[go: up one dir, main page]

WO1993004920A1 - Commande de sequence pour degivreur rotatif - Google Patents

Commande de sequence pour degivreur rotatif Download PDF

Info

Publication number
WO1993004920A1
WO1993004920A1 PCT/US1992/007486 US9207486W WO9304920A1 WO 1993004920 A1 WO1993004920 A1 WO 1993004920A1 US 9207486 W US9207486 W US 9207486W WO 9304920 A1 WO9304920 A1 WO 9304920A1
Authority
WO
WIPO (PCT)
Prior art keywords
propeller
deicing
driven aircraft
disposed
rotatable
Prior art date
Application number
PCT/US1992/007486
Other languages
English (en)
Inventor
Linda S. Boyd
Timothy M. Mcdonald
John F. Smith
Original Assignee
United Technologies Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Technologies Corporation filed Critical United Technologies Corporation
Publication of WO1993004920A1 publication Critical patent/WO1993004920A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D15/00De-icing or preventing icing on exterior surfaces of aircraft
    • B64D15/16De-icing or preventing icing on exterior surfaces of aircraft by mechanical means, e.g. pulsating mats or shoes attached to, or built into, surface
    • B64D15/163De-icing or preventing icing on exterior surfaces of aircraft by mechanical means, e.g. pulsating mats or shoes attached to, or built into, surface using electro-impulsive devices

