[go: up one dir, main page]

WO1993009295A1 - A method of preparing an emulsion- or asphalt-concrete for use as a road material - Google Patents

A method of preparing an emulsion- or asphalt-concrete for use as a road material Download PDF

Info

Publication number
WO1993009295A1
WO1993009295A1 PCT/DK1992/000315 DK9200315W WO9309295A1 WO 1993009295 A1 WO1993009295 A1 WO 1993009295A1 DK 9200315 W DK9200315 W DK 9200315W WO 9309295 A1 WO9309295 A1 WO 9309295A1
Authority
WO
WIPO (PCT)
Prior art keywords
bitumen
emulsion
fraction
binding agent
stone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/DK1992/000315
Other languages
French (fr)
Inventor
Leo Hove
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8108092&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1993009295(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Individual filed Critical Individual
Priority to FI941957A priority Critical patent/FI941957L/en
Priority to EP92922931A priority patent/EP0624214B1/en
Priority to DE69228321T priority patent/DE69228321T2/en
Priority to DK92922931T priority patent/DK0624214T3/en
Publication of WO1993009295A1 publication Critical patent/WO1993009295A1/en
Priority to NO941545A priority patent/NO305567B1/en
Anticipated expiration legal-status Critical
Priority to GR990401134T priority patent/GR3030054T3/en
Ceased legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/02Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for preparing the materials
    • E01C19/10Apparatus or plants for premixing or precoating aggregate or fillers with non-hydraulic binders, e.g. with bitumen, with resins, i.e. producing mixtures or coating aggregates otherwise than by penetrating or surface dressing; Apparatus for premixing non-hydraulic mixtures prior to placing or for reconditioning salvaged non-hydraulic compositions
    • E01C19/1059Controlling the operations; Devices solely for supplying or proportioning the ingredients
    • E01C19/1068Supplying or proportioning the ingredients

