WO1993006849A1 - Binding of plasmodium falciparum-infected erythrocytes to cd36 - Google Patents
Binding of plasmodium falciparum-infected erythrocytes to cd36Info
- Publication number
- WO1993006849A1 WO1993006849A1 PCT/US1992/008483 US9208483W WO9306849A1 WO 1993006849 A1 WO1993006849 A1 WO 1993006849A1 US 9208483 W US9208483 W US 9208483W WO 9306849 A1 WO9306849 A1 WO 9306849A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- binding
- irbc
- icam
- binding site
- agent
- Prior art date
Links
- 230000027455 binding Effects 0.000 title claims abstract description 252
- 210000003743 erythrocyte Anatomy 0.000 title abstract description 51
- 241000224016 Plasmodium Species 0.000 title abstract description 10
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 124
- 108010045374 CD36 Antigens Proteins 0.000 claims abstract description 112
- 108090000765 processed proteins & peptides Proteins 0.000 claims abstract description 80
- 238000000034 method Methods 0.000 claims abstract description 46
- 239000012634 fragment Substances 0.000 claims abstract description 31
- 150000001720 carbohydrates Chemical class 0.000 claims abstract description 23
- 230000002147 killing effect Effects 0.000 claims abstract description 3
- 102000049320 CD36 Human genes 0.000 claims abstract 43
- 102000008186 Collagen Human genes 0.000 claims description 10
- 108010035532 Collagen Proteins 0.000 claims description 10
- 229920001436 collagen Polymers 0.000 claims description 10
- 239000003053 toxin Substances 0.000 claims description 9
- 231100000765 toxin Toxicity 0.000 claims description 9
- 239000000203 mixture Substances 0.000 claims description 8
- 230000000903 blocking effect Effects 0.000 claims description 5
- 239000003937 drug carrier Substances 0.000 claims description 2
- 238000007918 intramuscular administration Methods 0.000 claims 1
- 238000001990 intravenous administration Methods 0.000 claims 1
- 239000008194 pharmaceutical composition Substances 0.000 claims 1
- 238000007920 subcutaneous administration Methods 0.000 claims 1
- 102000004196 processed proteins & peptides Human genes 0.000 abstract description 36
- 235000014633 carbohydrates Nutrition 0.000 abstract description 15
- 230000002401 inhibitory effect Effects 0.000 abstract description 6
- 239000003153 chemical reaction reagent Substances 0.000 abstract description 2
- 108010064593 Intercellular Adhesion Molecule-1 Proteins 0.000 description 187
- 102000015271 Intercellular Adhesion Molecule-1 Human genes 0.000 description 187
- 210000004027 cell Anatomy 0.000 description 94
- 102000053028 CD36 Antigens Human genes 0.000 description 69
- 201000004792 malaria Diseases 0.000 description 39
- 235000001014 amino acid Nutrition 0.000 description 34
- 125000003275 alpha amino acid group Chemical group 0.000 description 29
- 102100025390 Integrin beta-2 Human genes 0.000 description 27
- 108010064548 Lymphocyte Function-Associated Antigen-1 Proteins 0.000 description 24
- 150000001413 amino acids Chemical class 0.000 description 22
- 244000045947 parasite Species 0.000 description 20
- 238000006467 substitution reaction Methods 0.000 description 18
- 206010057249 Phagocytosis Diseases 0.000 description 17
- 230000008782 phagocytosis Effects 0.000 description 17
- 102000005962 receptors Human genes 0.000 description 16
- 108020003175 receptors Proteins 0.000 description 16
- 241000430519 Human rhinovirus sp. Species 0.000 description 14
- 230000000694 effects Effects 0.000 description 14
- 210000001616 monocyte Anatomy 0.000 description 14
- 108090000623 proteins and genes Proteins 0.000 description 14
- 230000009919 sequestration Effects 0.000 description 14
- 102000004169 proteins and genes Human genes 0.000 description 13
- 241000223960 Plasmodium falciparum Species 0.000 description 12
- 235000018102 proteins Nutrition 0.000 description 12
- 241000124008 Mammalia Species 0.000 description 10
- 241001529936 Murinae Species 0.000 description 10
- 230000005764 inhibitory process Effects 0.000 description 10
- 206010063094 Cerebral malaria Diseases 0.000 description 9
- 239000002953 phosphate buffered saline Substances 0.000 description 9
- 101000599852 Homo sapiens Intercellular adhesion molecule 1 Proteins 0.000 description 8
- 230000014509 gene expression Effects 0.000 description 8
- 238000000338 in vitro Methods 0.000 description 8
- 108700012359 toxins Proteins 0.000 description 8
- 230000006870 function Effects 0.000 description 7
- 241001125831 Istiophoridae Species 0.000 description 6
- 241001465754 Metazoa Species 0.000 description 6
- 238000003556 assay Methods 0.000 description 6
- 238000012217 deletion Methods 0.000 description 6
- 230000037430 deletion Effects 0.000 description 6
- 210000003038 endothelium Anatomy 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 102000043559 human ICAM1 Human genes 0.000 description 6
- 238000001727 in vivo Methods 0.000 description 6
- 230000035772 mutation Effects 0.000 description 6
- 201000008752 progressive muscular atrophy Diseases 0.000 description 6
- 101100289995 Caenorhabditis elegans mac-1 gene Proteins 0.000 description 5
- 241000709661 Enterovirus Species 0.000 description 5
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 5
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 5
- 239000012980 RPMI-1640 medium Substances 0.000 description 5
- 230000004071 biological effect Effects 0.000 description 5
- 229910003460 diamond Inorganic materials 0.000 description 5
- 239000010432 diamond Substances 0.000 description 5
- 239000012636 effector Substances 0.000 description 5
- 102000037865 fusion proteins Human genes 0.000 description 5
- 108020001507 fusion proteins Proteins 0.000 description 5
- 230000003053 immunization Effects 0.000 description 5
- 229920001184 polypeptide Polymers 0.000 description 5
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 5
- 230000004936 stimulating effect Effects 0.000 description 5
- 230000001225 therapeutic effect Effects 0.000 description 5
- 108020004414 DNA Proteins 0.000 description 4
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 4
- 102000016844 Immunoglobulin-like domains Human genes 0.000 description 4
- 108050006430 Immunoglobulin-like domains Proteins 0.000 description 4
- 208000009182 Parasitemia Diseases 0.000 description 4
- 208000030852 Parasitic disease Diseases 0.000 description 4
- 229920002684 Sepharose Polymers 0.000 description 4
- 125000000539 amino acid group Chemical group 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 230000002939 deleterious effect Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 108020004707 nucleic acids Proteins 0.000 description 4
- 102000039446 nucleic acids Human genes 0.000 description 4
- 150000007523 nucleic acids Chemical class 0.000 description 4
- 229920003023 plastic Polymers 0.000 description 4
- 239000004033 plastic Substances 0.000 description 4
- 238000002741 site-directed mutagenesis Methods 0.000 description 4
- 238000001890 transfection Methods 0.000 description 4
- 108020004705 Codon Proteins 0.000 description 3
- YWAQATDNEKZFFK-BYPYZUCNSA-N Gly-Gly-Ser Chemical compound NCC(=O)NCC(=O)N[C@@H](CO)C(O)=O YWAQATDNEKZFFK-BYPYZUCNSA-N 0.000 description 3
- 101000935040 Homo sapiens Integrin beta-2 Proteins 0.000 description 3
- 108060003951 Immunoglobulin Proteins 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 230000004075 alteration Effects 0.000 description 3
- 239000002299 complementary DNA Substances 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 231100000673 dose–response relationship Toxicity 0.000 description 3
- 210000003989 endothelium vascular Anatomy 0.000 description 3
- 230000002209 hydrophobic effect Effects 0.000 description 3
- 102000018358 immunoglobulin Human genes 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 238000011534 incubation Methods 0.000 description 3
- 208000015181 infectious disease Diseases 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 230000001404 mediated effect Effects 0.000 description 3
- 238000000386 microscopy Methods 0.000 description 3
- 238000004091 panning Methods 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000010186 staining Methods 0.000 description 3
- 208000024891 symptom Diseases 0.000 description 3
- 230000002194 synthesizing effect Effects 0.000 description 3
- 210000001519 tissue Anatomy 0.000 description 3
- 210000003812 trophozoite Anatomy 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 2
- 108020004635 Complementary DNA Proteins 0.000 description 2
- 238000012286 ELISA Assay Methods 0.000 description 2
- 241000233866 Fungi Species 0.000 description 2
- ULZCYBYDTUMHNF-IUCAKERBSA-N Gly-Leu-Glu Chemical compound NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(O)=O ULZCYBYDTUMHNF-IUCAKERBSA-N 0.000 description 2
- 241000238631 Hexapoda Species 0.000 description 2
- 101000599858 Homo sapiens Intercellular adhesion molecule 2 Proteins 0.000 description 2
- 102100037877 Intercellular adhesion molecule 1 Human genes 0.000 description 2
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 2
- YBAFDPFAUTYYRW-UHFFFAOYSA-N N-L-alpha-glutamyl-L-leucine Natural products CC(C)CC(C(O)=O)NC(=O)C(N)CCC(O)=O YBAFDPFAUTYYRW-UHFFFAOYSA-N 0.000 description 2
- 206010035500 Plasmodium falciparum infection Diseases 0.000 description 2
- 108010039491 Ricin Proteins 0.000 description 2
- 239000002671 adjuvant Substances 0.000 description 2
- 230000001668 ameliorated effect Effects 0.000 description 2
- 239000000427 antigen Substances 0.000 description 2
- 102000036639 antigens Human genes 0.000 description 2
- 108091007433 antigens Proteins 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000012148 binding buffer Substances 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 210000004556 brain Anatomy 0.000 description 2