Definitions

  • This invention relates to aircraft deicing systems, and more particularly to such systems having a controller disposed on a rotating propeller portion of a propeller-driven aircraft.
  • Propeller deicing systems comprise apparatus embodying various technologies such as pneumatic and electro-thermal. More recently, electro-expulsive, electro-impulsive, and eddy-current technologies have been proposed for use in propeller deicing. All of these systems either traditionally use or will use slip rings as the primary means of transmitting electrical power from the aircraft in a timed sequence to deicer blankets on the propeller blades and/or spinner.
  • Current propeller deicing systems are controlled by a timer disposed on the stationary aircraft side. The timer signals when power is to be transmitted from the stationary side to the rotating side of the propeller system. Furthermore, the power is directed to different slip rings to energize certain blade deicers at a given time. One slip ring is required for each power transmission and one for electrical ground.
  • slip rings and the corresponding brushes are susceptible to many different wear and reliability problems. These problems are due to brush chatter, bounce, side wear hang-up, oil and brush dust contamination, arc-over, ring waviness, etc. Experience has shown that it is difficult to control all the wear and reliability causes systematically to produce a robust design.
  • Objects of the present invention include provision of apparatus on the rotating side of a propeller driven aircraft for controlling the sequencing of energization of propeller deicers.
  • a deicing system for a propeller driven aircraft includes deicing apparatus such as pneumatic, electro-thermal r electro-impulsive, eddy-current, or electro-expulsive blankets disposed on the rotating propeller blades and/or spinner, the deicing apparatus receives electrical power from the stationary side of the aircraft through an electrical power transfer interface such as a slip ring/brush block arrangement, the deicing apparatus receives the electrical power in a timed sequence controlled by electronic circuitry disposed on the rotating side of the aircraft.
  • deicing apparatus such as pneumatic, electro-thermal r electro-impulsive, eddy-current, or electro-expulsive blankets disposed on the rotating propeller blades and/or spinner
  • the deicing apparatus receives electrical power from the stationary side of the aircraft through an electrical power transfer interface such as a slip ring/brush block arrangement
  • the deicing apparatus receives the electrical power in a timed sequence controlled by electronic circuitry disposed on the rotating side of the aircraft.
  • the present invention significantly reduces slip ring and brush block maintenance. Further, locating the timing sequence controller on the rotating side reduces the problem of unbalanced power draw and fluctuating demand over time from the aircraft generator. Either slip ring/brush systems or inductive coupling systems or other known systems may be used in conjunction with the present invention to transmit power to the rotating side.
  • slip rings/brush block systems two slip rings may be used; one for power and one for ground, regardless of how many blades or deicer segments (blades and/or spinners) are involved. This reduces maintenance and increases reliability due to the elimination of one or more slip rings and the corresponding contacting brushes.
  • power transmission systems such as inductive couplers, it is also possible for both power and some portion of the controlling logic to be transmitted simultaneously.
  • Fig. 1 is a perspective view of an aircraft propeller system
  • Fig. 2 is a cross sectional view of a single blade in the propeller of Fig. 1;
  • Figs. 3(a) and 3(b) are detailed perspective views of a blade of Fig. 1 along with corresponding deicer segments;
  • Fig. 4 is an electrical block diagram of apparatus for controlling the propeller deicing system illustrated in Figs. 1-3. ;
  • Fig. 5 is a cross sectional view of the propeller system of Fig. 1.
  • Fig. 1 is illustrated a perspective view of an aircraft propeller system 10 having six (6) blades 12-22 emanating from a propeller hub 24 (not shown) covered by a spinner 26.
  • the hub 24 is illustrated in more detail in Fig. 5.
  • Each blade 12-22 is parenthetically numbered and has a deicer 28-38 attached to a leading edge thereof.
  • the spinner 26 may also have a deicer 39 attached to a surface of the spinner.
  • the deicer 28-39 may be of known technology, such as pneumatic, electro-thermal, electro-impulsive, eddy-current or electro-expulsive.
  • the type of deicer technology is irrelevant.
  • the deicer comprises the more modern electro-expulsive deicer ("EED") technology.
  • An example of a pneumatic deicing system is found in U.S. Patent No. 4,494,715 to eisend, Jr., assigned to the B.F. Goodrich Co., and which is hereby incorporated by reference.
  • An example of an electro-impulsive deicing system (“EIDS") is that developed by Garrett Canada, a division of Allied-Signal Canada, Inc., Rexdale, Ontario, Canada.
  • the EIDS may comprise that developed by Advance Concepts De-icing Company, San Diego, Calif., or developed by Rohr Industries, Inc., Chula Vista, Calif.
  • An example of an eddy-current deicing system is that developed by Electroimpact, Inc., Seattle, Wash.
  • FIG. 2 is a cross sectional view of a single blade 12-22 which illustrates the location of the deicers 28-38 on a blade leading edge. Since each blade deicer configuration is similar, only one blade and deicer is described herein. Each blade deicer is divided into, e.g., four (4) segments 40-46. In a similar fashion, the deicer 39 on the spinner 26 may also be divided into a number of segments (not shown) . As described in detail hereinafter, the blade deicer segments 40-46, along with the spinner deicer 39, are separately electrically energized in a timed sequence. Also indicated in Fig. 2 is the camber side 48 and the face side 50 of the blade 12-22.
  • FIGs. 3(a) and 3(b) are illustrated more detailed perspective views of a blade 12-22 and corresponding deicer segments 40-46. From these illustrations the height and width of the deicer segments in relation to the height of the blade can better be seen and appreciated.
  • Fig. 4 there illustrated is an electrical block diagram of apparatus 60 for controlling the propeller deicing system of Figs. 1-3.
