WO1994003648A1 - Composition de liant et procede d'agglomeration de matiere particulaire - Google Patents
Composition de liant et procede d'agglomeration de matiere particulaire Download PDFInfo
- Publication number
- WO1994003648A1 WO1994003648A1 PCT/US1992/006551 US9206551W WO9403648A1 WO 1994003648 A1 WO1994003648 A1 WO 1994003648A1 US 9206551 W US9206551 W US 9206551W WO 9403648 A1 WO9403648 A1 WO 9403648A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cellulose
- guar
- soluble polymer
- water
- carboxymethyl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B1/00—Preliminary treatment of ores or scrap
- C22B1/14—Agglomerating; Briquetting; Binding; Granulating
- C22B1/24—Binding; Briquetting ; Granulating
- C22B1/242—Binding; Briquetting ; Granulating with binders
- C22B1/243—Binding; Briquetting ; Granulating with binders inorganic
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B1/00—Preliminary treatment of ores or scrap
- C22B1/14—Agglomerating; Briquetting; Binding; Granulating
- C22B1/24—Binding; Briquetting ; Granulating
- C22B1/242—Binding; Briquetting ; Granulating with binders
- C22B1/244—Binding; Briquetting ; Granulating with binders organic
Definitions
- the present invention relates to a novel binder composition for agglomerating particulate materials, a novel process for agglomerating particulate materials using said binder composition, and to the agglomerated products produced from said process.
- the process is particularly useful for agglomerating metallic ores such as iron ore.
- Agglomeration is commercially used in industries where materials are encountered in a form which is too finely divided for convenient processing or handling. Thus, there is a need to upgrade the size, density and/or uniformity of finely divided particles for more efficient handling, processing or recovery. Agglomeration is particularly useful in the metal refining industry, where the concentrate ore encountered is typically finely divided.
- a binding agent is added to the wetted mineral ore concentrate and the binder/mineral ore composite is conveyed to a balling drum or other means for pelletizing the ore.
- the binding agent serves to hold or bind the mineral ore together until after firing.
- the pellets are formed, but they are still wet. These wet pellets are commonly referred to as “green pellets” or “green balls”. These green pellets are thereafter transported to a kiln and heated in stages to a end temperature of about 2400°F.
- bentonite clay was the binding agent of choice in the pelletizing operations for mineral ore concentrates.
- Use of bentonite as a binding agent produces balls or pellets having a very good wet and dry strengths and also provides a desired degree of moisture control.
- Use of bentonite does, however, have several disadvantages. Initially, bentonite adds to the silica content of the pellets when the ore pellets are fired at a temperature of 2400 ⁇ F or higher. Higher amounts of silica are not desirable because silica decreases the efficiency of blast furnace operations used in smelting the ore.
- alkalis are oxides of, for example, sodium and potassium.
- alkalis oxides of, for example, sodium and potassium.
- the presence of alkalis in the blast furnace causes both the pellets and coke to deteriorate and to form scabs on the furnace wall, which increases fuel consumption and decreases the productivity of the smelting operation.
- Organic binders have proven to be an attractive alternative to bentonite because organic binders do not increase the silica content of the ore and they impart physical and mechanical properties to the pellets comparable with those of bentonite. Organic binders also burn out during ball firing operations thus causing an increase in the microporosity of the pellets. Accordingly, the pore volume and surface/mass ratio of the formed pellets produced using organic binders is larger than that of pellets produced using bentonite. Due to the larger surface area and increased permeability of the pellets produced using organic binders, the reduction of metallic oxides such as iron oxide is more efficient than with pellets prepared with bentonite.
- organic binders examples include polyacrylate, polyacrylamide and copoly ers thereof, methacrylamide, polymethacrylamide, cellulose derivatives such as alkali metal salts of carboxymethyl cellulose and carboxy ethylhydroxyethyl cellulose, poly (ethylene oxide) , guar gum, dairy wastes, starches, dextrins, wood related products, alginates, pectins, and the like.
- compositions for iron ore agglomeration which comprise 10-45% by weight of a water-in-oil emulsion of a water soluble vinyl addition polymer, 55-90% by weight of a polysaccharide, .001 - 10% by weight of a water soluble surfactant and 0-15 weight % of Borax.
- U. S. Patent No. 4,948,430 discloses a binder for the agglomeration of ore in the presence of water, which comprises 10% - 90% of a water soluble sodium carboxymethylhydroxyethyl cellulose and 10% to 90% of sodium carbonate.
- U. S. Patent No. 4,288,245 discloses pelletization of metallic ores, especially iron ore, with carboxymethyl cellulose and the salt of a weak acid.
- U. S. Patent No. 4,863,512 relates to a binder for metallic containing ores which comprises an alkali metal salt of carboxymethyl cellulose and sodium tripolyphosphate.
- European Patent Application Publication No. 0 376 713 discloses a process for making pellets of particulate metal ore, particularly iron ore.
- the process comprises mixing a water-soluble polymer with the particular metal ore and water and pelletizing the mixture.
