WO1995001827A1 - Procede d'epuration d'un flux de gaz - Google Patents
Procede d'epuration d'un flux de gaz Download PDFInfo
- Publication number
- WO1995001827A1 WO1995001827A1 PCT/SE1994/000643 SE9400643W WO9501827A1 WO 1995001827 A1 WO1995001827 A1 WO 1995001827A1 SE 9400643 W SE9400643 W SE 9400643W WO 9501827 A1 WO9501827 A1 WO 9501827A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas flow
- hot
- desorption
- conducted
- combustion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/72—Organic compounds not provided for in groups B01D53/48 - B01D53/70, e.g. hydrocarbons
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
- B01D53/06—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/10—Inorganic adsorbents
- B01D2253/102—Carbon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/10—Inorganic adsorbents
- B01D2253/106—Silica or silicates
- B01D2253/108—Zeolites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/70—Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
- B01D2257/704—Solvents not covered by groups B01D2257/702 - B01D2257/7027
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/70—Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
- B01D2257/708—Volatile organic compounds V.O.C.'s
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2258/00—Sources of waste gases
- B01D2258/02—Other waste gases
- B01D2258/0258—Other waste gases from painting equipments or paint drying installations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2259/00—Type of treatment
- B01D2259/40—Further details for adsorption processes and devices
- B01D2259/40083—Regeneration of adsorbents in processes other than pressure or temperature swing adsorption
- B01D2259/40088—Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by heating
- B01D2259/4009—Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by heating using hot gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G2209/00—Specific waste
- F23G2209/14—Gaseous waste or fumes
Definitions
- This invention relates to a method for cleaning a humid gas flow containing gaseous impurities, such as an exhaust-air flow containing volatile solvents and origi ⁇ nating from a spray booth in a painting plant, in which method the gas flow is dehumidified by cooling, the cool ⁇ ed gas flow is reheated to subsequently be conducted through a device for the adsorption of gaseous impuri ⁇ ties, a desorption-gas flow is heated to form a hot-gas flow, which is conducted through the adsorption device in order to clean the latter and entrain impurities accumu ⁇ lated therein, the contaminated hot-gas flow is conducted to a combustion device in order to be burnt, and hot com ⁇ bustion gases are removed from the combustion device in order to take part in at least one of the heating pro- ceases.
- gaseous impurities such as an exhaust-air flow containing volatile solvents and origi ⁇ nating from a spray booth in a painting plant
- the above method is used in a painting plant for cleaning an exhaust-air flow containing paint particles and volatile solvents and originating from a spray booth in the plant.
- the gas flow is conducted through a dust separator, where particulate impurities are separated from the gas flow, which is cooled when leaving the dust separator.
- Part of the gas flow leaving the dust separator is conducted, as cooling- gas flow, through the adsorption device in order to cool those parts of this device that have been heated by the hot-gas flow, whereupon the cooling-gas flow is used as desorption-gas flow.
- Hot combustion gases from the combustion device are conducted through a heat exchanger in order there to emit heat to the desorption-gas flow, which also is conducted through the heat exchanger. Further, a heat exchanger is used for reheating the cooled gas flow leaving the dust separator.
- the object of the present invention is to provide a cleaning method in which the energy consumption is lower and there is less need of heat exchangers than in the above prior-art method, and which thus is less expensive to implement than the prior-art method.
- this object is attained by a method which is of the type stated by way of intro ⁇ duction and is characterised in that hot combustion gases from the combustion device are introduced into and mixed with the cooled gas flow and the desorption-gas flow.
- the cooling-gas flow which in the prior- art method is dimensioned to serve as hot-gas flow as well and thus is unnecessarily large, may, if used in a corresponding fashion when implementing the method according to the invention, be advantageously reduced to merely fulfil the cooling function, hot combustion gases being supplied to the desorption-gas flow so as to form the hot-gas flow.