- 230000030833 cell death Effects 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000001086 cytosolic effect Effects 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000009510 drug design Methods 0.000 description 2
- 210000002889 endothelial cell Anatomy 0.000 description 2
- 108091007231 endothelial receptors Proteins 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000012091 fetal bovine serum Substances 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 238000005534 hematocrit Methods 0.000 description 2
- 102000056475 human ICAM2 Human genes 0.000 description 2
- 210000004408 hybridoma Anatomy 0.000 description 2
- 238000010166 immunofluorescence Methods 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 230000002757 inflammatory effect Effects 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 102000006495 integrins Human genes 0.000 description 2
- 108010044426 integrins Proteins 0.000 description 2
- 230000003834 intracellular effect Effects 0.000 description 2
- 238000011005 laboratory method Methods 0.000 description 2
- 239000004816 latex Substances 0.000 description 2
- 229920000126 latex Polymers 0.000 description 2
- 210000000265 leukocyte Anatomy 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 229920002521 macromolecule Polymers 0.000 description 2
- 230000035800 maturation Effects 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 2
- 238000002703 mutagenesis Methods 0.000 description 2
- 231100000350 mutagenesis Toxicity 0.000 description 2
- 230000009871 nonspecific binding Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000007170 pathology Effects 0.000 description 2
- 210000001539 phagocyte Anatomy 0.000 description 2
- 239000013612 plasmid Substances 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 239000013615 primer Substances 0.000 description 2
- 230000000069 prophylactic effect Effects 0.000 description 2
- 238000000159 protein binding assay Methods 0.000 description 2
- 238000002708 random mutagenesis Methods 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 210000001563 schizont Anatomy 0.000 description 2
- 238000007423 screening assay Methods 0.000 description 2
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 208000037816 tissue injury Diseases 0.000 description 2
- 230000002792 vascular Effects 0.000 description 2
- 239000013598 vector Substances 0.000 description 2
- 239000003981 vehicle Substances 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- JBFQOLHAGBKPTP-NZATWWQASA-N (2s)-2-[[(2s)-4-carboxy-2-[[3-carboxy-2-[[(2s)-2,6-diaminohexanoyl]amino]propanoyl]amino]butanoyl]amino]-4-methylpentanoic acid Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)C(CC(O)=O)NC(=O)[C@@H](N)CCCCN JBFQOLHAGBKPTP-NZATWWQASA-N 0.000 description 1
- PIDRBUDUWHBYSR-UHFFFAOYSA-N 1-[2-[[2-[(2-amino-4-methylpentanoyl)amino]-4-methylpentanoyl]amino]-4-methylpentanoyl]pyrrolidine-2-carboxylic acid Chemical compound CC(C)CC(N)C(=O)NC(CC(C)C)C(=O)NC(CC(C)C)C(=O)N1CCCC1C(O)=O PIDRBUDUWHBYSR-UHFFFAOYSA-N 0.000 description 1
- QWCKQJZIFLGMSD-UHFFFAOYSA-N 2-Aminobutanoic acid Natural products CCC(N)C(O)=O QWCKQJZIFLGMSD-UHFFFAOYSA-N 0.000 description 1
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 1
- NALREUIWICQLPS-UHFFFAOYSA-N 7-imino-n,n-dimethylphenothiazin-3-amine;hydrochloride Chemical compound [Cl-].C1=C(N)C=C2SC3=CC(=[N+](C)C)C=CC3=NC2=C1 NALREUIWICQLPS-UHFFFAOYSA-N 0.000 description 1
- SPBDXSGPUHCETR-JFUDTMANSA-N 8883yp2r6d Chemical compound O1[C@@H](C)[C@H](O)[C@@H](OC)C[C@@H]1O[C@@H]1[C@@H](OC)C[C@H](O[C@@H]2C(=C/C[C@@H]3C[C@@H](C[C@@]4(O[C@@H]([C@@H](C)CC4)C(C)C)O3)OC(=O)[C@@H]3C=C(C)[C@@H](O)[C@H]4OC\C([C@@]34O)=C/C=C/[C@@H]2C)/C)O[C@H]1C.C1C[C@H](C)[C@@H]([C@@H](C)CC)O[C@@]21O[C@H](C\C=C(C)\[C@@H](O[C@@H]1O[C@@H](C)[C@H](O[C@@H]3O[C@@H](C)[C@H](O)[C@@H](OC)C3)[C@@H](OC)C1)[C@@H](C)\C=C\C=C/1[C@]3([C@H](C(=O)O4)C=C(C)[C@@H](O)[C@H]3OC\1)O)C[C@H]4C2 SPBDXSGPUHCETR-JFUDTMANSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- YJHKTAMKPGFJCT-NRPADANISA-N Ala-Val-Glu Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCC(O)=O)C(O)=O YJHKTAMKPGFJCT-NRPADANISA-N 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 1
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 1
- 206010002660 Anoxia Diseases 0.000 description 1
- 241000976983 Anoxia Species 0.000 description 1
- 101710145634 Antigen 1 Proteins 0.000 description 1
- PAPSMOYMQDWIOR-AVGNSLFASA-N Arg-Lys-Val Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C(C)C)C(O)=O PAPSMOYMQDWIOR-AVGNSLFASA-N 0.000 description 1
- 208000002109 Argyria Diseases 0.000 description 1
- 206010003445 Ascites Diseases 0.000 description 1
- SPIPSJXLZVTXJL-ZLUOBGJFSA-N Asn-Cys-Ser Chemical compound NC(=O)C[C@H](N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CO)C(O)=O SPIPSJXLZVTXJL-ZLUOBGJFSA-N 0.000 description 1
- ATHZHGQSAIJHQU-XIRDDKMYSA-N Asn-Trp-Lys Chemical compound C1=CC=C2C(=C1)C(=CN2)C[C@@H](C(=O)N[C@@H](CCCCN)C(=O)O)NC(=O)[C@H](CC(=O)N)N ATHZHGQSAIJHQU-XIRDDKMYSA-N 0.000 description 1
- JHFNSBBHKSZXKB-VKHMYHEASA-N Asp-Gly Chemical compound OC(=O)C[C@H](N)C(=O)NCC(O)=O JHFNSBBHKSZXKB-VKHMYHEASA-N 0.000 description 1
- UMHUHHJMEXNSIV-CIUDSAMLSA-N Asp-Leu-Ser Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CC(O)=O UMHUHHJMEXNSIV-CIUDSAMLSA-N 0.000 description 1
- 108090001008 Avidin Proteins 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 102000000844 Cell Surface Receptors Human genes 0.000 description 1
- 108010001857 Cell Surface Receptors Proteins 0.000 description 1
- 206010057248 Cell death Diseases 0.000 description 1
- 231100000023 Cell-mediated cytotoxicity Toxicity 0.000 description 1
- 206010057250 Cell-mediated cytotoxicity Diseases 0.000 description 1
- 102000009016 Cholera Toxin Human genes 0.000 description 1
- 108010049048 Cholera Toxin Proteins 0.000 description 1
- XIZWKXATMJODQW-KKUMJFAQSA-N Cys-His-Phe Chemical compound C1=CC=C(C=C1)C[C@@H](C(=O)O)NC(=O)[C@H](CC2=CN=CN2)NC(=O)[C@H](CS)N XIZWKXATMJODQW-KKUMJFAQSA-N 0.000 description 1
- BNCKELUXXUYRNY-GUBZILKMSA-N Cys-Lys-Glu Chemical compound C(CCN)C[C@@H](C(=O)N[C@@H](CCC(=O)O)C(=O)O)NC(=O)[C@H](CS)N BNCKELUXXUYRNY-GUBZILKMSA-N 0.000 description 1
- DQGIAOGALAQBGK-BWBBJGPYSA-N Cys-Ser-Thr Chemical compound C[C@H]([C@@H](C(=O)O)NC(=O)[C@H](CO)NC(=O)[C@H](CS)N)O DQGIAOGALAQBGK-BWBBJGPYSA-N 0.000 description 1
- QWCKQJZIFLGMSD-GSVOUGTGSA-N D-alpha-aminobutyric acid Chemical compound CC[C@@H](N)C(O)=O QWCKQJZIFLGMSD-GSVOUGTGSA-N 0.000 description 1
- 239000003155 DNA primer Substances 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 102000016607 Diphtheria Toxin Human genes 0.000 description 1
- 108010053187 Diphtheria Toxin Proteins 0.000 description 1
- 238000002965 ELISA Methods 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 101710126496 Envelope glycoprotein I Proteins 0.000 description 1
- 108090000371 Esterases Proteins 0.000 description 1
- 206010015866 Extravasation Diseases 0.000 description 1
- 208000002476 Falciparum Malaria Diseases 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 239000001828 Gelatine Substances 0.000 description 1
- 102000006395 Globulins Human genes 0.000 description 1
- 108010044091 Globulins Proteins 0.000 description 1
- ATRHMOJQJWPVBQ-DRZSPHRISA-N Glu-Ala-Phe Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC1=CC=CC=C1)C(O)=O ATRHMOJQJWPVBQ-DRZSPHRISA-N 0.000 description 1
- NKSGKPWXSWBRRX-ACZMJKKPSA-N Glu-Asn-Cys Chemical compound C(CC(=O)O)[C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)N[C@@H](CS)C(=O)O)N NKSGKPWXSWBRRX-ACZMJKKPSA-N 0.000 description 1
- JRCUFCXYZLPSDZ-ACZMJKKPSA-N Glu-Asp-Ser Chemical compound OC(=O)CC[C@H](N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CO)C(O)=O JRCUFCXYZLPSDZ-ACZMJKKPSA-N 0.000 description 1
- GUOWMVFLAJNPDY-CIUDSAMLSA-N Glu-Ser-Met Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCSC)C(O)=O GUOWMVFLAJNPDY-CIUDSAMLSA-N 0.000 description 1
- UMZHHILWZBFPGL-LOKLDPHHSA-N Glu-Thr-Pro Chemical compound C[C@H]([C@@H](C(=O)N1CCC[C@@H]1C(=O)O)NC(=O)[C@H](CCC(=O)O)N)O UMZHHILWZBFPGL-LOKLDPHHSA-N 0.000 description 1
- ZALGPUWUVHOGAE-GVXVVHGQSA-N Glu-Val-His Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CC1=CN=CN1)C(=O)O)NC(=O)[C@H](CCC(=O)O)N ZALGPUWUVHOGAE-GVXVVHGQSA-N 0.000 description 1
- CIMULJZTTOBOPN-WHFBIAKZSA-N Gly-Asn-Asn Chemical compound NCC(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(N)=O)C(O)=O CIMULJZTTOBOPN-WHFBIAKZSA-N 0.000 description 1
- FIQQRCFQXGLOSZ-WDSKDSINSA-N Gly-Glu-Asp Chemical compound [H]NCC(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(O)=O FIQQRCFQXGLOSZ-WDSKDSINSA-N 0.000 description 1
- IKAIKUBBJHFNBZ-LURJTMIESA-N Gly-Lys Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)CN IKAIKUBBJHFNBZ-LURJTMIESA-N 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 239000007995 HEPES buffer Substances 0.000 description 1
- SOYCWSKCUVDLMC-AVGNSLFASA-N His-Pro-Arg Chemical compound N[C@@H](Cc1cnc[nH]1)C(=O)N2CCC[C@H]2C(=O)N[C@@H](CCCNC(=N)N)C(=O)O SOYCWSKCUVDLMC-AVGNSLFASA-N 0.000 description 1
- 101000777658 Homo sapiens Platelet glycoprotein 4 Proteins 0.000 description 1
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 1
- 102000003839 Human Proteins Human genes 0.000 description 1
- 108090000144 Human Proteins Proteins 0.000 description 1
- 108091006905 Human Serum Albumin Proteins 0.000 description 1
- 102000008100 Human Serum Albumin Human genes 0.000 description 1
- 206010021143 Hypoxia Diseases 0.000 description 1
- 241001137862 IDIR agent Species 0.000 description 1
- 102000009490 IgG Receptors Human genes 0.000 description 1
- 108010073807 IgG Receptors Proteins 0.000 description 1
- 101710148794 Intercellular adhesion molecule 2 Proteins 0.000 description 1