- the water-soluble polymer may be of any typical type, e.g., natural, modified natural or synthetic.
- the mixture may optionally comprise a pelletizing aid which may be sodium citrate.
- Organic binder compositions such as those mentioned above, are not, however, without their own disadvantages. While they are effective binders, they generally do not impart adequate dry strength to the pellets at economical use levels.
- the present invention generally relates to a process for agglomerating particulate material in the presence of water which comprises mixing said particulate material with a binding effective amount of at least one water soluble polymer, and a binder enhancing effective amount of caustic to produce a mixture, and forming said mixture into agglomerates.
- the present invention contemplates a binder composition useful for the agglomeration of particulate material in the presence of water which comprises a binding effective amount of at least one water soluble polymer and a binder enhancing effective amount of caustic.
- the present invention generally relates to a process of agglomerating particulate materials, especially metal containing ores, in the presence of water.
- the process comprises mixing said particulate material with a binding effective amount of at least one polymer and a binder enhancing effective amount of caustic to produce a mixture, and thereafter or contemporaneously forming said mixture into agglomerates.
- the present inventors have found that the addition of caustic, in either liquid or powdered form, to the mineral ore, as an integral part of the organic binder or as a separate entity, unexpectedly provides a synergistic effect in the pelletization process, giving the resultant pellets superior wet drop numbers and dry crush strength compared to pellets formed without the use of caustic.
- This increase in performance obtained by the addition of caustic allows the user to effectively reduce the amount of organic binder required thus significantly reducing total binder cost.
- agglomerated or "agglomeration” as used in the context of the present invention shall mean the processing of finely divided materials, whether in powder, dust, chip, or other particulate form, to form pellets, granules, briquettes, and the like.
- the particulate material which may be agglomerated in accordance with this present invention may be almost any finely divided material including metallic minerals or ore.
- the predominant metal component in said ore may be iron, chrome, copper, nickel, zinc, lead, uranium, borium and the like. Mixtures of the above materials or any other metal occurring in the free or molecularly combined material state as a mineral, or any combination of the above, or other metals, or metal containing ores capable of pelletization, may be agglomerated in accordance with the present invention.
- the present invention is particularly well adapted for the agglomeration of materials containing iron, including iron ore deposits, ore tailings, cold and hot fines from a sinter process or aqueous iron ore concentrates from natural sources or recovered from various processes.
- Iron ore or any of a wide variety of the following minerals may form a part of the material to be agglomerated: taconite, magnetite, hematite, limonite, goethite, siderite, franklinite, pyrite, chalcopyrite, chromite, ilmenite and the like.
- Minerals other than metallic minerals which may be agglomerated in accordance with the invention include phosphate rock, talc, dolomite, limestone and the like. Still other materials which may be agglomerated in accordance with the present invention include fertilizer materials such as potassium sulfate, potassium chloride, double sulfate of potassium and magnesium; magnesium oxide; animals feeds such as calcium phosphates; carbon black; coal fines; catalyst mixtures; glass batch mixtures; borates, tungsten carbide; refractory gunning mixes; antimony, flue dust from, for example, power generating plants, solid fuels such as coal, coke or charcoal, blast furnace fines and the like.
- fertilizer materials such as potassium sulfate, potassium chloride, double sulfate of potassium and magnesium
- animals feeds such as calcium phosphates; carbon black; coal fines; catalyst mixtures; glass batch mixtures; borates, tungsten carbide; refractory gunning mixes; antimony, flue dust from
- the water-soluble polymer(s) useful in the present invention include but are not limited to:
- Water-soluble natural polymers such as guar gum, starch, alginates, pectins, xanthan gum, dairy wastes, wood related products, lignin and the like;
- Modified natural polymers such as guar derivatives (e.g. hydroxypropyl guar, carboxymethyl guar, carboxymethylhydroxypropyl guar), modified starch (e.g. anionic starch, cationic starch) , starch derivatives (e.g. dextrin) and cellulose derivatives such as alkali metal salts of carboxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, carboxymethylhydroxyethyl cellulose, methyl cellulose, lignin derivatives (e.g. carboxymethyl lignin) and the like; and/or
- Synthetic polymers e.g. polyacrylamides such as partially hydrated polyacrylamides; polyacrylates and copolymers thereof; polyethylene oxides, and the like.
- the foregoing polymers may be used alone or in various combinations of two or more polymers.
- Water-soluble anionic polymers are a preferred class of polymers to be employed in the present invention.
- Preferred polymers for use in the present invention are alkali metal salts of carboxymethyl cellulose. Any substantially water-soluble alkali metal salt of carboxymethyl cellulose may be used in this invention.
- the sodium salt is, however, preferred.
- Alkali metal salts of carboxymethyl cellulose, more particularly sodium carboxymethyl cellulose are generally prepared from alkali cellulose and the respective alkali metal salt of monochloroacetic acid.
- Cellulose which is used in the manufacture of sodium carboxymethyl cellulose is generally derived from wood pulp or cotton linters, but may be derived from other sources such as sugar beet pulp, bagasse, rice hulls, bran, microbially- derived cellulose, and waste cellulose e.g. shredded paper) .