- Fig. 1 schematically illustrates a plant which is intended for implementing the inventive method and in which use is made of an incinerator with a recuperative heat exchanger;
- Fig. 2 schematically illustrates a plant which is intended for implementing the inventive method and in which use is made of an incinerator with a regenerative heat exchanger.
- the encircled numerals at the dif ⁇ ferent flow arrows indicate a flow value for the respec ⁇ tive flows, this flow value bearing a relation to the air flow which prevails in a spray booth and whose flow value has been set at 100.
- the temperature of the respective flows is also indicated at some flow arrows.
- Both the plant illustrated in Fig. 1 and that illu ⁇ strated in Fig. 2 are used for cleaning the exhaust-air flow containing paint particles, volatile solvents and water vapour that leaves a spray booth 1 in a plant for painting vehicle bodies.
- an air flow is blown into the spray booth 1 by means of a fan 3.
- the major part (about 90%) of the air blown into the spray booth 1 is air that is circulated in the system in a manner to be described in more detail below, whereas the remainder (about 10%) is taken from the surrounding atmosphere.
- the air is conditioned in the air conditioner 2 in such a manner that an air flow having a temperature of about 23°C and a relative humidity of about 60% is obtained in the spray booth 1.
- the air flow leaving the spray booth 1 and having a temperature of about 18°C is conducted through a dust separator 4, such as a wet electrostatic precipitator, where particulate impurities, such as paint particles, are separated from the air flow.
- a dust separator 4 such as a wet electrostatic precipitator, where particulate impurities, such as paint particles, are separated from the air flow.
- the air flow is dehumidified by cooling in a cooler 5.
- the cooled air flow leaving the cooler 5 is, as will be described in more detail below, supplemented with an additional flow with which it is conducted, by means of a fan 6, through a device 7' (Fig. 1) or 7" (Fig. 2) for the adsorption of gaseous impurities, such as volatile solvents.
- the adsorption device 7' or 7 which is of known design, consists of a rotor composed of a plurality of segment-shaped adsorption elements containing a suitable adsorbing agent, which is zeolite in the rotor 7' shown in Fig. 1 and active carbon in the rotor 7" shown in Fig. 2.
- a suitable adsorbing agent which is zeolite in the rotor 7' shown in Fig. 1 and active carbon in the rotor 7" shown in Fig. 2.
- US-A-5,057,128, for instance discloses a rotor of this type.
- the flow path through the rotor 7' or 7" is, by means of fixed channel walls (not shown), divided into three sectors, namely a gas-cleaning sector which covers most of the circular cross-sectional area of the rotor and through which is conducted the main part of the gas flow to be cleaned, and two minor sectors, of which one is a cooling sector through which a minor part of the gas flow to be cleaned is conducted in order to cool the adsorption elements, and the other is a desorption sector through which a hot-gas flow is conducted in order to clean the rotor and entrain impurities accumulated there ⁇ in.
- the cooling-air flow is regulated by means of a register 8.
- the rotor 7' or 7" rotates during use, so that the portion thereof situated opposite to the gas- cleaning sector of the flow path is gradually inserted into the desorption sector of the flow path so as to be cleaned, and then inserted into the cooling sector of the flow path in order to be cooled.
- the major part of the cleaned gas flow leaving the adsorption device or the rotor 7' or 7" is, as mentioned above, recycled to the air intake of the fan 3, whereas the remainder of the gas flow is discharged into the sur ⁇ rounding atmosphere.
- the hot-gas flow which has a high solvent concen ⁇ tration when leaving the adsorption device 7' or 7" is conducted to a combustion device 10' or 10" by means of a fan 9.
- the combustion device 10' is an incinerator of the type described in e.g. DE-A1-30 41 269 and DE-A1-30 43 286 and has a corn- bustion chamber 11 and a recuperative heat exchanger 12 through which the heavily contaminated hot-gas flow is introduced into the combustion chamber 11.
