronosyl) retinamide so obtained, is a mixture of ⁇ and ⁇ epimers in approximately a 4 to 1 ratio.
  • 1- (D-glucopyranosyluronosyl) retinamide and RAG were treated with 0.1 N HCl at 37°C for two hours.
  • the RAG had undergone approximately 50% solvolysis to liberate retinoic acid as determined by HPLC.
  • the 1- (D-glucopyranosyluronosyl) retinamide remained intact.
  • the 4-HPR-O-glucuronide is hydrolysed to glucuronic acid and the aglycone by /S-glucuronidase, the 4- (retinamido)phenyl-C- glucuronide and the 4- (retinamido)benzyl-C-glucuronide are not. This indicates that the 4- (retinamido)phenyl-C-glucuronide and the 4- (retinamido)benzyl-C-glucuronide would not be hydrolyzed by the enzyme in vivo.
  • the 4- (retinamido)phenyl-C-glucuronide and 4- ⁇ retinamido)benzyl-C-glucuronide act as inhibitors of 0-glucuronidase mediated hydrolysis of N-4-hydroxyphenylretinamide-O-glucuronide to N- 4-hydroxyphenylretinamide and glucuronic acid with 4- (retinamido)benzyl-C-glucuronide being slightly more effective than the 4- (retinamido)phenyl-C-glucuronide.
  • the Km value of 3-glucuronidase for 4-HPR-O-glucuronide under experimental conditions was determined to be 184.5 ⁇ M, using the method of Beinfeld, P. et al . , J.
  • the concentration of the 4- HPR-O-glucuronide in the inhibition study was selected to be below 184.5 ⁇ M.
  • the IC 50 values were determined according to the method of Lang, J.H. et. al . J. Med. Chem. (1971), 14, 223-236, using 10% methanol as a co-solvent, for 4- (retinamido)phenyl-C-glucuronide and 4- (retinamido)benzyl-C-glucuronide.
  • the IC 50 values which represent the concentration of the drug that inhibits the cleavage of 50% of the 4- HPR-O-glucuronide, were found to be 267 ⁇ M for the 4- (retinamido)phenyl-C-glucuronide and 236 ⁇ M for the 4- (retinamido)benzyl-C-glucuronide.
  • the IC 50 values for the C-phenyl and C-benzyl glycosides indicate that they significantly inhibit /S-glucuronidase.
  • 1- (D-glucopyranosyluronosyl) retinamide and RAG were evaluated for their stability toward 3-glucuronidase medicated hydrolysis under the same conditions as described above.
  • the antiproliterative activity of the drugs in MCF-7 human mammary tumor cell culture models were determined.
  • the MCF-7 cells were obtained originally from the Michigan Cancer Foundation. The cells were routinely grown as monolayers in T-25 plastic tissue culture flasks from Falcon, in Oxnard, CA containing 5.0 mL of B-10 medium consisting of Minimum Essential Medium (MEM, Earle's Base) supplemented with 1.0 mM MEM non-essential amino acid, 2.0 mM 1- glutamine, 10% fetal bovine serum (FBS) , and antibiotics. Culture conditions included a humidified atmosphere of 5% C0 2 at 37°C. One-half of the medium was replenished twice a week. Cells were harvested by trypsinization upon confluency. All variables were evaluated in triplicate.
  • MEM Minimum Essential Medium
  • FBS fetal bovine serum
  • the MCF-7 cells were plated in 24-well plates at a density of 1.5 x 10 4 cells/cm 2 . After a 24 hour period and again on day 4, the medium was replaced with treatment medium containing the specified drugs at 10" s to 10'* M in absolute ethanol and added to the cell cultures so that the ethanol concentration did not exceed 0.1%. Control cultures were treated with an equivalent volume of absolute ethanol. On day 7 the cells were harvested by trypsinizatio ⁇ and viability was assessed by trypan blue exclusion according to Ueda, H. et al . Cancer 1980, 46, 2203-2209. Total cell counts were obtained using a hemocytometer as well as a the Coulter Counter. Growth inhibition, that is, cell survival, was calculated for the various drug concentrations using the equation: % inhibition ⁇ 100 - R/C X 100 where R and C are the number of cells in the drug-treated and control cultures, respectively.
  • the ED 50 for growth inhibition of the MCF-7 cells by the drugs has been evaluated in three separate assays as shown in Table I.
  • the 4- (retinamido)phenyl-C-glucuronide appears to show a potency consistent with its glucoside analogue, retinamidophenyl-C-glucoside.
  • the 4- (retinamido)benzyl-C-glucuronide and its glucoside analogue, 4- (retinamido)benzyl-C-glucose exhibit the best growth inhibition of the cells.
  • the glucuronides and glycosides drugs of the present invention are more effective than the xylosides of the present invention and the benzyl drugs are more active than the phenyl drugs. Although the mechanism of the drugs is not well understood, it has been shown that active drugs in this class compete with retinoic acid for nuclear receptors for retinoic acid.
  • Retinoic acid receptors, (RAR) a, ⁇ , and ⁇ were expressed using a baculovirus expression system in Spodoter fr giperda insect cells. DNA, coding for each receptor was introduced into the genome of the baculovirus which was then introduced into the cultured insect cells.
  • Whole cell extracts were prepared by homogenizing cells in 50 mM Tris buffer at pH 7.4 containing 1.5 mM EDTA, 5 mM dithiothreitol, 300 mM KC1 and the protease inhibitors, 1 mM phenylmethylsulfonyl fluoride and 5 ug/ml soybean trypsin inhibitor.
  • the homogenate was subjected to centrifugation at 45,000 rpm for 45 minutes at 4 ⁇ C in a Ti 70.1 Beckman rotor. The supernatant fraction was stored at -70°C until use.
  • 500 ⁇ l portions of the retinoic acid receptor-containing protein extracts were incubated on ice for 3 hours in the presence of 5 nM [ 3 H] trans-retinoic acid, from DuPont-NEN, 50.6 Ci/mmole) (RA) ⁇ 1 ⁇ M of each of the drugs listed in Table II or the equivalent volume of ethanol. Ethanol comprised 3.8% of the final volume in each tube.
  • the drugs of this invention exert their chemopreventative effect by binding to receptors for retinoic acid, then the data supports the preference for 4- (retinamido)phenyl-C-glucuronide, 4- (retinamido)benzyl-C-glucosideandparticularly4- (retinamido)benzyl-C- glucuronide, which significantly compete with retinoic acid for the receptors.
  • the human retinoic acid receptor cDNA was obtained by reverse transcription/PCR amplification using RNA from MCF-7 cells. The coding region of the cDNA was subcloned into the baculovirus vector pVL1393. Production of the receptor protein, human retinoic acid receptor ⁇ /BCV, followed conventional procedures.
  • Generation of retinoic acid receptors or and ⁇ , and competition binding methodology are described in Proc. Nat'l Acad. Sci. USA, 1993, 90, 7293.
  • l- (B-D-glucopyranosyl) retinamide, and 1- (D-glucopyranosyluronosyl) retinamide were 1500- and -500-fold less effective than retinoic acid in competing for [ 3 H] -retinoic acid binding to retinoic acid receptor ⁇ .
  • the Ki constant was 0.5 nM for retinoic acid, 710 nM for 1- (B-D-glucopyranosyl) retinamide, and 280 nM for 1- (D-glucopyranosyluronosyl) retinamide.
  • the drugs of the present invention while described as cancer preventatives and cancer treatments, may also be used in the study of cancer, particularly breast cancer. Evaluation in-vivo
  • the first tumors were not observed at until 64 days post DMBA intubation in the rats that received 1- (B-D-glucopyranosyl) retinamide, and 1- (D- glucopyranosyluronosyl) retinamide. 58% of the rats that received l- (B-D-glucopyranosyl) retinamide and 50% of the rats that received 1-(D- glucopyranosyluronosyl) retinamide had developed tumors by 110 days post intubation.
  • 1- (D-glucopyranosyluronosyl) retinamide caused the largest reduction in multiple mammary tumors.
  • the control rats had an average of 1.5 tumors per rat compared to 0.83 tumors per rat in animals receiving 1- (D- glucopyranosyluronosyl) retinamide, to 0.92 tumors per rat in animals receiving 1- (B-D-glucopyranosyl) retinamide.
  • 1- (B-D-glucopyranosyl) retinamide, and 1- (D-glucopyranosyluronosyl) retinamide show a greater mammary tumor chemopreventive effect than does retinoic acid.
  • 1- (B-D- glucopyranosyl) retinamide, and 1- (D-glucopyranosyluronosyl) retinamide inhibit DMBA induced mammary tumor development.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biotechnology (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Saccharide Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The present invention provides breast cancer chemopreventive arylamide analogues of retinoic acid, more particularly C-glycoside analogues of N-(4-hydroxyphenyl)retinamide-O-glucuronide and N-glycoside analogue of retinoyl β-glucuronide that resist both β-glucuronidase mediated enzymatic hydrolysis as well as acid catalyzed hydrolysis. Specifically, the drugs include 4-(retinamido)phenyl-C-glucuronide; 4-(retinamido)phenyl-C-glucoside; 4-(retinamido)benzyl-C-xyloside; 4-(retinamido)benzyl-C-glucoside; 4-(retinamido)benzyl-C-glucuronide; 4-(retinamido)phenyl-C-xyloside, 1-(B-D-glucopyranosyl)retinamide and 1-(D-glucopyranosyluronosyl)retinamide. The invention also relates to a method for making such drugs.

