METHOD AND APPARATUS FOR SUBMERGING, ENTRAINING, MELTING AND CIRCULATING METAL CHARGE IN MOLTEN MEDIA
Technical Field
This invention relates to an improved method and apparatus for submerging, entraining, melting and circulating a metal charge in a molten media.
Background Art
The recycling of scrap aluminum that has a high surface to volume ratio causes the scrap to float on the surface of the molten aluminum. The presence of scrap that resists sinking has been the bane of aluminum recycling processors whether they be large or small. The fact that larger manufacturers have unlimited capital resources to invest in the improvement of the aluminum recycling processes has lead to increasingly sophisticated shapes to the systems that pump the molten aluminum through the heating and melting phases of the
/ IP
system. These systems appear in drawings to be simple in a functional layout sense. Rarely mentioned is the great expense of forming from refractory material the pumps which are precisely designed to cooperate with the specially contoured walls that surround the pump impeller, or the walls that provide a volute through which the molten metal along with scrap is delivered to the pump. The walls that surround and house the pump are made of refractory material. Their fabrication, forming and later maintenance represent a significant expense.
In respect of maintenance it should be kept in mind that the shop environment in which recycling is performed is hostile, insofar as the rough handling of the materials charged into the furnaces is concerned. The loading and subsequent cleaning of the system subject the walls to damage. This damage may be costly to repair especially when a precisely formed wall surface in the region of the pump is involved. The expensive nature of the construction and repair just described renders these approaches unacceptable to a small recycling concern because of the cost.
A pump jamming problem is not an uncommon occurrence when there is an inadvertent inclusion of non-aluminum scrap, such as steel, in the scrap charged into the system. The non-aluminum scrap can become lodged between a pump impeller and the cooperating walls that surround the pump impeller thereby bringing the impeller to a stop. The walls and pump impeller are frequently damaged when this occurs.
Fine examples of how the art has been advanced in respect of pump impeller and surrounding wall design of the type just described can be found in the patents to van Linden et al, No. 3,997,336 and No. 4,128,415, as well as Claxton et al. No. 3,984,234. Each of these
patents recognizes and treats the problem of submerging scrap that is inherently non-self-submerging. Additionally these patents recognize and attempt to treat the problem of skim developing on the surface of the molten aluminum. The formation of skim or dross, as it may be termed, in aluminum melting processes is an especially noxious problem due to the fact that the skim which is primarily aluminum oxide quickly forms due to the highly reactive nature of aluminum and the atmosphere enhanced by the presence of high temperatures of the molten metal. The pump impellers of each of the patents noted next above are positioned in close proximity to the walls that cooperate with the pump impeller to either enhance the pumping action or guide the molten aluminum carrying scrap to the pump. The problems of impeller pump jamming and skim generation, though considered by the patentees noted above, has not been avoided. This is especially true in respect of jamming when a piece of non-meltable material such as refractory material having the same specific gravity as aluminum, and which therefore flows in the molten metal, is delivered to the pump portion of the system.
Disclosure of Invention
More specifically this invention relates to a method and a system including apparatus for submerging, entraining, melting and circulating aluminum scrap in a molten metal media, which scrap is comprised of pieces not capable of self-submergence. The apparatus of the system includes means to introduce a supply of scrap into an open bay that has heated molten metal drawn from an entry point below the surface of the molten metal by the action of a molten metal scrap entrainment circulator
■s-rUF.
/ _ °'*- -
submerged beneath the surface of the molten metal at a point beneath the entry point of the heated molten metal. The circulator continuously draws the heated molten metal including the scrap into the circulator wherein the scrap is completely entrained in the molten metal and delivered into a molten metal circulation path that delivers the scrap metal entrained in the molten metal for subsequent heating further melting the recirculation to the circulator.
The invention to be described more fully hereinafter completely eliminates the need for closely spaced walls adjacent an impeller typical of the prior art while simultaneously providing for scrap entrainment in molten metal along with a concurrent reduction of skim formation.