Definitions

  • asphalt-concrete for use as a road material.
  • the present invention relates to a method of preparing an emulsion- or asphalt-concrete for use as a road material.
  • the technique is based on the use of a bitumen emulsion in admixture with a graded stone material.
  • An aqueous bitumen emulsion has no particular bonding ability of its own, but in time a so-called 'breaking' of the emulsion occurs, whereby the emulgated bitumen fractions float together and the water is segregated, such that the bitumen may thereafter act as a binding agent that can stick to the stone surfaces and bond these together.
  • By means of different additives it is possible to control rather accurately when this breaking should take place after the mixing operation. It is achievable, therefore, that the mixture can be prepared and transported to the laying area and be laid-out therein prior to the breaking having proceeded to the point where the material will not thereafter be suitably easily shapeable.
  • bitumenous binding agent It is the purpose of the invention to provide a method, by which it will be practically possible to make use of an emulsion based on a noticeably harder bitumen i.e. a bitumen of higher viscosity, such that the laid out road layer can exhibit a considerably increased strength and yet be suitably shapeable in connection with the laying-out, without thereafter being sensible to any washing out of the bitumenous binding agent.
  • the invention is based on the consideration that the material as a whole will be supple and shapeable as long as the fine stone fraction has not been bonded by a high viscid bitumen, whether or not the stones in the coarse fraction have already been wrapped by a more or less broken emulsion based on a high viscid bitumen.
  • the finally admixed emulsion will make the entire mixture supple and formable, i.e. the mixture can be laid out evenly and with ordinary equipment, although the stones of the coarse fraction have already been coated with a layer of broken, hard bonding bitumen.
  • the coarse stone fraction is heated to such a high temperature, by which the stones can be totally coated by the initially added high viscid bitumen, which, itself, is heated to assume a viscosity suitably low for this purpose.
  • the fine fraction is added to the mixer, in either cold or warm condition all according to the applied low viscid bitumen, which is also added; this bitumen should have a temperature high enough to condition such a low viscosity that the bitumen can effectively coat the stone particles of the fine fraction.
  • this temperature should be somewhat lower than the
  • this bitumen may have a viscosity e.g. in the range of 5000 - 75000 mm 2 /sec at 60° C.
  • the viscosity of the relevant bitumen should normally be somewhat lower that 3000 mm 2 /sec, but under special circumstances this figure may be higher, e.g. up to 4-5000, though still noticeably smaller than the viscosity figure of the applied high viscid bitumen.
  • the weight ratio between the two kinds of bitumen may vary all according to the dispensary og the material mixture, but a typical ratio can be 60%PC% high viscid and 40%ZC% low viscid bitumen.
  • a typical ratio can be 60%PC% high viscid and 40%ZC% low viscid bitumen.
  • the applied mixing plant can be a simple batch mixer or a continuous throughflow mixer, but it would be possible to use separate mixers for the mixing of the respective binding agents into the respective stone fractions and a separate mixer for the bringing together of the thus pretreated fractions.
  • the hard emulsion can be dosed in accordance with the desired maximum carrying capacity of the stones of the coarse fraction, while a dilution of the emulsion would cause a weakening of this carrying capacity and thereby of the possibility of an efficient exploitation of the high viscid bitumen.
  • finishing and delivering of the material mixture from the mixing plant in order to thereby counteracing later problems with respect to washing out of the emulsion after the laying out of the material or already during the transportation thereof to the working place. It is less important whether the soft emulsion is added briefly before, concurrently with, or briefly after the addition of the fine stone fraction.
  • bitumenous binding agent having a quite low viscosity, e.g MB 1500-2000 at 60° C.
  • This additive may be adminestered in cold condition. and it will render the material well shapeable. In so fas as the migration with the high viscid bitumen will take place soon after the laying out, a desirable result will be achievable also in this manner, even when the resulting bitumen percentage of the material may be still higher by the use of the 'soft' emulsion for the fine stone fraction.
  • Stone material 60 weight percent of 4-16 mm coarse fraction
  • Binding agent emulsion Type 1: BE65R/20.000
  • Type 2 BE65M/3.000.
  • BE stands for "bitumen emulsion”
  • 65 for the admixtury percentage of the bitumen
  • R for a rapidly breaking emulsion
  • M for a medium breaking emulsion
  • the breaking time for the emulsion type 1 on the coarse fraction type of stones is a certain amount of seconds, e.g. 12-14 seconds.
  • the coarse fraction is introduced currently and without heating, into a flow-through mixer, at the
  • the emulsion of the said type 1 is added by a flow corresponding to a weight amount of 7-8 %PC% of the stone weight.
  • the aqueous solution of the emulsion will be distributed evenly around the stones in few seconds.
  • a flow of the fine stone fraction and emulsion type 2 at a weight ratio of some 100:8 is added.
  • the total product is conveyed further in the mixer for intensive mixing through additional 20-30 seconds, corresponding approximately to the breaking time of the emulsion type 2, whereafter the mixture is let out in a flow to a carrier truck.
  • the truck takes the collected material portion to a delivery apparatus at the working site, where the laying out is effected not later than 4-5 hours after the preparation of the material mixture.
  • the laid out emulsion concrete there will be a residual bitumen percentage of
  • Stone material 60 weight percent of 5-18 mm coarse fraction
  • Binding agent Type 1: B 180
  • Type 2 MB 3.000
  • the fine fraction is added, this fraction not having to be heated, and also 60 kg binding agent type 2, heated to roughly 90° C.
  • the mixture portion of about 3 tons has been homogenously mixed, e.g. after 25 seconds, the charge is let out to carrier truck, and care is taken that the mixture is laid out not more than 5-6 hours after its preparation.
  • the delivery temperature in the mixer can be some 60° C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Road Paving Structures (AREA)
  • Colloid Chemistry (AREA)
  • Cosmetics (AREA)
  • Tires In General (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

In the production of emulsion concrete to be laid out as a road material it is customary that the applied stone fractions are mixed together with a binder, which is a bitumen emulsion based on a relatively low viscid bitumen, as the material would otherwise be very difficult to shape by the laying operation. According to the invention the coarse stone fraction is pretreated with a rapid breaking emulsion based on high viscid bitumen, and only thereafter the fine stone fraction with low viscid binder is added. Thereby it is possible to maintain a good shapeability of the material and yet obtain a significantly improved bonding of or in the laid out material.

