[go: up one dir, main page]

WO1995000591A1 - Engineered modified asphalt cement - Google Patents

Engineered modified asphalt cement Download PDF

Info

Publication number
WO1995000591A1
WO1995000591A1 PCT/US1993/005917 US9305917W WO9500591A1 WO 1995000591 A1 WO1995000591 A1 WO 1995000591A1 US 9305917 W US9305917 W US 9305917W WO 9500591 A1 WO9500591 A1 WO 9500591A1
Authority
WO
WIPO (PCT)
Prior art keywords
tall oil
asphalt
polymer
modified
styrene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US1993/005917
Other languages
French (fr)
Inventor
Larry F. Ostermeyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mcconnaughay K E Inc
Original Assignee
Mcconnaughay K E Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US07/883,110 priority Critical patent/US5221703A/en
Priority claimed from US07/883,110 external-priority patent/US5221703A/en
Application filed by Mcconnaughay K E Inc filed Critical Mcconnaughay K E Inc
Priority to AU46432/93A priority patent/AU4643293A/en
Priority to PCT/US1993/005917 priority patent/WO1995000591A1/en
Priority to CA002164507A priority patent/CA2164507C/en
Publication of WO1995000591A1 publication Critical patent/WO1995000591A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L95/00Compositions of bituminous materials, e.g. asphalt, tar, pitch

Definitions

  • tall oil, a strong base, and (a) polymer(s) are added to an asphalt cement simultaneously or substantially simultaneously.
  • This blend is subjected to shear by a colloid mill or mixer, or both, to assist in the reaction and incorporation of the materials into the asphalt cement.
  • the polymer(s) selected is (are) in the form of (a) latex(es)
  • the water in the latex(es) may be used to start the reaction of the tall oil and strong base.
  • Example 21 the polymer is a natural latex. This modification increased the 60°C viscosity, softening point, resistance to flow and improved the PVN.
  • Example 22 the polymer is an ethylene methyl acetate (EMA) .
  • EMA ethylene methyl acetate
  • This modification increased the 60°C viscosity and improved the PVN, but did little else. It was expected to improve the low temperature flexibility (ductility) , but it did not with this particular asphalt cement.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Modified asphalt cements comprise asphalt cement, reacted tall oil, tall oil pitch, tall oil derivatives or mixtures of these, and polymers selected from block copolymers and latexes, both synthetic and natural. Methods of manufacturing include: blending a reacted tall oil-modified asphalt cement with a polymer-modified asphalt cement to obtain the desired properties; modifying an asphalt cement with a reacted tall oil, tall oil pitch, tall oil derivatives or mixture thereof, and then adding the selected polymer(s) to this tall oil-modified asphalt cement; modifying the asphalt cement with the selected polymer(s) and then adding the tall oil, tall oil pitch, tall oil derivatives and mixtures thereof and reacting with a strong base; and, adding the polymer(s), tall oil, tall oil pitch, tall oil derivatives and mixture thereof and the strong base all to the asphalt cement at or nearly at the same time.