- the sodium carboxymethyl cellulose used in the present invention generally has a degree of substitution (the average number of carboxymethyl ether groups per repeating anhydroglucose chain unit of the cellulose molecule) of from about 0.4 to about 1.5, more preferably about 0.6 to about 0.9, and most preferably about 0.7.
- the average degree of polymerization of the cellulose furnish is from about 50 to about 4000. Polymers having a degree of polymerization on the higher end of the range are preferred. It is more preferred to use sodium carboxymethyl cellulose having a Brookfield viscosity in a 1% aqueous solution of more than 2000 cps at 30 rpm, spindle #4. Still more preferred is sodium carboxymethyl cellulose having a Brookfield viscosity in a 1% aqueous solution of more than about 4,000 cps at 30 rpm, spindle #4.
- a series of commercially available binders containing sodium carboxymethyl cellulose especially useful in the present invention is marketed by the Dreeland, Inc. of Virginia, MN, Denver, CO, and Akzo Chemicals of Amersfoort, the Netherlands, under the trademark Peridur® .
- binding effective amount of polymer will vary depending upon numerous factors known to the skilled artisan. Such factors include, but are not limited to, the type of particulate material to be agglomerated or pelletized, the moisture content of the particulate material, particle size, the agglomeration equipment utilized, and the desired properties of the final product, e.g. dry strength (crush) , drop number, pellet size and smoothness.
- a binding effective amount of polymer will typically be in the range of between about 0.01% to 1% by weight based on the dry weight of the mixture of particulate material, polymer and caustic.
- the polymer is present in a range of between about 0.01 to 0.4% by weight, and most preferred, about 0.04%.
- the term "caustic” shall mean any source of hydroxide ions (OH") including, but not limited to sodium hydroxide, potassium hydroxide, ammonium hydroxide, calcium hydroxide, barium hydroxide, magnesium hydroxide, mixtures thereof and the like.
- a "binder enhancing effective amount of caustic” depends on the same factors as does the binding effective amount of polymer.
- a binding effective amount of caustic will typically be in the range of between about .004% to .15% by weight based on the dry mixture of particulate material, polymer and caustic.
- caustic is present in the range of between about .01% to .04% by weight, and most preferred at about .03% by weight.
- the present invention contemplates a process of agglomerating particulate material in the presence of water which comprises mixing said particulate material with between about 0.01% to 1% by weight of at least one water soluble polymer selected from hydroxyethyl cellulose, alkali metal salts of carboxymethyl cellulose, methyl cellulose, methylhydroxyethyl cellulose and mixtures thereof, and .004% to .15% by weight of sodium hydroxide to produce a mixture, and forming said mixture into agglomerates.
- at least one water soluble polymer selected from hydroxyethyl cellulose, alkali metal salts of carboxymethyl cellulose, methyl cellulose, methylhydroxyethyl cellulose and mixtures thereof, and .004% to .15% by weight of sodium hydroxide
- the present invention contemplates a process of agglomerating iron ore wherein said ore is mixed with between about 0.01 to 0.4% by weight of an alkali metal salt of carboxymethyl cellulose, from about 0.01 to .04% by weight sodium hydroxide, and from about 0.02-0.5 wt% (based on dry ore) of soda ash, to produce a mixture, and forming said mixture into agglomerates.
- Agglomerated particulate materials formed from any of the foregoing processes is also deemed to be within the scope of the present invention.
- the present invention also contemplates a binder composition useful for the agglomeration of particulate materials.
- the binder composition comprises a binding effective amount of at least one water soluble polymer, and a binder enhancing effective amount of caustic.
- the present invention contemplates a binder composition which comprises between about 10% to 95% by weight of a water soluble polymer and between about 2% to 50% by weight of caustic (wt% binder composition) .
- the present invention contemplates a binder composition useful for the agglomeration of iron ore in the presence of water which comprises between about 45% to 95% by weight of a water-soluble alkali metal salt of carboxymethyl cellulose and 10% to 40% by weight of sodium hydroxide.
- the present invention contemplates a binder composition which comprises between about 50% to 80% by weight of an alkali metal salt of carboxymethyl cellulose, between about 10% to 35% by weight of caustic, and between about 2% to 20% by weight of a salt of a weak acid, such as sodium citrate and or soda ash.
- a binder composition which comprises between about 50% to 80% by weight of an alkali metal salt of carboxymethyl cellulose, between about 10% to 35% by weight of caustic, and between about 2% to 20% by weight of a salt of a weak acid, such as sodium citrate and or soda ash.
- the binder composition of the present invention may also contain other substances, for instance, those that are formed as by-products in the preparation of the alkali metal salt of carboxymethyl cellulose, such as sodium chloride and sodium glycolate, as well as other polysaccharides or synthetic water-soluble polymers and other "inorganic salts" (for want of a better term sodium carbonate, sodium citrate, and the like are referred to as “inorganic salts” herein) .