Description

C-GLYCOSIDB ANALOGUES OF N-(4-HYDROXYPHBNYDRBTINAMIDB-O-GLUCTJRONIDE
GRANT REFERENCES This invention was made with government support under grant number CA49837 awarded by the National Cancer Institute. The government has certain rights in the invention.
CROSS-REFERENCE TO RELATED APPLICATIONS This application is a continuation-in-part of U.S. Serial No. 07/974,730, filed November 13, 1992.
BACKGROUND OF THE INVENTION Breast cancer kills thousands of women annually. While surgical intervention has saved the lives of many women, radical and partial mastectomies often prove physically and emotionally debilitating. Indeed, surgery, even when combined with chemotherapy, may still expose the patient to the threat of possible recurrence.
A drug that promotes the prevention of breast cancer is desirable, and research efforts have been directed to the development of such drugs. For example, retinoic acid, a vitamin A metabolite, and certain retinoic acid analogues, appear to be necessary for the maintenance of normal epithelial tissue differentiation and can reverse the metaplastic condition of hamster tracheal in vitamin A deficient epithelial tissue. (Newton et al . Cancer Res. (1980) 40., 3413-3425) . As a result, retinoic acid and certain amide analogues have been proposed as cancer chemopreventive agents, and display cancer preventive activity (Moon et al . Cancer Res . (1979) 3_9., 1339-1346) . Similarly, retinoic acid analogues such as retinyl acetate, 13 -cis- retinoic acid, glucuronide analogues of retinoic acid also display cancer preventive activity, including breast cancer preventative activity (Hill, D.L. et al. Ann. Rev. Nutrition (1992) 12., 161-181 and Mehta, R.G. et al . Oncology (1991) ____.1505-1509).
However, a major impediment to developing retinoic acid and its closely related analogues, has been their relatively high toxicity (Biesalski, H.K. Toxicology (1989) 57, 117-161) . Side effects such as teratogenicity, hepatotoxicity, scaly skin, hair loss and headaches have been observed as a result of the use of most of these compounds. Researchers have been pursuing the synthesis of retinoic acid analogues with increased potency and/or reduced toxicity for application as cancer preventative agents. It has been found that N- (4-hydroxyphenyl) retinamide (hereinafter "4-HPR") displays chemopreventive activity in breast cancer (Moon et al. Cancer Res. (1979) 3_9, 1339-1346). Indeed, 4-HPR when combined with calcium glucarate, synergistically exerts an increased breast cancer chemopreventive activity in carcinogen-induced rat mammary tumors (Abou-Issa, H.M. et al . Proc. Natl . Acad. Sci . USA (1988) 85, 4181-4184) . However, the 4-HPR still displays significant cytotoxicity as shown in cultured human breast cancer cells (Bhatnagar, R. et al . Biochem. Pharmacol . (1991) 4i, 1471-1477).
The glucuronide, N- (4-hydroxyphenyl)retinamide-O-glucuronide (hereinafter "4-HPR-O-glucuronide") has a greater antiproliferative activity and less toxicity in both MCF-7 human mammary cell tumor culture than the 4-HPR. (Bhatnagar, R. et al . Biochem. Pharmacol . (1991) 11, 1471-1477.)
However, the 4-HPR-O-glucuronide is unstable; it is hydrolyzed in acidic media and also by the enzyme 0-glucuronidase. The propensity to acid hydrolysis may limit the clinical usefulness of 4-HPR-O- glucuronide since oral administration of the drug may reduce the total available concentration of the active drug. Similarly, since /3-glucuronidase is present in virtually all mammalian cells, including the blood, liver and intestine, the in vivo half life is quite limited. It is desirable to have stable chemopreventive drugs, for the prevention and treatment of breast cancer, which resist acid and 3-glucuronidase hydrolysis.
SUMMARY OF THE INVENTION The present invention provides breast cancer chemopreventive and treatment arylamide analogues of retinoic acid, more particularly C- glycoside analogues of N- (4-hydroxyphenyl)retinamide-O-glucuronide and N-glycoside analogues of retinoyl β-glucuronide that resist both β- glucuronidase mediated enzymatic hydrolysis as well as acid catalyzed hydrolysis. Specifically, the drugs include 4- (retinamido)phenyl-C- glucuronide; 4- (retinamido)phenyl-C-glucoside; 4- (retinamido)benzyl-C- xyloside; 4- (retinamido)benzyl-C-glucoside; 4- (retinamido)benzyl- C-glucuronide; 4- (retinamido)phenyl-C-xyloside, 1- (B-D-glucopyranosyl) retinamide and 1- (D-glucopyranosyluronosyl) retinamide.
BRIEF DESCRIPTION OF THE FIGURES
Figure 1 is a graph showing competition for human retinoic acid receptors/BCV between [3H] -retinoic acid and: unlabeled retinoic acid, represented by the squares, and 1- (B-D-glucopyranosyl) retinamide, represented by the triangles or 1- (D-glucopyranosyluronosyl) retinamide represented by the diamonds. Values represent the means of three determinations;
Figure 2 is a graph showing competition for human retinoic acid receptors alpha/BCV between [3H] -retinoic acid and: unlabeled retinoic acid, represented by squares, and 1- (B-D-glucopyranosyl) retinamide, represented by the triangles, or l- (D-glucopyranosyluronosyl) retinamide represented by the diamonds. Values represent the means of three determinations; and, Figure 3 is a graph showing competition for human retinoic acid receptors beta/BCV between [3H] -retinoic acid and: unlabeled retinoic acid, represented by closed squares, and 1- (B-D-glucopyranosyl) retinamide, represented by the triangles, or 1- (D- glucopyranosyluronosyl) retinamide represented by the diamonds. Values represent the means of three determinations.
DETAILED DESCRIPTION OF THE INVENTION The present invention provides breast cancer chemopreventive drugs that may also be used for the treatment of cancer, that are arylamide analogues of retinoic acid, more particularly C-glycoside analogues of N- (4-hydroxyphenyl)retinamide-O-glucuronide and analogues of retinoyl β-glucuronide that are not hydrolysed by acid nor the enzyme 3-glucuronidase. Specifically, the drugs include 4- (retinamido)phenyl-C-glucuronide; 4- (retinamido)phenyl-C-glucoside; 4- (retinamido)benzyl-C-xyloside; 4- (retinamido)benzyl-C-glucoside; 4- (retinamido)benzyl-C-glucuronide; 4- (retinamido)phenyl-C-xyloside. The structure of the N- (4-hydroxyphenyl) retinamide-O-glucuronide analogues is represented below:
Figure imgf000005_0001
Wherein: R = COOH, CH2OH, or H, and n= 0 or 1.
Where R ■ COOH and n = 0, the molecule is 4- (retinamido)phenyl-C- glucuronide. Where R = CH2OH and n = 0, the molecule is 4- (retinamido)phenyl-C-glucoside. Where R = H and n = 0, the molecule is 4- (retinamido)phenyl-C-xyloside.
Where R = H and n = 1, the molecule is 4- (retinamido)benzyl-C- xyloside. Where R = CH2OH and n = l, the molecule is 4- (retinamido)benzyl-C-glucoside. Where R = COOH and n = 1, the molecule is 4- (retinamido)benzyl-C-glucuronide. The structure of the retinoyl β-glucuronide analogues is represented below:
Figure imgf000006_0001
wherein R' is H, COOH or CH2OH.
Where R = CH2OH, the molecule is 1- (B-D-glucopyranosyl) retinamide and where R = COOH, the molecule is 1- (D-glucopyranosyluronosyl) retinamide. The drugs may be prepared according to the following examples. PREPARATION OF THE DRUGS Example 1: 4- (Retinamido)phenyl-C-glucuronide
First, 14 g of glucose pentaacetate, from Sigma Chemical Company, was dissolved in 60 ml of 30% HBr in acetic acid and allowed to stand a 4° C for 69 hours. The acetic acid was removed. The residue was dissolved in 100 ml of chloroform, washed twice with 100 ml of saturated NaHC03, dried over MgSO,, concentrated, and crystallized from 95% ethanol to give 10.88 g (74%) of acetobromoglucose.
Next, 5.0 g. acetobromoglucose (12.1 mmol) was dissolved in 125 ml of ether and added over 1 hour to phenylmagnesium bromide prepared from 5.6 g (0.23 g atom, 19 equiv.) of magnesium turnings and 25 ml (237 mmol, 19 equiv.) of bromobenzene in 250 ml of ether. The mixture was heated at reflux for 6 hours then poured into 400 ml H20. The 20 ml glacial acetic acid was added to dissolve the magnesium salts. The mixture was shaken and the layers were separated. The aqueous layer was concentrated to dryness and the residue was reacted with 70 ml of acetic anhydride and 100 ml of pyridine overnight. The mixture was poured into 750 ml H20 and the precipitate was isolated by filtration and recrystallized from 2-propanol, to yield 2.236 g (45%), of tetra-0- acetylphenyl-C-glucoside.