Description

ENGINEERED MODIFIED ASPHALT CEMENT
Technical Field
This invention relates generally to modified asphalt cements and particularly to those that have incorporated the properties of both the polymer-modified and the reacted tall oil-modified asphalt cements.
Industrial Applicability
The resulting modified asphalt cements have utility in the road and roofing industries.
Background Art
There is considerable art on the combination of bituminous materials, such as asphalts, with tall oil, either to form modified bituminous materials, or in the process of forming bituminous material-in-water emulsions, or bituminous material-containing gels. There are, for example, the disclosures of: British patent specification 1,393,732 (modified bituminous materials); and, U.S. Patents: 2,789,917 (bituminous emulsions); 2,855,319 (bituminous emulsions); 3,036,015 (bituminous emulsions); 3,110,604 (bituminous emulsions); 3,556,827 (modified bituminous materials); 3,607,773 (bituminous emulsions); 3,867,162 (bituminous emulsions); 3,904,428 (bituminous material-containing gel); 4,209,337 (bituminous emulsions); 4,433,084 (bituminous emulsions); 4,479,827 (modified bituminous materials); and, 4,874,432 (bituminous material-containing gel) . Some of these same references also disclose the use of polymers and co- polymers. There are, for example, the disclosures of U.S. Patents: 3,110,604 (water soluble poly ethylene oxide polymers added to emulsions as dilatants) ; 4,209,337 (bituminous emulsion-coated dispersions of natural or synthetic rubbers or other polymers in
SUBSTITUTE SHEET cement) ; 4,433,084 (bituminous emulsions containing copolymers) ; and, 4,479,827 (modified bituminous materials containing organopolysiloxanes) .
It is generally accepted that both polymer modification and reacted tall oil modification decrease the temperature susceptibility of an asphalt cement. However, they differ in the degree of change for a given use level. They also differ in the way they affect other rheological properties such as softening point, ductility, flow, etc.
Disclosure of Invention
This invention provides a means to modify an asphalt to provide the desired properties for a particular use and conditions. As an example, the reacted tall oil modification has a much greater effect on high temperature stiffness (viscosity) , softening point and resistance to flow, while its impact on ductility, particularly low temperature ductility, is adverse. By including in the formulation or blending of the tall oil-modified asphalt (an) elastomeric polymer(s) this adverse impact can be overcome. Table 1, Examples 2 (base asphalt) , 5 (reacted tall oil modification of Example 2) , 11 (polymer modification of Example 2) , and 17 (reacted tall oil/polymer modification of Example 2) illustrates this concept.
As used herein tall oil means tall oil, tall oil pitch, tall oil derivatives, or mixtures of any two or more of these unless otherwise specifically stated.
According to one embodiment of the invention, an asphalt modified by reacted tall oil and another modified by a polymer are blended together in a ratio to yield the desired results for a given base asphalt and end use. The blending and each modification may be produced by stirring or milling or both. The amount of
SUBSTITUTESHEET reacted tall oil and the amount(s) of polymer(s) required in these two independent modifications are dependent on the base asphalt, the tall oil, the polymer, the desired characteristics of the final blend, and the ratios of the constituents.
According to a second embodiment of the invention, an asphalt cement is first modified by reacting tall oil in the asphalt cement with a strong base such as sodium or potassium hydroxide. If the strong base is added in a concentrated aqueous solution, it is more efficient than adding a dry base and then water to start the reaction. The selected polymer(s) is (are) then added to the tall oil-modified asphalt.
According to a third embodiment of the invention, reacted tall oil is added to a prior polymer-modified asphalt or tall oil is reacted in the polymer-modified asphalt with a strong base.
According to a fourth embodiment of the invention, tall oil, a strong base, and (a) polymer(s) are added to an asphalt cement simultaneously or substantially simultaneously. This blend is subjected to shear by a colloid mill or mixer, or both, to assist in the reaction and incorporation of the materials into the asphalt cement. If the polymer(s) selected is (are) in the form of (a) latex(es) , the water in the latex(es) may be used to start the reaction of the tall oil and strong base.
Modes for Carrying Out the Invention
The tall oil in the final blended modified asphalt is about 0.4% to about 10%, based on the total weight of the modified asphalt cement. The strong base, normally sodium hydroxide or potassium hydroxide to react with the tall oil, is in the range of .012% to about 2.4% based on the total weight of the modified asphalt cement.
SUBSTITUTE SHEET The range allows for the requirements of the different tall oil. For example, tall oil pitch requires about 3% sodium hydroxide, based on the weight of the tall oil, to form a suitable modifier. Distilled tall oil requires about 16% sodium hydroxide or 24% potassium hydroxide, based on the weight of the tall oil, to form a suitable modifier. The polymer(s) in the final blended modified asphalt is (are) in the range of 0.5% to about 5.0%, based on the total weight of the modified asphalt cement. If the polymer is in the form of (a) latex(es), for example, 9.0% liquid latex may be required to achieve the 5.0% polymer in the modified asphalt cement, owing to the other constituents of liquid late (es) , chiefly water.