- Exemplary polysaccharides include, e.g., hydroxyethyl cellulose, hydroxypropyl cellulose, carboxymethylhydroxyethyl cellulose, methyl cellulose, hydroxypropyl methyl cellulose, guar, hydroxpropyl guar and sugar beet pulp, and the like.
- Exemplary synthetic water-soluble polymers include partially hydrated polyacrylamide, polyvinyl alcohol, styrene/maleic anhydride copolymers, and polyacrylate and copolymers thereof, etc.
- Exemplary inorganic salts include, e. g. the salts described by Roorda in U. S. Patent Nos. 4,288,245 and 4,597,797 such as sodium citrate, soda ash, and the like.
- the ratios of polymer, e.g. alkali metal salt of carboxymethyl cellulose, caustic and water to particulate material, e.g. concentrated ore are dependent on various factors including the agglomeration method used, the material to be agglomerated and the desired properties of the agglomerates to be prepared. A person of ordinary skill in the art can readily determine the specific amounts that will be most suitable for individual circumstances. Pelletization is generally carried out using the binder composition in an amount of from about 0.0044% to about 0.44%, preferably from about 0.022% to about 0.22% (by weight of the total dry mixture) , of the binder composition and about 2% to about 20%, preferably about 5% to about 15%, water, by weight of the total dry mixture.
- clays such as bentonite clay may be used in pelletization.
- the total amount of these clays will depend on the user's objectives, but will generally be less than 0.22%, based on the weight of the total dry mixture.
- Any known method for forming dry pellets or particles can be used to prepare the agglomerates of this invention.
- the concentrated ore may be agglomerated into particles or agglomerates by rotating the concentrated ore powder in a drum or disc with a binder and water, followed by drying and firing. Agglomerates can also be formed by briquetting, nodulizing, or spray drying.
- binder composition constituents may be carried out in any manner commonly applied in the art.
- the binder constituents may be mixed as solid matter with the concentrated ore in a dry or liquid form or as an emulsion or dispersion. Further, they may be simultaneously, successively or alternatively added to the concentrated ore before or during the pelletizing treatment.
- liquid caustic is sprayed on moist concentrated ore resulting from the aforementioned separation process, which has all but about 10 wt% of the water removed by, e.g. rotating disc filter.
- the polymeric binder composition is applied so that the binder components and concentrated ore are well mixed and adequately hydrated prior to being formed into green pellets.
- the water content should generally be in the range of about 4 to 30 wt% based on the weight of dry particulate matter and most preferably between about 7 and 12 wt%.
- Other substances may also be optionally added to the binder composition of the present invention.
- small amounts of flux e. g. , limestone or dolomite may also be added to enhance mechanical properties of the pellets.
- the flux also helps to reduce the dust level in the indurating furnace when the pellets are fired.
- Olivine, serpentine, magnesium and similar minerals may be used to improve metallurgical properties of the pellets. Drying the wet balls and firing the resultant dry balls may be carried out as one continuous or two separate steps. The important factors are that the balls must be dry prior to firing as the balls will degrade or spall if fired without first drying them.
- the balls be heated slowly to a temperature of at least about 2200°F, preferably to at least about 2400 ⁇ F and then fired at that temperature.
- they are dried at low temperatures, preferably by heating, or alternatively, under ambient conditions, and then fired at a temperature of at least about 2200 ⁇ F, more preferably at about 2400 ⁇ F. Firing is carried out for a sufficient period of time to bond the small particles into pellets with enough strength to enable transportation and/or further handling, generally about 15 minutes to about 3 hours.
- the process of the present invention is preferably employed with concentrated iron ore.
- This process is also suitable for non-ferrous concentrated ores such as ores of zinc, lead, tin, nickel and chromium and oxidic materials such as silicates and quartz, and sulphidic materials.
- this invention is intended for use in binding the concentrated ores which result from separation of the host rock from the ore removed from the ground. However, it can also be used to bind natural ores.
- pellets resulting from this process are dry, hard agglomerates having sizes that are suitable for, e. g. shipping, handling, sintering, etc.
- Pellets generally have an average diameter of about 1/4 to about 1 inch, preferably about 1/2 inch.
- Pellet size is generally a function of the user and operator's preference, more than of binding ability of the compositions of this invention and virtually any size pellet desired by blast furnace operations and mine operations can be prepared.
- the invention is further described by the following non- limiting examples. For the purpose of characterizing the agglomerates formed, use is made of the following procedure and test protocol.
- the process was begun by placing 2500 grams (calculated as dry weight) of iron ore concentrate (moisture content approximately 9 to 10 wt. %) into a Mullen Mixer (Model No. 1 Cincinnati Muller, manufactured by National Engineering Co.).
- polymer is then added to the mixer and spread evenly over the iron ore concentrate. If a mixture of polymers was used, the mixture was premixed by hand prior to addition to the muller mixer. The loaded mixer was run for three (3) minutes to evenly distribute the polymer. The resulting concentrate mixture was screened to remove particles smaller than those retained on an 8 mesh wire screen.
- a balling disc fabricated from an airplane tire (approx. 16" diameter) driven by a motor having a 60 RPM rotational speed was employed to produce green balls of the concentrate mixture.