Next, 1.45g (3.55 mmol) tetra-O-acetyl phenyl-C-glucoside was stirred with 500 mg K2C03 in 50 ml of methanol overnight. The methanol was removed under reduced pressure and the residue was dissolved in 250 ml H20 containing 1 g. of freshly reduced platinum (IV) oxide. Oxygen was bubbled into the solution which was heated to 80°C for 24 hours. The catalyst was removed by filtration and the filtrate concentrated to dryness. The residue was heated to reflux in 200 ml of 1% H2S0« in methanol for 6 hours. The excess H2S04 was neutralized with NaHC03 and the methanol was removed. The residue was reacted with 70 ml of acetic anhydride and 70 ml of pyridine for 16 hours then poured into 1 L of ice water and the product was isolated by filtration and recrystallized from 2-propanol to yield 724 mg (52%) of methyltri-O-acetyl phenyl-C- glucuronide.
Next, 900 mg (2.28 mmol) of methyl tri-O-acetyl phenyl-C- glucuronide was suspended in 20 ml of acetic anhydride and 4.6 g. (19.8 mmol, 8.7 equiv) of copper (II) nitrate was added. The mixture was heated to 100°C for 2 hours then poured into 150 ml ice water. The aqueous phase was extracted twice with 75 ml ether. The combined ether extracts were washed four times with 50 ml saturated NaHC03, dried using MgS04 and the solvent was removed. The product was purified by flash chromatography using 1:1 ethyl acetate/hexanes as eluant to yield 871 mg (87%) of methyl tri-O-acetyl nitrophenyl-C-glucuronide.
Next, 1.03 g (2.35 mmol) of the mixture of nitrophenyl-C- glucuronides was added to 100 ml of methanol containing 60 mg of 10% palladium on carbon. The mixture was shaken under 40 PSI of hydrogen for 2 hours, then filtered, concentrated, and chromatographed with 1:1 ethyl acetate/hexane as elutant to yield 269 mg (28%) methyl tri-O- acetylamino phenyl-C-glucuronide. Retinoyl chloride was prepared from 264 mg (0.88 mmol) retinoic acid, and 73 μL of pyridine, 65 μh (0.88 mmol) of thionyl chloride in 10 ml of ether at 0°C. The mixture was allowed to warm to room temperature over 1 hour. Then 360 mg (0.88 mmol) of 4- (methyltri-O- acetyl) aminophenyl-C-glucuronide was added in 15 ml of benzene containing 100 μL of pyridine. The mixture was stirred at room temperature for 72 hours, diluted with 100 ml ether, and washed once with 50 ml water, then washed twice with 50 ml 0.05 M H2S04, and finally washed twice with 50 ml saturated NaHC03. The organic layer was dried using Na2S04 concentrated, purified by flash chromatography using 1:1 ethyl acetate/hexanes as elutant to yield 379.5 mg (62%) of 4- (methyltri-O-acetyl) retinamidophenyl-C-glucuronide.
Then 600 mg (0.868 mmol) 4- (methyltri-O-acetyl)retinamidophenyl- C-glucuronide was suspended in 10 ml of 0.2 M sodium methoxide in methanol and stirred at room temperature overnight. To this mixture was added 600 mg (15 mmol) of sodium hydroxide and 10 ml of H20, which was then dried using Na2S04, then concentrated and chromatographed on RP-18 with 85:15 methanol/H20 to yield 148 mg (31%) of 4- (retinamido)phenyl-C-glucuronide. Example 2: 4- (Retinamido)phenyl-C-glucoside First, 14 g of glucose pentaacetate, from Sigma Chemical Company, was converted to 10.88 g of acetobromoglucose as described in Example 1.
Next, 5 g. of the acetobromoglucose (12.1 mmol) was dissolved in 125 ml of ether and added over 1 hour to phenylmagnesium bromide prepared from 5.6 g (0.23 g atom, 19 equiv.) of magnesium turnings and 25 ml (237 mmol, 19 equiv.) of bromobenzene in 250 ml of ether. The mixture was heated at reflux for 6 hours then poured into 400 ml H20. Then 20 ml glacial acetic acid was added to dissolve the magnesium salts. The mixture was shaken and the layers were separated. The aqueous layer was concentrated to dryness and the residue was reacted with 70 ml of acetic anhydride and 100 ml of pyridine overnight. The mixture was poured into 750 ml H20 and the precipitate was isolated by filtration and recrystallized from 2-propanol, to yield 2.236 g (45%), of tetra-O-acetylphenyl-C-glucoside. Next 5.63 g. (13.8 mmol) tetra-O-acetyl phenyl-C-glucoside was dissolved in 150 ml of acetic anhydride and then 25.58 g (110.4 mmol, 8.0 equiv.) copper (II) nitrate was added. The mixture was heated to 100°C for 1 hour then poured into 400 ml ice water. The organic soluble material was extracted with two ether washes of 200 ml. The ether extracts were washed twice with 100 ml water and saturated aqueous sodium bicarbonate, dried using MgS04 and concentrated to dryness, to yield 6.11 g (97%) of a 1:1 mixture of o- and p- nitrophenyl-C-glucosides. Next, 1.046 g of the isomeric tetra-O-acetyl nitrophenyl-C- glucoside was dissolved in 150 ml of methanol and about 100 mg of 10% palladium on carbon was added. The mixture was shaken under 40 PSI of hydrogen for 1.5 hours. The catalyst was removed by filtration, the filtrate was concentrated to dryness, and the residue was chromatographed on silica gel using 1:1 ethyl acetate/hexanes as elutant to give 372.2 mg (38%) of 4- (tetra-O-acetyl) aminophenyl-C- glucoside. A sample of this material having a melting point of 110- 111°C was recrystallized from 2-propanol.
Next, retinoyl chloride was prepared by dissolving 192 mg (0.64 mmol) of retinoic acid in 10 ml of ether containing 100 ml of pyridine and cooled to 0°C. Then 47 μl_ (0.64 mmol) thionyl chloride was added. The mixture was allowed to come to room temperature over 90 minutes and then 270 mg (0.64 mmol) of the 4- (tetra-O-acetyl) aminophenyl-C- glucoside was added in 9 ml benzene and 1 ml pyridine. The mixture was stirred at room temperature for 40 hours then diluted with 100 ml ethyl acetate and extracted with 100 ml H20, followed by two washes with 100 ml 1% H2S04, and 2 washes with 100 ml saturated aqueous sodium bicarbonate solution. The organic phase was dried using MgS04, concentrated, and chromatographed with 1:1 ethyl acetate/hexanes as elutant to yield 247 mg (54%) of the 4 (tetra-O-acetyl) retinamidophenyl-C-glucoside.
Next, 247 mg (0.35 mmol) 4- (retinamido)phenyl-C-glucoside tetraacetate was dissolved in 20 ml methanol and 0.2 g of potassium carbonate was added. The mixture was stirred at room temperature for 18 hours, concentrated and chromatographed on RP-18 with 1:1 methanol/water then 3:1 methanol/water then 100% methanol, to yield 47.7 mg (25%) of 4- (retinamido)phenyl-C-glucoside. Example 3: 4- (Retinamido) henyl-C-xyloside
First, 50 g of xylose, from Sigma Chemical Company, 12.5 g of sodium acetate (anhydrous) and 200 ml of acetic anhydride were heated to reflux for 1 hour and poured into 1 L of ice water. Xylose tetraacetate was isolated by filtration and recrystallized from 95% ethanol to yield 56.75 g (54%).
Next, 5 g. (15.7 mmol) of the xylose tetraacetate was dissolved in 200 ml dry chloroform and 8.4 g. (62.8 mmol, 4 equiv), aluminum chloride was added. The mixture was stirred at room temperature for 2 hours, diluted with 200 ml H20, shaken, and separated. The chloroform layer was washed with 200 ml H20, then washed twice with 200 ml saturated aqueous NaHC03, dried using MgS04, and concentrated, to provide crude acetochloroxylose. The crude acetochloroxylose was dissolved in 100 ml ether and added to a refluxing solution of phenylmagnesium bromide prepared from 18 ml (169 mmol, 10.8 equiv.) of bromobenzene and 4.12 g (0.169 g atom, 10.8 equiv) of magnesium turnings in 250 ml of ether. The mixture was heated at reflux for 5 hours and poured into 150 ml H20 containing 15 ml of glacial acetic acid. The aqueous layer was concentrated to dryness and the residue was reacted with 75 ml acetic anhydride and 75 ml of pyridine for 20 hours. The mixture was poured into 300 ml H20. The product was isolated by filtration and recrystallized from 2-propanol, to yield 1.28 g (24%), tri-O-acetylphenyl-C-xyloside having a melting point of 161-162°C.
Then 1200 mg (3.54 mmol) of the tri-O-acetyl phenyl-C-xyloside was dissolved in 50 ml of acetic anhydride and 6.65 g (28.6 mmol, 8 equiv.) copper (II) nitrate was added. The mixture was heated to 100°C. for 1 hour and then poured into 300 ml of ice water. The water was extracted with 2 washes of 150 ml with ether. The ether extracts were washed twice with 150 ml with water then washed twice with 50 ml saturated NaHC03, then washed with 50 ml brine, dried using MgS04 and concentrated to yield 1.347 g (99%) of a 1:1 mixture of o- and p-tri-0- acetyl nitrophenyl-C-xylosides.
Next, 1.35 g. (3.54 mmol) of the mixture of nitrophenyl-C- xylosides was suspended in 50 ml of methanol and 100 mg of 10% palladium on carbon was added. The mixture was shaken under 40 PSI of hydrogen for 1.5 hours. The catalyst was removed by filtration, and the solvent was removed. The residue was purified by flash chromatography using 1:1 ethyl acetate/hexanes as elutant to yield 375 mg (30%) of 4- (tri-O-acetyl) aminophenyl-C-xyloside.