It is therefore a primary object of the invention to provide an inexpensive method and apparatus for submerging, entraining, melting and circulating aluminum scrap which scrap is characterized by not being capable of self-submergence.
Another object of the invention is the provision of a molten metal"circulator that cooperates with a molten metal media in such a fashion that non-self-submerging scrap is drawn into the molten metal media and is melted.
Yet another object of the invention is to provide a system in which there is a molten metal circulator that cooperates with a molten metal media and vertically disposed walls to thereby establish a fluid current path in the molten metal media which fluid current path causes the molten metal to move through the system.
Still yet another object of the invention is to
provide a furnace and molten metal holding bay that is simple in construction and easy to clean and service.
Other objects and advantages of the present invention will become apparent from the ensuing 5. description and the illustrative embodiment thereof, in the course of which, reference is made to the accompanying drawings.
Brief Description of Drawings
Figure 1 is a block diagram of a recirculating scrap melting system that embodies the invention.
Figure 2 is a top plan view of the apparatus involved in the preferred embodiment of the invention.
Figure 3 is an elevational section taken along line 3-3 in Figure 2,
Figure 4 is a view along lines 4-4 in Figure 2,
Figure 5 is a three dimensional view of a molten metal, scrap entrainment circulator.
Figure 6 is a view along line 6-6 in Figure 5,
Figure 7 is a top plan view of a furnace, holding bay and molten media circulator system that embodies the invention.
Figure 8 is a view along line 8-8 in Figure 7, and
Figure 9 is a view along line 9-9 in Figure 7.
Best Mode for Carrying Out the Invention
Reference is now made to Figure 1 which depicts in block diagram form, a recirculating scrap melting system that will embody the invention. The apparatus of the system includes a closed heating bay 11 and an open bay
12. In the open bay 12 scrap and flux are introduced. A scrap entrainment molten metal circulator described more fully hereinafter positioned in the open bay 12 causes molten metal to circulate from the closed heating bay 11 into the open bay 12 as indicated by flow arrow 13. The molten metal is then circulated into the closed heating bay 11 as indicated by flow arrow 14. Scrap and flux are introduced at one end of the open bay 12 as indicated by flow arrow 16 and skim or dross is removed from the opposite end of the open bay 12 as indicated by flow arrow 17. The final product of the systems apparatus is skim free molten aluminum delivered from the closed heating bay 11 as indicated by flow arrow 15.
Reference is now made to Figure 2 and Figure 3 which illustrate respectively a top plan view and a front elevation sectional view showing the details of the preferred embodiment of the invention.
The description that follows will described the apparatus of both Figure 2 and Figure 3 at the same time. In Figure 2 there is shown a closed heating bay 11 and an open bay 12. The closed heating bay and its details of construction are conventional in the sense that a cover 18 is positioned over the closed heating bay 11. The closed heating bay 11 and open bay 12 are constructed of refractory material. As best seen in
Figure 3, the refractory material is enclosed by a metal shell 19. The metal shell 19 is preferably steel. A
pair of burners 21, 21a are shown directed downwardly into the heating bay 11. The nature and function of the burners 21, 21a is similar to burners currently used by industry. Only two burners are shown. It should be understood that the arrangement of burners and their number are a matter of design dependent on the type of burner available and the nature of the fuel employed in the combustion process. The open and closed bays 11, 12 are shown filled with a molten metal media 20, in the preferred embodiment the molten metal is aluminum.
The open bay 12 is provided with a wall segment 22 formed of refractory material and integrally connected to a separating wall 23 that extends the length of both the closed heating bay 11 and the open bay 12. The open bay has end walls 24, 26 and front wall 27. The closed heating bay 11 has a back wall 28.