- Pellet "seeds” were formed by placing a small portion of the screened concentrate mixture in the rotating balling tire and adding atomized water to initiate seed growth. As the size of the seed pellets.approached 4 mesh, they were removed from the balling disc and screened. The seed pellets with a size between 4 and 6 mesh were retained. This process was repeated if necessary until 34 grams of seed pellets were collected.
- Finished green balls were produced by placing the 34 grams of seed pellets of size between 4 and 6 mesh into the rotating tire of the balling disc and adding portion of the remaining concentrate mixture from the muller mixer over a 4 minute growth period. Atomized water was added if necessary. When the proper size was achieved (-0.530 inch, +0.500 inch) concentrate mixture addition ceased and the pellets were allowed a 30 second finishing roll. The agglomerated pellets were removed from the disc, screened to -0.530, +0.500 inch size and stored in an air-tight container until they were tested.
- Wet Drop Number was determined by repeatedly dropping two groups of ten (10) pellets each from an 18 inch height to a steel plate until a crack appeared on the surface of each pellet. The number of drops required to produce a crack on the surface of each pellet was recorded. The average of all 20 pellets was taken to determine the drop number of each agglomerated mixture.
- Dry Crush Strength was determined by drying twenty (20) pellets of each agglomerated mixture to measure the moisture content. The dry pellets were then individually subjected to a Chatillon Spring Compression Tester, Model LTCM (25 pound range) at a loading rate of 0.1 inch/second. The dry strength report for each agglomerate mixture is the average cracking pressure of the twenty pellets.
- Example 1 The following samples demonstrate processes and the binders of the present invention employing various polymers with sodium hydroxide and other OH " , as binding agents for particulate material, which is iron ore unless otherwise specified.
- Example 1 The following samples demonstrate processes and the binders of the present invention employing various polymers with sodium hydroxide and other OH " , as binding agents for particulate material, which is iron ore unless otherwise specified.
- CMC carboxymethyl cellulose
- 25 CMC is greatly enhanced by the addition of NaOH.
- the wet drops start to decrease, probably from binder deterioration at higher pH levels.
- a CMC/soda ash combination was employed with and without the addition of NaOH.
- the CMC/soda ash combination consists of about 70 to 85% technical grade CMC and 15-30% soda ash.
- the data obtained is compiled in Table 3, below.
- Peridur®2.15, Peridur® 3.15 and Peridur® 3.30 are binder compositions commercially available from Dreeland, Inc. .
- CM Starch a carboxymethyl starch
- PL1400® is a polyacrylamide commercially available from
- FPIOO® is a polyacrylate commercially available from Polyacryl Inc.
- the polyacrylamide (PL1400® ) , the polyacrylate (FPIOO® ) , CMDHPC, CMHPC, and CM- Starch showed benefits throughout the addition of caustic. This was not the case with the CM-Guar. Small additions of caustic significantly improved performance, however when the dosage of caustic was increased beyond optimum levels, both the wet and dry strengths were destroyed.
- Non-ionic polymers have also been considered for use a binders. These polymers include, but are not limited to hydroxyethyl cellulose (HEC) , methyl hydroxyethyl cellulose (Meth. HEC) , hydroxypropyl cellulose (HPC) , starch, dextrin, guar (guar 5200) , and hydroxypropyl guar (HPG) .
- HEC hydroxyethyl cellulose
- Method. HEC methyl hydroxyethyl cellulose
- HPC hydroxypropyl cellulose
- starch starch
- dextrin guar
- guar 5200 guar 5200
- HPG hydroxypropyl guar
- Example 7 All previous testing employed only NaOH as a source of OH" ions.