Tables 1 and 2 illustrate the test results for forty-eight Examples. Table 1 contains the results for 31 Examples, where the neat (unmodified) asphalts, tall oil-modified asphalts, polymer-modified asphalts, and tall oil/polymer-modified asphalts are compared. Table 2 evaluates the effects of methods of manufacturing and varied use levels. Eight standard tests were conducted to compare the properties of asphalts modified by the different treatments. The tests are:
1. Penetration (ASTM D-5) at 4°C. This test is an indicator of relative stiffness or hardness of an asphalt cement at low temperature. This, with a stiffness value at a higher temperature such as penetration at 25°C provides an indication of the temperature susceptibility of asphalt cements.
2. Penetration (ASTM D-5) at 25°C. This test is an indicator of relative stiffness or hardness of an asphalt cement at moderate temperature. Penetration at 25°C is also specified in ASTM specifications for asphalt cement (D-946 Specification for Penetration-Graded Asphalt Cement for use in Pavement Construction and D- 3381 Specification for Viscosity-Graded Asphalt for Use
SUBSTITUTE SHEET in Pavement Construction) . Penetration at 25°C is also required to calculate the pen-vis number (PVN) for the different samples so comparisons in terms of temperature susceptibility can readily be made.
3. Viscosity (ASTM D-4957) at 60°C. This test is used as an indicator of relative stiffness or hardness of an asphalt cement at the higher temperature at which a pavement might be expected to be subjected to. Viscosity is also used for specifications and the calculation of PVN.
4. Float Test (ASTM D-139) at 60°C. This test characterizes the flow behavior or in this case the resistance to flow under a low stress condition (25.4 mm of water) at 60°C.
5. Ductility (ASTM D-113) at 5 cm/min and 4°C. This test method provides one measure of tensile properties of bituminous materials at low temperature. It is also used to measure ductility for some polymer- modified asphalt cement specification requirements.
6. Softening Point (AASHTO T-53) . Asphalt does not change from the solid state to the liquid state at any definite temperature, but gradually becomes softer and less viscous as the temperature rises. For this reason, the determination of softening point must be made by a fixed, arbitrary, and closely defined method if the results obtained are comparable. Softening point is indicative of the tendency of the asphalt to flow at elevated temperatures encountered in service. Softening point is also used in specifications for some polymer- modified and some reacted tall oil-modified asphalts.
7. Viscosity (ASTM D-4957) at 60°C on residue from the Thin-Film Oven Test (ASTM D-1754) . This method indicates approximate change in the viscosity of the asphalt during conventional hot mixing. It is used in
SUBSTITUTESHξET asphalt specifications and is often considered as an indicator of an asphalt's comparative oxidation rate.
8. Ductility (ASTM D-113) at 5 cm/min. and 4°C on residue from the Thin-Film Oven Test (ASTM D- 1754) . This method indicates approximate change in the ductility of the asphalt during conventional hot mixing. The greater the retained ductility after TFOT, the better the asphalt should perform. Since the measurements are at 4°C, the inference is for low temperature performance.
For comparative values of temperature susceptibility (dependency) PVN (25-60°C) was determined instead of PI or PVN (25-135°C) . While PVN (25-60°C) does not produce as great a difference between samples, it was determined, since many of the performance problems associated with temperature susceptibility occur within the 25°C to 60°C range. Also, both the PI and PVN (25- 135°C) may yield misleadingly good measures of the temperature susceptibilities for the modified materials being tested.
The following two Tables illustrate test results for 48 Examples (31 Examples in Table 1 and 17 Examples in Table 2) performed to illustrate the capabilities of the invention.
The column headings in the Tables are as follows:
1. Example number
2. Source and grade of asphalt
3. Type of modification: O=no modification; T=reacted tall oil; P( )=polymer(type) modification; and, TP=reacted tall oil and polymer(type) modification.
4. Pen @ 4°C - The Penetration of Bituminous Materials (ASTM D-5) .
5. Pen @ 25°C - The Penetration of Bituminous Materials (ASTM D-5) .
SUBSTITUTESHEET 6. Vis. @ 60°C - Apparent Viscosity of Asphalt Emulsion Residue and Non - Newtonian Bitumens by Vacuum Capillary Viscometer (ASTM D-4957) .
7. PVN (25-60°C) - Pen-Vis Number calculated by the following formula:
PVN (25-60°C) = (β- 89 - 1.590 Log P - log V) (_ 1>5)
(1.050 - 0.2234 log P)
Where P = penetration at 25°C, dmm V = viscosity at 60°C, poise
The PVN is an indication of the slope of the viscosity temperature relationship measured between 25°C and 60°C. The lower the PVN the greater the temperature susceptibility of the asphalt. For example, an asphalt with a PVN of +0.2 is more desirable than an asphalt with a PVN of -0.2 in terms of temperature susceptibility. A low PVN (e.g., - 1.3 ) indicates a very temperature susceptible asphalt (not desirable) .
8. Float @ 60°C. - Float Test for Bituminous Materials (ASTM D-139) .
9. Duct. @ 5 cm/min 4°C. - Ductility of Bituminous Materials (ASTM D-113) .
10. R & B - Softening Point of Asphalt (Bitumen) and Tar in Ethylene Glycol (Ring-and-Ball) (AASHTO T-53) .