- the combustion gases from the combustion chamber 11 are removed through the heat exchanger 12, where they emit heat to preheat the hot-gas flow, so that their temperature is reduced from about 730°C to about 350°C.
- a part (about 40%) of the thus-cooled combustion gases is conducted, via a flow-regulating register 13, to the desorption sector there to be mixed with the cooling- air flow from the adsorption device 7' and form, together therewith, the hot-gas flow.
- the cooling-air flow leaving the adsorption device 7' has a temperature of about 60°C and is mixed with combustion gases having a temperature of about 350°C in such proportions (6:4) that the hot-gas flow obtains a temperature of about 180°C.
- the hot-gas flow has a tempera- ture of about 90°C.
- a part (about 30%) of the combustion gases cooled in the heat exchanger 12 forms the above-mentioned additional flow and is conducted to the outlet of the cooler 5 to be mixed with the cooled air flow leaving this device.
- the cooled air flow leaving the cooler 5 has a temperature of about 15°C and is mixed with combustion gases having a temperature of about 350°C in such propor ⁇ tions (100:3) that a gas flow having a temperature of about 25°C is obtained.
- the remainder (about 30%) of the combustion gases cooled in the heat exchanger 12 is conducted through a heat-recovery device 14 before being let out into the surrounding atmosphere.
- the plant illustrated in Fig. 2 differs from that illustrated in Fig. 1 in that active carbon, and not zeolite, is used in the adsorption device, as mentioned above, and in that an incinerator with a regenerative heat exchanger, and not a recuperative heat exchanger, is used as combustion device.
- the incinerator employed is of the type described in e.g. SE-A-8403330-7 and SE-A- 8802791-7.
- the hot-gas flow which has a high solvent concen ⁇ tration when leaving the adsorption device 7" is con ⁇ ducted to the combustion device 10", i.e. the regene- rative incinerator, where combustion takes place.
- the combustion gases removed from the combustion device 10" have a temperature of about 206°C.
- a part (about 45%) of the combustion gases is conducted, via a register 13, to the desorption sector there to be mixed with the cooling-air flow from the adsorption device 7" and form therewith the hot-gas flow.
- the cooling-air flow leaving the adsorption device 7" has a temperature of about 50°C and is mixed with combustion gases having a temperature of about 206°C in such proportions (5.5:4.5) that the hot-gas flow obtains a temperature of about 120°C.
- the hot-gas flow has a temperature of about 70°C.
- the remainder (about 55%) of the combustion gases is conducted to the outlet of the cooler 5 to be mixed with the cooled air flow leaving this device.
- This air flow which has a temperature of about 15°C as in the plant illustrated in Fig. 1, is mixed with combustion gases having a temperature of about 206°C in such proportions (100:5.5) that a gas flow hav ⁇ ing a temperature of about 25°C is obtained.