- the present example investigates the use of other metal hydroxides for synergistic effect. The results are tabulated in Table 7.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Geology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Inorganic Chemistry (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Glanulating (AREA)
- Polysaccharides And Polysaccharide Derivatives (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Separation Of Suspended Particles By Flocculating Agents (AREA)
- Catalysts (AREA)
Abstract
Priority Applications (11)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CA002141787A CA2141787C (fr) | 1992-08-06 | 1992-08-06 | Composition liante et procede pour agglomerer des substances particulaires |
| EP92917701A EP0656072B1 (fr) | 1992-08-06 | 1992-08-06 | Composition de liant et procede d'agglomeration de matiere particulaire |
| PCT/US1992/006551 WO1994003648A1 (fr) | 1992-08-06 | 1992-08-06 | Composition de liant et procede d'agglomeration de matiere particulaire |
| DE69230806T DE69230806T2 (de) | 1992-08-06 | 1992-08-06 | Binderzusammensetzung und -verfahren zum agglomerieren teilchenformigen materials |
| US08/373,289 US5698007A (en) | 1992-08-06 | 1992-08-06 | Process for agglomerating particulate material |
| BR9207150A BR9207150A (pt) | 1992-08-06 | 1992-08-06 | Processo e composição aglutinante para aglomeração de material particulade e minério de ferro na presença de água |
| AT92917701T ATE190671T1 (de) | 1992-08-06 | 1992-08-06 | Binderzusammensetzung und -verfahren zum agglomerieren teilchenformigen materials |
| ES92917701T ES2144422T3 (es) | 1992-08-06 | 1992-08-06 | Composicion aglomerante y procedimiento para aglomerar material en particulas. |
| AU24067/92A AU685385B2 (en) | 1992-08-06 | 1992-08-06 | Binder composition and process for agglomerating particulate material |
| NO19950401A NO311227B1 (no) | 1992-08-06 | 1995-02-03 | Fremgangsmåte for agglomerering av partikkelformig materiale |
| US08/895,380 US6071325A (en) | 1992-08-06 | 1997-07-16 | Binder composition and process for agglomerating particulate material |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CA002141787A CA2141787C (fr) | 1992-08-06 | 1992-08-06 | Composition liante et procede pour agglomerer des substances particulaires |
| PCT/US1992/006551 WO1994003648A1 (fr) | 1992-08-06 | 1992-08-06 | Composition de liant et procede d'agglomeration de matiere particulaire |
| BR9207150A BR9207150A (pt) | 1992-08-06 | 1992-08-06 | Processo e composição aglutinante para aglomeração de material particulade e minério de ferro na presença de água |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO1994003648A1 true WO1994003648A1 (fr) | 1994-02-17 |
Family
ID=27160068
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US1992/006551 Ceased WO1994003648A1 (fr) | 1992-08-06 | 1992-08-06 | Composition de liant et procede d'agglomeration de matiere particulaire |
Country Status (9)
| Country | Link |
|---|---|
| EP (1) | EP0656072B1 (fr) |
| AT (1) | ATE190671T1 (fr) |
| AU (1) | AU685385B2 (fr) |
| BR (1) | BR9207150A (fr) |
| CA (1) | CA2141787C (fr) |
| DE (1) | DE69230806T2 (fr) |
| ES (1) | ES2144422T3 (fr) |
| NO (1) | NO311227B1 (fr) |
| WO (1) | WO1994003648A1 (fr) |
Cited By (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1035481C (zh) * | 1994-06-30 | 1997-07-23 | 潘金海 | 一种球团矿用冶金有机粘结剂 |
| CN1037516C (zh) * | 1995-07-03 | 1998-02-25 | 潘金海 | 一种冶金烧结用添加剂 |
| EP0916742A1 (fr) * | 1997-10-30 | 1999-05-19 | Kabushiki Kaisha Kobe Seiko Sho | Procédé de préparation d'oxydes fe fer sous forme de boulettes à basse teneur en bentonite |
| GB2331296A (en) * | 1997-11-13 | 1999-05-19 | Allied Colloids Ltd | Ore pelletisation |
| WO2001094652A1 (fr) * | 2000-06-07 | 2001-12-13 | Lutz Stephan | Procede d'agglomeration de poudre d'oxyde de nickel et agglomere d'oxyde de nickel |
| US7438730B2 (en) | 1997-10-30 | 2008-10-21 | Kobe Steel, Ltd. | Method of producing iron oxide pellets |
| WO2012112773A1 (fr) * | 2011-02-16 | 2012-08-23 | Solix Biosystems, Inc. | Compositions et procédés pour l'extraction de micro-organismes par lixiviation |
| RU2590034C1 (ru) * | 2015-01-12 | 2016-07-10 | Общество с ограниченной ответственностью "Научно-производственное внедренческое предприятие ТОРЭКС" | Способ интенсификации процессов окускования железорудных материалов |
| CN109112297A (zh) * | 2018-10-19 | 2019-01-01 | 攀钢集团攀枝花钢铁研究院有限公司 | 转炉富集污泥成型用粘结剂及转炉富集污泥成型方法 |
| US20210115257A1 (en) * | 2018-06-29 | 2021-04-22 | Upm-Kymmene Corporation | Organic-inorganic hybrid material comprising a metal and lignin, processes for preparing the same and uses thereof |
| CN115279928A (zh) * | 2020-05-18 | 2022-11-01 | 日本制铁株式会社 | 团块物的制造方法及团块物 |