11. TFOT Res. Vise. @ 60°C - Apparent Viscosity of Asphalt Emulsion Residue and Non-Newtonian Bitumens by Vacuum Capillary Viscometer (ASTM D-4957) on the residue from Effect of Heat and Air on Asphaltic Materials (Thin-Film Oven Test) (ASTM D- 1754) .
SUBSTITUTE SHEET 12. Vis. Increase % - Calculated percent of increase in viscosity due to the Thin-Film Oven Test (ASTM D-1754) .
13. TFOT Res. Duct. @ 4°C. - Ductility of Bituminous Materials (ASTM D-113) on the residue from Thin-Film Oven Test
(ASTM D-1754) .
Examples 1-4 are neat (unmodified) asphalt sample controls. Examples 2-4 were used as the base asphalts for the different modifications.
Examples 5-7 are prior art, reacted tall oil modifications of the asphalts of examples 2-4, respectively. In each case, 2% tall oil, based on the weight of asphalt and the tall oil, was reacted with 12.5% sodium hydroxide, based on the weight of the tall oil. In each case, it is evident that the viscosity at 60°C was greatly increased (desirable) , associated with some hardening of the penetration at 25°C, but still yielding improved pen-vis numbers. Other improved properties are higher resistance to flow, higher softening points and reduced oxidation. Properties that indicate no improvement, and in some cases losses, are penetration at 4°C and ductility at 4°C.
Examples 8-13 are examples of prior art, polymer-modified asphalts with the base asphalts being those of Examples 2-4. Examples 8-10 are modifications of neat asphalts. Examples 2-4, respectively, with 2% SBS (styrene-butadiene-styrene block copolymer) , based on the weight of asphalt. Examples 11-13 are modifications of the same neat asphalts and at the same 2% solid weight level, but the polymer used was SBR (styrene-butadiene rubber) in the form of a synthetic rubber latex. These polymer modifications did improve the low temperature ductility over that of the reacted tall oil-modified asphalt and, to a lesser degree, over the neat asphalts.
SUBSTITUTESHEET They also improved (raised) the low temperature penetration over that of the respective reacted tall oil samples and at the same time increased the high temperature viscosity (Vis @ 60°C ) over that of the neat asphalts, but not to the same degree as the reacted tall oil modification. Using these particular neat asphalts, SBR modification was more efficient than SBS modification. This may not hold true with other neat asphalts. Also in each modification (reacted tall oil, SBS, and SBR) , the PVN is greater than the PVNs of the neat asphalts, indicating reduced temperature susceptibility, although not to the same degree for each type of modification.
Examples 14-19 are examples of the invention. Each is a 50/50 blend of a reacted tall oil-modified neat asphalt (Examples 5-6) and a respective polymer-modified neat asphalt (Examples 8-13) . The resulting blends all have 1% reacted tall oil and 1% of either SBS or SBR, based on the weight of the asphalt. As an example of the 50/50 blends: using Ashland AC-5, Example 15 employs Example 6*s 500g AC-5, and lOg reacted tall oil, and Example 9*s 500g AC-5, and lOg SBS for a total of l,000g AC-5, lOg reacted tall oil and 10 g SBS. All six Examples (14-19) demonstrate improvements in viscosity at 60°C, float, softening point, PVN and tests on residues from TFOT over the neat asphalts used as the base asphalts, not always to the same degree as the 2% reacted tall oil-modified Examples (5-7) , but higher than the 2% polymer-modified Examples (8-13) ; without the detrimental effects to low temperature ductility that occur with the reacted tall oil modifications (Examples 5-7) .
Examples 20-25 are prior art polymer modifications using polymers other than SBS and SBR. Each is added at the 2% level, based on the weight of the asphalt (2% solids when latex is the polymer) . The neat
SUBSTITUTESHEET asphalt used as the base asphalt in each case is Marathon AC-10 (from Example 2) .
In Example 20, the polymer is a styrene- butadiene diblock copolymer (SB) . This modification increased the 60°C viscosity and improved the PVN but did little else to improve the base asphalt, based upon the tests performed.
In Example 21, the polymer is a natural latex. This modification increased the 60°C viscosity, softening point, resistance to flow and improved the PVN.
In Example 22, the polymer is an ethylene methyl acetate (EMA) . This modification increased the 60°C viscosity and improved the PVN, but did little else. It was expected to improve the low temperature flexibility (ductility) , but it did not with this particular asphalt cement.
In Example 23, the polymer is a chloroprene (neoprene latex) . This modification moderately increased the viscosity, the associated PVN and the softening point. There was a moderate loss in penetration and ductility.
In Example 24, the polymer is an ethylene vinyl acetate (EVA) . This modification increased both the 60°C viscosity and the 25°C penetration, which none of the other modifications in Table 1 accomplished with this particular asphalt cement. The PVN was also improved due to the improvements in the penetration and viscosity.
In Example 25, the polymer is a styrene- isoprene-styrene copolymer (SIS) . This modification increased the viscosity at 60°C, resistance to flow, PVN and ductility at 4°C, but no significant increase was exhibited in softening point with this asphalt cement.
Examples 26-31 are also examples of the invention. Each is a 50/50 blend of Example 5 (reacted tall oil-modified asphalt) and one of Examples 20-25
