WO1990001396A1 - Appareil et procede de nettoyage par jet de particules - Google Patents
Appareil et procede de nettoyage par jet de particules Download PDFInfo
- Publication number
- WO1990001396A1 WO1990001396A1 PCT/US1989/003304 US8903304W WO9001396A1 WO 1990001396 A1 WO1990001396 A1 WO 1990001396A1 US 8903304 W US8903304 W US 8903304W WO 9001396 A1 WO9001396 A1 WO 9001396A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- transport
- cleaning apparatus
- blast cleaning
- pellets
- discharge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24C—ABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
- B24C7/00—Equipment for feeding abrasive material; Controlling the flowability, constitution, or other physical characteristics of abrasive blasts
- B24C7/0092—Equipment for feeding abrasive material; Controlling the flowability, constitution, or other physical characteristics of abrasive blasts the abrasive material being fed by mechanical means, e.g. by screw conveyors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24C—ABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
- B24C1/00—Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
- B24C1/003—Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods using material which dissolves or changes phase after the treatment, e.g. ice, CO2
Definitions
- the present invention relates generally to a particle blast cleaning apparatus and method, and is particularly directed to an improved apparatus and method for transporting sublimable particulate media from a receiving station to a discharge station within such a particle blast cleaning apparatus.
- Particle blast cleaning apparatus are well known in the industry. While sandblasting equipment is widely used for many applications/ it has been found that the utilization of particles which naturally sublimate can advantageously be utilized as a particulate media of such equipment to minimize adverse environmental results and cleanup required following the cleaning activity.
- rotary transport and more recently a lateral slide bar transport.
- An example of the rotary transport may be found in U. S. Patent 4,617,064, which issued to the present inventor Moore on October 14, 1986. It discloses a particle blast cleaning apparatus utilizing carbon dioxide pellets in a high pressure carrier gas.
- the particular particle blast apparatus described in the Moore '064 patent includes a body which houses a rotary pellet transport mechanism having transport bores used to convey the carbon dioxide pellets from a gravity feed storage hopper to the high pressure carrier gas " stream for transportation of the pellets to a discharge nozzle.
- the rotary apparatus is fitted with a corresponding set of circular face seals, and means to establish a force on such seals which is proportional in magnitude to the pressure of the transport gas.
- the circular seals In order to achieve and maintain this critical sealing function, the circular seals must remain substantially flat in order to remain in intimate, continuous contact with the surfaces to be sealed.
- a significant amount of machining is required to the housing that the rotary transport is disposed in. These factors contribute to a relatively high fabrication cost of the rotary transport unit.
- the sealing surfaces must withstand a relatively great amount of friction, with such friction being applied at varying rubbing velocities across the diameter of such circular seals.
- the rubbing velocity and friction differentials tend to wear the seals at correspondingly different rates, creating a relatively difficult seal maintenance problem.
- the seal surface becomes subjected to erosion in critical sealing areas adjacent the receiving station due to occasional shearing of the particulate media at the cavity/receiving station interface.
- the Moore '181 Patent discloses a lateral transport apparatus, which offers certain advantages over the rotary transport method.
- a plurality of sliding bars each having a transport cavity which is alternatively alignable with a receiving station and a discharge station, is disposed within channels located in a housing.
- the corresponding transport cavity is brought alternatively into alignment with the receiving station, at which position pellets are gravity fed into the transport cavity, or with the discharge station, at which position the pellets are discharged by the high pressure carrier gas stream for transportation of the pellets to the discharge nozzle.
- the relative positioning of each transport cavity is synchronized such that the time delay between successive discharges of pellets from the nozzle is minimized.
- an improved particle blast cleaning apparatus featuring sublimable pellets as the particulate media
- such apparatus including a source of sublimable pellets, a housing means having pellet receiving and discharge stations, and a radial pellet feeder means for transporting the pellets from the receiving station to the discharge station.
- the feeder means includes a rotor having one or more transport cavities disposed in the circumferential surface of the rotor to receive the pellets for radial transport between such stations.
- the apparatus further includes a means for providing mechanically assisted flow of the pellets to the transport cavities at the receiving station, a discharge nozzle, and a means for supplying a pressurized transport gas adjacent I the discharge station for conveying the pellets leaving the discharge station to the discharge nozzle.
- Figure 1 is an elevational view in schematic form illustrating a preferred embodiment of the particle blast cleaning apparatus of the present invention
- Figure IA is a partial cross sectional view Of the hopper and radial pellet feeder means of Figure 1 showing the helical worm screw;
- Figure 2 is a partial cross sectional view of the 0 radial pellet feeder means of Figure 1;
- Figure 3 is a side sectional view of the radial feeder, taken along section line 3-3 of Figure 2;
- Figure 4 is a cross-sectional view of an alternative cavity design
- Figure 5 is a side view in partial section of a dual rotor embodiment
- FIG. 6 is a side view in partial section of a single rotor, twin cavity row embodiment.