| CN116287864A (zh) * | 2023-04-07 | 2023-06-23 | 重庆臻焱节能环保科技有限公司 | 一种高强度铅锌球团及利用含铅锌灰渣生产球团的方法 |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE102013114339A1 (de) * | 2013-12-18 | 2015-06-18 | Outotec (Finland) Oy | Verfahren zur Pelletierung von feinkörnigen Erzen |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2862809A (en) * | 1956-08-14 | 1958-12-02 | Olin Mathieson | Soda ash briquette and its method of manufacture |
| US2914394A (en) * | 1956-04-05 | 1959-11-24 | Dohmen Heinrich | Briquetting of ores |
| US3644113A (en) * | 1968-09-04 | 1972-02-22 | Int Minerals & Chem Corp | Agglomerate including graft copolymers of acylic acid and methyl cellulose and method of making |
| US3852059A (en) * | 1972-03-09 | 1974-12-03 | Allied Chem | Process for the production of sodium chromate from chromite ore |
| US4440575A (en) * | 1979-06-11 | 1984-04-03 | Daussan Jean | Granular insulation product and process for its preparation |
| US4863512A (en) * | 1987-06-29 | 1989-09-05 | Aqualon Company | Binder for metal-containing ores |
| US5112391A (en) * | 1990-03-30 | 1992-05-12 | Nalco Chemical Company | Method of forming ore pellets with superabsorbent polymer |
Family Cites Families (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US825440A (en) * | 1905-08-10 | 1906-07-10 | Wesley G Woodmansee | Ironing-table. |
| NL187123C (nl) * | 1975-11-20 | 1991-06-03 | Akzo Nv | Werkwijze voor het agglomereren van ertsmaterialen. |
| US4751259A (en) * | 1987-08-05 | 1988-06-14 | Nalco Chemical Company | Compositions for iron ore agglomeration |
| GB8830383D0 (en) * | 1988-12-30 | 1989-03-01 | Allied Colloids Ltd | Process and composition for pelletising particulate materials |
| US5112582A (en) * | 1990-04-09 | 1992-05-12 | Betz Laboratories, Inc. | Agglomerating agents for clay containing ores |
| US4948430A (en) * | 1989-06-15 | 1990-08-14 | Aqualon Company | Ore pellets containing carboxymethylhydroxyethylcellulose and sodium carbonate |
| FR2654012B1 (fr) * | 1989-11-06 | 1994-02-11 | Roquette Freres | Agent liant et composition liante pour l'agglomeration de materiaux finement divises, agglomeres ainsi obtenus et procede pour les preparer. |
| CA2069482C (fr) * | 1990-09-26 | 2004-06-01 | David L. Dingeman | Liant a base d'amidon naturel modifie servant a la pelletisation de matiere minerale |
| CA2082128C (fr) * | 1991-11-07 | 2002-12-31 | Henricus R. G. Steeghs | Procede permettant d'agglomerer des particules et produits fabriques a l'aide de ces procedes |
-
1992
- 1992-08-06 BR BR9207150A patent/BR9207150A/pt not_active IP Right Cessation
- 1992-08-06 AT AT92917701T patent/ATE190671T1/de not_active IP Right Cessation
- 1992-08-06 WO PCT/US1992/006551 patent/WO1994003648A1/fr not_active Ceased
- 1992-08-06 AU AU24067/92A patent/AU685385B2/en not_active Ceased
- 1992-08-06 DE DE69230806T patent/DE69230806T2/de not_active Expired - Fee Related
- 1992-08-06 CA CA002141787A patent/CA2141787C/fr not_active Expired - Lifetime
- 1992-08-06 ES ES92917701T patent/ES2144422T3/es not_active Expired - Lifetime
- 1992-08-06 EP EP92917701A patent/EP0656072B1/fr not_active Expired - Lifetime
-
1995
- 1995-02-03 NO NO19950401A patent/NO311227B1/no not_active IP Right Cessation
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2914394A (en) * | 1956-04-05 | 1959-11-24 | Dohmen Heinrich | Briquetting of ores |
| US2862809A (en) * | 1956-08-14 | 1958-12-02 | Olin Mathieson | Soda ash briquette and its method of manufacture |
| US3644113A (en) * | 1968-09-04 | 1972-02-22 | Int Minerals & Chem Corp | Agglomerate including graft copolymers of acylic acid and methyl cellulose and method of making |
| US3852059A (en) * | 1972-03-09 | 1974-12-03 | Allied Chem | Process for the production of sodium chromate from chromite ore |
| US4440575A (en) * | 1979-06-11 | 1984-04-03 | Daussan Jean | Granular insulation product and process for its preparation |
| US4863512A (en) * | 1987-06-29 | 1989-09-05 | Aqualon Company | Binder for metal-containing ores |
| US5112391A (en) * | 1990-03-30 | 1992-05-12 | Nalco Chemical Company | Method of forming ore pellets with superabsorbent polymer |
Cited By (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1035481C (zh) * | 1994-06-30 | 1997-07-23 | 潘金海 | 一种球团矿用冶金有机粘结剂 |
| CN1037516C (zh) * | 1995-07-03 | 1998-02-25 | 潘金海 | 一种冶金烧结用添加剂 |
| US6579505B2 (en) | 1997-10-30 | 2003-06-17 | Kabushiki Kaisha Kobe Seiko Sho | Method of producing iron oxide pellets |
| EP0916742A1 (fr) * | 1997-10-30 | 1999-05-19 | Kabushiki Kaisha Kobe Seiko Sho | Procédé de préparation d'oxydes fe fer sous forme de boulettes à basse teneur en bentonite |
| US7438730B2 (en) | 1997-10-30 | 2008-10-21 | Kobe Steel, Ltd. | Method of producing iron oxide pellets |