Description

A method of preparing an emulsion- or
asphalt-concrete for use as a road material.
The present invention relates to a method of preparing an emulsion- or asphalt-concrete for use as a road material.
It is a well known sight that asphalt concrete is laid out in a smoking hot condition, whereby it is possible to keep the mixture of stones and bitumen suitably shapable for an even laying-out and
compression, just as the mixture may then have a large content of high viscid bitumen, thereby ensuring a good bonding and yet a certain, desired resiliency in the laid-out material, when its temperature decreases to ambient temperature. Only it is very energy consuming to effect the associated heating og the material.
On this background has been developed a 'cold' technique, which may well have certain drawbacks or limitations, but nevertheless is considered advantageous in that the heating can be avoided. The technique is based on the use of a bitumen emulsion in admixture with a graded stone material. An aqueous bitumen emulsion has no particular bonding ability of its own, but in time a so-called 'breaking' of the emulsion occurs, whereby the emulgated bitumen fractions float together and the water is segregated, such that the bitumen may thereafter act as a binding agent that can stick to the stone surfaces and bond these together. By means of different additives it is possible to control rather accurately when this breaking should take place after the mixing operation. It is achievable, therefore, that the mixture can be prepared and transported to the laying area and be laid-out therein prior to the breaking having proceeded to the point where the material will not thereafter be suitably easily shapeable.
If the emulsion is or has not broken almost as soon as it has been laid out, one problem among others will be that in case of rain after the lauing out a more or less extensive washing' out of the emulsion may take place, this of course being highly unlucky or in the worst case even fatal for the work.
It is well known, therefore, that the breaking should be adjusted so as to have proceeded widely already at the time of the laying out, even though this will create the problem that it is not possible to use any particularly hard binding bitumen in the emulsion. If the breaking of an emulsion with such a hard or high viscid bitumen has proceeded widely just before the laying out, it will be impossible to effect the laying work in an easy and orderly manner under 'cold'
conditions, because the material will then be so
strongly bonded together that it cannot be reasonably easily shapable.
It has become a common practice that for usual applications of emulsion concrete it is only possible to use emulsions based on a relatively low viscid bitumen having a viscosity of up to some 3000 mm2/sec at 60° C. However, such materials will have a
relatively poor stability, so the method is used only on roads with a low traffic load.
It could be possible to use a bitumen of a higher viscosity and even an increased amount of emulsion if care is taken that the emulsion breaks only partly during the mixing process or prior to the laying out, but also this would create serious problems. Dependent of the grain curve of the stone material it may be impossible to secure an optimal bitumen percentage, because the stone material can only 'carry' a certain amount of unbroken emulsion without surplus emulsion flowing off. Such a flow off of incompletely broken emulsion will take place during the truck transport of the material from the mixing place to the working place and thus give rise to considerable smudging problems for other road-users. Moreover, after its laying out and compaction on the road, the material will exhibit cavities holding unbroken emulsion that will cause the finished road layer, during a long period of time, to be very sensitive to rain, which causes a washing out of bitumen.
It has earlier been recognized that with a
minimized, yet sufficient total amount of emulsion the problem may occur that the emulsion is predominantly 'absorbed' by the finer stone fractions, such that a required total wrapping of the coarse stones will not be achieved unless still more emulsion is added. It has been proposed to remedy this by initially supplying to the mixing stage the coarse stone fraction and the amount of emulsion necessary for a total wrapping of these stones, while the finer stone fraction is added later on, if required together with more emulsion, see e.g. UA-A-923,891 and GB-C-334 ,588. It is possible to hereby avoid a direct waste of surplus emulsion, but there will be no resulting quality improvement of the laid out material.
It is the purpose of the invention to provide a method, by which it will be practically possible to make use of an emulsion based on a noticeably harder bitumen i.e. a bitumen of higher viscosity, such that the laid out road layer can exhibit a considerably increased strength and yet be suitably shapeable in connection with the laying-out, without thereafter being sensible to any washing out of the bitumenous binding agent.