Retinoyl chloride was prepared by dissolving 320 mg (1.07 mmol) retinoic acid suspended in 10 ml ether containing 200 μl of pyridine. The mixture was cooled to 0°C. and 77 μl (1.07 mmol) of thionyl chloride was added. The mixture was allowed to warm to room temperature over 1.5 hours. The acetylated aminophenyl-C-xyloside was suspended in 16 ml benzene and 800 μl pyridine was added. The mixture was stirred at room temperature for 24 hours, diluted with 25 ml of ethyl acetate, and washed three times with 50 ml water, twice with 25 ml with 5% HC1, and twice with 25 ml with saturated NaHC03, dried using MgS04, and concentrated. The residue was purified by chromatography using 1:1 ethyl acetate/hexanes as elutant to yield 500 mg (74%) of 4- (tri-O-acetyl) retinamidophenyl-C-xyloside having a melting point 96- 98°C.
Then 480 mg (0.76 mmol) acetylated retinamidophenyl-C-xyloside was suspended in 10 ml of methanol and 100 mg (0.72 mmol) of potassium carbonate was added. The mixture was stirred at room temperature overnight, the solvent was removed, and the residue was partitioned between 50 ml ethyl acetate and 50 ml water. The mixture was shaken and the layers separated. The organic layer was dried using Na2S04 and the solvent removed. This step yielded 293.5 mg (76%), 4- (retinamido)phenyl-C-xyloside, having melting point 198-200°C which was used without further purification. Example 4: 4- (Retinamido)benzyl-C-glucuronide
First, 59 g (109 mmol) of 2,3,4,6-tetra-O-benzyl glucose, from Sigma Chemical Company, was dissolved in 200 ml of pyridine and 22.3 g (120 mmol) of p-nitrobenzoyl chloride was added. The mixture was stirred at room temperature for 72 hours, poured into 750 ml of water, and the solid was isolated by filtration and recrystallized from 95% ethanol to produce 68.8 g (91%) of 2, 3, 4, 6-tetra-0-benzyl-l-p- nitrobenzoyl glucose. Next, 2.00 g (2.9 mmol) of the 2, 3,4,6-tetra-0-benzyl-l-p- nitrobenzoyl glucose was dissolved in 20 ml of dichloromethane and hydrogen bromide was bubbled in for 10 minutes. The p-nitrobenzoic acid was removed by filtration and the filtrate was concentrated to give the crude glycosyl bromide which was dissolved in 50 ml of ether and added to benzylmagnesium chloride prepared from 600 mg (0.0247 g- atom) of magnesium and 2.8 ml (24.3 mmol) benzyl chloride. The mixture was heated at reflux for 4 hours then poured into 100 ml of water containing 5 ml of acetic acid. The mixture was shaken and separated. The ether layer was washed twice with 50 ml saturated NaHC03, once with 50 ml brine, dried using MgS04, and concentrated. The residue was dissolved in 80 ml glacial acetic acid containing 0.1 g of 10% palladium on carbon and shaken under 40 PSI of hydrogen for 19 hours. The catalyst was removed by filtration and the filtrate was concentrated to dryness. The residue was acetylated with 30 ml of pyridine and 30 ml of acetic anhydride over 16 hours. The reaction was poured into 100 ml of water and extracted twice with 50 ml of ether. The ether extracts were washed twice with 50 ml water, once with 50 ml 5% HC1, once with 50 ml saturated NaHC03, once with 50 ml brine. The extracts were dried using MgS04, concentrated, and crystallized from 2- propanol to yield 194 mg (16%) , tetra-O-acetyl benzyl-C-glucoside having a melting point of 118-119°C.
Next, 1.56 g (3.70 mmol) tetra-O-acetyl benzyl-C-glucoside was dissolved in 30 ml of acetic anhydride and 7.3 g (31.4 mmol, 8.5 equiv) copper (II) nitrate was added. The mixture was heated to 100°C for 1 hour and poured into 150 ml of ice water. The water was extracted twice with 60 ml of ether. The ether extracts were washed twice with 50 ml water, twice with 50 ml saturated NaHC03, dried using MgS04, and concentrated. The crude nitrobenzyl-C-glucoside was dissolved in 30 ml of methanol and 340 mg of potassium carbonate was added. The mixture was stirred at room temperature overnight, concentrated, and dissolved in 100 ml of water containing 1 g of freshly reduced platinum (IV) oxide. The mixture was heated to 80°C and oxygen was bubbled in for 10 hours. The catalyst was removed by filtration and the filtrate concentrated to dryness. The residue was heated to reflux in 100 ml of 2% H2S04 in methanol for 1 hour. Excess H2S04 was neutralized with 10 ml of pyridine. The mixture was concentrated to dryness and the residue was reacted with 30 ml of pyridine and 60 ml of acetic anhydride for 16 hours. The mixture was poured into 300 ml of ice water and extracted twice with 100 ml ether. The ether layers were washed twice with 200 ml with water, once with 100 ml saturated NaCH03, dried using MgS04, and concentrated to yield 1.107 g (66%) of a 1 to 1 mixture ortho and para methyl tri-O-acetyl nitrobenzyl-C-glucuronides.
The 1.107 g (2.44 mmol) of the 4-nitrobenzyl-C-glucuronide mixture was dissolved in 100 ml of methanol and 100 mg of 10% palladium on carbon was added. The mixture was shaken under 40 PSI of hydrogen for 1 hour, the catalyst was removed by filtration, and the filtrate was concentrated and chromatographed on silica gel using 1:1 ethyl acetate/hexanes as elutant to yield 310 mg (30%) of methyl tri-O- acetyl-4-aminobenzyl-C-glucuronide.
The retinoylated benzyl-C-glucuronide was prepared as in Example 1. From 219 mg (0.73 mmol) of retinoic acid and 310 mg (0.73 mmol) of the protected 4-aminobenzyl-C-glucuronide, 303 mg (59%) of the protected retinamidobenzyl-C-glucuronide having a melting point 80-82°C was obtained after chromatography.
Next, 200 mg (0.28 mmol) of the protect retinamidobenzyl-C- glucuronide was dissolved in 5 ml MeOH and 33 mg sodium methoxide was added. After stirring at room temperature for 16 hours, 5 ml of water and 25 mg of sodium hydroxide were added. The mixture was stirred for another 5 hours, acidified to pH=l with 5% HC1, and extracted five times with 25 ml ethyl acetate. The ethyl acetate extracts were combined and washed twice with 100 ml water, twice with 50 ml brine, dried using Na2S04 and concentrated to yield 74.5 mg (47%) 4- (retinamido)benzyl-C-glucuronide having a melting point of 98-100°C. Example 5: 4- (Retinamido)benzyl-C-glucoside
First, 500 mg. (1.18 mmol) of tetra-O-acetyl benzyl-C-glucoside from Example 4, was dissolved in 10 ml of acetic anhydride and 2.2 g (9.46 mmol, 8 equiv) copper (II) nitrate was added. The mixture was heated to 100°C for 1 hour and poured into 75 ml of water. The water was extracted twice with 40 ml of ether. The ether extracts were washed twice with 40 ml water, twice with 40 ml saturated NaHC03, once with 40 ml brine, then dried using MgS04, and concentrated. The crude nitro benzyl-C-glucoside was dissolved in 25 ml of methanol containing 50 mg of 10% palladium on carbon and was shaken under 40 PSI of hydrogen for 1 hour. The catalyst was removed by filtration. The filtrate was concentrated and chromatographed on silica gel using 1:1 ethyl acetate/hexanes as elutant, to yield 173.2 mg (33%), 4- (tetra-O- acetyl) aminobenzyl-C-glucoside having a melting point of 145-146°C. The retinamide was prepared as in Example 2. From 108 mg (0.36 mmol) retinoic acid and 158 mg (0.36 mmol) acetylated aminobenzyl-C- glucoside, 133 mg (51%) of 4- (tetra-O-acetyl) retinamidobenzyl-C- glucoside was obtained.
Next, 130 mg (0.18 mmol) of acetylated retinamidobenzyl-C- glucoside was dissolved in 8 ml of methanol containing 100 mg of potassium carbonate. The mixture was stirred at room temperature for 16 hours, concentrated, and partitioned between 40 ml of ethyl acetate and 40 ml of water. The mixture was shaken and separated and the ethyl acetate layer was washed twice with 40 ml water, twice with 40 ml brine, dried using Na2S04 and concentrated, to yield 68 mg (68%) 4- (retinamido)benzyl-C-glucoside. Example 6: 4- (Retinamido)benzyl-C-xyloside
First, 50 g of xylose, from Sigma Chemical Company, was converted to xylose tetracetate as described in Example 3. Next, 2.07g (6.5 mmol) of the xylose tetracetate was dissolved in 125 ml dry chloroform and 3.3 g (24.8 mmol, 3.8 equiv.) aluminum chloride was added. The mixture was stirred at room temperature for 1.5 hours then washed once with 50 ml saturated NaHC03, once with 50 ml water, and once with 50 ml brine, then dried using MgS0 , and the solvent removed. The residue was dissolved in 100 ml ether and added to a refluxing solution of benzylmagnesium chloride prepared from 11.5 ml (0.10 mol) of benzyl chloride and 2.43 g (0.1 g-atom) of magnesium in 250 ml of ether. The mixture was kept at reflux for 4 hours then poured into 400 ml H20 containing 20 ml acetic acid. The aqueous layer was concentrated to dryness and the residue reacted with 75 ml acetic anhydride and 75 ml pyridine for 8 hours. The mixture was poured into 400 ml H20 and extracted three times with 160 ml ether. The ether extracts were washed three times with 100 ml saturated NaHC03, dried using MgS04, concentrated, and recrystallized from 2-propanol, to yield 989 mg (43%) tri-O-acetyl benzyl-C-xylopyranoside having a melting point of 118-119°C.