  • the apparatus 60 is similar to that illustrated and described in the aforementioned U.S. Patent No. 4,690,353 to Haslim, particularly Fig. 1 and the accompanying text therein.
  • the aircraft has a rotating deicer sequence controller 62 disposed on a rotating propeller portion 64 of the aircraft in accordance with the present invention.
  • One or more electrical power and ground signals are transmitted from an aircraft power supply 65 located on the stationary (i.e., non-rotating) side 66 of the aircraft.
  • the power and ground signals are fed on signal lines 68,70, respectively, out to a slip ring 72 and brush block 74 arrangement located at the propeller on the engine nacelle.
  • the slip ring/brush block scheme is a well known exemplary method of transmitting electrical power across a stationary/rotating mechanical interface.
  • the method of transmitting electrical power from the stationary side to the rotating propeller portion of the aircraft is irrelevant.
  • a known inductive coupling method may be used instead of the slip ring/brush block scheme.
  • the present invention has the greatest potential for benefit in a slip ring/brush block arrangement.
  • the electrical power and ground on the rotating propeller portion are fed to a high voltage power supply 80.
  • the high voltage power supply 80 is on the rotating propeller portion of the aircraft. However, it is tb be understood that the supply 80 may, if desired, be located on the stationary side of the aircraft.
  • the supply provides a high voltage on a line 82 to a first terminal 84 of each of a number (N) of single-pole, double-throw (SPDT) switches 86.
  • a second terminal 88 of each switch 86 connects to a segment 40-46 of a corresponding deicer blanket or to the spinner deicer 39.
  • the arm 90 of each switch connects at an end to an associated power storage unit 92, typically a capacitor.
  • capacitors 92 for energy storage with EED technology significantly reduces the power required from the aircraft electrical system compared to that required for electro-thermal deicers.
  • each arm is individually controlled by the sequence controller 62 through a signal on a line 94.
  • the controller schedules the delivery of electrical power in an orderly sequence to the segments 40-46 or spinner deicer 39.
  • each SPDT switch 86 is independently controlled by the signal on the line 94.
  • this signal may in reality represent a plurality of individual signals on a corresponding plurality of signal lines.
  • sequence controller 62 The details of the sequence controller 62 form no part of the present invention.
  • the sequence controller is well known and may be similar to that described in the aforementioned U.S. Patent No. 4,690,353. to Haslim et al., which has heretofore been incorporated by reference.
  • the sequence controller may be that supplied by ICE Corp., Manhattan, Kansas.
  • the sequence controller its operation is such that the deicer segment 40-46 or spinner deicer 39 to be energized is selected and activated for a period of time. The deicer is then deactivated and the system may delay, if desired, for some time before selecting and activating the next segment in the desired sequence. This procedure is repeated until all or some portion of the segments have been activated and deicing of the propeller blades and/or spinner is complete.
  • one segment 40-46 on each of two blades 12-22 or spinner may, if desired, be simultaneously controlled.
  • the specific number of segments and optimum sequencing will vary depending on the specific propeller deicing system design.
  • each blade deicer in Fig. 2 consists of four segments 40-46: two on the camber side 48 and two on the face side 50.
  • alternate blades 12-22 on a propeller may be energized simultaneously.
  • a single firing may deice one segment on each of three blades. Each segment is fired, e.g., twice per minute.
  • the sequence controller 62 may select a repeatable pattern of segment energization, or may vary the number or timing of the sequence.
  • a variable sequence may be used to optimize ice removal by using additional inputs, such as temperature or ice presence, to increase or decrease the frequency of energizing particular segments.
  • the variable sequence may also increase the life of the deicer to be energized.
  • Fig. 5 is illustrated a cross sectional view of the propeller system of Fig. 1.
  • Each propeller blade 12-22 emanates from the rotating propeller hub 24 covered by the spinner 26.
  • the deicer 28-38 is attached to a leading edge of the blade.
  • a brush block 74 and associated slip rings 72 are also illustrated.
  • the electronic circuitry of Fig. 4 for controlling deicer segment energization may be located at various places on the rotating side of the propeller.
  • the circuitry is preferably enclosed in a housing 100 which is able to withstand the normally harsh environmental conditions.
  • the portion of the circuitry which is typically located within the housing is within the dotted lines of Fig. 4.
  • the housing 100 may be located at the front or side of the modular actuator assembly 102.
  • the housing may be mounted to the hub 24. It is to be understood that these locations are purely exemplary; any suitable mounting location on the rotating side may be used, if desired, in accordance with the present ' invention.
  • the housing mounted to the hub also illustrated in Fig. 5 is the location of necessary wiring between the housing and the slip ring/brush block arrangement, and also between the housing and the deicer on the blades and spinner.
  • the present invention moves the unit which controls the energy received at the blade or spinner from the stationary side to the rotating side of a propeller deicing system.
  • the final selection of deicer segment(s) to receive energy is on the rotating side of the propeller system. This reduces the unbalanced power draw and periodic fluctuations in power demand prevalent in the prior art when propeller deicing is required.
  • the present invention also reduces the number of required slip rings to, e.g., two, regardless of how many deicer segments are energized simultaneously.
  • the use of two rings along with lower current requirements translates into smaller, lighter components including slip rings, mounting block, connectors and harness wiring. Further, the potential for electrical arcing problems is reduced with two slip rings.
  • the transmitted power can be stored in capacitors on the rotating side until the timing sequence controller directs the energy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