- cleaning system 10 is illustrated in the form it would most preferably take for use wherein the particulate media is formed from liquid carbon dioxide.
- liquid carbon dioxide is stored in a storage chamber 29 at relatively high pressure (e.g. about 300 psig) prior to injection via inlet 21 into a pellet extrusion cylinder 22 at approximately atmospheric pressure where such liquid carbon dioxide passes into the solid stage.
- Liquid carbon dioxide (CO,) is maintained at about 300 psi and about 0 ⁇ F (-18 ⁇ C) in storage chamber 29 prior to being injected via the inlet 21 into extrusion cylinder 22 which is maintained at approximately atmospheric pressure. Due to the sudden drop in pressure, a portion of the liquid CO. crystallizes from its liquid phase to a solid or "snow" phase. The snowflakes are retained within extrusion cylinder 22 by screens (not shown) which cover the outlet 23 through which waste gas is discharged. Upon collection of a predetermined amount of such snow within cylinder 22, a hydraulic ram 24 drives a piston forward within extrusion cylinder 22 to compress the snowflakes to a solid block, which in turn is extruded through a die in pelletizer 25.
- CO Liquid carbon dioxide
- diverter means 50 The resulting solid CO, pellets pass through pellet conduit 28 to diverter means 50.
- extrusion cylinder 22 and pelletizer 25 must chill down to proper operating temperature (i.e. about -100°F or -74 ⁇ C) .
- proper operating temperature i.e. about -100°F or -74 ⁇ C
- particle blast apparatus 10 include means 50 for diverting these imperfect pellets immediately outside of the apparatus.
- diverter means 50 is shown as including a diverter valve 52 which can be hingedly moved between open and closed positions (both positions being shown by the broken lines of Figure 1 — the closed position depicted by the substantially vertical broken lines).
- diverting valve 52 include sealing means (not shown) for providing an airtight seal in its closed positions. It has been found that such sealing means can adequately be provided by a silicon rubber flexible sealing ring attached about the periphery of diverter valve 52 to provide an interference fit with waste chute 51 and, alternatively, the inner surfaces of diverter conduit 54 which connects pellet conduit 28 and the upper portions of hopper 30. Once extrusion cylinder 22, pelletizer 25 and pellet conduit 28 are sufficiently chilled down, the diverter valve 52 can be closed so that the pellets flow directly into hopper 30 where they are accumulated for subsequent discharge.
- Hopper 30 serves to provide surge capacity for apparatus 10 during use, and preferably includes high and low level sensors (e.g. sensors 31 and 32, respectively) to indicate the relative level of stored pellets therewithin.
- a separate CO- gas line can be advantageously utilized to provide a slight positive pressure within hopper 30.
- This slightly positive pressure of CO. gas within hopper 30 can in turn be utilized to preclude the influx of ambient air into hopper 30 during pellet transport operations.
- the C0 2 gas within hopper 30, being under slight pressure e.g. approximately 1 psig
- pellets are moved by helical worm screw 132 through feed chute 33 to pellet receiving station 42.
- pellets flow into pellet feeder means 40, due to the action of helical worm screw 132, for radial transport to the pressurized discharge system of the apparatus.
- Figure IA shows a partial cross sectional view of the hopper 30 and helical worm screw 132.
- Pellets are deposited into hopper 30, preferably to a level well above agitating rod 134, thereby submerging the helical worm screw 132.
- Helical worm screw 132 has a plurality of downwardly inclined helical surfaces 136, 136a, 136b, protruding from the shank 138, separated by agitating rods 134a, 134b, spiraling down through feed chute 33 and terminating at end 140 of shank 138.
- End 140 is disposed in receiving station 42 of pellet feeder means 40.
- the lower portion of hopper 30 is inclined towards the center line of shank 138 thereby funneling the pellets into proximity with the helical worm screw 132.
- the diameter of inclined helical surfaces 136, 136a, 136b is significantly smaller than the corresponding openings in the hopper 30, feed chute 33 and receiving station 42.
- the diameter of the helical worm screw 132 is approximately one half of the diameter of the corresponding internal surfaces.
- Helical worm screw 132 rotates in a direction such that pellets approximate to it are advanced along the inclined surfaces 136, 136a, 136b and are fed into receiving station 42.
- Agitating rods 134, 134a, 134b rotate with shank 138 to agitate the pellets, thereby assisting the uniform delivery of the pellets through feed chute 33.
- the rotation of helical worm screw 132 causes the pellets to be mechanically advanced into receiving station 32 and into transport cavity 64, when cavity 64 is aligned with receiving station 42.
- the rotation of driveshaft 138 may be synchronized with the rotation of radial transport rotor 62, but also works equally well without being so synchronized.
- the shapes and sizes of the internal surfaces of the hopper 30, feed chute 33, and receiving station 42, in conjunction with the shape and size of helical worm screw 132 allow any backup surge or excess flow of pellets created when transport cavity 64 is not aligned with receiving station 42 to be absorbed by the clearance around the helical worm screw 132 whereby pellets may flow in the reverse direction along the walls of the internal surfaces.