SUBSTITUTESHEET (polymer-modified asphalt) . The resulting blends thus all have 1% reacted tall oil and 1% of the polymer of a respective Example 20-25. All six Examples 26-31 demonstrate increases in viscosity (60°C) and softening point over both the neat asphalt (AC-10) and the polymer- modified asphalt, but not to the same degree as Example 5, the reacted tall oil-modified asphalt. However, Examples 26-31 do not possess the detrimental effects on penetration (25°C) and ductility (4°C) to the same degree as exhibited in the reacted tall oil-modified base asphalt of Example 5.
Example 32 is a viscosity graded AC-20 from the Exxon refinery in Bayonne, New Jersey. This asphalt cement was blended with an emulsion base from Exxon to form a base asphalt for subsequent modification.
Example 33 is the base asphalt used for all of the modifications in Table 2, except for Examples 33 and 43. It is a blend of Exxon emulsion base to obtain a base asphalt that possesses the characteristics of an AC- 10.
Example 34 is a prior art reacted tall oil- modified asphalt wherein the strong base (sodium hydroxide) was added to the asphalt/tall oil blend in an aqueous solution. The modified asphalt includes 600g asphalt of Example 32 at 195-205°C, 12g tall oil (2% of the weight of the asphalt), and 2.Ig of a 70% solution of sodium hydroxide (1.5 g dry NaOH) .
Example 35 was prepared in the same manner as Example 34, except that the strong base was added dry, then followed by some water to start the reaction: 600g asphalt of Example 33; 12g tall oil; 1.5g NaOH (dry); 2g water.
Example 36 is a prior art polymer-modified asphalt (Example 33) wherein the polymer is SBR in the
SUBSTITUTESHEET form of a latex: 600g asphalt of Example 33 at 175°C; 17.6g latex (12g SBR).
Example 37 is a modified asphalt according to the invention manufactured by blending equal parts of Examples 34 and 36.
Example 38 is a modified asphalt according to the invention manufactured by first modifying the asphalt by reacting a tall oil product in the asphalt with a strong base and then modifying the reacted tall oil/asphalt with a polymer: 600g asphalt of Example 33; 6g tall oil (1%, based on weight of asphalt); 1.5g 50% solution of NaOH (0.75g dry); after reaction has taken place, add 8.8g latex (6g SBR) (1% SBR, based on the weight of asphalt) .
Example 39 is a modified asphalt according to the invention manufactured by adding to 600g asphalt of Example 33; 6g tall oil; 0.75g dry NaOH; and 8.8g latex (6g SBR) ; and stirring. The water that initiates the reaction in this example is the water in the latex.
Example 40 is a modified asphalt made according to the invention by adding to 1200g asphalt of Example 33; 12g tall oil; 1.5g dry NaOH; then milling is started (multi-pass by circulation) and, simultaneously, 17.6g latex (12g SBR) is added with milling. Again, the water that initiates the reaction is the water in the latex.
Example 41 is a modified asphalt made according to the invention by first modifying 600g of the base asphalt of Example 33 with 8.8g latex (6g SBR polymer). The base asphalt/polymer mixture was then stirred until the water in the latex evaporated. Then 6g tall oil and 1.5g 50% NaOH solution (0.75g dry NaOH) were added.
Example 42 is STYRELF 203, a control, polymer-modified asphalt purchased from Elf Asphalt, Inc., Warsaw, Indiana.
SUBSTITUTESHEET Example 43 is a modified asphalt according to the invention made by modifying Example 42 with reacted tall oil: 600g Example 42; 9g tall oil (1.5% by weight of Example 42); 1.6g 70% solution NaOH (l.lg dry NaOH).
Example 44 is manufactured by adding all the ingredients to a vessel with stirring and immediately passing the combined ingredients through a colloid mill: 1200g asphalt of Example 33; 12g tall oil; 1.5g dry NaOH; and, 17.6g latex (12g SBR). All of these ingredients are added with brief stirring, then subjected to one pass through a colloid mill, and then discharged into another vessel with stirring until substantially all of the water has evaporated from the modified material.
In Examples 45 through 48, all modified asphalt cements according to the invention, the amounts of the reacted tall oil and polymer were varied.
In Example 45, 600g of the asphalt of Example 33 was mixed with 3g tall oil (0.5% by weight of the asphalt) reacted with 0.76g 50% NaOH solution (0.38g dry NaOH); 26.5g latex (18g SBR—3% by weight of the asphalt) was then added.
In Example 46, the same procedure was followed, but with 600g asphalt of Example 33; 15g tall oil (2.5% by weight of the asphalt); 3g 50% NaOH solution (1.5g dry NaOH); and 4.4g latex (3g SBR—0.5% by weight of the asphalt) .
In Example 47, the same procedure was followed, but with 600g asphalt of Example 33; 3g tall oil (0.5% by weight of the asphalt); 1.06g 50% KOH solution (0.5g dry KOH) ; and 18g SBS (3% by weight of the asphalt) .
In Example 48, the same procedure was followed, but with 600g asphalt of Example 33; 15g tall oil (2.5% by weight of the asphalt); 5.4g 50% solution KOH (2.7g dry KOH); and 3g SBS (0.5% by weight of the asphalt).
SUBSTITUTE SHEET In Example 49, 600g of the asphalt of Example 33 was mixed with 60g (10% by weight of the asphalt) of tall oil pitch reacted with 6g of a 50% solution NaOH (3g dry NaOH); 17.Ig liquid latex (12g SBR) was then added.
In Example 50, 600g of the asphalt of Example 33 was mixed with 12g tall oil pitch (2% by weight of the asphalt) reacted with 3.6g of a 25% KOH solution (0.9g dry KOH); 42.9g liquid latex (30g SBR) was then added.
Finally, in Example 51, 600g of the asphalt of Example 33 was mixed with 2.4g distilled tall oil (0.4% by weight of the asphalt) reacted with 4.3g of a 10% NaOH solution (0.43g dry NaOH); 42.9g liquid latex (30g SBR) was then added.