Système de dégivrage pour aéronef à hélice qui comprend un appareil de dégivrage tel que des nappes électro-expulsives placées sur les pales de l'hélice rotative. Ledit appareil de dégivrage est alimenté en énergie électrique depuis la partie stationnaire (66) de l'aéronef par l'intermédiaire d'une interface de transfert d'énergie électrique, telle qu'un dispositif bague glissante/bloc de balais (72). L'appareil de dégivrage reçoit de l'énergie électrique dans une séquence temporisée commandée par un circuit électronique de temporisation (62) placé sur la partie rotative.
PCT/US1992/007486 1991-09-06 1992-09-04 Commande de sequence pour degivreur rotatif WO1993004920A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US75600491A 1991-09-06 1991-09-06
US756,004 1991-09-06

Publications (1)

Publication Number Publication Date
WO1993004920A1 true WO1993004920A1 (fr) 1993-03-18

Family

ID=25041617

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1992/007486 WO1993004920A1 (fr) 1991-09-06 1992-09-04 Commande de sequence pour degivreur rotatif

Country Status (1)

Country Link
WO (1) WO1993004920A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130052031A1 (en) * 2011-08-26 2013-02-28 Michael Fedor Towkan Propeller blades having icephobic coating
WO2018204942A1 (fr) * 2017-05-09 2018-11-15 Markus Villinger Rotor, en particulier pour aéronefs et éoliennes

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0040017A1 (fr) * 1980-05-08 1981-11-18 LUCAS INDUSTRIES public limited company Système de commutation pour la connexion séquentielle des charges sur une alimentation electrique
US4690353A (en) * 1985-05-31 1987-09-01 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Electro-expulsive separation system
US4895322A (en) * 1987-09-18 1990-01-23 Zieve Peter B Self-contained apparatus for de-icing aircraft surfaces using magnetic pulse energy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0040017A1 (fr) * 1980-05-08 1981-11-18 LUCAS INDUSTRIES public limited company Système de commutation pour la connexion séquentielle des charges sur une alimentation electrique
US4690353A (en) * 1985-05-31 1987-09-01 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Electro-expulsive separation system
US4895322A (en) * 1987-09-18 1990-01-23 Zieve Peter B Self-contained apparatus for de-icing aircraft surfaces using magnetic pulse energy

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130052031A1 (en) * 2011-08-26 2013-02-28 Michael Fedor Towkan Propeller blades having icephobic coating
US8851858B2 (en) * 2011-08-26 2014-10-07 Ge Aviation Systems Limited Propeller blades having icephobic coating
WO2018204942A1 (fr) * 2017-05-09 2018-11-15 Markus Villinger Rotor, en particulier pour aéronefs et éoliennes
US12195175B2 (en) 2017-05-09 2025-01-14 Markus Villinger Rotor, in particular for aircraft and wind turbines, including device for mechanically breaking up pieces of ice

Similar Documents

Publication Publication Date Title
JP3616103B2 (ja) 回転装置
EP0363923B1 (fr) Système d'expulsion à contrecourant d'action rapide
JP3108098B2 (ja) 電力発生機
EP0014334B1 (fr) Dispositif pour distribuer successivement de l'énergie électrique à une pluralitée d'éléments de charge sur un élement rotatif
US3549964A (en) Device for deicing surfaces of thin-walled structures
KR101307542B1 (ko) 전원 공급 장치와 회전자 설비 제어 장치 및 이러한 장치가 장착된 항공기
EP1716044B1 (fr) Procede et systeme modulaire de protection contre le givrage des aeronefs
EP0749894A3 (fr) Dégivreur électrothermique
US4690353A (en) Electro-expulsive separation system
US5553815A (en) De-icer adapted for installment on the inner surface of a structural member
DE59001718D1 (de) Schubduese zur schubvektorsteuerung fuer mit strahltriebwerken ausgeruestete fluggeraete.
US6102333A (en) Electro-magnetic expulsion de-icing system
EP1593595B1 (fr) Système électrothermique de protection contre le givre, pulsé et à consommation faible
US4895322A (en) Self-contained apparatus for de-icing aircraft surfaces using magnetic pulse energy
EP2050673B1 (fr) Architecture de distribution d'alimentation pour un système de protection givrage
GB2259287A (en) Apparatus for and method of de-icing a surface
CN103569366A (zh) 旋翼防冰系统和方法
EP1198386A1 (fr) Systeme auxiliaire de degivrage/anti-givre pour aeronefs
Coffman Helicopter rotor icing protection methods
GB2176451B (en) An aerospace vehicle having multiple propulsion systems on a relatively rotatable flying wing
WO1993004920A1 (fr) Commande de sequence pour degivreur rotatif
GB8525631D0 (en) Aircraft flying control systems
EP1453728B1 (fr) Phare d'atterrissage d'avion retractable a commande electronique avec capacite de retraction manuelle
EP2860111A1 (fr) Conception de brosse pour système de dégivrage d'hélice
JPH0759504A (ja) 空港の野鳥追い払い装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL SE

122 Ep: pct application non-entry in european phase