- the rotational speed of shank 138 is selected with consideration of the rotation of the radial transport rotor 62 to insure that the desired fill of cavity 64 is accomplished.
- Shank 138 may be driven by a separate motor 152 or by the same rotational source as drive rotor 62.
- FIG. 2 shows a partial cross-sectional view of the radial pellet feeder means 40.
- Pellets are fed through feeder chute 33 into receiving station 42 by helical worm screw 132.
- CO. gas flows into the receiving station 42 along with the pellets and is vented out of the receiving station 42 through vent 44.
- Vent 44 may communicate directly with the ambient environment or may discharge the C0 2 gas into other areas of the radial pellet feeder means 40.
- Receiving station 42 communicates with rotor cavity 46.
- Rotor cavity 46 is formed by housing 48 and cover 60, shown in FIG. 3.
- Cover 60 is secured to housing 48 by bolts (not shown) .
- Rotor 62 is rotatably mounted in rotor cavity 46, and is provided with a plurality of transport cavities 64 in the circumferential surface 66 thereof. Rotor 62 is connected to shaft 130, which is driven by motor 150, as shown in figure 3.
- the size and shape of the transport cavities are selected to achieve the desired pellet flow to the discharge station. Considerations which influence the selection include number of transport cavities, size and speed of rotor, size of receiving and discharge stations, size and speed of helical worm screw, and transport gas pressure and velocity. Other design factors can also influence the practical design selection of the transport cavities.
- the transport cavities 64 are shown here to have a generally rectangular opening at circumferential surface 66 and a generally rectangular cross-section when viewed along the axis of rotation of the rotor 62. When rotor 62 is rotated to a position where one of transport cavities 64 is in alignment with receiving station 42, pellets are mechanically fed into transport cavity 64 by the rotation of the helical worm screw 132.
- Discharge station 68 communicates directly with channel 70, which is connected to a source of pressurized transport gas 36 through inlet fitting 72.
- the flow of pressurized transport gas through channel 70 is continuous during operation of the apparatus and is not interrupted by the rotation of rotor 62. Air is preferably used as the pressurized transport gas.
- the radial transportation of the pellets creates a centrifugal force which acts on the pellets.
- the orientation of discharge station 68 and transport cavities 64 allows this force to assist the discharge of pellets from the transport cavities 64.
- the pellets are discharged into discharge station 68, and move into channel 70.
- the flow of the pressurized transport gas through channel 70 moves the pellets through hose 56 to discharge nozzle 58, where they are discharged from the system.
- the nozzle is manipulated by an operator to project the pellets against an object to be cleaned.
- Discharge station 68 is shown as being formed of a tubular section 74 extending from a flange section 76.
- a section of the wall 78 of tubular section 74 extends into channel 70 in the path of the pressurized transport gas.
- the section of wall 78 forms an arc of approximately 180° about the axis of tubular section 74.
- the section of wall 78 diverts the flow of pressurized transport gas around the partial cavity 80 which is formed at the end of discharge station 68. This diversion of the transport gas allows the pellets to travel nearly the length of tubular section 74 into channel 70 without being directly impinged upon by the transport gas. This diversion of transport gas facilitates the disbursement of the pellets into the flow path of the pressurized transport gas.
- One or more openings 82 are located in the section of wall 78 such that some pressurized transport gas may flow through the openings 82 and directly into the partial cavity 80.
- the flow through opening 82 provides some motivating force, in addition to the natural dispersion of the pellets, for moving the pellets from the partial cavity 80 into the mainstream flow of the pressurized transport gas .
- a nozzle 84 is located in discharge station 68. Nozzle 84 is connected to a source of the high pressure transport gas and directs pressurized gas into transport cavity 64. The flow of the pressurized gas into transport cavity 64 assists in the expulsion of pellets from transport cavity 64.
- high pressure gas is supplied through an opening 86 in housing 48 which communicates with annular groove 88 located on the outside of tubular section 74.
- Nozzle 84 communicates directly with opening 88 and is thereby supplied the source of pressurized transport gas.
- Sealing rings 90 and 92 are located in O-ring grooves 94 and 96 on the outside of tubular section 74. Sealing rings 90 and 92 seal against bore 98 which is located in housing 48.
- This pressure is preferably a relatively low pressure. Because it is preferred that air under high pressure be used to convey the radially transported pellets from the discharge station to the discharge nozzle (e.g. pressures of up to approximately 300 psig), it is imperative that the high pressures present at discharge station 68 be isolated from the much lower pressures present at receiving station 42. To ensure the isolation of such pressure differentials within pellet feeder means 40, seal 100 is located between receiving station 42 and rotor 46, and seal 102 is located between rotor 46 and discharge station 68.
- Seal 100 is of a complementary shape to mate with rotor 46 against a portion of the circumferential surface 66.
- Receiving station 42 as shown, is made of a tubular section 104 extending from a flange section 106. Seal 100 has an opening 108 which is 0 aligned with receiving station 42.