| US6811759B2 (en) | 1997-10-30 | 2004-11-02 | Kabushiki Kaisha Kobe Seiko Sho | Method of producing iron oxide pellets |
| GB2331296B (en) * | 1997-11-13 | 2001-05-30 | Allied Colloids Ltd | Ore pelletisation |
| GB2331296A (en) * | 1997-11-13 | 1999-05-19 | Allied Colloids Ltd | Ore pelletisation |
| WO2001094652A1 (fr) * | 2000-06-07 | 2001-12-13 | Lutz Stephan | Procede d'agglomeration de poudre d'oxyde de nickel et agglomere d'oxyde de nickel |
| WO2012112773A1 (fr) * | 2011-02-16 | 2012-08-23 | Solix Biosystems, Inc. | Compositions et procédés pour l'extraction de micro-organismes par lixiviation |
| RU2590034C1 (ru) * | 2015-01-12 | 2016-07-10 | Общество с ограниченной ответственностью "Научно-производственное внедренческое предприятие ТОРЭКС" | Способ интенсификации процессов окускования железорудных материалов |
| US20210115257A1 (en) * | 2018-06-29 | 2021-04-22 | Upm-Kymmene Corporation | Organic-inorganic hybrid material comprising a metal and lignin, processes for preparing the same and uses thereof |
| US12275850B2 (en) * | 2018-06-29 | 2025-04-15 | Upm-Kymmene Corporation | Organic-inorganic hybrid material comprising a metal and lignin, processes for preparing the same and uses thereof |
| CN109112297A (zh) * | 2018-10-19 | 2019-01-01 | 攀钢集团攀枝花钢铁研究院有限公司 | 转炉富集污泥成型用粘结剂及转炉富集污泥成型方法 |
| CN115279928A (zh) * | 2020-05-18 | 2022-11-01 | 日本制铁株式会社 | 团块物的制造方法及团块物 |
| CN115279928B (zh) * | 2020-05-18 | 2024-01-19 | 日本制铁株式会社 | 团块物的制造方法及团块物 |
| CN116287864A (zh) * | 2023-04-07 | 2023-06-23 | 重庆臻焱节能环保科技有限公司 | 一种高强度铅锌球团及利用含铅锌灰渣生产球团的方法 |
Also Published As
| Publication number | Publication date |
|---|---|
| BR9207150A (pt) | 1995-12-12 |
| EP0656072A4 (fr) | 1996-06-26 |
| AU685385B2 (en) | 1998-01-22 |
| CA2141787A1 (fr) | 1994-02-17 |
| NO950401D0 (no) | 1995-02-03 |
| EP0656072B1 (fr) | 2000-03-15 |
| EP0656072A1 (fr) | 1995-06-07 |
| NO311227B1 (no) | 2001-10-29 |
| CA2141787C (fr) | 2006-10-10 |
| DE69230806T2 (de) | 2000-11-16 |
| ATE190671T1 (de) | 2000-04-15 |
| AU2406792A (en) | 1994-03-03 |
| NO950401L (no) | 1995-02-03 |
| DE69230806D1 (de) | 2000-04-20 |
| ES2144422T3 (es) | 2000-06-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6071325A (en) | Binder composition and process for agglomerating particulate material | |
| US5698007A (en) | Process for agglomerating particulate material | |
| US3860414A (en) | Use of graft copolymers as agglomeration binders | |
| US5000783A (en) | Modified native starch base binder for pelletizing mineral material | |
| US5306327A (en) | Modified native starch base binder for pelletizing mineral material | |
| EP2734653B2 (fr) | Composition de liant pour agglomération de matières minérales fines et procédé de pastillage | |
| CA2141787C (fr) | Composition liante et procede pour agglomerer des substances particulaires | |
| EP1301641B1 (fr) | Agglomeration de materiaux en particules | |
| AU610901B2 (en) | Binder for metal-containing ores | |
| US3644113A (en) | Agglomerate including graft copolymers of acylic acid and methyl cellulose and method of making | |
| EP3218526B1 (fr) | Compositions de liant et procédés de préparation de pastilles de minerai de fer | |
| CA2548395C (fr) | Procede de production d'agglomerats de minerai de fer utilisant un liant contenant du silicate de sodium | |
| EP1540023B1 (fr) | Procede d'agglomeration de materiau particulaire | |
| US4919711A (en) | Binder for metal-containing ores | |
| US20050183544A1 (en) | Method for producing mineral ore agglomerates using a hemicellulose binder and associated products | |
| US5171361A (en) | Modified native starch base binder for pelletizing mineral material | |
| WO1992005290A1 (fr) | Liant a base d'amidon naturel modifie utilise pour agglomerer en boulettes un materiau mineral |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A1 Designated state(s): AU BR CA NO US |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL SE |
|
| DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| WWE | Wipo information: entry into national phase |
Ref document number: 08373289 Country of ref document: US |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 1992917701 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2141787 Country of ref document: CA |
|
| WWP | Wipo information: published in national office |
Ref document number: 1992917701 Country of ref document: EP |
|
| ENP | Entry into the national phase |
Ref document number: 1997 895380 Country of ref document: US Date of ref document: 19970716 Kind code of ref document: A |
|
| WWG | Wipo information: grant in national office |
Ref document number: 1992917701 Country of ref document: EP |