- 102100037872 Intercellular adhesion molecule 2 Human genes 0.000 description 1
- 238000012695 Interfacial polymerization Methods 0.000 description 1
- 102000008070 Interferon-gamma Human genes 0.000 description 1
- 108010074328 Interferon-gamma Proteins 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- 241000880493 Leptailurus serval Species 0.000 description 1
- YORLGJINWYYIMX-KKUMJFAQSA-N Leu-Cys-Phe Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CS)C(=O)N[C@@H](CC1=CC=CC=C1)C(O)=O YORLGJINWYYIMX-KKUMJFAQSA-N 0.000 description 1
- HVJVUYQWFYMGJS-GVXVVHGQSA-N Leu-Glu-Val Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C(C)C)C(O)=O HVJVUYQWFYMGJS-GVXVVHGQSA-N 0.000 description 1
- AIRUUHAOKGVJAD-JYJNAYRXSA-N Leu-Phe-Glu Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CCC(O)=O)C(O)=O AIRUUHAOKGVJAD-JYJNAYRXSA-N 0.000 description 1
- QMKFDEUJGYNFMC-AVGNSLFASA-N Leu-Pro-Arg Chemical compound CC(C)C[C@H](N)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCCN=C(N)N)C(O)=O QMKFDEUJGYNFMC-AVGNSLFASA-N 0.000 description 1
- QESXLSQLQHHTIX-RHYQMDGZSA-N Leu-Val-Thr Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H]([C@@H](C)O)C(O)=O QESXLSQLQHHTIX-RHYQMDGZSA-N 0.000 description 1
- UQRZFMQQXXJTTF-AVGNSLFASA-N Lys-Lys-Glu Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(O)=O)C(O)=O UQRZFMQQXXJTTF-AVGNSLFASA-N 0.000 description 1
- HVAUKHLDSDDROB-KKUMJFAQSA-N Lys-Lys-Leu Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(O)=O HVAUKHLDSDDROB-KKUMJFAQSA-N 0.000 description 1
- 239000004907 Macro-emulsion Substances 0.000 description 1
- 101000599857 Mus musculus Intercellular adhesion molecule 1 Proteins 0.000 description 1
- 230000004988 N-glycosylation Effects 0.000 description 1
- 101100342977 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) leu-1 gene Proteins 0.000 description 1
- 101100205189 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) leu-5 gene Proteins 0.000 description 1
- 206010030113 Oedema Diseases 0.000 description 1
- 206010035138 Placental insufficiency Diseases 0.000 description 1
- 201000011336 Plasmodium falciparum malaria Diseases 0.000 description 1
- 101710202087 Platelet glycoprotein 4 Proteins 0.000 description 1
- 102100031574 Platelet glycoprotein 4 Human genes 0.000 description 1
- VPEVBAUSTBWQHN-NHCYSSNCSA-N Pro-Glu-Val Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C(C)C)C(O)=O VPEVBAUSTBWQHN-NHCYSSNCSA-N 0.000 description 1
- ABSSTGUCBCDKMU-UWVGGRQHSA-N Pro-Lys-Gly Chemical compound NCCCC[C@@H](C(=O)NCC(O)=O)NC(=O)[C@@H]1CCCN1 ABSSTGUCBCDKMU-UWVGGRQHSA-N 0.000 description 1
- RMODQFBNDDENCP-IHRRRGAJSA-N Pro-Lys-Leu Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(O)=O RMODQFBNDDENCP-IHRRRGAJSA-N 0.000 description 1
- FRVUYKWGPCQRBL-GUBZILKMSA-N Pro-Met-Cys Chemical compound CSCC[C@@H](C(=O)N[C@@H](CS)C(=O)O)NC(=O)[C@@H]1CCCN1 FRVUYKWGPCQRBL-GUBZILKMSA-N 0.000 description 1
- 108010076504 Protein Sorting Signals Proteins 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 239000006146 Roswell Park Memorial Institute medium Substances 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- LTFSLKWFMWZEBD-IMJSIDKUSA-N Ser-Asn Chemical compound OC[C@H](N)C(=O)N[C@H](C(O)=O)CC(N)=O LTFSLKWFMWZEBD-IMJSIDKUSA-N 0.000 description 1
- TYYBJUYSTWJHGO-ZKWXMUAHSA-N Ser-Asn-Val Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](C(C)C)C(O)=O TYYBJUYSTWJHGO-ZKWXMUAHSA-N 0.000 description 1
- KNCJWSPMTFFJII-ZLUOBGJFSA-N Ser-Cys-Asp Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(O)=O)C(O)=O KNCJWSPMTFFJII-ZLUOBGJFSA-N 0.000 description 1
- LAFKUZYWNCHOHT-WHFBIAKZSA-N Ser-Glu Chemical compound OC[C@H](N)C(=O)N[C@H](C(O)=O)CCC(O)=O LAFKUZYWNCHOHT-WHFBIAKZSA-N 0.000 description 1
- KDGARKCAKHBEDB-NKWVEPMBSA-N Ser-Gly-Pro Chemical compound C1C[C@@H](N(C1)C(=O)CNC(=O)[C@H](CO)N)C(=O)O KDGARKCAKHBEDB-NKWVEPMBSA-N 0.000 description 1
- XERQKTRGJIKTRB-CIUDSAMLSA-N Ser-His-Asp Chemical compound OC(=O)C[C@@H](C(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CO)N)CC1=CN=CN1 XERQKTRGJIKTRB-CIUDSAMLSA-N 0.000 description 1
- AZWNCEBQZXELEZ-FXQIFTODSA-N Ser-Pro-Ser Chemical compound OC[C@H](N)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CO)C(O)=O AZWNCEBQZXELEZ-FXQIFTODSA-N 0.000 description 1
- HHJFMHQYEAAOBM-ZLUOBGJFSA-N Ser-Ser-Ala Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@@H](C)C(O)=O HHJFMHQYEAAOBM-ZLUOBGJFSA-N 0.000 description 1
- CUXJENOFJXOSOZ-BIIVOSGPSA-N Ser-Ser-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CO)NC(=O)[C@H](CO)N)C(=O)O CUXJENOFJXOSOZ-BIIVOSGPSA-N 0.000 description 1
- XQJCEKXQUJQNNK-ZLUOBGJFSA-N Ser-Ser-Ser Chemical compound OC[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(O)=O XQJCEKXQUJQNNK-ZLUOBGJFSA-N 0.000 description 1
- XJDMUQCLVSCRSJ-VZFHVOOUSA-N Ser-Thr-Ala Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C)C(O)=O XJDMUQCLVSCRSJ-VZFHVOOUSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 230000006044 T cell activation Effects 0.000 description 1
- MMTOHPRBJKEZHT-BWBBJGPYSA-N Thr-Cys-Ser Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CS)C(=O)N[C@@H](CO)C(O)=O MMTOHPRBJKEZHT-BWBBJGPYSA-N 0.000 description 1
- AHERARIZBPOMNU-KATARQTJSA-N Thr-Ser-Leu Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(O)=O AHERARIZBPOMNU-KATARQTJSA-N 0.000 description 1
- IEZVHOULSUULHD-XGEHTFHBSA-N Thr-Ser-Val Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CO)C(=O)N[C@@H](C(C)C)C(O)=O IEZVHOULSUULHD-XGEHTFHBSA-N 0.000 description 1
- TZQWJCGVCIJDMU-HEIBUPTGSA-N Thr-Thr-Cys Chemical compound C[C@H]([C@@H](C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CS)C(=O)O)N)O TZQWJCGVCIJDMU-HEIBUPTGSA-N 0.000 description 1
- CKHWEVXPLJBEOZ-VQVTYTSYSA-N Thr-Val Chemical compound CC(C)[C@@H](C([O-])=O)NC(=O)[C@@H]([NH3+])[C@@H](C)O CKHWEVXPLJBEOZ-VQVTYTSYSA-N 0.000 description 1
- BKVICMPZWRNWOC-RHYQMDGZSA-N Thr-Val-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@H](C(C)C)NC(=O)[C@@H](N)[C@@H](C)O BKVICMPZWRNWOC-RHYQMDGZSA-N 0.000 description 1
- LYMVXFSTACVOLP-ZFWWWQNUSA-N Trp-Leu Chemical compound C1=CC=C2C(C[C@H]([NH3+])C(=O)N[C@@H](CC(C)C)C([O-])=O)=CNC2=C1 LYMVXFSTACVOLP-ZFWWWQNUSA-N 0.000 description 1
- 102000004142 Trypsin Human genes 0.000 description 1
- 108090000631 Trypsin Proteins 0.000 description 1
- NZFCWALTLNFHHC-JYJNAYRXSA-N Tyr-Glu-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](N)CC1=CC=C(O)C=C1 NZFCWALTLNFHHC-JYJNAYRXSA-N 0.000 description 1
- SOAUMCDLIUGXJJ-SRVKXCTJSA-N Tyr-Ser-Asn Chemical compound [H]N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(O)=O SOAUMCDLIUGXJJ-SRVKXCTJSA-N 0.000 description 1
- CVUDMNSZAIZFAE-TUAOUCFPSA-N Val-Arg-Pro Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CCCN=C(N)N)C(=O)N1CCC[C@@H]1C(=O)O)N CVUDMNSZAIZFAE-TUAOUCFPSA-N 0.000 description 1
- CVUDMNSZAIZFAE-UHFFFAOYSA-N Val-Arg-Pro Natural products NC(N)=NCCCC(NC(=O)C(N)C(C)C)C(=O)N1CCCC1C(O)=O CVUDMNSZAIZFAE-UHFFFAOYSA-N 0.000 description 1
- DCOOGDCRFXXQNW-ZKWXMUAHSA-N Val-Asn-Cys Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)N[C@@H](CS)C(=O)O)N DCOOGDCRFXXQNW-ZKWXMUAHSA-N 0.000 description 1
- GBIUHAYJGWVNLN-UHFFFAOYSA-N Val-Ser-Pro Natural products CC(C)C(N)C(=O)NC(CO)C(=O)N1CCCC1C(O)=O GBIUHAYJGWVNLN-UHFFFAOYSA-N 0.000 description 1
- STTYIMSDIYISRG-UHFFFAOYSA-N Valyl-Serine Chemical compound CC(C)C(N)C(=O)NC(CO)C(O)=O STTYIMSDIYISRG-UHFFFAOYSA-N 0.000 description 1
- 206010053648 Vascular occlusion Diseases 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 102000019997 adhesion receptor Human genes 0.000 description 1
- 108010013985 adhesion receptor Proteins 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- 239000007801 affinity label Substances 0.000 description 1
- 238000007818 agglutination assay Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000007953 anoxia Effects 0.000 description 1
- 229940121363 anti-inflammatory agent Drugs 0.000 description 1
- 239000002260 anti-inflammatory agent Substances 0.000 description 1
- 230000010056 antibody-dependent cellular cytotoxicity Effects 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- 108010013835 arginine glutamate Proteins 0.000 description 1
- 108010047857 aspartylglycine Proteins 0.000 description 1
- 238000002820 assay format Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000000721 bacterilogical effect Effects 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 108010005774 beta-Galactosidase Proteins 0.000 description 1
- 102000005936 beta-Galactosidase Human genes 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 210000000601 blood cell Anatomy 0.000 description 1
- 210000005013 brain tissue Anatomy 0.000 description 1
- 102200034698 c.43G>A Human genes 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000021164 cell adhesion Effects 0.000 description 1
- 230000022534 cell killing Effects 0.000 description 1
- 230000005890 cell-mediated cytotoxicity Effects 0.000 description 1
- 230000007969 cellular immunity Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 238000005354 coacervation Methods 0.000 description 1
- 102000021124 collagen binding proteins Human genes 0.000 description 1
- 108091011142 collagen binding proteins Proteins 0.000 description 1
- 230000001447 compensatory effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000005094 computer simulation Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000012866 crystallographic experiment Methods 0.000 description 1
- 239000012228 culture supernatant Substances 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 108010016616 cysteinylglycine Proteins 0.000 description 1
- 108010060199 cysteinylproline Proteins 0.000 description 1