- the face 110 of flange section 106 is urged against one side of seal 100 by a plurality of springs 112, which are in contact with flange section 106.
- the force exerted by springs 112 can be varied through adjusting the 5 compressed height of springs 112 by rotating adjusting nuts 114. This allows the sealing force which urges seal 100 against circumferential surface 66 to be adjusted to maintain a proper seal.
- seal 102 is formed 0 complementary to circumferential surface 56 of rotor 46.
- Flange face 116 of flange section 76 contacts seal 102.
- Springs 118 urge flange section 76 against seal 102 thereby creating a sealing force between seal 102 and circumferential face 66 of rotor 62. 5
- This force is controlled by adjusting the compressed height of springs 118 which are supported by rotary cams 120 and 122. By rotating cams 120 and 122 the compressed height of springs 18 is varied, thereby changing the sealing force. This allows adjustment Q of the sealing force as necessary.
- seals 100, 102 may be increased by the inclusion of circumferential ridges
- these ridges 160, 2 162 form complimentary depression in seals 100, 102.
- the intermeshing of ridge 160, 162 with seals 100, 102 in this manner increases the ability of seals 100, 102 to seal circumferential surface 66.
- a vent 124 is provided in the housing 48 which communicates directly with transport cavity 64 after it has rotated out of contact with seal 102. Vent 124 is located as close to the discharge seal 102 as possible, in the direction of rotation of rotor 62, following the discharge of the pellets..
- a second vent 126 is located in housing 48 radially spaced about rotor cavity 46 from vent 124. Additional venting of transport cavity 64 occurs when transport cavity 64 is in communication with vent 126.
- Vents 124 and 126 also assist in exiting pellets which remain in transport cavity 64 after passing discharge station 68. Pellets may tend to remain in transport cavity 64 during start up of the system until the unit has cooled down. Pellets may also tend to remain in transport cavity 64 during the initial break in period of the unit, until seals 100, 102 have seated. Vents 124 and 126 are large enough for pellets to pass through them, and generally the same shape as transport cavity 64, although not necessarily the same size.
- a low pressure C0 2 supply port 128 is located in housing 48 radially spaced from vent 126, communicating with rotor cavity 46.
- Supply port 128 directly communicates with transport cavity 64 at a position just prior to transport cavity 64 rotating into contact with seal 100.
- Supply port 128 directs low pressure C0 2 gas into transport cavity 64 thereby minimizing the amount of moisture laden transport gas remaining in transport cavity 64.
- Supply port 128 also slightly pressurizes rotor cavity 46. This pressure creates a positive flow of C0 2 gas through vents 124 and 126, thereby preventing ambient gases from entering rotor cavity 46.
- Seals 100 and 102 are shown having chambers 132, 134 oriented toward rotor 62.
- the chambers 132, 134 have the effect of increasing the exposure time of the transport cavity 64 to the receiving station 42 or the discharge station 68, thereby allowing more time for the filling of the transport cavity 64 with pellets, as the rotor 62 rotates at a given speed.
- the improved sealing capability of the seals 100, 102 is more effective at isolating the pressurized transport gas from the receiving station 42 and rotor cavity 46 than designs found in the prior art. This improvement allows the use of a pressurized transport gas which has a higher moisture content, or dew point temperature than functionally permissible by the prior art.
- the improved design will allow the use of transport gas with a dew point temperature of up to 50 ⁇ F.
- Figure 4 shows an alternative embodiment of transport cavity 64a.
- the shape shown is aerodynamically selected to facilitate the flow into transport cavity 64a of pressurized gas from nozzle 84a, creating an aerodynamic flow within transport cavity 64a which enhances the expulsion of the pellets from transport cavity 64a.
- Figure 5 shows the use of multiple rotors 62a, 62b disposed within the same rotor cavity 46a.
- the rotors 62a, 62b are mounted side by side on the same shaft (not shown) and rotate in synchronization.
- Transport cavities 64b are located on each rotor 62a, 62b such that neither cavity is directly aligned with the receiving station (not shown) or discharge station 68a at the same time.
- Transport cavities 64b are staggered such that, as transport rotors 62a and 62b rotate cavities 64b past the receiving station, the total cross sectional area of the opening of transport cavities 64b exposed to the receiving station remains constant as one transport cavity rotates out of alignment with the receiving station and the following transport cavity located on the adjacent rotor rotates into alignment with the receiving station.
- the constant rotational speed of rotor 62a and 62b allows pellets to flow through the receiving station and into transport cavity 64b without creating backup surges in the flow of the pellets into the receiving station.
- This staggering of the transport cavities 64b reduces the pulsating effect found in earlier systems.
- both rotors 62a, 62b would discharge into the same discharge station 68a and the pellets flow from the same discharge nozzle 58.
- Such a system can easily be adapted to have two separate discharge stations, each adjacent separate high pressure transport gas streams, thereby allowing two, or even more, discharge streams of pellets.