Next, 989 mg (2.82 mmol) of tri-O-acetyl benzyl-C-xyloside was dissolved in 25 ml of acetic anhydride and 4.08 g (17.52 mmol, 62 eq) of copper (II) nitrate was added. The mixture was heated to 100°C for 2 hours and poured into 125 ml of water. The aqueous layer was extracted three times 25 ml with ether and the combined ether extracts were washed six times with 25 ml saturated NaHC03, dried using MgS04, and concentrated. This crude material was suspended in 100 ml of methanol containing 100 mg of 10% palladium on carbon. The mixture was shaken under 40 PSI of hydrogen for 1.5 hours, filtered, and solvent removed. The residue was chromatographed using 1:1 ethyl acetate/hexanes as elutant, to yield 160 mg (16%) of a 4- (tri-O-acetyl) amino benzyl-C-xyloside. Retinoyl chloride was prepared in 10 ml of ether from 131 mg (0.44 mmol) retinoic acid, 60 ul pyridine, and 32 ul of thionyl chloride were stirred at 0°C for 1 hour then allowed to warm to room temperature over 30 minutes. Then, pyridine 40 μl, 160 mg (0.44 mmol) 4- (tri-O-acetyl) aminobenzyl-C-xyloside, and 10 ml benzene were added. The mixture was stirred at room temperature for 72 hours and diluted with 50 ml of ether. The organic extracts were washed once with 50 ml water, twice with 50 ml of 1% H2S04, three times with 50 ml saturated NaHC03, once with 50 ml brine, dried using MgS04, and concentrated. The residue was purified by chromatography using 1:1 ethyl acetate/hexanes as elutant, to yield 194.5 mg (70%), 4 (tetra-O-acetyl) retinamidobenzyl-C-xyloside having a melting point of 88-90°C.
Then 180 mg (0.286 mmol) acetylated retinamidobenzyl-C-xyloside was dissolved in 10 ml of methanol containing 150 mg of potassium carbonate. The mixture was stirred at room temperature overnight, concentrated, and purified on RP-18 reversed phase silica gel with 100% methanol as elutant, to yield 826 mg (55%) 4- (retinamido)benzyl-C- xyloside.
In the above examples, the product from multiple runs of a synthesis step may have been pooled to obtain the quantities used in subsequent steps.
Example 7: preparation of 1- (β-D-glucopyranosyl) retinamide Preparation of (2,3,4,6-tetra-0-acetylglucopyranosyl azide)
Figure imgf000014_0001
2,3,4,6- βtra-O- 2,3,4,6-t*tra-θ- acβtylglucopyranoβyl bromide ac«tylglucopyranoβyl azida
First, 2,3,4,6-tetra-0-acetylglucopyranosyl bromide was prepared from glucose pentaacetate by dissolving 50 gm of glucose pentaacetate, available from Sigma Chemical Company, in 200 mL of 30% HBr/acetic acid; the mixture was allowed to stand overnight in the refrigerator. The solvent was removed under reduced pressure, the residue dissolved in CHCI3, and the CHC13 solution was washed with H20, saturated NaHC03, saturated NaCl, and dried over Na2S04. The drying agent was removed by filtration and the residue crystallized from ethanol. The acetobromoglucose has a melting point of 89°C.
Next, 8.22g, that is 20 mmol, of the 2,3,4,6-tetra-0- acetylglucopyranosyl bromide was dissolved in 250 ml of dimethylformamide and 2.6 g, that is, 40 mmol, or two equivalents of sodium azide was added. The mixture was stirred at room temperature for 24 hours and then poured into 500 ml of water. The organic soluble material was extracted 3 times with 150 ml ethyl acetate. The ethyl acetate extracts were washed twice with 100 ml water, then washed with saturated aqueous NaCl (brine) , dried over MgS04, and concentrated to dryness. The residue was recrystallized from ethanol to yield 6.1 g, that is, 82% of 2,3,4,6-tetra-0-acetylglucopyranosyl azide. The 2,3,4,6-tetra-0-acetyl-|3-D-glucopyranosyl azide had the following characteristics: melting point 127-129°C; IR (KBr) 2969, 2956, 2118, 1755, 1733, 1373, 1240, 1213, 1072, 1059, 1037; Η HME: δl.98 (s,3H), 2.00 (s,3H), 2.05 (s,3H), 2.07 (s,3H), 3.73-3.80 (m, 1H) , 4.13 (dd, 1H, J=12.5, 2.4 Hz), 4.25 (dd, 1H, J=12.5, 4.7 Hz), 4.62 (d, 1H, J=8.7 Hz), 4.93 (t, 1H, J=9.26 Hz), 5.07 (t, 1H, J=9.5 Hz) , 5.19 (t, 1H, J=9.4 HZ) ;
Preparation of 2.3.4.6-tetra-0-acetylglucopyranosyl amine
Figure imgf000016_0001
2,3,4,6-tβtra-O- 2,3,4,6-tβtra-θ- acetylglucopyranoβyl azide acetylglucopyranoβyl amine
4g, that is, 11 mmol of the 2,3,4,6-tetra-0-acetylglucopyranosyl azide was added to 50 ml of dry tetrahydrofuran containing 200 mg of Pt02. The mixture was shaken under 40 psi of hydrogen for 2 hours, filtered, concentrated to dryness, to produce 2,3,4,6-tetra-O- acetylglucopyranosyl amine. Preparation of 2.3.4.6-tetra-0-acetylglucopyranosyl retinamide
Retiiioic Acid SOCil
2 ,4,6-tetrβ-O-ιcet lglucop ranosyl tmine
Figure imgf000016_0002
2,3,4,6-tetra-θ-acetylglucopyranosyl retinamide
Retinoyl chloride was prepared from 3.24 g (10.8 mmol) retinoic acid, 1.1 ml of pyridine, and 0.79 ml (10.8 mmol) of thionyl chloride in 60 ml of ether at 0°C. The mixture was allowed to warm to room temperature over 1 hour, and 3.82g, 11 mmol of 2, 3,4,6-tetra-0- acetylglucopyranosyl amine was added in 50 ml of benzene containing 3 ml of pyridine. The mixture was stirred at room temperature for 72 hours, diluted with 200 ml of ethyl acetate, and extracted three times with 150 ml H20 and brine. The organic product was dried over MgS04, concentrated, treated with diazomethane, and chromatographed with 40% ethyl acetate in hexane to remove traces of methyl retinoate, and yielded 4.36 g that is 64% of 2,3,4,6-tetra-θ-acetylglucopyranosyl retinamide.
Preparation of 1(-β-D-glucopyranosyl) retinamide
2,3,4,6-tetra-O-acetylglucopyranosyl K2CO3 MeOH retinamide
Figure imgf000017_0001
1- (3-D-glucopyranosyl) retinamide
Next, 2.52 g, 4 mmol of 2,3,4,6-tetra-0-acetylglucopyranosyl retinamide was dissolved in 50 ml of methanol and 0.2 g of K2C03 was added. The mixture was stirred at room temperature for 6 hours, filtered, and concentrated to yield 1.66 g of l- (j8-D-glucopyranosyl) retinamide (90%) . The 1- (J-D-glucopyranosyl) retinamide was purified by chromatography on RP-18 with 80% MeOH/H20. 1- (B-D-glucopyranosyl) retinamide has the following characteristics: melting point of 166°C (decomposition); IR (KBr) 3369, 2927, 1662 cm"1; UV (CH30H) λ,^ 349 nm (ε 24043); αH NMR (DMS0-ds) δ 1.00 (s, 6H, C(CH3)2), 1.42 (m, 2H, retinoid H-2)11, 1.55 (m, 2H, retinoid H-3) , 1.70 (s, 3H, retinoid 5-CH3) , 1.95 (br s, 5H, retinoid 9CH3 and H-4) , 2.28 (s, 3H, retinoid 13-CH3) , 3.15 (br s, 4H, -OH), 3.4-3.7 (m, 6H, pyranose H's), 4.75 (br t, 1H, J-9Hz, pyranose anomeric H) , 5.85 (s, 1H, retinoid H-13) , 6.04-6.33 (m, 4H, retinoid vinyl H's) , 6.99 (dd, 1H, J=11.4, 15 Hz, retinoid H-ll) , 8.46 (br d) , 1H, J=9 Hz, NH) ; RP-HPLC (CH3OH/H209:1, both with 10 mM NH4OAc, flow rate 1 mL/min) tR * 6.4 min (96.4% of total peak area); FAB-MS, m/e (relative intensity) 484 (M + Na, 53.04).
Example 8: l- (D-glucopyranosyluronosyl) retinamide: First methyl-1,2,3,4-tetra-0-acetylglucuronate was prepared from glucurono-6,3-lactone by dissolving 40 gm of glucurono-6,3-lactone, available from Aldrich Chemical Co., in 300 mL of CH3OH containing 100 mg NaOH and allowed to stand one hour. The solvent was removed under reduced pressure and the residue dissolved in 100 mL pyridine and 150 mL acetic anhydride; the mixture was stored in the refrigerator. The resulting solid methyl-1,2,3,4-tetra-0-acetylglucuronate was filtered and recrystallized from 95% ethanol. The methyl-1,2,3,4-tetra-0- acetylglucuronate has a melting point of 178°C. Methyl 1-bromo-2,3,4-tetra-0-acetylglucuronate was prepared from methyl-1,2,3,4-tetra-0-acetylglucuronate. 50 gmethyl-1,2,3,4-tetra-0- acetylglucuronate was dissolved in 200 mL of 30% HBr/acetic acid; the mixture was allowed to stand overnight in the refrigerator. The solvent was removed under reduced pressure, the residue was dissolved in CHC13 and the CHC13 solution was washed with H20, saturated NaHC03, saturated NaCl and dried over Na2S04. The drying agent was removed by filtration and the residue crystallized from ethanol. The methyl 1- bromo-2,3,4-tetra-0-acetylglucuronate has a melting point of 107°C.