- 108010069495 cysteinyltyrosine Proteins 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- 210000001151 cytotoxic T lymphocyte Anatomy 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000003405 delayed action preparation Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- -1 e.g. Proteins 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 230000036251 extravasation Effects 0.000 description 1
- 238000005188 flotation Methods 0.000 description 1
- 238000000684 flow cytometry Methods 0.000 description 1
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 230000004034 genetic regulation Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000013595 glycosylation Effects 0.000 description 1
- 238000006206 glycosylation reaction Methods 0.000 description 1
- 108010015792 glycyllysine Proteins 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical group [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 210000003714 granulocyte Anatomy 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 108010080417 hemozoin Proteins 0.000 description 1
- 230000005745 host immune response Effects 0.000 description 1
- 102000051522 human CD36 Human genes 0.000 description 1
- 230000004727 humoral immunity Effects 0.000 description 1
- 239000000017 hydrogel Substances 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 210000004201 immune sera Anatomy 0.000 description 1
- 229940042743 immune sera Drugs 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 238000002649 immunization Methods 0.000 description 1
- 230000005847 immunogenicity Effects 0.000 description 1
- 238000001114 immunoprecipitation Methods 0.000 description 1
- 238000000099 in vitro assay Methods 0.000 description 1
- 238000005462 in vivo assay Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000028709 inflammatory response Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229960003130 interferon gamma Drugs 0.000 description 1
- 244000000056 intracellular parasite Species 0.000 description 1
- 108010057821 leucylproline Proteins 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 230000000527 lymphocytic effect Effects 0.000 description 1
- 108010089256 lysyl-aspartyl-glutamyl-leucine Proteins 0.000 description 1
- 108010017391 lysylvaline Proteins 0.000 description 1
- 238000002595 magnetic resonance imaging Methods 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- NIQQIJXGUZVEBB-UHFFFAOYSA-N methanol;propan-2-one Chemical compound OC.CC(C)=O NIQQIJXGUZVEBB-UHFFFAOYSA-N 0.000 description 1
- 239000004530 micro-emulsion Substances 0.000 description 1
- 239000003094 microcapsule Substances 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 210000005063 microvascular endothelium Anatomy 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000003068 molecular probe Substances 0.000 description 1
- 210000005087 mononuclear cell Anatomy 0.000 description 1
- 210000000066 myeloid cell Anatomy 0.000 description 1
- 239000002088 nanocapsule Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 201000009240 nasopharyngitis Diseases 0.000 description 1
- 230000037125 natural defense Effects 0.000 description 1
- 230000010807 negative regulation of binding Effects 0.000 description 1
- 230000011242 neutrophil chemotaxis Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000005298 paramagnetic effect Effects 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 230000003836 peripheral circulation Effects 0.000 description 1
- 238000002135 phase contrast microscopy Methods 0.000 description 1
- 108010012581 phenylalanylglutamate Proteins 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000013600 plasmid vector Substances 0.000 description 1
- 229920001308 poly(aminoacid) Polymers 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000011533 pre-incubation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 108010090894 prolylleucine Proteins 0.000 description 1
- 230000017854 proteolysis Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 1
- 102220062667 rs779791579 Human genes 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 230000003393 splenic effect Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 230000000451 tissue damage Effects 0.000 description 1
- 231100000827 tissue damage Toxicity 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 238000002054 transplantation Methods 0.000 description 1
- 239000012588 trypsin Substances 0.000 description 1
- 108010080629 tryptophan-leucine Proteins 0.000 description 1
- 210000003606 umbilical vein Anatomy 0.000 description 1
- 208000021331 vascular occlusion disease Diseases 0.000 description 1
- 210000005166 vasculature Anatomy 0.000 description 1
- 210000000264 venule Anatomy 0.000 description 1
- 239000013603 viral vector Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
- C07K14/70596—Molecules with a "CD"-designation not provided for elsewhere
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/62—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
- A61K47/64—Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
- A61K47/6425—Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent the peptide or protein in the drug conjugate being a receptor, e.g. CD4, a cell surface antigen, i.e. not a peptide ligand targeting the antigen, or a cell surface determinant, i.e. a part of the surface of a cell
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Definitions
- the present invention relates to agents which bind to the ICAM-1 or the CD36 binding site on malarially infected erythrocytes (IRBC).
- the present invention additionally relates to molecules capable of binding to the IRBC binding site on ICAM-1 or on CD36.
- the agents of the present invention include antibodies, peptides, and carbohydrates. These agents are useful in ameliorating the symptoms of malaria since they are capable of mhibiting the binding of an IRBC to either ICAM-1 or CD36 and stimulating the phagocytosis of IRBCs.
- the present invention further provides methods for the treatment of malaria, methods of preferentially killing an IRBC, methods of stimulating phagocytosis of an IRBC, and a method of diagnosing the presence of an IRBC.
- IRBC malaria-infected erythrocytes
- ICM-1 intercellular adhesion molecule-1
- CD54 Bosset et al, Nature (Lond.) 341:51-59 (1989)
- CD36 GPIV
- ICAM-1 intercellular adhesion molecule-1
- GPIV CD36
- ICAM-1-coated and CD36-coated surfaces Two cell surface receptors with broad tissue distribution, intercellular adhesion molecule-1 (ICAM-1, CD54) (Berendt et al, Nature (Lond.) 341:51-59 (1989)
- CD36 GPIV
- IRBC Laboratory-adapted IRBC bind to purified ICAM-1-coated and CD36-coated surfaces and the cytoadherent phenotype of these malaria-infected red cells can be modulated by successive panning on ICAM-1 or CD36-coated surfaces (Ockenhouse et al, J. Infect. Dis.
- ICAM-1-specific and CD36-specific monoclonal antibody (MAb) staining of small capillary endothelium from postmortem brain tissue colocalizes with IRBC cytoadherence in patients who have died from complications of cerebral malaria (Barnwell et al, J. Clin. Invest. 84:165-112 (1989); Aikawa et al, Am. J. Trop. Med. Hyg. 43:30 (1990)).
- ICAM-1-specific and CD36-specific monoclonal antibody (MAb) staining of small capillary endothelium from postmortem brain tissue colocalizes with IRBC cytoadherence in patients who have died from complications of cerebral malaria (Barnwell et al, J. Clin. Invest. 84:165-112 (1989); Aikawa et al, Am. J. Trop. Med. Hyg. 43:30 (1990)).
- ICAM-1 a member of the immunoglobulin-like superfamily, is a monomeric unpaired 90-115 M r glycoprotein composed of a bent extracellular domain containing five tandemly arranged immunoglobulin- like domains, a transmembrane region, and a cytoplasmic domain (Staunton et al, Cell 52:925-933 (1988); Simmons et al, Nature (Lond.) 331:624-621 (1988)).
- ICAM-1 is a ligand for the leukocyte integrins, lymphocyte function antigen-1 (LFA-1; CDlla/CD18) (Rothlein et aL, J. Immunol 137:1210-1214 (1986); Marlin et al. , Cell 51 :813-819 (1987)) and
- Mac-1 (CDllb/CD18) (Diamond et al,J. Cell Biol 111:3219-3139 (1990); Smith et al, J. Clin. Invest. 53:2008-2017 (1989)).
- the recognition, adhesion, and extravasation of lymphoid and myeloid blood cells through the vascular endothelium is an initial step of host immune response to tissue injury.
- the CD11/CD18 family of proteins are crucial for leukocyte and myeloid cell adhesion to endothelium, T cell activation, cytotoxic T cell killing, and neutrophil chemotaxis and homorypic aggregation (Larsen et al, Immunol. Rev. 114:181 (1990)).
- ICAM-1 is also subverted as a cellular receptor by the major group of human rhinoviruses (HRV), the etiologic agent of the common cold (Staunton et al, Cell 5d:849-853
- red blood cells infected with mature intracellular forms of the malaria parasite bind to a region located within the ammo-terminal immunoglobulin-like domain of ICAM-1 that is distinct from the regions recognized by LFA-1 and rhinovirus (Ockenhouse et al, Cell 68:63-69 (1992); and Berendt et al, Cell 68:11-%! (1992)).
- ICAM-1 has a restricted distribution in vivo, and its expression is regulated by LPS and the cytokines TNF, EL-13, and interferon-gamma
- TNF up regulate the surface expression of ICAM-1 and support adhesion of malaria-infected erythrocytes (Berendt et al., Nature (Lond.) 341:51-59
- IRBC bind to different receptors in different tissues depending upon the genetic regulation of host cellular receptors and the parasite cytoadherent phenotype as expressed by single or multiple counter-receptors. Deleterious effects to the host result from the sequestration of a numerically smaller proportion of IRBC expressing the pertinent counter- receptor within a population of parasitized red cells directing the binding of IRBC to capillary endothelium within the brain leading to cerebral malaria.