- the system could also be adapted to have two receiving stations, each fed by its own helical worm screw.
- Figure 6 shows the use of a single rotor 62b having two rows of transport cavities 64c.
- the transport cavities 64c are oriented in a staggered relationship as described above for the multiple rotor embodiment and discharge into the same discharge station 68b.
- the inclusion of two rows on a single rotor 62c allows the use of a single seal (not shown) at the receiving station (not shown) and the use of a single seal 102b at the discharge station 68b. This staggering of the transport cavities 64c also minimizes the pulsating effect found in the prior art.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Air Transport Of Granular Materials (AREA)
Abstract
On a mis point un appareil et un procédé de nettoyage par jet de particules mettant en ÷uvre des boulettes sublimables comme véhicule particulaire, comprenant une source de boulettes sublimables, un logement (48) définissant une cavité interne (46) ayant des postes espacés de réception (42) et de décharge (68) de boulettes, ainsi qu'un rotor (62) de transport radial destiné à transporter les boulettes du poste de réception au poste de décharge. Le rotor de transport radial comprend également une pluralité de cavités de transport (64) formées chacune dans la surface circonférentielle du rotor de transport radial, afin de recevoir les boulettes destinées à un transport radial entre les postes de réception et de décharge. Le poste de réception est en communication avec la source de boulettes sublimables, et a un écoulement de boulettes jusqu'aux cavités de transport assisté mécaniquement (132). Sont également compris un ajutage de décharge et une source de gaz de transport à haute pression afin de transporter les boulettes du poste de décharge à l'ajutage de décharge.
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| AT89909067T ATE97356T1 (de) | 1988-08-01 | 1989-07-31 | Vorrichtung und verfahren fuer reinigung mittels teilchenstrahlung. |
| DE68910826T DE68910826T2 (de) | 1988-08-01 | 1989-07-31 | Vorrichtung und verfahren für reinigung mittels teilchenstrahlung. |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US227,090 | 1988-08-01 | ||
| US07/227,090 US4947592A (en) | 1988-08-01 | 1988-08-01 | Particle blast cleaning apparatus |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO1990001396A1 true WO1990001396A1 (fr) | 1990-02-22 |
Family
ID=22851710
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US1989/003304 Ceased WO1990001396A1 (fr) | 1988-08-01 | 1989-07-31 | Appareil et procede de nettoyage par jet de particules |
Country Status (5)
| Country | Link |
|---|---|
| US (1) | US4947592A (fr) |
| EP (1) | EP0426749B1 (fr) |
| JP (1) | JPH04500931A (fr) |
| DE (1) | DE68910826T2 (fr) |
| WO (1) | WO1990001396A1 (fr) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0578132A1 (fr) * | 1992-07-04 | 1994-01-12 | HEINRICH SCHLICK GmbH | Dispositif pour compacter et/ou former avec abrasifs |
| NL9301237A (nl) * | 1993-07-14 | 1995-02-01 | Harko Bv | Werkwijze voor het bewerken van oppervlakken met cryogene deeltjes. |
| WO2020191487A1 (fr) * | 2019-03-23 | 2020-10-01 | Coulson Ice Blast Ltd. | Broyeur rotatif et dispositif d'alimentation destiné à un système de projection de glace |
Families Citing this family (40)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5365699A (en) * | 1990-09-27 | 1994-11-22 | Jay Armstrong | Blast cleaning system |
| US5203794A (en) * | 1991-06-14 | 1993-04-20 | Alpheus Cleaning Technologies Corp. | Ice blasting apparatus |
| FR2678527B1 (fr) * | 1991-07-05 | 1993-09-10 | Commissariat Energie Atomique | Appareil de stockage et de projection de billes de glace. |
| US5263376A (en) * | 1991-10-22 | 1993-11-23 | Justin Sun | Sample-taking device for a storage tank |
| US5571335A (en) * | 1991-12-12 | 1996-11-05 | Cold Jet, Inc. | Method for removal of surface coatings |
| US5355962A (en) * | 1992-04-24 | 1994-10-18 | Laroche Industries, Inc. | Amplified mixer-blower mechanism and uses thereof |
| US5512123A (en) * | 1992-05-19 | 1996-04-30 | Maxwell Laboratories | Method for using pulsed optical energy to increase the bondability of a surface |