- the energy contained in the com ⁇ bustion gases is utilised to the full, for which reason there is no need of any special heat-recovery device.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Environmental & Geological Engineering (AREA)
- Treating Waste Gases (AREA)
- Separation Of Gases By Adsorption (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Incineration Of Waste (AREA)
Abstract
Priority Applications (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP94921141A EP0707510A1 (fr) | 1993-07-06 | 1994-06-29 | Procede d'epuration d'un flux de gaz |
| JP7503992A JPH08512236A (ja) | 1993-07-06 | 1994-06-29 | ガス流のクリーニング方法 |
| BR9406909-3A BR9406909A (pt) | 1993-07-06 | 1994-06-29 | Método para limpar um fluxo de gás |
| AU71973/94A AU675864B2 (en) | 1993-07-06 | 1994-06-29 | Method for cleaning a gas flow |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| SE9302329A SE502607C2 (sv) | 1993-07-06 | 1993-07-06 | Förfarande för rening av att fuktigt gasflöde innehållande föroreningar såsom flyktiga lösningsmedel |
| SE9302329-9 | 1993-07-06 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO1995001827A1 true WO1995001827A1 (fr) | 1995-01-19 |
Family
ID=20390536
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/SE1994/000643 Ceased WO1995001827A1 (fr) | 1993-07-06 | 1994-06-29 | Procede d'epuration d'un flux de gaz |
Country Status (8)
| Country | Link |
|---|---|
| EP (1) | EP0707510A1 (fr) |
| JP (1) | JPH08512236A (fr) |
| CN (1) | CN1126954A (fr) |
| AU (1) | AU675864B2 (fr) |
| BR (1) | BR9406909A (fr) |
| CA (1) | CA2165478A1 (fr) |
| SE (1) | SE502607C2 (fr) |
| WO (1) | WO1995001827A1 (fr) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2001011289A1 (fr) * | 1999-08-06 | 2001-02-15 | Maejima, Fumio | Dispositif de traitement multifonctions |
| BE1025798B1 (nl) * | 2017-12-15 | 2019-07-17 | Europem Technologies Nv | Dampverbrandingssysteem- en werkwijze met verhoogde capaciteit |
| BE1025793B1 (nl) * | 2017-12-15 | 2019-07-17 | Europem Technologies Nv | Verbrandingssysteem en proces voor het verbranden van een gas in een verbrandingssysteem |
Families Citing this family (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE19716877C1 (de) * | 1997-04-22 | 1998-12-10 | Schedler Johannes | Verfahren zur adsorptiven Abgasreinigung |
| JP4523146B2 (ja) * | 2000-12-19 | 2010-08-11 | 株式会社西部技研 | 有機溶剤蒸気処理装置 |
| CN106524190A (zh) * | 2015-09-15 | 2017-03-22 | 江苏海阔生物医药有限公司 | 伏格列波糖生产工艺废气焚烧炉 |
| DE102017103182A1 (de) * | 2017-02-16 | 2018-08-16 | Krantz Gmbh | Vorrichtung zur Behandlung eines mit oxidierbaren Bestandteilen beladenen Rohgasvolumenstroms |
| DE102017103204A1 (de) * | 2017-02-16 | 2018-08-16 | Krantz Gmbh | Vorrichtung zur Behandlung eines mit oxidierbaren Bestandteilen beladenen Rohgasvolumenstroms |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| SE461808B (sv) * | 1988-08-02 | 1990-03-26 | Flaekt Ab | Foerfarande och anordning foer rening av gaser |
| SE467238B (sv) * | 1990-02-02 | 1992-06-22 | Raadia Kommanditbolag | Saett och anordning att rena stora luftvolymer med laag koncentration av kolvaeten |
-
1993
- 1993-07-06 SE SE9302329A patent/SE502607C2/sv not_active IP Right Cessation
-
1994
- 1994-06-29 CA CA 2165478 patent/CA2165478A1/fr not_active Abandoned
- 1994-06-29 EP EP94921141A patent/EP0707510A1/fr not_active Withdrawn
- 1994-06-29 BR BR9406909-3A patent/BR9406909A/pt not_active Application Discontinuation
- 1994-06-29 AU AU71973/94A patent/AU675864B2/en not_active Ceased
- 1994-06-29 JP JP7503992A patent/JPH08512236A/ja active Pending
- 1994-06-29 CN CN 94192716 patent/CN1126954A/zh active Pending
- 1994-06-29 WO PCT/SE1994/000643 patent/WO1995001827A1/fr not_active Ceased