While comparing the neat base asphalt, prior art modifications of neat asphalts (polymer or reacted tall oil types) , and the invention (engineered modified asphalt) provides some interesting insights, it is appropriate to appreciate the capability to engineer into the resulting modified asphalt the desired characteristics to perform satisfactorily under specific conditions of use. Some considerations which enter into the modified asphalt engineering process include:
The more open the bituminous mixture, the more important the resistance to flow characteristic of the asphalt;
The broader the temperature range to which the modified asphalt will be exposed and the closer it will be to the surface, the more important temperature susceptibility (dependency) becomes;
As the bituminous mixture becomes more open and/or closer to the surface, the aging characteristics of the asphalt become more important;
Increased ductility is normally viewed as the asphalt's ability to withstand greater pavement movement.
SUBSTITUTESHEET Thus increased ductility becomes more important in pavements that are apt to be subjected to, for example, structural or temperature-related movement;
Heavier loadings and higher surface temperatures require greater asphalt stiffness in the higher temperature ranges (viscosity at 60°C and softening point are often used to indicate high temperature stiffness) .
The trend toward specifying asphalt cement as being developed by the West Coast Users/Producers group and the Strategic Highway Research Program (SHRP) makes the ability to tailor a modified asphalt cement to a particular application or problem all the more attractive. An example of how a modified asphalt can be designed is illustrated by the following hypothetical project:
Climatic Condition - Hot/cold (=32°C/=-30°C)
Type - Open surface mixture
Structure - Sound
Traffic - Moderate
Hypo¬
Example 32 34 36 37 thetical Asphalt Spec
Viscosity, 60.1 1865 4944 2750 4060 >3000 sec"1, P
Penetration, 78 84 90 87 >80 25°C, 100g, 5 sec, dmn.
Penetration, 26 25 32 34 >30 4°C, 200g, 60 sec, dmn
Float Test, sec 341 >1200 521 >1200 >1200
PVN, (25-60°C) -0.43 .64 .14 .49 >0.0
Ductility, 4°C, cm 4.5 5.5 >100 80.5 >50
Softening Point, °C 48.8 57.0 52.2 57.8 >55
SUBSTITUTE SHEET TABLE 1
DUCT TFOT TFOT TFOT
EX. ASPHALT TYPE OF PEN ® PEN ® vise PVN FLOAT 4°C R & B vise vise. % DUCT NO SOURCE/GRADE MOD. 4°C 25°C @ 60°C 25-60°C @ 60°C 5CM/MIN C 60°C INCREASE @ 4°C
1 UNITED AC-20 0 24 67 2226 -0.56 393 3.5 49.4 4295 92.9 0.5
2 MARATHON AC-10 0 41 106 1087 -0.58 268 23 45.6 2250 107 1
3 ASHLAND AC-5 0 56 183 551 -0.41 193 >10O 40 820 48.8 16
4 AMOCO AC-2.5 0 88 256 290 -0.58 150 >100 39.4 620 113.8 21
5 MARATHON AC-10 T 24 68 3830 0.02 >1200 8 62.2 4580 19.6 5.5
6 ASHLAND AC-5 T 27 121 2420 0.53 >1200 21.5 62.8 3180 31.4 15
7 AMOCO AC-2.5 T 48 168 1270 0.42 >1200 73 53.9 1290 1.6 34.5
8 MARATHON AC-10 P(SBS) 24 80 2425 -0.19 487 25 50.6 4840 99.6 20.5 ω 9 ASHLAND AC-5 P(SBS) 36 126 1170 -0.21 280 >100 43.9 1780 52.1 73 c 10 AMOCO AC-2.5 P(SBS) 60 180 715 -0.13 216 >100 42.8 1300 81.8 83.5
11 MARATHON AC-10 P(SBR) 27 101 2870 0.39 349 >100 52.2 3205 11.8 >100
12 ASHLAND AC-5 P(SBR) 41 177 905 0.11 180 >100 42.2 1160 28.2 >100
13 AMOCO AC-2.5 P(SBR) 62 211 760 0.25 119 >100 45.6 1045 37.5 >100
H 14 MARATHON AC-10 TP(SBS) 26 74 3190 -0.03 >1200 19 51.7 3700 16 14 C 15 ASHLAND AC-5 TP(SBS) 30 125 2110 0.44 >1200 59 48.3 2280 8.1 32 H 16 AMOCO AC-2.5 TP(SBS) 48 185 845 0.12 >1200 >100 44.4 990 17.2 36.5 m 17 MARATHON AC-10 TP(SBR) 24 83 3040 0.11 >1200 39 53.3 3710 22 14
CO 18 ASHLAND AC-5 TP(SBR) 35 138 1515 0.25 >1200 >100 46.7 1485 -2 >100
I 19 AMOCO AC-2.5 TP(SBR) 57 200 890 0.33 >1200 >100 45.6 910 2.2 >100 rπ
=ι 20 MARATHON AC-10 P(SB) 23 86 2070 -0.24 239 9 46.7
21 MARATHON AC-10 P(NAT) 21 87 3050 0.19 505 9.5 50
22 MARATHON AC-10 P(EMA) 22 83 2470 -0.11 238 11.5 46.7
23 MARATHON AC-10 P(NEO) 25 90 1810 -0.3 553 11.5 50
24 MARATHON AC-10 P(EVA) 32 111 1510 -0.15 284 15 45.6
25 MARATHON AC-10 P(SIS 22 88 2520 0.01 527 43 46.7
26 MARATHON AC-10 TPfSB) 20 82 2790 0 >1200 8.5 52.2
27 MARATHON AC-10 TP(NAT) 21 79 3380 0.14 >1200 7 52.8
28 MARATHON AC-10 TP(EMA) 22 85 2560 -0.03 >1200 9.5 52.8
29 MARATHON AC-10 TP(NEO) 23 84 2340 -0.15 >1200 8.2 52.2
30 MARATHON AC-10 TP(EVA) 29 90 2285 -0.06 >1200 16.5 53.3
31 MARATHON AC-10 TP(SIS) 24 83 2760 -0.01 >1200 17 53.3
TABLE 2
DUCT
EX. ASPHALT TYPE OF PEN ® PEN ® vise ® PVN FLOAT @ 4°C R & B NO. SOURCE/GRADE MOD. 4°C 25°C 60°C 25-60°C 60°C 5CM/MIN C
32 EXXON AC-20 0 26 78 1865 -0.43 341
33 EXXON AC 20/BASE 0 29 115 980 -0.67 272
34 EXXON AC-20/BASE T{ et} 25 84 4944 0.64 >1200
35 EXXON AC-20/BASE T{dry} 32 85 2155 -0.21 >1200
36 EXXON AC-20/BASE P{SBR} 32 90 2750 0.14 521 O 37 EXXON AC-20/BASE T P {SBR}M I 34 87 4060 0.49 >1200 c 38 EXXON AC-20/BASE T P {SBRJM II 31 86 3618 0.35 420
03
39 EXXON AC-20/BASE T{dry}P{SBR} ll 34 92 1448 -0.51 432 si 40 EXXON AC-20/BASE Ex.39 milled 35 110 1530 -0.15 821
Α c 41 EXXON AC-20/BASE P{SBR} T MIII 31 90 2780 0.15 265
-I m 42 STYRELF 203 0 46 146 1410 0.27 270 co 43 STYRELF 203 T{wet} Mill 41 100 3430 0.56 >1200
X 44 EXXON AC-20/BASE TP{SBR}dιy MIV 36 116 1497 -0.08 646 m 45 EXXON AC-20/BASE TP{SBR} Mil 26 84 4120 0.45 >1200
46 EXXON AC-20/BASE TP{SBR} Mil 24 80 4759 0.51 >1200
47 EXXON AC-20/BASE TP{SBR} Mil 23 76 3494 0.11 515
48 EXXON AC-20/BASE TP{SBR} Mil 22 68 6162 0.5 >1200
49 EXXON AC-20/BASE TP{SBR} MII 27 85 3985 0.43 1200 27 61.1
50 EXXON AC-20/BASE TP{SBR} MII 23 67 4270 0.10 1200 50.5 73.9
51 EXXON AC-20/BASE TP{SBR} Mil 24 69 4655 0.24 1200 47 75.6