Preparation of methyl 2.3.4-tri-0-acetylglucopyranuronosyl azide
Figure imgf000018_0001
methyl 2,3,4-tri-O- methyl 2,3,4-tri-O- acetylglucopyranuronoβyl aceytglucopyranuron- bromide osyl azide
Methyl 2,3,4-tri-0-acetylglicopyranuronosyl bromide (7.94 g, 20 mmol) was dissolved in 250 ml of dimethylformamide and 2.6 g, that is 40 mmol sodium azide was added. The mixture was stirred at room temperature for 24 hours and then poured into 500 ml of H20. The organic soluble material was extracted three times with 150 ml ethyl acetate. The combined ethyl acetate extracts were washed twice with 100 ml H20, brine, dried over MgS04, and concentrated to dryness. The residue was recrystallized from ethanol to yield 5.46 g (76%) of methyl 2,3,4-tri-0-acetylglucopyranuronosyl azide. Methyl 2,3,4-tri-0- acetylglucopyranuronosyl azide had the following characteristics: melting point of 152-154°C; IR (KBr) , 2972, 2958, 2123, 1761, 1740, 1375, 1244, 1213, 1070, 1039; lH NMR: 62 .0 (s, 6H) , 2.06 (s, 3H) , 3.76 (s, 3H) , 4.10 (d, 1H, J-9.5 Hz), 4.69 (d, 1H, J=8.7 Hz), 4.94 (t, 1H, J-8.7 Hz) , 5.23 (m, 2H) . Preparation of methyl 2.3.4-tri-0-acetylglucopyranuronosyl amine
Next, 6.17 g, that is, 17 mmol methyl 2,3,4-tri-0- acetylglucopyranuronosyl azide was added to 50 ml of dry tetrahydrofuran containing 400 mg of Pt02. The mixture was shaken under
40 psi of hydrogen for 2 hours, filtered, concentrated to dryness, to produce methyl 2,3,4-tri-0-acetylglucopyranuronosyl amine.
Figure imgf000019_0001
methyl 2,3,4-tri-O- methyl 2,3,4-tri-O- acβtylglucopyranuron- acetylglucopyranuron¬ osyl azide osyl amine
Preparation of methyl 2.3.4-tri-0-acetylglucopyranuronosyl retinamide Retinoyl chloride was prepared by reacting 4.5 g, 15 mmol retinoic acid , 2 ml of pyridine, and 1.09 ml, that is, 15 mmol of thionyl chloride in 85 ml of ether at 0°C. The mixture was cooled to - 15°C and 5.66 g, that is, 17 mmol methyl 2,3,4-tri-0- acetylglucopyranuronosyl amine was added in 70 ml of benzene containing 3.3 ml of pyridine. The mixture was stirred at room temperature for 72 hours, diluted with 300 ml of ethyl acetate, and extracted three times with 150 ml H20 and brine. The organic product was dried over MgS04, concentrated, treated with diazomethane, and chromatographed with 40% ethyl acetate-hexane to yield 5.95 g or 65%) of methyl 2,3,4-tri-0- acetylglucopyranuronosyl retinamide. Rβtiaojc Acid SOCXt mediyl 2^>4-tri-0-«c< l«lucopyτaι>urono(yl
Figure imgf000020_0001
methyl 2,3, -tri-O-acetylgluco¬ pyranuronosyl retinamide
Preparation of 1- (D-glucopyranosyluronosyl) retinamide Then 2.46 g, 4 mmol of methyl 2,3,4-tri-0- acetylglucopyranuronosyl retinamide was dissolved in 50 ml of methanol and 0.2 g of K2C03 was added. The mixture was stirred at room temperature for 6 hours and concentrated. The residue was dissolved in 50 ml of methanol. To this mixture was added 0.5 g, that is 9 mmol, of KOH and 50 ml of H20 and the mixture was stirred for 24 hours. The mixture was acidified to pH 2 with 5% HC1 and extracted three times with 100 ml ethyl acetate. The ethyl acetate extracts were dried over MgS04 and concentrated to yield 1.58 g of 1- (D-glucopyranosyluronosyl) retinamide, (83%) . The 1- (D-glucopyranosyluronosyl) retinamide was purified by chromatography on RP-18 with 80% MeOH/H20. The 1- (D- glucopyranosyluronosyl) retinamide so obtained, is a mixture of β and α epimers in approximately a 4 to 1 ratio.
1- (D-glucopyranosyluronosyl) retinamide has the following characteristics: melting point of 145° (dec); IR (KBr) 3390, 2925, 1733, 1652 cm"1; UV (CH3OH) λ,^ 351 nm (ε 38523); *H NMR (DMS0-d6) δ 1.00 (s, 6H) , 1.43 (m, 2H) , 1.56 (m, 2H) , 1.67 (s, 3H) , 1.96 (br s, 5H) , 2.28 (s, 3H) , 3.21-3.76 (m, 8H) , 4.78 (br t, 1H, J=8.9 Hz), 5.83 (s, 1H) , 6.07-6.33 (m, 4H) , 6.95 (dd, 1H, Jail.7, 14.7 Hz), 8.32 (br d, 0.2H, J= 8.7 Hz, α-NH) , 8.53 (br d, 0.8 H, J= 9 Hz, 0-NH) ; RP-HPLC (CH30H/H2O 9:1, both with 10 mM NH4OAc, flow rate 1 mL/min) t4 = 4.0 min (96.1% of total peak area) ; FAB-MS, m/e (relative intensity) 552 (M-l + 2K, 100) .
1- (D-glucopyranosyluronosyl) retinamide me hyl-2,3»4-tri -O-acetlyglucopyranuronosyl retinamide
Figure imgf000021_0001
Figure imgf000021_0002
EVALUATION OF THE DRUGS Stability of the Drugs
To determine the stability of the C-glucopyranosiduronate linkage towards acidic conditions, samples of 4-HPR-O-glucuronide, 4- (retinamido)phenyl-C-glucuronide and 4- (retinamindo)benzyl-C- glucuronide were treated with 0.1 N methanolic HCl at 37°C for 2 hours.
After this time, the O-glucuronide had undergone substantial hydrolysis of the ether linkage to liberate the N-4- hydroxyphenylretinamide and glucuronic acid. However, both the 4- (retinamido)phenyl-C-glucuronide and the 4- (retinamindo)benzyl-C- glucuronide remained essentially intact. Thus, both the C-phenyl and C-benzyl glycosides, which lack the ether linkage, resist acid hydrolysis and would withstand the low pH of the mammalian stomach.
Similarly, 1- (D-glucopyranosyluronosyl) retinamide and RAG were treated with 0.1 N HCl at 37°C for two hours.
After two hours, the RAG had undergone approximately 50% solvolysis to liberate retinoic acid as determined by HPLC. In contrast, the 1- (D-glucopyranosyluronosyl) retinamide remained intact. While the 4-HPR-O-glucuronide is hydrolysed to glucuronic acid and the aglycone by /S-glucuronidase, the 4- (retinamido)phenyl-C- glucuronide and the 4- (retinamido)benzyl-C-glucuronide are not. This indicates that the 4- (retinamido)phenyl-C-glucuronide and the 4- (retinamido)benzyl-C-glucuronide would not be hydrolyzed by the enzyme in vivo.
Indeed, the 4- (retinamido)phenyl-C-glucuronide and 4- {retinamido)benzyl-C-glucuronide act as inhibitors of 0-glucuronidase mediated hydrolysis of N-4-hydroxyphenylretinamide-O-glucuronide to N- 4-hydroxyphenylretinamide and glucuronic acid with 4- (retinamido)benzyl-C-glucuronide being slightly more effective than the 4- (retinamido)phenyl-C-glucuronide. The Km value of 3-glucuronidase for 4-HPR-O-glucuronide under experimental conditions was determined to be 184.5 μM, using the method of Beinfeld, P. et al . , J. Am. Chem. Soc , (1954), 76., 4872-4877. Accordingly, the concentration of the 4- HPR-O-glucuronide in the inhibition study was selected to be below 184.5 μM. The IC50 values were determined according to the method of Lang, J.H. et. al . J. Med. Chem. (1971), 14, 223-236, using 10% methanol as a co-solvent, for 4- (retinamido)phenyl-C-glucuronide and 4- (retinamido)benzyl-C-glucuronide. The IC50 values, which represent the concentration of the drug that inhibits the cleavage of 50% of the 4- HPR-O-glucuronide, were found to be 267 μM for the 4- (retinamido)phenyl-C-glucuronide and 236 μM for the 4- (retinamido)benzyl-C-glucuronide. An average typical ICS0 for glucaro- (1,4) -lactone, one of the most potent inhibitors of the enzyme, is 10 μM. Thus, the IC50 values for the C-phenyl and C-benzyl glycosides, indicate that they significantly inhibit /S-glucuronidase.
Similarly 1- (D-glucopyranosyluronosyl) retinamide and RAG were evaluated for their stability toward 3-glucuronidase medicated hydrolysis under the same conditions as described above.
Within twenty minutes, the RAG was completely hydrolyzed to liberate retinoic acid, while the 1- (D-glucopyranosyluronosyl) retinamide remained intact.
Growth Inhibition of MCF-7 Cells
The antiproliterative activity of the drugs in MCF-7 human mammary tumor cell culture models were determined.
The MCF-7 cells were obtained originally from the Michigan Cancer Foundation. The cells were routinely grown as monolayers in T-25 plastic tissue culture flasks from Falcon, in Oxnard, CA containing 5.0 mL of B-10 medium consisting of Minimum Essential Medium (MEM, Earle's Base) supplemented with 1.0 mM MEM non-essential amino acid, 2.0 mM 1- glutamine, 10% fetal bovine serum (FBS) , and antibiotics. Culture conditions included a humidified atmosphere of 5% C02 at 37°C. One-half of the medium was replenished twice a week. Cells were harvested by trypsinization upon confluency. All variables were evaluated in triplicate.
For the growth inhibition assay the MCF-7 cells were plated in 24-well plates at a density of 1.5 x 104 cells/cm2. After a 24 hour period and again on day 4, the medium was replaced with treatment medium containing the specified drugs at 10"s to 10'* M in absolute ethanol and added to the cell cultures so that the ethanol concentration did not exceed 0.1%. Control cultures were treated with an equivalent volume of absolute ethanol. On day 7 the cells were harvested by trypsinizatioή and viability was assessed by trypan blue exclusion according to Ueda, H. et al . Cancer 1980, 46, 2203-2209. Total cell counts were obtained using a hemocytometer as well as a the Coulter Counter. Growth inhibition, that is, cell survival, was calculated for the various drug concentrations using the equation: % inhibition ■ 100 - R/C X 100 where R and C are the number of cells in the drug-treated and control cultures, respectively.