The separating wall 23 has two openings 29, 31. The location of separating wall 23 openings 29, 31 are important to the operation of the system apparatus and the method involving the invention. A molten metal scrap entrainment circulator 32 is connected by a drive shaft 33 to a motor 34. The motor 34 may be an electric or any suitable motor the speed of which can be selected. It can be seen that the circulator 32 is positioned midway between the wall segment 22 and end wall 26. The opening 31 is also positioned midway between the wall segment 22 and end wall 26 at a point above the circulator 32 but beneath the surface 35 of the molten metal media 20. The relative locations, as shown, of the circulator 32, the opening 31 and wall segment 22, provide optimum performance for the method of the invention. The circulator 32 driven by motor 34 creates a fluid current path of molten metal. This molten metal path indicated by arrows not referenced draws molten metal through the
opening 31 and circulates the molten metal through the open bay 12 and thence through opening 29 and back into the closed heating bay 11. Though not shown in the drawings it should be understood that there is little or no skim on the surface of the molten material in the heating bay 18. There is of course a very thin layer of oxide skin that is present on the surface of the molten material of the heating bay. It should be noted that all the walls of the heating and open bay are simple straight, vertically disposed walls which are easily and inexpensively formed of refractory material. The term inexpensive is intended to be a relative term which takes into account more sophisticated wall shapes of currently available scrap recycling systems noted earlier. The dynamic operation of the molten metal scrap entrainment circulator 32 will be explained more fully hereinafter. The opening 29 in separating wall 23 is located such that its lower side (not referenced) is flush with the floor 36 of the closed bay 11 and open bay 12. The location of the opening 29 is important from the standpoint that large and readily submersible scrap 37 sinks to the bottom of the open bay, is caught up in molten metal fluid current path generated by the circulator 32, and can be delivered to the closed heating bay 11 where the large pieces are melted. Practically speaking the submersible scrap 37 sinks to the bottom where much of it is melted in the position in which it comes to rest.
In Figure 3 it can readily be seen that scrap is introduced to the open bay 12 at either end by conveyors 38, 39. The scrap 37 on conveyor 38 as already noted is of the larger type that is self-submerging because of its weight and shape.
The conveyor 39, however, carries scrap 41 that has by its nature a high surface area to volume ratio and
ther efor e tends not to be self-submersible. Shr edded alumi num cans or entire cans , as well as small chips collected from manufactur ing operations are typical of non-self-submersible scrap .
Non-self-submersible scrap in order to be drawn into the mol ten metal 20 must overcome the sur face tension of the layer of skim 40 that forms on molten metal 20. The non-self-submersible scrap 41 is introduced as shown into a mild vortex 42 created by the circulator 32. A severe vor tex is to be avoided because the severe vortex while drawing the non-self -submersible scrap into the molten metal also draws the surrounding atmospher e into the vortex ther eby greatly enhanc ing the f ormati on of skim which is a very undesirable by-product. The mild vortex 42 cooperates with the molten metal drawn through the opening 31 to thereby submerge the non-self-submerg ing scrap 41 into the molten metal 20. The circulator by its dynamic action to be described completely entrains the scrap 41 in the molten metal 20 where the scrap begins to be melted . The circulator 32 delivers molten metal with scrap entrained into a fluid curr ent path . The scrap is then melted by heat drawn from the flowing molten metal media during the passage through the open bay 12 and thus becomes part of the circulating molten media .
The closed heating bay 11 has in its back wall 28 an opening 30 through which skim free molten aluminum is deliver ed . In Figure 3 it can be s een that the opening 30 in back wall 28 is located at a point beneath the surface of the molten metal 20 such that any skim that is present in the closed heating bay 12 does not enter the finished mol ten metal 15 . The finished molten metal 15 overflows the heating bay 11 through the specially configur ed passage 30 at a rate substantially
O
commensurate with the rate of introduction of solid scrap to the open bay 12.
The removal of skim and the introduction of a fluxing agent to the system can best be seen in and understood by a study of Figure 3. Flux supply 44 is shown delivering a fluxing agent into the mild vortex 42 as shown.