The invention is based on the consideration that the material as a whole will be supple and shapeable as long as the fine stone fraction has not been bonded by a high viscid bitumen, whether or not the stones in the coarse fraction have already been wrapped by a more or less broken emulsion based on a high viscid bitumen. This has lead to a further recognition of the fact that in an initial phase of the mixing process it will be possible to mix the coarse stone fraction -with an emulsion based on high viscid bitumen and with an amount thereof satisfying the full wrapping need for the stones in this fraction, when this emulsion is adapted to break effectively already during the mixing process, while the finer stone fraction, also called the mortar, can be added thereafter, with further addition of emulsion, though now a different emulsion based on a low viscid bitumen, but still adapted to break no later than by the laying out of the material, that is prior to or shortly after the laying out and preferably even befor the material leaves the mixing plant.
The finally admixed emulsion will make the entire mixture supple and formable, i.e. the mixture can be laid out evenly and with ordinary equipment, although the stones of the coarse fraction have already been coated with a layer of broken, hard bonding bitumen.
Because both types of emulsion are adaptable to a total or extensive breaking already before the mixture leaves the mixing plant, problems with respect to flow off during transportation to the working area will be
avoided, and the laid out layer will be insensitive to rain right from the beginning.
It has been found that after the laying out a migration between the 'hard' bitumen on the coarse stones and the 'soft' bitumen in the finer stone
fraction will take place rather soon, such that the result will be a total bonding obtained quicker and with a more high viscid and therewith better binding bitumen than so far known or achievable.
Thus, also in the process of the invention there is made use of the respective coarse and fine stone fractions, but now with addition of the crucial
circumstance that the two fractions are treated with respective, very different emulsions.
The principle of the invention may be
advantageously used also for the production of an asphalt material in which the binding agent is bitumen in non-emulgated condition. Here the coarse stone fraction is heated to such a high temperature, by which the stones can be totally coated by the initially added high viscid bitumen, which, itself, is heated to assume a viscosity suitably low for this purpose. Thereafter the fine fraction is added to the mixer, in either cold or warm condition all according to the applied low viscid bitumen, which is also added; this bitumen should have a temperature high enough to condition such a low viscosity that the bitumen can effectively coat the stone particles of the fine fraction. Preferably, this temperature should be somewhat lower than the
temperature of the coarse fraction, such that the coating of the coarse stones by the high viscid bitumen will be stabilized.
Generally, with the considered method it is
possible to work with a very high viscid bitumen for the initial mixing with the coarse stone fraction, just when care is taken that the fine fraction is not added until an extensive coating of the coarse stones has been obtained. As far as the emulsion concrete is concerned it is important that the relevant 'hard' emulsion is widely broken before the fine fraction and the
associated 'soft' emulsion is added, but it is a lucky coincidence that the very addition of the fine stone fraction, with its very large surface area, strongly promotes the breaking of the hard emulsion, such that the latter will break finally almost automatically at an ideal moment of the process. With the hot method it is sufficient to use a moderate heating, as the high viscid bitumen shall not be conditioned to be mixed with the fine stone fraction. All according to the application purpose this bitumen may have a viscosity e.g. in the range of 5000 - 75000 mm2/sec at 60° C.
With the use of the 'soft' emulsion or the low viscid bitumen, respectively, in connection with the fine stone fraction it is possible to achieve a
homogenous admixture into the fine fraction, also here without any extensive heating as far as the hot method is concerned. The viscosity of the relevant bitumen should normally be somewhat lower that 3000 mm2/sec, but under special circumstances this figure may be higher, e.g. up to 4-5000, though still noticeably smaller than the viscosity figure of the applied high viscid bitumen.
The weight ratio between the two kinds of bitumen may vary all according to the dispensary og the material mixture, but a typical ratio can be 60%PC% high viscid and 40%ZC% low viscid bitumen. Already some 24 hours after the laying out of the material an equalization of the viscosities will have taken place, and on this background it is perfectly possible, if desired, to obtain resulting viscosity figures of MB 10-30.000 or more, this being unheard in connection with conventional emulsion concrete and very expensively achievable in other conventional asphalt preparation.
The applied mixing plant can be a simple batch mixer or a continuous throughflow mixer, but it would be possible to use separate mixers for the mixing of the respective binding agents into the respective stone fractions and a separate mixer for the bringing together of the thus pretreated fractions.