| US5301509A (en) * | 1992-07-08 | 1994-04-12 | Cold Jet, Inc. | Method and apparatus for producing carbon dioxide pellets |
| WO1995027591A1 (fr) * | 1992-07-08 | 1995-10-19 | Cold Jet, Inc. | Appareil et procede pour fabriquer des granules de neige carbonique |
| DE4243099C1 (de) * | 1992-12-18 | 1994-03-31 | Clemco International Gmbh | Vorrichtung zum Durchführen eines Strahlreinigungsverfahrens |
| DE4244348C2 (de) * | 1992-12-28 | 1996-09-19 | Johann Szuecs | Vorrichtung zur Speisung einer Strahlpistole mit nicht sublimierendem feinem oder staubförmigen Strahlgut |
| US5445553A (en) * | 1993-01-22 | 1995-08-29 | The Corporation Of Mercer University | Method and system for cleaning a surface with CO2 pellets that are delivered through a temperature controlled conduit |
| US5525093A (en) * | 1993-04-27 | 1996-06-11 | Westinghouse Electric Corporation | Cleaning method and apparatus |
| US5415584A (en) * | 1993-09-21 | 1995-05-16 | Tomco2 Equipment Company | Particle blast cleaning apparatus |
| JP2772464B2 (ja) * | 1993-10-22 | 1998-07-02 | 昭和炭酸株式会社 | 粉粒体の供給装置 |
| US5520572A (en) * | 1994-07-01 | 1996-05-28 | Alpheus Cleaning Technologies Corp. | Apparatus for producing and blasting sublimable granules on demand |
| US5795214A (en) * | 1997-03-07 | 1998-08-18 | Cold Jet, Inc. | Thrust balanced turn base for the nozzle assembly of an abrasive media blasting system |
| US5853493A (en) * | 1997-08-22 | 1998-12-29 | Albany International Corp. | Cleaning of industrial fabrics using cryoblasting techniques |
| US6146462A (en) * | 1998-05-08 | 2000-11-14 | Astenjohnson, Inc. | Structures and components thereof having a desired surface characteristic together with methods and apparatuses for producing the same |
| US7112120B2 (en) | 2002-04-17 | 2006-09-26 | Cold Jet Llc | Feeder assembly for particle blast system |
| US6524172B1 (en) * | 2000-09-08 | 2003-02-25 | Cold Jet, Inc. | Particle blast apparatus |
| US6726549B2 (en) * | 2000-09-08 | 2004-04-27 | Cold Jet, Inc. | Particle blast apparatus |
| NL1017210C2 (nl) * | 2001-01-29 | 2002-07-30 | Huibert Konings | Doseerapparaat voor cryogene deeltjes. |
| US6966819B2 (en) * | 2003-07-03 | 2005-11-22 | Robert Andrew Carroll | Injecting an air stream with sublimable particles |
| US8277288B2 (en) | 2005-01-31 | 2012-10-02 | Cold Jet Llc | Particle blast cleaning apparatus with pressurized container |
| TWI296956B (en) * | 2005-03-11 | 2008-05-21 | Cold Jet Llc | Particle blast system with synchronized feeder and particle generator |
| WO2008144405A1 (fr) * | 2007-05-15 | 2008-11-27 | Cold Jet, Llc | Procédé de projection de particule et appareil pour celui-ci |
| US7666066B2 (en) * | 2007-07-24 | 2010-02-23 | Cryogenesis | Feeding solid particles into a fluid stream |
| US20090156102A1 (en) * | 2007-12-12 | 2009-06-18 | Rivir Michael E | Pivoting hopper for particle blast apparatus |
| DE102008021746A1 (de) * | 2008-04-30 | 2009-11-19 | Lufthansa Technik Ag | Verfahren und Vorrichtung zum Reinigen eines Strahltriebwerks |
| US8187057B2 (en) * | 2009-01-05 | 2012-05-29 | Cold Jet Llc | Blast nozzle with blast media fragmenter |
| EP2809479B1 (fr) | 2012-02-02 | 2019-01-16 | Cold Jet LLC | Appareil et procédé pour la projection de particules à haut débit sans stockage de particules |
| PT2994269T (pt) * | 2013-05-06 | 2019-12-10 | Ics Ice Cleaning Systems S R O | Dispositivo para misturar partículas sólidas de gelo seco com uma corrente de um meio gasoso |
| DE102013113275A1 (de) * | 2013-11-29 | 2015-06-03 | Alfred Kärcher Gmbh & Co. Kg | Vorrichtung zur Herstellung von CO2-Pellets aus CO2-Schnee und Reinigungsgerät |
| US9931639B2 (en) | 2014-01-16 | 2018-04-03 | Cold Jet, Llc | Blast media fragmenter |
| BR112017018987B1 (pt) * | 2015-03-06 | 2021-10-26 | Cold Jet, Llc | Conjunto alimentador configurado para transportar partículas criogênicas de uma fonte de partículas para dentro de um fluxo de gás de transporte, e método para vedação entre uma superfície periférica de um rotor de um conjunto alimentador e uma superfície de vedação de uma vedação |
| JP2017030117A (ja) * | 2015-08-04 | 2017-02-09 | マツダ株式会社 | 固体粒噴射装置 |