Skim removal is accomplished as shown in Figure 3 by the provision of a ramped shaped top surface 25 at the top of end wall 24. As skim 40 forms and is moved by the action of the moving molten metal 20, it tends to build up on the ramp 25 where it may be removed manually or by an automated means not shown.
Reference is now made to Figure 4 wherein reference numerals employed in respect of Figure 1 and Figure 3 are utilized to identify the same components. The molten metal scrap entrainment circulator 32 is shown in section in order to facilitate an explanation of the dynamics of its operation insofar as the circulator 32 acts upon the ' ' molten metal 20 to draw molten metal from the closed heating bay 11 through the opening 31 and into a central region 50 of the circulator 32. The fluid current path of molten metal from the closed heating bay 11 is shown by broken line arrows 51, 52.
Non-self-submersible scrap 41 shown entering from above into the mild vortex 42 is caught in the current flow and drawn down into the central opening 50 of the circulator 32 where the scrap is completely entrained in the moving molten metal. The circulator 32 has vanes 53, 54 connected at an inner end to a frusto conical hub 56 shown in section. The scrap 41 entrained in molten metal is propelled outwardly along the vanes. The details of
O
-li¬ the circulator 32 and its specific operation will be explained more fully in respect of the description, of Figure 5 and Figure 6.
Reference is now made to Figure 5 which illustrates * in three dimensional form the molten metal scrap entrainment circulator 32. The circulator 32 is formed of refractory material and constructed by conventional techniques. The circulator has what may be termed a bottom plate 45 and a top plate 46. The top and bottom plates 45, 46 are spaced apart as shown and have integrally secured thereto a plurality of radially extending vanes 53, 54, 55, 56, 57 and 58. A frusto conical shaped hub 47 is integrally secured to the bottom plate 45 at the center thereof. The frusto conical hub 47 has a drive shaft 33 fitted into the hub 47 in a manner not shown. The height of the hub 47 is less than the distance between the top and bottom plates 46, 45. The vanes 53, 54, 55, 56, 57 and 58 at their inner radial ends are integrally secured to hub 47 at a point on the hub 47 outer surface between the top and bottom of the frusto conical hub as shown. The bottom radially extending edges of the vanes are secured to the bottom ..-- plate 45 and the outer ends of the vanes are secured to "• the top plate 46 as shown. The top plate 46 has a central circular opening 48, which circular opening 48 has a center axis coincident with the center axis of the drive shaft 33. It is important to the operation of the circulator 32 that inside diameter of the central circular opening 48 be greater than the outside diameter of the base of the frusto conical hub 47. The downwardly sloping sides 59, 60, 61, 62, 63 and 64 of the vanes 53, 54, 55, 56, 57 and 58 in cooperation with the frusto conical hub 47, the top and bottom plates 46, 45, act to create broad region of suction (shown in dotted outline) extending above and around the circulator 32. A strong
fluid flow current path as shown by arrow 68 draws molten metal delivered from the heating bay 11 as described earlier along with non-self-submersible scrap down into the circulator 32 where the scrap is completely entrained and then expelled outwardly towards the surrounding walls of the open bay 12 noted earlier.
Returning now to Figure 2, it can be seen that the outward radial flow as evidenced by arrows 65, 66, 67, 68, 69 and 70 because of the clockwise rotation of the circulator 32 cause a build-up of pressure against the side 71 of wall segment 22, the separating wall 23, end wall 26 and front wall 27. The only relief for this pressure is through the opening defined between the end 72 of wall segment 22 and front wall 27. It is the constant release of this pressure that establishes the strong fluid current flow path through the molten metal media that delivers entrained scrap and molten metal through the open bay 12, and then delivers the molten metal product resulting from the combination of freshly melted scrap and the surrounding molten metal through the opening 29, the closed heating bay 11 and thence to the opening 31 where the circulator 32' draws the molten metal into the circulator to begin the cycle anew. It is important to note that the circulator 32 is spaced away from the walls that surround it thereby preventing any large pieces of non-meltable scrap from becoming jammed between the circulator 32 and the walls. The possibility of damage to the circulator and walls from this type of jamming is therefore removed.