When preparing the emulsion concrete it will be advantageous to control the breaking of the 'hard' emulsion such that it will break as soon as a
practically total wrapping of the coarse stones has taken place, e.g. after a mixing time of 10-12 seconds, such that this emulsion will not get time to be
'diluted' with the subsequently added 'softer' emulsion as added in connection with the addition of the fine stone fraction. Thereby the hard emulsion can be dosed in accordance with the desired maximum carrying capacity of the stones of the coarse fraction, while a dilution of the emulsion would cause a weakening of this carrying capacity and thereby of the possibility of an efficient exploitation of the high viscid bitumen.
Another important effect of the rapid addition of the fine stone fraction as soon as the hard emulsion has been distributed and broken is that by this addition an advanced adhesion between the stones of the coarse fraction will be prevented, which could otherwise give rise to undesired lump formations. In practice it is correspondingly important that the breaking of the added 'soft' emulsion takes place no later than by the
finishing and delivering of the material mixture from the mixing plant, in order to thereby counteracing later problems with respect to washing out of the emulsion after the laying out of the material or already during the transportation thereof to the working place. It is less important whether the soft emulsion is added briefly before, concurrently with, or briefly after the addition of the fine stone fraction.
It is essential to notice that the very controlling of the breaking time of the applied emulsions belongs to already well established art, such that this will not have to be further elucidated in the present connection.
In connection with the invention it will be
possible to pretreat the coarse stone fraction with the emulsion containing the high viscid bitumen, while by the addition of the fine stone fraction there is not used any emulsion, but a bitumenous binding agent having a quite low viscosity, e.g MB 1500-2000 at 60° C.
This additive may be adminestered in cold condition. and it will render the material well shapeable. In so fas as the migration with the high viscid bitumen will take place soon after the laying out, a desirable result will be achievable also in this manner, even when the resulting bitumen percentage of the material may be still higher by the use of the 'soft' emulsion for the fine stone fraction.
Hereafter a few examples of dispensaries according to the invention should be given:
Example 1:
Stone material: 60 weight percent of 4-16 mm coarse fraction,
40%PC% weight percent of 0-4 mm fine fraction.
Binding agent emulsion: Type 1: BE65R/20.000
Type 2: BE65M/3.000.
In these denominations, "BE" stands for "bitumen emulsion", "65" for the admixtury percentage of the bitumen, "R" for a rapidly breaking emulsion, "M" for a medium breaking emulsion , and the figure indications 20.000 and 3.000 for the voscosity of the respective bitumens, measured by mm2/sec. at 60° C.
By experiments it is established that the breaking time for the emulsion type 1 on the coarse fraction type of stones is a certain amount of seconds, e.g. 12-14 seconds. The coarse fraction is introduced currently and without heating, into a flow-through mixer, at the
entrance end of which the emulsion of the said type 1 is added by a flow corresponding to a weight amount of 7-8 %PC% of the stone weight. In the mixer the aqueous solution of the emulsion will be distributed evenly around the stones in few seconds. At a following place of the mixer, corresponding to a material transportation time of 14-16 seconds, a flow of the fine stone fraction and emulsion type 2 at a weight ratio of some 100:8 is added. The total product is conveyed further in the mixer for intensive mixing through additional 20-30 seconds, corresponding approximately to the breaking time of the emulsion type 2, whereafter the mixture is let out in a flow to a carrier truck. The truck takes the collected material portion to a delivery apparatus at the working site, where the laying out is effected not later than 4-5 hours after the preparation of the material mixture. In the laid out emulsion concrete there will be a residual bitumen percentage of
approximately 5.
Example 2:
Stone material: 60 weight percent of 5-18 mm coarse fraction
40 weight percent of 0-5 mm fine fraction.
Binding agent: Type 1: B 180
Type 2: MB 3.000
In these denominations "B" stands for a pure or non-emulgated bitumen, while the figure 180 refers to a penetration of 180 at 25° C, corresponding to a
viscosity of some 60.000 mm2/sec at 60° C. MB
3.000 denotes the non-emulgated betumen having a
viscosity of 3.000 mm2/sec at 60° C.
1800 kg stones of the coarse fraction heated to some 130° C is filled into a charge mixer, and
after start of the mixer 90 kg binding agent type 1, heated to some 130° C is added. 8-12 seconds
thereafter 1200 kg of the fine fraction is added, this fraction not having to be heated, and also 60 kg binding agent type 2, heated to roughly 90° C. When the mixture portion of about 3 tons has been homogenously mixed, e.g. after 25 seconds, the charge is let out to carrier truck, and care is taken that the mixture is laid out not more than 5-6 hours after its preparation. The delivery temperature in the mixer can be some 60° C.