Claims

Claims :
1. A modified bituminous material comprising by weight of the finished bituminous material from about 82.6% to about 99.1% bituminous material, from about .4% to about 10% tall oil, tall oil constituents, tall oil derivations, or mixtures of any two or more of these, from about .5%' to about 5% polymer, and from about .015% to about 2.4% of a strong base.
2. The modified bituminous material of claim
1 wherein the polymer is a block copolymer.
3. The modified bituminous material of claim
2 wherein the block copolymer is selected from the group consisting of styrene-isoprene-styrene and styrene- butadiene-styrene block and styrene-butadiene diblock copolymers.
4. The modified bituminous material of claim 1 wherein the polymer is one or a mixture of more than one of styrene-butadiene-styrene block copolymer, styrene-butadiene rubber, styrene-butadiene diblock copolymer, natural latex, ethylene methyl acetate, chloroprenes, ethylene vinyl acetate, and styrene- isoprene-styrene block copolymer.
5. The modified bituminous material of claim 1 wherein the bituminous material is an asphalt cement.
6. The modified bituminous material of claim 1 wherein the strong base is selected from the group consisting of sodium hydroxide and potassium hydroxide.
7. The modified bituminous material of claim 6 wherein the strong base is added in the form of a water solution of the strong base.
SUBSTITUTE SHEET
PCT/US1993/005917 1992-05-14 1993-06-21 Engineered modified asphalt cement Ceased WO1995000591A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US07/883,110 US5221703A (en) 1992-05-14 1992-05-14 Engineered modified asphalt cement
AU46432/93A AU4643293A (en) 1992-05-14 1993-06-21 Engineered modified asphalt cement
PCT/US1993/005917 WO1995000591A1 (en) 1992-05-14 1993-06-21 Engineered modified asphalt cement
CA002164507A CA2164507C (en) 1992-05-14 1993-06-21 Engineered modified asphalt cement