Reference is now made to Figure 6 which illustrates the circulator 32 of Figure 5 in section. As has been noted earlier, there is an ever present possibility that non-meltable scrap or even pieces of refractory material may enter the molten metal media and thereafter come in
contact with whatever means is provided to move the molten metal through the system. In Figure 6 there is shown a foreign object 73 lodged in the central region o opening 50. It is a simple procedure to remove the object 73 by merely lifting the circulator 32 momentaril from the molten metal, after stopping the motor, and wit tongs removing the object 73. In the event that this foreign object does not enter the center opening, but strike the top plate 46, the object would fall harmlessly between the circulator 32 and the spaced away walls in the vicinity of the circulator 32. It should be further noted that the circulator 32 of Figure 6 has formed in the bottom plate 45 thereof a grooved or notched portion 47a as shown. This groove 47a prevents cracking due to curing rate differences in different sections of the refractory casting of the circulator 32.
The section of Figure 6 allows a clear showing of molten metal fluid current paths 74a, 74b, 74c through the circulator 32.
Reference is now made to Figure 7 which illustrates in a top plan view a furnace, holdinq bay and molten media circulator system that embodies this invention. The description up to this point has treated primarily the cooperative relationship of the molten metal or media circulator and the manner in which the circulator advantageously functions to entrain and melt scrap. Figures 7, 8 and 9 provide a detailed showing of additional features of the invention as the invention finds utility in a complete system.
More specifically there is shown a closed heating bay 75 and a closed holding bay 85. The heating bay 75 and holding bay 85 are formed in a common chamber defined by a front wall 76, a back wall 77, a cover 78, a first
end 79, a second end 80 and finally a floor 81. The cover 78 is not shown in Figure 7. A dividing wall 82 separates a heating region in the heating bay 75 from a holding region in the holding bay 85. The dividing wall 82 has a number of passages 83, 84, 86 and 87 which provide for communication between the heating bay 75 and the holding bay 85.
As best seen in Figure 7, passages 83 and 84 allow molten media (not shown) to pass freely from the heating bay 75 to the holding bay 85. As shown in Figures 7 and 8, passages 86a, 86 and 87 allow combustion gases from the oil or gas treaters 88, 89 to move freely over the surface of the molten media from the heating bay 75 to the holding bay 85. The combustion or flue gases as the are termed are vented through a stack 91.
In the heating bay 75 there is provided a clean-ou ramp 92 which terminates at its upper end with a closure in the form of a guillotine door 93. The holding bay 85 also has a clean-out ramp 94 and guillotine door 95.
Front wall 76 has openings 96, 97 through which molten media is circulated by molten media circulator 98 here shown schematically. The circulator 98 is shown positioned in an open bay 100. The open bay 100 has ski ramp 101 and wall section 102 as shown.
A tapping spout 105 for molten metal or media is provided as shown in Figure 7. The tapping spout 105 is shown positioned such that a mold train 106 carried by rails 107, 108 can carry the molten metal or media away for subsequent processing. A heating bay and open bay drain spout 109 is positioned as shown.
Skim pans 110, 111, 112 are shown carried by rails
113 , 114 .
The location of guillotine door 93 is important to the invention in that when this door 93 is opened, ready access can be had to service opening 96, 97, as well as passages 83, 84, 86 and 87.
In view of the above description it should be abundantly clear that the system and apparatus, as well as the method of the systems operation provides a distinct improvement over the state of the art, in a manner that is simple and less expensive than heretofore available.
Although a single embodiment of the present invention has been illustrated and described, it will be apparent to those skilled in the art that various changes and modifications may be made to this embodiment without departing from the spirit and scope of the invention.
OMP