Claims

C L A I M S :
1. A method of preparing an emulsion or asphalt concrete to be laid out as a road material, whereby a coarse stone fraction in a mixing plant is mixed with a binding agent constituted by a bitumen emulsion or a heated bitumen, whereafter a finer stone fraction and additional binder agent are added for further mixing, whereafter the material is brought to the laying area, characterized in that for the binding agent of the coarse fraction there is used bitumen or bitumen emulsion based on a bitumen having a noticeably higher viscosity figure than the bitumen which constitutes or in emulgated form is present in the said additional binding agent.
2. A method according to claim 1, characterized in that the high viscid bitumen is applied as an emulsion which is prepared so- as to break not later than by the addition of the additional binding agent or the finer stone fraction, respectively.
3. A method according to claim 1, characterized in that the additional binding agent is added as an
emulsion that is prepared so as to break before the laying out of the material and preferably before the material leaves the mixing plant.
4. A method according to claim 1, characterized in that for the binding agent of the coarse fraction use is made of a bitumen having a viscosity substantially higher than 3.000 mm2/sec at 60° C.
5. A method according to claim 2, characterized in that the additional binding agent is applied as a non-emulgated bitumen with such a low viscosity that the resulting mixture remains shapeable in cold condition until after the laying out it is stabilized by migration of the high viscid and the low viscid bitumen.
PCT/DK1992/000315 1991-10-30 1992-10-30 A method of preparing an emulsion- or asphalt-concrete for use as a road material Ceased WO1993009295A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
FI941957A FI941957L (en) 1991-10-30 1992-10-30 Method for preparing emulsion or asphalt concrete for use as a road material
EP92922931A EP0624214B1 (en) 1991-10-30 1992-10-30 A method of preparing an emulsion- or asphalt-concrete for use as a road material
DE69228321T DE69228321T2 (en) 1991-10-30 1992-10-30 METHOD FOR PREPARING AN EMULSION OR ASPHALT CONCRETE FOR USE AS ROAD CONSTRUCTION MATERIAL
DK92922931T DK0624214T3 (en) 1991-10-30 1992-10-30 Process for preparing an emulsion or asphalt concrete for use as a road material
NO941545A NO305567B1 (en) 1991-10-30 1994-04-27 Process for the preparation of an emulsion or asphalt pulp laid out as road material
GR990401134T GR3030054T3 (en) 1991-10-30 1999-04-26 A method of preparing an emulsion- or asphalt-concrete for use as a road material.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DK1793/91 1991-10-30
DK911793A DK179391D0 (en) 1991-10-30 1991-10-30 PROCEDURE FOR MANUFACTURING EMULSION CONCRETE