- Antigenically diverse naturally-acquired malaria isolates demonstrate serologically defined infected erythrocyte surface epitopes.
- the present invention discloses the binding site on ICAM-1 for Plasmodwmfalciparum- ⁇ ected erythrocytes.
- An IRBC binds to the first NH 2 -te ⁇ ninal domain of human but not mouse ICAM-1.
- the present invention discloses that small peptides, corresponding to a contiguous sequence of ICAM-1, are capable of inhibiting the binding of an IRBC to ICAM-1.
- the binding sites within domain 1 reside spatially distant from the recognition sites for LFA-1 and HRV.
- a therapeutic strategy directed toward reversing parasite sequestration ultimately can protect infected individuals from the deleterious complications of vascular occlusion.
- anti-receptor soluble ICAM-1 analogues based upon the critical contact residues for IRBC can now be engineered to bind, lyse, and kill sequestered intraerythrocytic parasites in cases of severe and complicated falciparum malaria, as well as diagnosis of the presence of malaria.
- the two primary sites an IRBC can bind to on a non-infected cell are ICAM-1 and CD36. Therefore, the binding of an IRBC to an uninfected cell can be inhibited by providing to the cells an agent capable of binding to the ICAM-1 binding site on the IRBC, the IRBC binding site on ICAM-1, the CD36 binding site on the IRBC, or to the IRBC binding site on CD36.
- the complications arising from malaria can be ameliorated.
- the agents of the present invention include: (a) agents which are capable of binding to the ICAM-1 binding site on an IRBC, said agents selected from the group consisting of ICAM-1, a fragment of ICAM-1, a functional derivative thereof, a peptide, an antibody, or a carbohydrate;
- agents which are capable of binding to the IRBC binding site on ICAM-1 said agents selected from the group consisting of a peptide, an antibody, or a carbohydrate;
- agents which are capable of binding to the CD36 binding site on an IRBC said agents selected from the group consisting of CD36, a fragment of CD36, a functional derivative of CD36, a peptide, an antibody, or a carbohydrate; and (d) agents which are capable of binding to the IRBC binding site on CD36, said agents selected from the group consisting of a peptide, an antibody, or a carbohydrate.
- the present invention includes the peptide agent whose amino acid sequence is: GSVLVT (SEQ ID NO 1). This agent is capable of binding to the ICAM-1 binding site of an IRBC.
- the invention further includes a method for producing a desired hybridoma cell that produces an antibody which is capable of binding to the IRBC binding site on ICAM-1, the ICAM-1 binding site of an IRBC, the IRBC binding site on CD36, or the CD36 binding site of an IRBC.
- the invention further includes chimeric proteins comprising ICAM, or fragments thereof, fused to an immunoglobulin or a fragment thereof.
- ICAM-1 fusion protein herein designated F185G1
- F185G1 consists of soluble-ICAM-1 fused to the hinge region and constant domains CH2 and CH3 of human IgGl heavy chain. Fusion proteins of this nature have been demonstrated to stimulate phagocytosis of an IRBC when bound to the IRBCs surface.
- the invention further includes a method of stimulating phagocytosis of an IRBC in a patient with malaria comprising administering to said patient a therapeutically effective amount of a fusion protein comprising ICAM-1, or a fragment thereof, fused to an immunoglobulin or a fragment thereof.
- hmICAM-1 human ICAM-1, domains 1 and 2; murine ICAM-1, domains 3-5
- mhICAM-1 human ICAM-1, domains 1 and 2; murine ICAM-1, domains 3-5
- results represent the mean of three determinations ⁇ standard deviation.
- ICAM-1 ICAM-1, murine ICAM-1, and human ICAM-2.
- Amino acid substitution mutations within human ICAM-1 affecting binding of Plasmodium falcipamm IRBC (Pf), LFA-1 (L), and HRV (R) are indicated by the solid line.
- the ahgnment of sequences by predicted secondary structure is indicated by 3-strands A-G.
- ICAM-1 hexapeptides (500 ug/ml) were added to ICAM-1 coated plates for 60 minutes. The peptides were acetylated at the N-terminus, amidated at the C-te ⁇ ninus. Aba is alpha amino butyric acid and is substituted in sequence for Cys. Results represent the mean ⁇ s.d. of three determinations and are compared to control IRBC binding to ICAM-1 in absence of peptides.
- Phagocytosis of Plasmodium falciparum-infected erythrocytes by human monocytes Phagocytosis of Plasmodium falciparum-infected erythrocytes by human monocytes.
- CD36-binding IRBC preincubated with F185G1 chimera bind to the monocyte surface but are not phagocytosed.
- ICAM-1-binding IRBC preincubated with F185G1 chimera are phagocytosed and internally degraded by monocytes.
- D. ICAM-1-binding IRBC in the absence of ICAM-1 immunoadhesin are not phagocytosed by monocytes.
- the present invention is based on the identification of the two primary binding sites an IRBC can bind to on a non-infected cell. These sites are contained on ICAM-1 and CD36.
- the present invention discloses that the binding site on ICAM-1 for Plasmodium falciparum-infected erythrocytes is the first NH 2 -terminal domain between residues Gly 1 -Ser ⁇ of human, but not mouse, ICAM-1. Further, it is disclosed herein that a peptides with an amino acid sequence selected from this region, can block the binding of an IRBC to ICAM-1.
- the present invention provides agents and methods for the treatment and diagnosis of malaria.
- the present invention includes:
- agents which are capable of binding to the ICAM-1 binding site on an IRBC said agents selected from the group consisting of ICAM- 1, a fragment of ICAM-1, a peptide, an antibody, or a carbohydrate;
- agents which are capable of binding to the IRBC binding site on ICAM-1 said agents selected from the group consisting of a peptide, an antibody, or a carbohydrate
- agents which are capable of binding to the CD36 binding site on an IRBC said agents selected from the group consisting of CD36, a fragment of CD36, a peptide, an antibody, or a carbohydrate
- agents which are capable of binding to the IRBC binding site on CD36 said agents selected from the group consisting of a peptide, an antibody, or a carbohydrate.
- agents which are capable of stimulating phagocytosis of an IRBC said agents selected from the group consisting of an immunoglobulin, or fragment thereof, fused to ICAM-1, or a fragment thereof.
- These agents are capable of blocking the binding of an IRBC to either ICAM-1 or CD36.
- the present invention includes functional derivatives of the above described agents.
- a “functional derivative” of an agent of the present invention is an agent which possesses a biological activity that is substan ⁇ tially similar to the biological activity of the agent it is a derivative of. For example, if the agent is capable of binding to the ICAM-1 binding site of an IRBC, then the functional derivative will possess this binding ability.
- the term “functional derivative” includes "fragments,” “variants,” and
- a “fragment” of an agent is meant to refer to any subset of the agent it is derived from. Fragments of ICAM-1 or CD36 which contain IRBG binding activity and are soluble are especially preferred. Soluble fragments of CD36 or ICAM-1 can be rationally designed by one skilled in the art. Generally, soluble fragments are generated by deleting the trans membrane regions of the molecule. Additionally, some of the more hydrophobic regions of the protein can be deleted. As used herein, a "variant" of a molecule is meant to refer to a molecule substantially similar in structure and function to either the entire molecule, or to a fragment thereof.
- a molecule is said to be "substantially similar” to another molecule if both molecules have substantially similar structures or if both molecules possess a similar biological activity. Thus, provided that two molecules possess a similar activity, they are considered variants, as that term is used herein, even if the sequence of amino acid residues is not identical.
- an agent is said to be a "chimeric-agent" if the agent possesses a structure not found in the agent it is derived from.
- additional structures are added to a parent agent in order to improve one of the agent's physical properties such as solubility, absorption, biological half life, etc., to eliminate or decrease one of the agent's undesirable properties or side effects such as immunogenicity or toxicity, or to add a property to the agent which is not present in the parent agent such as the ability to stimulate a biological effector function such as phagocytosis, complement-dependent cytolysis (CDC), antibody-dependent, cell- mediated cytotoxicity (ADCC), etc.
- Moieties capable of mediating such effects are disclosed in Remington's Pharmaceutical Sciences (1980).
- One type of chimeric-agent are "chemical-derivatives.” Chemical- derivatives contain one or more additional chemical moieties which are not part of the naturally occurring agent.
- Toxin-derivatized agents constitute a special class of chemical- derivatives. Toxin-derivatives contain an agent of the present invention covalently attached to a toxin moiety. Procedures for coupling such moieties to a molecule are well known in the art and are generally performed in situ.
- toxin-derivatized agent The binding of a toxin-derivatized agent to a cell brings the toxin moiety into close proximity to the cell and thereby promotes cell death.
- Any suitable toxin moiety may be employed; however, it is preferable to employ toxins such as, for example, the ricin toxin, the cholera toxin, the diphtheria toxin, radioisotopic toxins, or membrane-channel-forming toxins.
- Protein-derivatized agents constitute another type of chimeric- agent
- Protein-derivatives contain one or more additional peptide moieties which are not part of the naturally occurring agent Protein derivatives may be generated in situ using chemical means or in vivo using recombinant DNA techniques.
- Antibody-derivatized agents constitute a special class of protein- derivative.
- Antibody-derivatives contain an agent of the present invention covalently attached to an antibody or antibody fragment Procedures for coupling such moieties to a molecule are well known in the art.
- an antibody-derivatized agent to a cell brings the antibody or antibody fragment into close proximity to the cell.
- the antibody fragment will promote cell death by stimulating a biological effector function such as phagocytosis.
- Any suitable antibody or antibody fragment may be employed depending on the effector function which is to be stimulated (see Bruggeman et al, J. Exp. Med. 26 " ⁇ 5:1351-1361 (1987) for a review of effector functions); however, it is preferable to employ a fragment which contains the constant domain of one of the antibody chains such as the hinge and constant regions CH2 and CH3 of the human IgGl heavy chain.
- Functional derivatives of the peptide agents of the present invention having an altered amino acid sequence include- insertions, deletion, and substitutions in the amino acid sequence of the agent These can be prepared by synthesizing a peptide with the desired sequence. While the site for introducing an alteration in the amino acid sequence is predetermined, the alteration per se need not be predetermined. For example, to optimize the performance of altering a given sequence, random changes can be conducted at a target amino acid residue or target region to create a large number of derivative which can then be screened for the optimal combination of desired activity.
- IRBC binding site on ICAM-1 is made by synthesizing a polypeptide containing an alteration in the amino acid sequence of ICAM-1. The peptide is then screened for the ability to block IRBC binding to immobilized ICAM-1. Additionally, other screening assays known in the art can be employed to identify a change in a specific characteristic of the agent such as a change in the immunological character, affinity, redox or thermal stability, biological half-life, hydrophobiciry, or susceptibility to proteolytic degradation of the functional derivative.