| US12036637B2 (en) | 2018-04-24 | 2024-07-16 | Cold Jet, Llc | Particle blast apparatus |
| RU2748313C1 (ru) * | 2020-05-08 | 2021-05-21 | Общество с ограниченной ответственностью "ИРБИС ТЕХНОЛОГИИ" (ООО "ИРБИСТЕХ") | Способ подачи сыпучего твердого криогенного вещества в поток сжатого воздуха и устройство для его осуществления |
| DE102020129723A1 (de) | 2020-11-11 | 2022-05-12 | Alfred Kärcher SE & Co. KG | Vorrichtung und Verfahren zum Herstellen von CO2-Pellets aus CO2-Schnee und Reinigungsvorrichtung |
Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR435329A (fr) * | 1910-12-24 | 1912-02-27 | Ludwig Sauer | Appareil à jet de sable |
| US2092201A (en) * | 1936-05-25 | 1937-09-07 | W W Sly Mfg Company | Abrasion method and apparatus |
| FR1060192A (fr) * | 1952-07-08 | 1954-03-31 | Procédé de sablage hydraulique | |
| US4389820A (en) * | 1980-12-29 | 1983-06-28 | Lockheed Corporation | Blasting machine utilizing sublimable particles |
| WO1986000833A1 (fr) * | 1984-07-31 | 1986-02-13 | Cryoblast Inc. | Procede et appareil de nettoyage |
| DE3445643A1 (de) * | 1984-12-14 | 1986-06-26 | Ernst Peiniger GmbH Unternehmen für Bautenschutz, 4300 Essen | Anlage zum druckluftstrahlen |
| EP0194121A1 (fr) * | 1985-03-02 | 1986-09-10 | Kue Engineering Limited | Nettoyage au jet abrasif |
| EP0268449A2 (fr) * | 1986-11-17 | 1988-05-25 | David Edward Moore | Appareil et procédé de nettoyage au moyen d'un jet de particules |
Family Cites Families (26)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2421753A (en) * | 1942-02-18 | 1947-06-10 | American Optical Corp | Means for unblocking lenses |
| US3089775A (en) * | 1959-01-23 | 1963-05-14 | Unilever Ltd | Method of removing meat from bone |
| US3130879A (en) * | 1960-08-26 | 1964-04-28 | Black Clawson Co | Rotary feed valve |
| US3101853A (en) * | 1961-01-11 | 1963-08-27 | Gen Mills Inc | Rotary valve |
| US3219393A (en) * | 1961-10-05 | 1965-11-23 | Bauer Bros Co | Rotary valve |
| US3151784A (en) * | 1961-10-24 | 1964-10-06 | John P Tailor | Rotary air lock |
| US3137101A (en) * | 1962-12-03 | 1964-06-16 | Bell Intercontinental Corp | Method and apparatus for deflashing parts |
| US3110983A (en) * | 1962-12-06 | 1963-11-19 | Pangborn Corp | Method and apparatus for deflashing molded resilient pieces |
| US3160993A (en) * | 1963-08-05 | 1964-12-15 | Pangborn Corp | Method and apparatus for deflashing molded resilient pieces |
| US3245590A (en) * | 1963-12-13 | 1966-04-12 | Phillips Petroleum Co | Feeder device |
| US3324605A (en) * | 1964-06-09 | 1967-06-13 | Lester Castings Inc | Tumble-finishing process and media therefor |
| US3422580A (en) * | 1965-10-20 | 1969-01-21 | Rotofinish Co | A finishing process employing solid-gas pellets |
| US3485074A (en) * | 1968-04-29 | 1969-12-23 | Zero Manufacturing Co | Apparatus for deburring and cleaning with microscopic glass beads |
| US3556355A (en) * | 1968-05-28 | 1971-01-19 | Basic Inc | Pressure sealed rotary feeder |
| US3633797A (en) * | 1970-06-24 | 1972-01-11 | Russell M Graff | Rotary valves |
| US3676963A (en) * | 1971-03-08 | 1972-07-18 | Chemotronics International Inc | Method for the removal of unwanted portions of an article |
| US3702519A (en) * | 1971-07-12 | 1972-11-14 | Chemotronics International Inc | Method for the removal of unwanted portions of an article by spraying with high velocity dry ice particles |
| US3768210A (en) * | 1972-06-23 | 1973-10-30 | C Johnson | Automatic sandblast machine |
| US4038786A (en) * | 1974-09-27 | 1977-08-02 | Lockheed Aircraft Corporation | Sandblasting with pellets of material capable of sublimation |
| US4180188A (en) * | 1975-11-18 | 1979-12-25 | Kokkoman Shoyu Co., Ltd. | Sealing structure for rotary valves |
| US4372338A (en) * | 1980-07-22 | 1983-02-08 | Dresser Industries, Inc. | High pressure valve assembly |
| US4441434A (en) * | 1981-10-26 | 1984-04-10 | Howard Henry R | Apparatus for dispensing particulate matter |
| US4463736A (en) * | 1982-06-07 | 1984-08-07 | Hayward Jr Wallace | Chambered rotary metering device |
| US4536121A (en) * | 1983-04-22 | 1985-08-20 | Foster Wheeler Energy Corporation | Divided rotary valve feeder |