Publications (1)

Publication Number Publication Date
WO1993009295A1 true WO1993009295A1 (en) 1993-05-13

Family

ID=8108092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DK1992/000315 Ceased WO1993009295A1 (en) 1991-10-30 1992-10-30 A method of preparing an emulsion- or asphalt-concrete for use as a road material

Country Status (11)

Country Link
EP (1) EP0624214B1 (en)
AT (1) ATE176286T1 (en)
AU (1) AU2902692A (en)
CA (1) CA2122497A1 (en)
DE (1) DE69228321T2 (en)
DK (2) DK179391D0 (en)
ES (1) ES2129459T3 (en)
FI (1) FI941957L (en)
GR (1) GR3030054T3 (en)
NO (1) NO305567B1 (en)
WO (1) WO1993009295A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996037660A1 (en) * 1995-05-24 1996-11-28 Vejtek International A/S A method of preparing and producing asphalt materials to be laid out as a cold road construction or paving material
EP0781887A1 (en) * 1995-12-28 1997-07-02 Colas Process and apparatus for making cold bituminous dense products
US5788756A (en) * 1992-09-14 1998-08-04 Ceca S.A. Paving composition/building composition including a film forming bitumen in-water mixed emulsion
WO2014189385A3 (en) * 2013-05-22 2015-01-29 Multivector As A method and a device for making a multi-components product material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202010017924U1 (en) * 2010-12-06 2013-03-26 Joachim Eberhardt For asphalt installation suitable asphalt building material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB334588A (en) * 1929-06-06 1930-09-08 Edwin Corby Wallace Improvements relating to bituminous paving compositions and methods of making same
WO1983000700A1 (en) * 1981-08-25 1983-03-03 Karl Gunnar Ohlson Method and apparatus for the production of asphalt concrete
WO1987003317A1 (en) * 1985-11-29 1987-06-04 Nodest Vei A/S A method and an apparatus for mixing gravel and bitumen
US4978393A (en) * 1987-11-17 1990-12-18 Rene Maheas Process for the manufacture of stockable dense road asphalts
EP0491107A1 (en) * 1990-12-19 1992-06-24 Aktiebolaget Nynäs Petroleum Two-component composition comprising a bitumen emulsion and a breaking additive, process for its preparation and the use of said two-component composition.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB334588A (en) * 1929-06-06 1930-09-08 Edwin Corby Wallace Improvements relating to bituminous paving compositions and methods of making same
WO1983000700A1 (en) * 1981-08-25 1983-03-03 Karl Gunnar Ohlson Method and apparatus for the production of asphalt concrete
WO1987003317A1 (en) * 1985-11-29 1987-06-04 Nodest Vei A/S A method and an apparatus for mixing gravel and bitumen
US4978393A (en) * 1987-11-17 1990-12-18 Rene Maheas Process for the manufacture of stockable dense road asphalts
EP0491107A1 (en) * 1990-12-19 1992-06-24 Aktiebolaget Nynäs Petroleum Two-component composition comprising a bitumen emulsion and a breaking additive, process for its preparation and the use of said two-component composition.

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5788756A (en) * 1992-09-14 1998-08-04 Ceca S.A. Paving composition/building composition including a film forming bitumen in-water mixed emulsion
WO1996037660A1 (en) * 1995-05-24 1996-11-28 Vejtek International A/S A method of preparing and producing asphalt materials to be laid out as a cold road construction or paving material
AU698694B2 (en) * 1995-05-24 1998-11-05 Esha Holding B.V. A method of preparing and producing asphalt materials to be laid out as a cold road construction or paving material
EP0781887A1 (en) * 1995-12-28 1997-07-02 Colas Process and apparatus for making cold bituminous dense products
FR2743095A1 (en) * 1995-12-28 1997-07-04 Colas Sa PROCESS FOR THE COLD PRODUCTION OF BITUMINOUS DENSITY COILS AND DEVICE FOR CARRYING OUT SAID METHOD
WO2014189385A3 (en) * 2013-05-22 2015-01-29 Multivector As A method and a device for making a multi-components product material
US10159945B2 (en) 2013-05-22 2018-12-25 Waister As Method and a device for making a multi-components product material