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/883,110 US5221703A (en) 1992-05-14 1992-05-14 Engineered modified asphalt cement
PCT/US1993/005917 WO1995000591A1 (en) 1992-05-14 1993-06-21 Engineered modified asphalt cement

Publications (1)

Publication Number Publication Date
WO1995000591A1 true WO1995000591A1 (en) 1995-01-05

Family

ID=29405724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1993/005917 Ceased WO1995000591A1 (en) 1992-05-14 1993-06-21 Engineered modified asphalt cement

Country Status (2)

Country Link
CA (1) CA2164507C (en)
WO (1) WO1995000591A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2399969A1 (en) * 2010-06-22 2011-12-28 S.A. Imperbel N.V. Membrane based on a binder compound with tall-oil pitch.

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3110064A (en) * 1958-11-24 1963-11-12 Minnesota Mining & Mfg Wall securement
US4433084A (en) * 1982-05-24 1984-02-21 K. E. Mcconnaughay, Inc. High-float, rapid-setting emulsion
US4479827A (en) * 1980-11-10 1984-10-30 Ward Arthur T Asphalt compositions
US5023282A (en) * 1989-11-17 1991-06-11 Gencorp Inc. Asphalt containing gilsonite, reactive oil and elastomer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3110064A (en) * 1958-11-24 1963-11-12 Minnesota Mining & Mfg Wall securement
US4479827A (en) * 1980-11-10 1984-10-30 Ward Arthur T Asphalt compositions
US4433084A (en) * 1982-05-24 1984-02-21 K. E. Mcconnaughay, Inc. High-float, rapid-setting emulsion
US5023282A (en) * 1989-11-17 1991-06-11 Gencorp Inc. Asphalt containing gilsonite, reactive oil and elastomer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2399969A1 (en) * 2010-06-22 2011-12-28 S.A. Imperbel N.V. Membrane based on a binder compound with tall-oil pitch.

Also Published As

Publication number Publication date
CA2164507C (en) 1999-10-05
CA2164507A1 (en) 1995-01-05

Similar Documents

Publication Publication Date Title
US5221703A (en) Engineered modified asphalt cement
US6117926A (en) Acid-reacted polymer-modified asphalt compositions and preparation thereof
USRE50456E1 (en) Method of making an asphalt composition containing ester bottoms
EP0299700B1 (en) Improved polyethylene modified asphalts
AU725976B2 (en) Elastomer-modified bituminous compositions
CN101228235B (en) Method for preparing bitumen base
US5336705A (en) Polymer-modified, oxidized asphalt compositions and methods of preparation
US6136898A (en) Unblown ethylene-vinyl acetate copolymer treated asphalt and its method of preparation
US7160935B2 (en) Tubular reactor ethylene/alkyl acrylate copolymer as polymeric modifiers for asphalt
US20090149577A1 (en) Using Excess Levels of Metal Salts to Improve Properties when Incorporating Polymers in Asphalt
US6180697B1 (en) Method for preparation of stable bitumen polymer compositions
US6972047B2 (en) Incorporation of gilsonite into asphalt compositions
US7186765B2 (en) Method for preparation of stable bitumen polymer compositions
US6441065B1 (en) Method for preparation of stable bitumen polymer compositions
US4873275A (en) Flow resistant asphalt paving binder
US6852779B1 (en) Method for the production of cross-linked and/or functionalized bitumen/polymer compositions and use of said compositions in coverings
WO2000044975A1 (en) Modified bituminous composition for roof membranes
CA2164507C (en) Engineered modified asphalt cement
US5749953A (en) High shear asphalt compositions
US5627225A (en) Road paving binders
US6469075B1 (en) Method and preparation of stable bitumen polymer compositions
US20160017149A1 (en) Process for the production of polymer modified bitumen using nitrogen rich polycyclic aromatic hydrocarbon
EP0559460B1 (en) Polymer-modified, functionalized asphalt compositions and methods of preparation
USH1141H (en) Asphalt-block copolymer roofing composition
CA2089598C (en) New polymer-modified, oxidized asphalt compositions and methods of preparation

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA FI JP NO NZ UZ

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2164507

Country of ref document: CA

122 Ep: pct application non-entry in european phase