- soluble derivatives of the agents of the present invention which are especially preferred are soluble derivatives.
- soluble derivatives of a molecule are generated by deleting transmembrane spanning regions or by substituting hydrophilic for hydrophobic amino acid residues.
- Another class of derivatives of the agents of the present invention which are based on CD36 which are especially preferred are those agents which lack the normal CD36 collagen binding site.
- Such derivatives can be created by generating random mutations via site directed or random mutagenesis and then screening the derivatives for their inability to bind collagen.
- site directed mutagenesis directed to regions suspected of containing the collagen binding site can be performed.
- the collagen binding site can be identified by, comparing the amino acid sequence of CD36 with other collagen binding proteins to identify regions of homology, analyzing the amino acid sequence of CD36 for regions which from disulfide bridges, or by cross linking collagen to CD36 and then proteolytically mapping, using agents such as trypsin, the cross-linked protein to identify the collagen linked fragment
- linker scanning mutagenesis can be employed to optimize the directed nature of the mutagenesis.
- the agents of the present invention may be obtained by: natural processes (for example, by inducing an animal, plant fungi, bacteria, etc., to produce a peptide corresponding to a particular sequence, or by inducing an animal to produce polyclonal antibodies capable of binding to a specific amino acid sequence); synthetic methods (for example, by synthesizing a peptide corresponding to the IRBC binding site on ICAM-
- the antibodies of the present invention can be generated by a variety of techniques known in the art.
- the antibodies of the present invention include monoclonal and polyclonal antibodies, as well fragments and humanized forms of these antibodies.
- Humanized forms of the antibodies of the present invention may be generated using one of the procedures known in the art such as chimerization or CDR grafting.
- the invention provides an antibody, and especially a monoclonal antibody, capable of binding to a molecule selected from the group consisting of the IRBC binding site on ICAM-1, the ICAM-1 binding site on an IRBC, the IRBC binding site on CD36, and the CD36 binding site on an IRBC.
- An antibody which binds to the IRBC binding site on ICAM-1 can be generated using a synthetic polypeptide whose amino acid sequence is identical to the amino acid sequence of the IRBC binding site on ICAM-1 as an antigen for immunizing an animal.
- One such peptide for generating an antibody which binds to the IRBC binding site on ICAM-1 has the following amino acid sequence: GSVLVT (SEQ ID NO 1).
- An antibody which binds to the ICAM-1 binding site on an IRBC can be generated by immunizing an animal with an IRBC. The antisera is then screened for its ability to block an IRBC from binding to immobilized ICAM-1.
- An antibody which binds to the CD36 binding site on an IRBC can be generated by immunizing an animal with an IRBC. The antisera is then screened for its ability to block an IRBC from binding to immobilized
- An antibody which binds to the IRBC binding site on CD36 can be generated by immunizing an animal with CD36. The antisera is then screened for its ability to block an IRBC from binding to immobilized CD36.
- One skilled in the art will be able to readily obtain both polyclonal and monoclonal antibodies with the above described specificities using procedures known in the art (Lutz et al, Exp. Cell Res. 175:109-124
- the polypeptide may be modified or administered in an adjuvant in order to increase the peptide antigenicity.
- Methods of increasing the antigenicrty of a polypeptide are well known in the art Such procedures include coupling the antigen with a heterologous protein (such as globulin or ⁇ -galactosidase) or through the inclusion of an adjuvant during immunization.
- a heterologous protein such as globulin or ⁇ -galactosidase
- the peptides of the present invention can be generated by a variety of techniques known in the art
- the peptides of the present invention include peptides whose amino acid sequence is substantially homologous to the naturally occurring binding sites disclosed herein as well as peptides generated through rational design which possess a desired binding specificity but differ significantly in amino acid sequence from the naturally occurring binding site.
- a peptide is said to have an amino acid sequence substantially homologous to another if, due to the presence of common a nino acid residence in homologous positions, the two peptides share common biological of physical property.
- the peptides of the present invention whose amino acid sequences are substantially homologous to the naturally occurring binding site include; the ICAM-1 binding site of an IRBC, the CD36 binding site of an IRBC, the IRBC binding site on ICAM-1, and the IRBC binding site on ICAM-1.
- SEQ ID NO 1 has an amino acid sequence which is homologous to the IRBC binding site on ICAM-1.
- peptides whose sequence, are substantially homologous to the naturally occurring binding site one skilled in the art can readily generate, through rational design, peptides that possesses the ability to bind to a specific amino acid sequence or antigenic epitope (Hodgson, J, Biotechnology 5:1245-1247 (1990)).
- Computer modeling systems are available that allow one skilled in the art to design a peptide which is able to bind to the specific regions and sequences disclosed herein.
- the peptide which are made according to this method can be readily screened for a desired specificity and physical properties.
- carbohydrates can be rationally designed to block protein/protein binding (Hodgson . Biotechnology 9:609-613 (1991)). Based on the present disclosure a carbohydrate can now be designed to block an IRBC from binding to ICAM-1 or to block an IRBC from binding to CD36.
- the invention includes the use of the agents disclosed herein; a) to inhibit the binding of an IRBC to a non-infected cell, and b) to preferentially kill an IRBC.
- the binding of an IRBC to ICAM-1 can be inhibited by providing an effective amount of an agent capable of binding to either the IRBC binding site on ICAM-1 or the ICAM-1 binding site on a IRBC.
- the binding of an IRBC to CD36 can be inhibited by providing an effective amount of an agent capable of binding to either the IRBC binding site on CD36 or the CD36 binding site on a IRBC.
- An example of an agent capable of inhibiting the binding of an IRBC to ICAM-1 is a peptide whose sequence is shown in SEQ ID NO 1.
- An IRBC can be preferentially killed by providing an IRBC with a toxin derivatized agent which is capable of selectively binding the IRBC.
- agents include a peptide of SEQ ID NO 1 or an antibody which is capable of binding to either the ICAM-1 or the CD36 binding site on an IRBC covalentiy liked to a toxin such as ricin.
- a toxin such as ricin.
- an IRBC can be preferentially killed by utilizing a mammal's natural defense systems.
- an IRBC with an antibody-derivatized agent which is capable of selectively binding the IRBC, the constant regions of the antibody moiety of the antibody- derivative agent will stimulate biological activities such as phagocytosis,
- CDC and ADCC
- an agent includes the F185G1 chimeric antibody which consist of the hinge region and constant domains CH2 and CH3 of the human IgGl heavy chain covalentiy linked to a soluble derivative of ICAM-1.
- F185G1 chimeric antibody which consist of the hinge region and constant domains CH2 and CH3 of the human IgGl heavy chain covalentiy linked to a soluble derivative of ICAM-1.
- agents of the present invention may be administered to a mammal singly or in combination with each other. Most preferably, an agent based on ICAM-1 is administered in combination with an agent based on CD36.
- the agents of the present invention may be administered intravenously, intramuscularly, subcutaneously, enterally, topically or other non-enteral means.
- the administration may be by continuous injections, or by single or multiple injections.
- the agents of the present invention are intended to be provided to recipient mammal in a "pharmaceutically acceptable form" in an amount sufficient to "therapeutically effective.”
- An amount is said to be therapeutically effective if the dosage, route of administration, etc. of the agent are sufficient to block the binding of an IRBC with a defined molecule or is sufficient to kill a portion of the IRBCs present in the mammal.
- an agent of the present invention when provided to a mammal to block the binding of an IRBC to ICAM-1 is said to be therapeutically effective if it is provided in sufficient dosage to block IRBC/ICAM-1 binding.
- the administration of the agents of the present invention may be for either a "prophylactic" or "therapeutic" purpose.
- the agent When provided prophylactically, the agent is provided in advance of any malaria symptomology.
- the prophylactic administration of the agent serves to prevent or attenuate any subsequent spread of the malaria parasite.
- the agent When provided therapeutically, the agent is provided at (or shortly after) the onset of a symptoms of the actual infection.
- the therapeutic administration of the compound(s) serves to attenuate or ameliorate any actual symptoms.
- agents of the present invention can be formulated according to known methods of preparing pharmaceutically useful compositions, whereby these materials, or their functional derivatives, are combined with a pharmaceutically acceptable carrier vehicle.
- Suitable vehicles and their formulation, inclusive of other human proteins, e.g., human serum albumin, are described, for example, in Remington's Pharmaceutical Sciences (16th ed., Osol, A., Ed., Mack, Easton PA (1980)).
- a pharmaceutically acceptable composition which is suitable for effective ad ⁇ ministration, such compositions will contain an effective amount of an agent of the present invention together with a suitable amount of carrier.
- the antibodies of the present invention may be supplied in humanized form, through chimerization or CDR grafting, when administered to a human in order that the antibody is in a more
- Control release preparations may be achieved through the use of polymers to complex or absorb the agents of the present invention.
- the rate and duration of the controlled delivery may be regulated to a certain extent by selecting an appropriate macromolecule matrix, by varying the concentration of macromolecules incorporated, as well as the methods of incorporation.
- Another possible method to control the duration of action by controlled release preparations is to incorporate the agents of the present invention into particles of a polymeric material, such as polyesters, polyamino acids, hydrogels, poly(lactic acid) or ethylene vinyl acetate copolymers.
- microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization, by gelatine or poly(methylmethacylate) microcapsulation, or in colloidal drug delivery systems, for example, liposomes, albumin microspheres, microemulsions, nanoparticles, and nanocapsules or in macroemulsions.
- the agents of the present invention can be used to; a) diagnose the presence of an IRBC in a mammal, and b) determine the location of the IRBC in a mammal.
- One skilled in the art can: a) detectably label the agents of the present invention using radioisotopes, affinity labels (such as biotin, avidin, etc.), enzymatic labels (such as horse radish peroxidase, alkaline phosphatase, etc.) fluorescent labels (such as FITC or rhodamine, etc.), or paramagnetic atoms, using procedures well-known in the art, for example see Sternberger, L.A. et al, J. Histochem. Cytochem. 18:315 (1970), Bayer, E.A. et al, Meth. Enzym. (52:308 (1979), Engval, E. et al,
- the agents of the present invention can be used to: a) assay for the presence of an IRBC in vivo as well as in vitro; and b) localize the presence of an IRBC to a specific location in vivo.
- the labeled agents of the present invention can readily incorporate into any of the currently available in vivo or in vitro assay formats such as an ELISA assay, a latex agglutination assay, and magnetic resonance imaging.
- the agents of the present invention can be used to: a) purify an IRBC from a population containing non-infected cells; and b) be used in the assay formats described above.