Also Published As

Publication number Publication date
DK179391D0 (en) 1991-10-30
CA2122497A1 (en) 1993-05-13
FI941957A7 (en) 1994-04-28
AU2902692A (en) 1993-06-07
NO941545D0 (en) 1994-04-27
ATE176286T1 (en) 1999-02-15
DK0624214T3 (en) 1999-09-13
FI941957A0 (en) 1994-04-28
EP0624214B1 (en) 1999-01-27
DE69228321D1 (en) 1999-03-11
NO305567B1 (en) 1999-06-21
FI941957L (en) 1994-04-28
DE69228321T2 (en) 1999-09-23
EP0624214A1 (en) 1994-11-17
ES2129459T3 (en) 1999-06-16
NO941545L (en) 1994-04-27
GR3030054T3 (en) 1999-07-30

Similar Documents

Publication Publication Date Title
US3965281A (en) Method for paving surfaces with granular, flaky or powdery asphalt
JP2003524054A (en) Methods and systems for the production of foamed, warmed, mixed asphalt compositions
CA2102311A1 (en) Bitumen emulsions
EP0624214B1 (en) A method of preparing an emulsion- or asphalt-concrete for use as a road material
US5582639A (en) Method of preparing an emulsion-or-asphalt-concrete for use as a road material
US20040223808A1 (en) Method and apparatus for laying hot blacktop paving material
US20060127572A1 (en) Method for producing a bituminous mix, in particular by cold process, and bituminous mix obtained by said method
ZA200901057B (en) A method for making a cold mix spread in large thickness
US2068164A (en) Method of preparing road paving compositions
WO1996037660A1 (en) A method of preparing and producing asphalt materials to be laid out as a cold road construction or paving material
US1690020A (en) Pavement and process oe laying same
EP1138721B1 (en) Production of bituminous asphalt
CN105625148A (en) Warm mix asphalt pavement maintenance process
KR100272798B1 (en) Water permeable concrete with high degree fluidity
US5122009A (en) Highway structure sealing complex and process for its application
DE102010053406A1 (en) Producing cold mix asphalt building material, useful for road construction, using a coarse-grained cavity-rich cold asphalt mixture, comprises mineral grain, bitumen binder and filler materials
CN109135307B (en) Grout seal coat material and preparation method thereof
US2349446A (en) Manufacture of bituminous pavements and paving compositions
US2340779A (en) Manufacture of paving compositions
US2026988A (en) Road paving
SU1265171A1 (en) Method of preparing light-weight asphalt-concrete mix
JPS6335042Y2 (en)
DE2329689A1 (en) Road-surfacing - with asphalt mixt contg mastic filler sand and chipping and rolling in bitumen-coated chipping
DE804423C (en) Process for the production of hydraulic bituminous-bound building materials, especially road building materials
CN114316505A (en) Decolorized cold patch asphalt and preparation method thereof, reactive high-performance colored asphalt cold patch material and preparation method and use method thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AT AU BB BG BR CA CH CS DE DK ES FI GB HU JP KP KR LK LU MG MN MW NL NO PL RO RU SD SE US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL SE BF BJ CF CG CI CM GA GN ML MR SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
EX32 Extension under rule 32 effected after completion of technical preparation for international publication
LE32 Later election for international application filed prior to expiration of 19th month from priority date or according to rule 32.2 (b)
WWE Wipo information: entry into national phase

Ref document number: 2122497

Country of ref document: CA

Ref document number: 941957

Country of ref document: FI

ENP Entry into the national phase

Ref document number: 1994 232164

Country of ref document: US

Date of ref document: 19940429

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1992922931

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1992922931

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1992922931

Country of ref document: EP