The ED50 for growth inhibition of the MCF-7 cells by the drugs has been evaluated in three separate assays as shown in Table I.
TABLE I GROWTH INHIBITION OF MCF-7 CELLS
Figure imgf000023_0001
The 4- (retinamido)phenyl-C-glucuronide appears to show a potency consistent with its glucoside analogue, retinamidophenyl-C-glucoside. The 4- (retinamido)benzyl-C-glucuronide and its glucoside analogue, 4- (retinamido)benzyl-C-glucose exhibit the best growth inhibition of the cells. The glucuronides and glycosides drugs of the present invention are more effective than the xylosides of the present invention and the benzyl drugs are more active than the phenyl drugs. Although the mechanism of the drugs is not well understood, it has been shown that active drugs in this class compete with retinoic acid for nuclear receptors for retinoic acid.
Retinoic acid receptors, (RAR) a, β, and γ were expressed using a baculovirus expression system in Spodoter fr giperda insect cells. DNA, coding for each receptor was introduced into the genome of the baculovirus which was then introduced into the cultured insect cells. Whole cell extracts were prepared by homogenizing cells in 50 mM Tris buffer at pH 7.4 containing 1.5 mM EDTA, 5 mM dithiothreitol, 300 mM KC1 and the protease inhibitors, 1 mM phenylmethylsulfonyl fluoride and 5 ug/ml soybean trypsin inhibitor. The homogenate was subjected to centrifugation at 45,000 rpm for 45 minutes at 4βC in a Ti 70.1 Beckman rotor. The supernatant fraction was stored at -70°C until use. For drug competition binding studies, 500 μl portions of the retinoic acid receptor-containing protein extracts were incubated on ice for 3 hours in the presence of 5 nM [3H] trans-retinoic acid, from DuPont-NEN, 50.6 Ci/mmole) (RA) ± 1 μM of each of the drugs listed in Table II or the equivalent volume of ethanol. Ethanol comprised 3.8% of the final volume in each tube. The [3H] -RA-receptor complexes were separated from free ligand using an hydroxylapatite assay, (Williams, D. et al . , Biochemistry (1974) ϋ, 5537-5542, and Dame, et al . , Proc . Natl . Acad . Sci . USA (1985) __2 , 7825-7829). The quantity of [3H] -RA bound by protein was determined by liquid scintillation counting in 4 ml of Optifluor from Packard, Meridan, CT. The results are shown in Table II.
TABLE II
DRUG COMPETITION WITH (3„)RETINOIC ACID
EXPRESSED AS PERCENT REDUCTION OF BINDING
OF THE (3„)RETINOIC ACID
DRUG* lμM mRARα mRAR/5 mRARγ retinoic acid 100% 100% 100%
4-HPR 18 5 7
4-HPR-O-glucuronide 14 4 7
4- (retinamido)phenyl-C-glucuronide 48 47 40
4- (retinamido)benzyl-C-glucuronide 67 82 78
4- (retinamido)benzyl-C-glucoside 56 64 77
4- (retinamido)benzyl-C-xyloside 12 3 2
13-cis-retinoic acid 28 13 4
If the drugs of this invention exert their chemopreventative effect by binding to receptors for retinoic acid, then the data supports the preference for 4- (retinamido)phenyl-C-glucuronide, 4- (retinamido)benzyl-C-glucosideandparticularly4- (retinamido)benzyl-C- glucuronide, which significantly compete with retinoic acid for the receptors.
1- (B-D-glucopyranosyl) retinamide, and 1-(D- glucopyranosyluronosyl) retinamide were tested for their ability to bind to the nuclear retinoic acid receptors a, β and γ. The human retinoic acid receptor cDNA was obtained by reverse transcription/PCR amplification using RNA from MCF-7 cells. The coding region of the cDNA was subcloned into the baculovirus vector pVL1393. Production of the receptor protein, human retinoic acid receptorγ/BCV, followed conventional procedures. Human retinoic acid receptorsγ/BCV exhibits the expected characteristics of a retinoic acid receptor, that is, it: had a molecular size of -50 kD by SDS-PAGE; demonstrated specific, high-affinity binding to retinoic acid (Kd = 0.76 nM) , and demonstrated specific DNA-binding as shown by gel mobility shift of labeled retinoic acid response element DNA. Generation of retinoic acid receptors or and β, and competition binding methodology are described in Proc. Nat'l Acad. Sci. USA, 1993, 90, 7293.
Competition binding analyses were performed using 650 moles recombinant retinoic acid receptor proteins, for 1.5 μg total protein incubated with 1.3 nM [3H]-retinoic acid and increasing concentrations of unlabeled retinoic acid, 1- (B-D-glucopyranosyl) retinamide and 1- (D- glucopyranosyluronosyl) retinamide. The results were graphed and are presented in Figure 1. As shown in Figure 1, l- (B-D-glucopyranosyl) retinamide, and 1- (D-glucopyranosyluronosyl) retinamide were 1500- and -500-fold less effective than retinoic acid in competing for [3H] -retinoic acid binding to retinoic acid receptor γ. The Ki constant was 0.5 nM for retinoic acid, 710 nM for 1- (B-D-glucopyranosyl) retinamide, and 280 nM for 1- (D-glucopyranosyluronosyl) retinamide.
As shown in Figures 2 and 3, similar results were observed for binding of 1- (B-D-glucopyranosyl) retinamide, and 1-(D- glucopyranosyluronosyl) retinamide by retinoic acid receptors a and β .
The drugs of the present invention while described as cancer preventatives and cancer treatments, may also be used in the study of cancer, particularly breast cancer. Evaluation in-vivo
To determine the effect of 1- (B-D-glucopyranosyl) retinamide, l- (D-glucopyranosyluronosyl) retinamide and retinoic acid on the course of mitogen induced mammary tumor development, female rates were intubed with a single 15 mg oral dose of 7,12-dimethylbenz(a)anthracene (DMBA) . The rats were then fed 1 mmol/Kg of either 1- (B-D-glucopyranosyl) retinamide, or 1- (D-glucopyranosyluronosyl) retinamide, and retinoic acid in the diet from 10 days before through 110 days after intubation. The control rats received DMBA intubation only and AIN-76A rat chow.
The results are summarized in Table III.
Table III. Effects of Retinoids on Progression of DMBA-Induced Rat
Mammary Tumors.
tumor tumor tumor compound latency (days) incidents (%) number/rat control 42 92 1.50 retinoic acid 49 83 1.17
1- (B-D-glucopyranosyl) 64 58 0.92 retinamide
1-(D- 64 50 0.83 glucopyranosyluronosyl) retinamide
The administration of 1- (B-D-glucopyranosyl) retinamide, and 1- (D-glucopyranosyluronosyl) retinamide significantly prolonged the latency period of mammary cancer. In control rats, the first tumors appeared at 42 days post intubation, and 92% of the rats had tumors by 110 days post intubation. In rats that were treated with 1- (B-D- glucopyranosyl) retinamide, and 1- (D-glucopyranosyluronosyl) retinamide, tumor induction was markedly delayed and reduced as opposed to both the control rats and the rats that received retinoic acid. The first tumors were not observed at until 64 days post DMBA intubation in the rats that received 1- (B-D-glucopyranosyl) retinamide, and 1- (D- glucopyranosyluronosyl) retinamide. 58% of the rats that received l- (B-D-glucopyranosyl) retinamide and 50% of the rats that received 1-(D- glucopyranosyluronosyl) retinamide had developed tumors by 110 days post intubation. 1- (D-glucopyranosyluronosyl) retinamide caused the largest reduction in multiple mammary tumors. At 110 days post DMBA intubation, the control rats had an average of 1.5 tumors per rat compared to 0.83 tumors per rat in animals receiving 1- (D- glucopyranosyluronosyl) retinamide, to 0.92 tumors per rat in animals receiving 1- (B-D-glucopyranosyl) retinamide. 1- (B-D-glucopyranosyl) retinamide, and 1- (D-glucopyranosyluronosyl) retinamide show a greater mammary tumor chemopreventive effect than does retinoic acid. 1- (B-D- glucopyranosyl) retinamide, and 1- (D-glucopyranosyluronosyl) retinamide inhibit DMBA induced mammary tumor development.
Although certain embodiments of this invention have been shown and described, various adaptations and modifications can be made without departing from the scope of the invention as defined in the appended claims. Furthermore, other isomers of the structures disclosed herein are within the scope of this application and include, but are not limited to: l- (3-D-mannopyranosyl) retinamide; 1- (/3-D-mannopyranuronosyl) retinamide; 1- (3-D-galactopyranosyl) retinamide; 1- (β-D- galactopyranuronosyl ) retinamide; and 1- (3-D-xylopyranosyl) retinamide.