- An IRBC can be purified from a population of cells using affinity chromatography. Specifically, an infected cell expressing either the ICAM-
- CD36 binding site can be isolated from a mixture of cells by passing the cells over a column which contains an immobilized agent capable of binding the ICAM-1 or CD36 binding site present on the infected cell.
- Wild type and mutant ICAM-1 expressed in COS cells were examined for binding to laboratory-adapted and naturally-acquired malaria-infected erythrocytes. Domain deletion, human-mouse chimeric ICAM-1 molecules, and amino acid substitution mutants localized the primary binding site for parasitized erythrocytes to the first NH 2 -terminal immunoglobulin-like domain of ICAM-1.
- the ICAM-1 binding sites are distinct from those recognized by LFA-1, Mac-1, and the human major-type rhinoviruses.
- the addition of overlapping synthetic peptides encompassing the binding site on ICAM-1 inhibited malaria-infected erythrocyte adhesion to recombinant soluble ICAM-1-coated surfaces.
- Oligonucleotide-directed mutagenesis (Kunkel, T.A., Proc. Natl. Acad. Sci USA 52:488-492 (1985)) was used to generate ICAM-1 deletion, chimeric, and amino acid substitution mutants as described (Staunton et al, Cell (52:243-254 (1990)). Transfection of COS Cells
- COS cells at 50% confluency were transfected by the DEAE- dextran method using vector alone or vector containing wild-type or mutant ICAM-1 cDNA.
- COS cells were harvested 72 hours after transfection and the efficiency of transfection of ICAM-1 constructs was analyzed by indirect immunofluorescence and flow cytometry using anti- human ICAM-1 MAbs CL203 (Maio et al, J. Immunol 243:181-185 (1989)) (a gift of Dr. S. Ferrone), and RR1/1 (Dustin et al . Immunol 237:245-254 (1986)); and anti-murine MAb YNl/1 (Takei, F., /. Immunol
- ICAM-1 peptides Pro ⁇ -Thr 23 and overlapping hexapeptides spanning residues Gln'-Thr 23 were synthesized on an Applied Biosystems peptide synthesizer.
- Transfected COS cells in RPMI 1640 plus 10% fetal bovine serum were reseeded (2.5 - 4xl0 4 /well) 24-48 hours prior to assay into 24-well tissue culture plates at 37°C in 5% CO,.
- Malaria-infected erythrocytes 400 ul/well; 2% hematocrit; 20-35% parasitemia
- Unattached erythrocytes were removed by rinsing the wells with RPMI 1640.
- the anti-ICAM-1 MAbs CL203 or RR1/1 were added to each well. After 45 minutes incubation at room temperature, the wells were washed twice with RPMI 1640, and the cells were fixed with an ice-cold acetone-methanol (50% v v) mixture for one minute. Cells were rinsed with PBS and colloidal gold-labelled anti- mouse antibody (Amersham, Arlington, IL) was added to each well for 30 minutes, followed by three washes with phosphate-buffered saline.
- IRBC binding to ICAM-1-coated or CD36-coated surfaces was performed as follows.
- Soluble ICAM-1 (lOug ml) (Marlin et al, Nature (Lond.) 344:10-12 (1990)) or CD36 (1 ug/ml) (Tandon et al, J. Biol Chem. 264:1516-1583 (1989)) was coated onto plastic petri dishes (10 ug/ml) overnight at 4°C. PBS containing BSA (1%) was added for 60 mjnutes to block non-specific binding.
- ICAM-1 peptides were preincubated for 30 minutes with the IRBC prior to addition to receptor-coated plates. The number of IRBC bound per mm 2 surface area was quantitated by light microscopy.
- a 1.3kb fragment containing the ⁇ l hinge, (1 ⁇ 2 and C ⁇ sequence was generated by PCR from a plasmid containing the human gene
- This fragment was subcloned into Hindlll and Xhol sites of pCDGl to produce ⁇ CDG185Gl.
- Culture supernatants of COS cells transfected with pCDG185Gl contained approximately 0.5 ⁇ g/ml ICAM-1-IgGl chimera (F185G1) as determined by ELISA on day 3 post transfection.
- F185G1 was purified from culture media of transfected COS cells by ICAM-1 mAB (R6.5)-Sepharose and protein A-Sepharose chromatography. Figures 4a and b.
- Soluble ICAM-1 truncated before the hydrophobic transmembrane region was purified from the supernatants of transfected CHO cells (Marlin et al, Nature 344:10-12 (1990)) or baculovirus-vecto ⁇ infected insect cells (Diamond et al, Cell 65:961-911 (1991)).
- ICAM-1 was adsorbed (20 ⁇ l aliquots) to plastic bacteriological plates (Falcon 1007) overnight at 4 C C.
- F185G1 IAM-1-IgGl chimera
- ICAM-1-coated plates 40-50% parasitemia, 1% hematocrit
- ItG- ICAM IRBC were incubated in solution with increasing concentrations of F185G1 chimera, sICAM-1/CHO, or normal human IgG for 30 minutes prior to addition to plates coated with sICAM-1/CHO (10 ⁇ g/ml). Erythrocytes not attached to the sICAM-1-coated surface were removed by gentle rinsing of the plates. Cells were fixed with 2% glutaraldehyde and stained with Giemsa. The number of malaria-infected erythrocytes bound per mm 2 surface are represents the mean of three separate determinations. The concentrations of sICAM-1 and F185G1 was determined with a capture ELISA assay (Marlin et al, Nature 344:10-12
- SKW-3 cell binding F185G1 at the concentration indicated was absorbed to 96-well microtiter plates which had previously been coated with protein A (20 ⁇ g ml) and blocked with 1% BSA-PBS.
- SKW-3 cells in binding buffer RPMI 10% FBS/20mM HEPES
- binding buffer RPMI 10% FBS/20mM HEPES
- 2',7 r -bis(2-carboxyethyl)-(5 and 6)-carboxyf_uorecein acetomethyl ester (Molecular Probes, Eugene, Or.). Binding (10 5 cells well) was for 1 hour at 25°C.
- Bound cells were quantitated on a fluorescence concentration analyzer (Pandex). Percent bound ( ⁇ SD) was calculated by subtracting background binding to wells that were not coated with ICAM-1 from binding to ICAM-1 coated wells, divided by input fluorescence x 100.
- IRBC X 10 6 per 100 ⁇ l
- ICAM-1 ItG-ICAM
- CD36 ItG-CD36
- F185G1 chimera F185G1 chimera
- normal human IgG 20 ⁇ g/ml final concentration
- IRBC from individuals with uncomplicated malaria, CY25, or complicated severe cerebral malaria, G15 were cultured in vitro for 24 hours to allow intraeiythrocytic parasite maturation to the trophozoite stage of development
- erythrocytes bound to COS cells expressing wild-type and domain deleted ICAM-1 (Table 1).
- Human and murine mutant chimeric ICAM-1 molecules were constructed from cDNAs containing a conserved Bgl II restriction site at amino acid residue 168 of the human sequence (Staunton et al, Cell (52:243-254 (1990). Human domains Dl and D2 (hmICAM-1) or murine domains Dl and D2 (mhICAM-1) were recombined with domains D3-D5 of the other species. The chimeric cDNAs were expressed in COS cells and IRBC binding determined. The efficiency of expression was determined using two MAbs to human ICAM-1, RR/1 and CL203, and MAb YNl/1 (Horley et al, EMBO J.
- Amino acid substitution mutants of ICAM-1 have profound effects oh LFA-1, Mac-1, and human rhinovirus binding. Similarly, the adhesion of IRBC to single and multiple amino acid substitution mutants was examined. Amino acid substitutions in Dl and D2 are denoted by one- letter code for the wild-type sequence followed by a slash and the one letter code for the mutant sequence (Table 2). The efficiency of mutant
- ICAM-1 expression on COS cells was determined using MAb CL203 by immunocytofluorimetry and in adhesion assays by immunogold silver staining.
- Mab CL203 which recognizes an epitope located within the D4 region had no effect on IRBC binding.
- the amino acid substitution mutants, D60S/KL and R13G/EA, which conformationally disrupt the secondary structure of domains 1 and 2 also abrogate IRBC adhesion (Table 2).
- ICAM-1 The predicted secondary structure of ICAM-1 based on X-ray crystallographic studies of the immunoglobulin-like molecules (Williams et al, Annu. Rev. Immunol (5:381-405 (1988); Hunkapiller et al, Adv. Immunol 44:1-63 (1989)) and on primary amino acid sequences indicate that each Ig-like domain is composed of 7 expected anti-parallel -strands folded into a sandwich comprising two facing 3-sheets connected by intramolecular disulfide bonds between strands B and F (Fig. 2). ⁇ - strands A, B, E, D form one sheet while C, F, G strands fashion the opposing sheet.
- the contact site for Plasmodium falciparum -infected erythrocytes is predicted to be localized in domain 1 to a loop between ⁇ strands A and B and extend into ⁇ strand B. This contact site is distinct from the binding sites for LFA-1 and HRV (Fig. 2).
- a linear peptide Pro ⁇ -Thr 23 and the hexapeptide GSVLVT inhibited IRBC binding in a dose-dependent manner with 50% inhibition at approximately 0.125 and 0.3mM, respectively (Fig. 3b).
- the inhibitory effect of these peptides was three orders of magnitude less than that observed using sICAM-1 as the inhibitor of IRBC binding (Fig. 3b).
- the inhibition by the ICAM-1 peptides was specific for ICAM-1-binding infected erythrocytes, since parasitized red cells which bind to an alternative sequestration receptor, CD36, were not inhibited from binding to immobilized CD36 (Fig. 3b).
- ICAM-1 amino add substitution mutants were generated by oligonucleotide- directed mutagenesis (Staunton et aL, Cell 67:243-254 (1990)). Wild-type (wt) residues precede the slash and are followed by the substitution residues in the mutant.
- IRBC adhesion to COS cells expressing mutant ICAM-1 was assessed by concurrent monoclonal antibody CL203 staining and IRBC adhesion and expressed as the mean percentage ⁇ standard deviation (sd) binding of IRBC to wild-type ICAM-1 transfected cells. The values for LFA-1 binding and HRV14 binding to the new mutants generated for these studies are shown in the columns within the table. * Amino acid substitution mutants with decreased binding as previously published (Staunton et aL, Cell 62:243-254 (1990)).
- the immunoadhesin did not bind uninfected erythrocytes nor erythrocytes infected with malaria parasites which bind to an alternative endothelial receptor, CD36 (data not shown).
- the ICAM-1 immunoadhesin is a more effective inhibitor of IRBC adhesion to ICAM-1-coated surface than sICAM-1 (Fig. 2b). Fifty percent inhibition of IRBC binding is achieved with approximately 8 fold less F185G1 than sICAM-1. Enhanced binding may reflect the multivalent nature of F185G1.