| US4727687A (en) * | 1984-12-14 | 1988-03-01 | Cryoblast, Inc. | Extrusion arrangement for a cryogenic cleaning apparatus |
| FR2576821B1 (fr) * | 1985-02-04 | 1987-03-27 | Carboxyque Francaise | Installation pour la projection de particules de glace carbonique |
-
1988
- 1988-08-01 US US07/227,090 patent/US4947592A/en not_active Expired - Lifetime
-
1989
- 1989-07-31 WO PCT/US1989/003304 patent/WO1990001396A1/fr not_active Ceased
- 1989-07-31 EP EP89909067A patent/EP0426749B1/fr not_active Expired - Lifetime
- 1989-07-31 JP JP1508544A patent/JPH04500931A/ja active Pending
- 1989-07-31 DE DE68910826T patent/DE68910826T2/de not_active Expired - Lifetime
Patent Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR435329A (fr) * | 1910-12-24 | 1912-02-27 | Ludwig Sauer | Appareil à jet de sable |
| US2092201A (en) * | 1936-05-25 | 1937-09-07 | W W Sly Mfg Company | Abrasion method and apparatus |
| FR1060192A (fr) * | 1952-07-08 | 1954-03-31 | Procédé de sablage hydraulique | |
| US4389820A (en) * | 1980-12-29 | 1983-06-28 | Lockheed Corporation | Blasting machine utilizing sublimable particles |
| WO1986000833A1 (fr) * | 1984-07-31 | 1986-02-13 | Cryoblast Inc. | Procede et appareil de nettoyage |
| DE3445643A1 (de) * | 1984-12-14 | 1986-06-26 | Ernst Peiniger GmbH Unternehmen für Bautenschutz, 4300 Essen | Anlage zum druckluftstrahlen |
| EP0194121A1 (fr) * | 1985-03-02 | 1986-09-10 | Kue Engineering Limited | Nettoyage au jet abrasif |
| EP0268449A2 (fr) * | 1986-11-17 | 1988-05-25 | David Edward Moore | Appareil et procédé de nettoyage au moyen d'un jet de particules |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0578132A1 (fr) * | 1992-07-04 | 1994-01-12 | HEINRICH SCHLICK GmbH | Dispositif pour compacter et/ou former avec abrasifs |
| NL9301237A (nl) * | 1993-07-14 | 1995-02-01 | Harko Bv | Werkwijze voor het bewerken van oppervlakken met cryogene deeltjes. |
| WO2020191487A1 (fr) * | 2019-03-23 | 2020-10-01 | Coulson Ice Blast Ltd. | Broyeur rotatif et dispositif d'alimentation destiné à un système de projection de glace |
Also Published As
| Publication number | Publication date |
|---|---|
| US4947592A (en) | 1990-08-14 |
| JPH04500931A (ja) | 1992-02-20 |
| EP0426749B1 (fr) | 1993-11-18 |
| EP0426749A1 (fr) | 1991-05-15 |
| DE68910826D1 (de) | 1993-12-23 |
| DE68910826T2 (de) | 1994-06-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP0426749B1 (fr) | Appareil et procede de nettoyage par jet de particules | |
| US5109636A (en) | Particle blast cleaning apparatus and method | |
| US4744181A (en) | Particle-blast cleaning apparatus and method | |
| EP1494836B1 (fr) | Distributeur pour systeme de projection de particules | |
| US3602552A (en) | Dry flow pumps | |
| US4617064A (en) | Cleaning method and apparatus | |
| US8671647B2 (en) | Continuous pelletizing, drying and bagging systems with improved throughput | |
| US6346035B1 (en) | Generation of an airstream with subliminable solid particles | |
| EP0092931B1 (fr) | Dispositif d'éclusage pour le chargement de particules dans un réacteur sous pression | |
| WO1991004449A1 (fr) | Appareil de preparation, de triage et de dosage de milieux particulaires | |
| CN119929455B (zh) | 一种工业生物酶生产用具有清理功能的输送装置 | |
| US4780028A (en) | Solids feeder | |
| CN109867143A (zh) | 一种轻介共流气力连续输送系统 | |
| CN212197229U (zh) | 一种双阀芯卸料装置 | |
| EP0065850B1 (fr) | Dispositif de déchargement d'un résidu de décomposition thermique contenant du charbon résiduaire et des boules de fil d'acier | |
| JP2597009B2 (ja) | 粉体加圧供給装置 | |
| JP2000128348A (ja) | ロータリー搬送装置 | |
| CN219335221U (zh) | 一种干冰高压喷射装置 | |
| WO2024191325A1 (fr) | Dispositif et procédé de fourniture de substance cryogénique solide en vrac dans un flux d'air comprimé | |
| RU2793045C2 (ru) | Воздуходувный аппарат для частиц | |
| JPH06158458A (ja) | 繊維屑圧縮機 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE FR GB IT LU NL SE |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 1989909067 Country of ref document: EP |
|
| WWP | Wipo information: published in national office |
Ref document number: 1989909067 Country of ref document: EP |
|
| WWG | Wipo information: grant in national office |
Ref document number: 1989909067 Country of ref document: EP |