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| SE461808B (sv) * | 1988-08-02 | 1990-03-26 | Flaekt Ab | Foerfarande och anordning foer rening av gaser |
| SE467238B (sv) * | 1990-02-02 | 1992-06-22 | Raadia Kommanditbolag | Saett och anordning att rena stora luftvolymer med laag koncentration av kolvaeten |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2001011289A1 (fr) * | 1999-08-06 | 2001-02-15 | Maejima, Fumio | Dispositif de traitement multifonctions |
| BE1025798B1 (nl) * | 2017-12-15 | 2019-07-17 | Europem Technologies Nv | Dampverbrandingssysteem- en werkwijze met verhoogde capaciteit |
| BE1025793B1 (nl) * | 2017-12-15 | 2019-07-17 | Europem Technologies Nv | Verbrandingssysteem en proces voor het verbranden van een gas in een verbrandingssysteem |
Also Published As
| Publication number | Publication date |
|---|---|
| EP0707510A1 (fr) | 1996-04-24 |
| CN1126954A (zh) | 1996-07-17 |
| SE9302329L (sv) | 1995-01-07 |
| JPH08512236A (ja) | 1996-12-24 |
| AU675864B2 (en) | 1997-02-20 |
| BR9406909A (pt) | 2000-04-18 |
| SE9302329D0 (sv) | 1993-07-06 |
| CA2165478A1 (fr) | 1995-01-19 |
| AU7197394A (en) | 1995-02-06 |
| SE502607C2 (sv) | 1995-11-20 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US5353606A (en) | Desiccant multi-fuel hot air/water air conditioning unit | |
| US7338548B2 (en) | Dessicant dehumidifer for drying moist environments | |
| US7252703B2 (en) | Direct contact liquid air contaminant control system | |
| US5758511A (en) | Desiccant multi-duel hot air/water air conditioning system | |
| US4418527A (en) | Precooler for gas turbines | |
| JP5744488B2 (ja) | 排ガス処理装置 | |
| US8984905B2 (en) | Desiccant air-conditioner | |
| AU675864B2 (en) | Method for cleaning a gas flow | |
| WO1998047604B1 (fr) | Dispositif de recuperation de la chaleur et de reduction de la pollution | |
| CN102052713A (zh) | 空气调节装置 | |
| JP2910946B2 (ja) | 空気浄化調和装置 | |
| WO1988006261A1 (fr) | Procede et dispositif de conditionnement d'un gaz | |
| JP2002058952A (ja) | 乾式除湿機再生気体の循環濃縮処理方法 | |
| US7125439B2 (en) | Air environment control system and technique | |
| KR20210137510A (ko) | 매우 낮은 노점을 갖는 제조 공기의 건조 시스템 | |
| JPH0370907A (ja) | ボイラ排ガスの処理方法および装置 | |
| CN1059029C (zh) | 空气调节方法及其设备 | |
| JPH0663345A (ja) | 乾式除湿装置 | |
| US3556202A (en) | Air conditioning system | |
| JP2567300B2 (ja) | ドライエアを用いた溶剤回収設備 | |
| CN114011210A (zh) | Voc气体冷凝吸收工艺 | |
| GB2052299A (en) | Polluted fumes purification and heat recovering system, particularly for driers | |
| CN111068470A (zh) | 一种转轮除湿烟气脱白处理方法 | |
| JPS59231340A (ja) | 除湿空調装置 | |
| JP3611597B2 (ja) | 流動層ごみ焼却炉における脱塩方法 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| WWE | Wipo information: entry into national phase |
Ref document number: 94192716.4 Country of ref document: CN |
|
| AK | Designated states |
Kind code of ref document: A1 Designated state(s): AM AT AU BB BG BR BY CA CH CN CZ DE DK ES FI GB GE HU JP KE KG KP KR KZ LK LU LV MD MG MN MW NL NO NZ PL PT RO RU SD SE SI SK TJ TT UA US UZ VN |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG |
|
| DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| ENP | Entry into the national phase |
Ref document number: 1995 564038 Country of ref document: US Date of ref document: 19951212 Kind code of ref document: A |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 1994921141 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2165478 Country of ref document: CA |
|
| WWP | Wipo information: published in national office |
Ref document number: 1994921141 Country of ref document: EP |
|
| REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
| WWW | Wipo information: withdrawn in national office |
Ref document number: 1994921141 Country of ref document: EP |