Claims

CLAIMS What is claimed is:
1. A composition of matter having the following structure:
Figure imgf000028_0001
wherein: R' is H, COOH, or CH2OH; or isomers thereof.
2. The invention of Claim 1, wherein R' is an CH2OH group.
3. The invention of Claim 1, wherein R' is a COOH group.
4. A method for preparing a composition of matter comprising the steps of: A. providing a glycoside wherein all the hydroxy groups are protected;
B. placing an azide group on the protected glycoside;
C. reducing the product of step B to its corresponding amine;
D. retinoylating the product of step C; and
E. deprotecting the product of step D.
5. The invention of Claim 4, wherein the composition of matter has the following structure:
Figure imgf000029_0001
wherein R' is H, COOH, or CH2OH, or isomers thereof; wherein the glycoside is peracetylated, and the deprotection of step E is accomplished by deacetylating the product of step D.
6. The invention of Claim 5, wherein R' is an CH2OH group.
7. The invention of Claim 5, wherein R' is a COOH group.
8. A method for treating or preventing breast cancer in patients comprising the steps of: a. providing a drug having the following structure:
Figure imgf000030_0001
wherein: R' is H, COOH, or CH2OH; or isomers thereof; b. administering the drug to the patient.
9. A drug for the prevention or treatment of mammalian breast cancer having the following structure:
Figure imgf000031_0001
wherein: R' is H, COOH, or CH2OH; or isomers therof.
PCT/US1995/012258 1994-09-30 1995-09-26 C-glycoside analogues of n-(4-hydroxyphenyl)retinamide-o-glucuronide WO1996013258A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP95935115A EP0732921A4 (en) 1994-09-30 1995-09-26 C-glycoside analogues of n-(4-hydroxyphenyl)retinamide-o-glucuronide
JP8511156A JPH09509680A (en) 1994-09-30 1995-09-26 C-Glycoside analogues of N- (4-hydroxyphenyl) retinamide-O-glucuronide

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US08/316,140 US5516792A (en) 1992-11-13 1994-09-30 C-glycoside analogues of N-(4-hydroxyphenyl)retinamide-O-glucuronide
US08/316,140 1994-09-30
US08/321,207 US5574177A (en) 1992-11-13 1994-10-07 Arylamide analogues of N-(4-hydroxyphenyl) retinamide-o-glucuronide
US08/321,207 1994-10-07

Publications (1)

Publication Number Publication Date
WO1996013258A1 true WO1996013258A1 (en) 1996-05-09

Family

ID=26980259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1995/012258 WO1996013258A1 (en) 1994-09-30 1995-09-26 C-glycoside analogues of n-(4-hydroxyphenyl)retinamide-o-glucuronide

Country Status (3)

Country Link
EP (1) EP0732921A4 (en)
JP (1) JPH09509680A (en)
WO (1) WO1996013258A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6117845A (en) * 1999-06-11 2000-09-12 Ohio State University Research Foundation C-linked analogs of N-(4-hydroxyphenyl) retinamide
WO2003018598A3 (en) * 2001-08-30 2003-11-27 Univ Dublin Monosaccharide derivatives
US9024009B2 (en) 2007-09-10 2015-05-05 Janssen Pharmaceutica N.V. Process for the preparation of compounds useful as inhibitors of SGLT
US9035044B2 (en) 2011-05-09 2015-05-19 Janssen Pharmaceutica Nv L-proline and citric acid co-crystals of (2S, 3R, 4R, 5S,6R)-2-(3-((5-(4-fluorophenyl)thiopen-2-yl)methyl)4-methylphenyl)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol
US9056850B2 (en) 2008-10-17 2015-06-16 Janssen Pharmaceutica N.V. Process for the preparation of compounds useful as inhibitors of SGLT
US9174971B2 (en) 2009-10-14 2015-11-03 Janssen Pharmaceutica Nv Process for the preparation of compounds useful as inhibitors of SGLT2
US10544135B2 (en) 2011-04-13 2020-01-28 Janssen Pharmaceutica Nv Process for the preparation of compounds useful as inhibitors of SGLT2
US10617668B2 (en) 2010-05-11 2020-04-14 Janssen Pharmaceutica Nv Pharmaceutical formulations
US11576894B2 (en) 2009-07-08 2023-02-14 Janssen Pharmaceutica Nv Combination therapy for the treatment of diabetes

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AR056195A1 (en) * 2005-09-15 2007-09-26 Boehringer Ingelheim Int PROCEDURES TO PREPARE DERIVATIVES OF (ETINIL-BENCIL) -BENZENE REPLACED GLUCOPYRANOSIL AND INTERMEDIATE COMPOUNDS OF THE SAME

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994011030A1 (en) * 1992-11-13 1994-05-26 The Ohio State University Research Foundation C-glycoside analogues of n-(4-hydroxyphenyl)retinamide-o-glucuronide

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF LIPID RESEARCH, Volume 26, issued 1985, ARUN B. BARUA et al., "Chemical Synthesis of All-Trans Retinoyl Beta-Glucuronide", pages 1277-1282. *
See also references of EP0732921A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6117845A (en) * 1999-06-11 2000-09-12 Ohio State University Research Foundation C-linked analogs of N-(4-hydroxyphenyl) retinamide
WO2003018598A3 (en) * 2001-08-30 2003-11-27 Univ Dublin Monosaccharide derivatives
US9024009B2 (en) 2007-09-10 2015-05-05 Janssen Pharmaceutica N.V. Process for the preparation of compounds useful as inhibitors of SGLT
US9056850B2 (en) 2008-10-17 2015-06-16 Janssen Pharmaceutica N.V. Process for the preparation of compounds useful as inhibitors of SGLT
US11576894B2 (en) 2009-07-08 2023-02-14 Janssen Pharmaceutica Nv Combination therapy for the treatment of diabetes
US9174971B2 (en) 2009-10-14 2015-11-03 Janssen Pharmaceutica Nv Process for the preparation of compounds useful as inhibitors of SGLT2
US10617668B2 (en) 2010-05-11 2020-04-14 Janssen Pharmaceutica Nv Pharmaceutical formulations
US10544135B2 (en) 2011-04-13 2020-01-28 Janssen Pharmaceutica Nv Process for the preparation of compounds useful as inhibitors of SGLT2
US9035044B2 (en) 2011-05-09 2015-05-19 Janssen Pharmaceutica Nv L-proline and citric acid co-crystals of (2S, 3R, 4R, 5S,6R)-2-(3-((5-(4-fluorophenyl)thiopen-2-yl)methyl)4-methylphenyl)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

Also Published As

Publication number Publication date
EP0732921A1 (en) 1996-09-25
JPH09509680A (en) 1997-09-30
EP0732921A4 (en) 1998-09-02

Similar Documents

Publication Publication Date Title
US5516792A (en) C-glycoside analogues of N-(4-hydroxyphenyl)retinamide-O-glucuronide
US5849716A (en) Sphingoglycolipids, their preparation, and therapeutic methods of use
US5830873A (en) Propiophenone derivative and a process for preparing the same
KR20050119179A (en) Fused heterocyclic derivative, medicinal composition containing the same, and medicinal use thereof
KR19980064710A (en) Propiophenone derivatives and processes for their preparation
WO2004058790A1 (en) Nitrogen-containing heterocycic derivatives, medicinal compositions containing the same and medicinal use thereof
JP2017519756A (en) Novel hybrid galactoside inhibitors of galectins
WO1996013258A1 (en) C-glycoside analogues of n-(4-hydroxyphenyl)retinamide-o-glucuronide
WO2005095429A1 (en) Phenol derivative, medicinal composition containing the same, and medicinal use thereof
Shit et al. Straightforward sequential and one-pot synthesis of a pentasaccharide repeating unit corresponding to the cell wall O-antigen of Shigella boydii type 18
US5332756A (en) 3-deoxy-mannosamine derivatives
JPH09124685A (en) Propiophenone derivative and process for producing the same
US8026220B2 (en) C-linked glucuronide of N-(4-hydroxybenzyl) retinone, analogs thereof, and method of using the same to inhibit neoplastic cell growth
US5808111A (en) Stable acitretinoid compounds
US7968602B2 (en) 4-[(E)-2-(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-napthalenyl)-1-propenyl]benzoic acid analogs and method of manufacture and use thereof
JP2008543818A (en) Method for synthesizing anthocyanins
WO2018127194A1 (en) C-glycoside sodium-glucose transporter 2 inhibitor
Robarge et al. N-Linked analogs of retinoid O-glucuronides: potential cancer chemopreventive/chemotherapeutic agents
CN117088772B (en) A kind of steviol derivative and its preparation method and application
FR2970969A1 (en) OLIGOSACCHARIDES 3-O-ALKYL ACTIVATORS OF FGFS RECEPTORS, THEIR PREPARATION AND THEIR THERAPEUTIC APPLICATION
JP5438998B2 (en) Novel sugar chain primer and its use
Tiwari et al. Recent advances in the synthesis of SGLT2 Inhibitors and natural products from carbohydrates
JP2710052B2 (en) Code factor-related compound, method for producing the same, and immunopotentiator containing the compound
JPH08193093A (en) Propiophenone derivative and process for producing the same
MXPA98000067A (en) Derivatives of propiophenone and procedure for the preparation of the mis

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1995935115

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1995935115

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1995935115

Country of ref document: EP