- T-lymphoblastoid cells SKW-3 cells adhere to F185G1 on a solid substrate and binding is enhanced by PMA- induced activation of LFA-1 (Fig. 2c). Concentrations of soluble F185G1 completely block IRBC binding do not inhibit LFA-1 dependent SKW-3 binding to sICAM-1 coated surfaces (Fig. 2d). In addition binding of soluble F185G1 to lymphoblastoid cells with or without PMA treatment can not be detected by indirect immunofluorescence (data not presented). Hence the avidity of F185G1 is higher for the receptor on IRBC than for
- ICAM-1 immunoadhesin was chosen for the immunoadhesin because this subclass is the most effective in triggering antibody-dependent cellular cytotoxicity (Riechmann et al, Nature
- the F185Gl-treated internalized IRBC are quickly degraded and residual parasite-derived hemozoin pigment observed intracellularly (Fig. 4b,c).
- CD36-binding IRBC attach to CD36 on the surface of monocytes but are not phagocytized through this receptor (Fig 4a).
- the rosettmg of ItG-CD36 IRBC with monocytes was blocked completely by the anti-CD36 monoclonal antibody OKM5 (data not shown).
- the ICAM-1-binding IRBC are not resetted or phagocytosed in the absence of F185G1 (Fig. 4d).
- Sequestration of P. falciparum IRBC plays a pivotal role in the pathology of malaria, probably by triggering a cascade of deleterious events including local anoxia, induction of toxic inflammatory mediators, edema and tissue damage. Sequestration in the brain leads to the most fatal form of the disease, cerebral malaria (World Health Organization Malaria Action Programme, Trans. R Soc. Trop. Med. Hyg. 80 Suppl.:3-50 (1986)). lmmunoadhesins mimicking P. falciparum sequestration receptors can be therapeutically effective through two distinct mechanisms.
- immunoadhesins can sensitize parasitized erythrocytes for recognition and elimination by the immune system, as exemplified here by monocyte phagocytosis and destruction mediated by an ICAM-1 immunoadhesin. Release from sequestration is not necessarily required for this effector mechanism, as it could presumably be mediated by monocytes and granulocytes at sites of sequestration in post capillary venules.
- a side benefit of clearance of parasites by phagocytes is that it boosts host humoral and cellular immunity to P. falciparum. Cytoadherence receptor binding must be conserved and thus pathogen strain variation, which is extensive for P. falciparum, would not be an effective mechanism for evasion of this therapy.
- ADDRESSEE Sterne, Kessler, Goldstein & Fox
- MOLECULE TYPE DNA
- SEQUENCE DESCRIPTION SEQ ID NO:10: TTTCTCGAGG GTGTCTGCTG GAAGCAGGCT CAG 33
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Cell Biology (AREA)
- Immunology (AREA)
- Molecular Biology (AREA)
- Medicinal Chemistry (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Epidemiology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Toxicology (AREA)
- Zoology (AREA)
- Gastroenterology & Hepatology (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Genetics & Genomics (AREA)
- Pharmacology & Pharmacy (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Peptides Or Proteins (AREA)
Abstract
Description
Claims
Applications Claiming Priority (6)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US76962591A | 1991-10-03 | 1991-10-03 | |
| US769,625 | 1991-10-03 | ||
| US86270892A | 1992-04-03 | 1992-04-03 | |
| US862,708 | 1992-04-03 | ||
| US89906492A | 1992-06-12 | 1992-06-12 | |
| US899,064 | 1992-06-12 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO1993006849A1 true WO1993006849A1 (en) | 1993-04-15 |
Family
ID=27419659
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US1992/008483 WO1993006849A1 (en) | 1991-10-03 | 1992-10-05 | Binding of plasmodium falciparum-infected erythrocytes to cd36 |
Country Status (2)
| Country | Link |
|---|---|
| AU (1) | AU2861292A (en) |
| WO (1) | WO1993006849A1 (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2000019883A3 (en) * | 1998-10-07 | 2000-09-08 | Medical Res Council | Compositions and methods of disease diagnosis and therapy |
| WO2009043525A3 (en) * | 2007-09-11 | 2009-08-13 | Mondobiotech Lab Ag | Use of the combination of gluten exorphin c and cd36 as a therapeutic agent |
-
1992
- 1992-10-05 WO PCT/US1992/008483 patent/WO1993006849A1/en active Application Filing
- 1992-10-05 AU AU28612/92A patent/AU2861292A/en not_active Abandoned
Non-Patent Citations (7)
| Title |
|---|
| BIOCHEMICAL PHARMACOLOGY, Volume 41, No. 12, issued 15 June 1991, P.S. WRIGHT et al., "Disruption of Plasmodium Falciparum-Infected Erythrocyte Cytoadherence to Human Melanoma Cells with Inhibitors of Glycoprotein Processing", pages 1855-1861. * |
| CELL, Volume 58, issued 14 July 1989, P. OQUEDO et al., "CD36 Mediates Cytoadherence of Plasmodium Falciparum Parasitized Erythrocytes", pages 95-101. * |
| SCIENCE, Volume 220, issued 06 May 1983, D.J. HNATOWICH et al., "Radioactive Labeling of Antibody: A Simple and Efficient Method", pages 613-615. * |
| SCIENCE, Volume 238, issued 20 November 1987, E.S. VITTETTA et al., "Redesigning Nature's Poisins to Create Anti-Tumor Reagents", pages 1098-1104. * |
| SCIENCE, Volume 243, issued 17 March 1989, C.F. OCKENHOUSE et al., "Identification of a Platelet Membrane Glycoprotein as a Falciparum Malarai Sequestration Receptor", pages 1469-1471. * |
| THE JOURNAL OF BIOLOGICAL CHEMISTRY, Volume 264, No. 13, issued 05 May 1989, N.N. TANDON et al., "Isoaltion and Characterization of Platelet Glycoprotein IV (CD36)", pages 7570-7575. * |
| THE JOURNAL OF EXPERIMENTAL MEDICINE, Volume 176, issued October 1992, C.F. OCKENHOUSE et al., "Human Vascular Endothelial Cell Adhesion Receptors for PLasmodium Falciparum-Infected Erythrocytes: Roles for Endothelial Leukocyte Adhesion Molecule 1 and Vascular Cell Adhesion Molecule 1", pages 1183-1189. * |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2000019883A3 (en) * | 1998-10-07 | 2000-09-08 | Medical Res Council | Compositions and methods of disease diagnosis and therapy |
| AU776917B2 (en) * | 1998-10-07 | 2004-09-23 | Imperial College Of Science, Technology And Medicine | Compositions and methods of disease diagnosis and therapy |
| EP1129217A4 (en) * | 1998-10-07 | 2005-04-20 | Medical Res Council | COMPOSITIONS AND METHODS FOR SICKNESS DIAGNOSIS AND THERAPY |
| WO2009043525A3 (en) * | 2007-09-11 | 2009-08-13 | Mondobiotech Lab Ag | Use of the combination of gluten exorphin c and cd36 as a therapeutic agent |
Also Published As
| Publication number | Publication date |
|---|---|
| AU2861292A (en) | 1993-05-03 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Ockenhouse et al. | Plasmodium falciparum-infected erythrocytes bind ICAM-1 at a site distinct from LFA-1, Mac-1, and human rhinovirus | |
| Parham et al. | Inhibition of alloreactive cytotoxic T lymphocytes by peptides from the α2 domain of HLA–A2 | |
| US6358510B1 (en) | ICAM-1 derivatives with altered ability to bind LFA-1 | |
| FI102181B (en) | Process for obtaining ICAM-1 (intermolecular adhesion molecules) in substantially pure form | |
| US20120045447A1 (en) | T cell costimulating polypeptides and uses thereof | |
| JPH05508779A (en) | CD2-binding domain of lymphocyte function-related antigen 3 | |
| WO1997011971A1 (en) | Porcine cell interaction proteins | |
| CZ283478B6 (en) | Recombinant dna molecule capable of encoding icam-3 or functional derivative thereof, processes for obtaining thereof and use | |
| NZ232203A (en) | Human soluble intercellular adhesion molecule-1 (sicam-1), dna encoding it, antibodies and pharmaceutical compositions | |
| CA1341185C (en) | Intercellular adhesion molecules and their binding ligands | |
| JPH01110700A (en) | Intercellular sticking molecule and bondable ligand thereof | |
| CA2008368C (en) | Soluble molecule related to but distinct from icam-1 | |
| JP4776845B2 (en) | Novel triggering receptors associated with natural cytotoxicity mediated by human natural killer cells and antibodies with identical properties | |
| WO1994013312A1 (en) | Mucosal vascular addressin, dna and expression | |
| WO1993006850A1 (en) | Plasmodium falciparum-infected erythrocytes binding to icam-1 and cd36 | |
| Staunton et al. | Soluble intercellular adhesion molecule 1-immunoglobulin G1 immunoadhesin mediates phagocytosis of malaria-infected erythrocytes. | |
| Craig et al. | Failure to block adhesion of Plasmodium falciparum-infected erythrocytes to ICAM-1 with soluble ICAM-1 | |
| US5871733A (en) | Multimeric forms of human rhinovirus receptor protein | |
| WO1993006848A1 (en) | Cd36 immunoadhesins and their use in selectively killing plasmodium falciparum infected erythrocytes | |
| US5512442A (en) | Detection of vascular adhesion protein-1 (VAP-1) | |
| AU1727900A (en) | Method for inhibiting macrophage infiltration using monoclonal anti-alpha-d-antibodies | |
| WO1993006849A1 (en) | Binding of plasmodium falciparum-infected erythrocytes to cd36 | |
| JPH0753407A (en) | Method for controlling immune response and drug related to immune cells and endothelial cells | |
| JPH03157397A (en) | Intercellular cohesive molecules and their bonding ligand | |
| JPH09511387A (en) | Novel cell surface receptor, antibody composition, and use thereof |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A1 Designated state(s): AT AU BB BG BR CA CH CS DE DK ES FI GB HU JP KP KR LK LU MG MN MW NL NO PL RO RU SD SE |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL SE BF BJ CF CG CI CM GA GN ML MR SN TD TG |
|
| COP | Corrected version of pamphlet |
Free format text: PAGES 1/10-10/10,DRAWINGS,REPLACED BY NEW PAGES 1/13-13/13 |
|
| DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
| EX32 | Extension under rule 32 effected after completion of technical preparation for international publication |
Free format text: UA |
|
| EX32 | Extension under rule 32 effected after completion of technical preparation for international publication |
Free format text: UA |
|
| REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
| 122 | Ep: pct application non-entry in european phase | ||
| NENP | Non-entry into the national phase |
Ref country code: CA |