USRE29210E - Synthesis of chalcogenated polyacenes - Google Patents
Synthesis of chalcogenated polyacenes Download PDFInfo
- Publication number
- USRE29210E USRE29210E US05/662,382 US66238276A USRE29210E US RE29210 E USRE29210 E US RE29210E US 66238276 A US66238276 A US 66238276A US RE29210 E USRE29210 E US RE29210E
- Authority
- US
- United States
- Prior art keywords
- sulfur
- group
- selenium
- tellurium
- elemental
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229920003026 Acene Polymers 0.000 title claims abstract description 16
- 230000015572 biosynthetic process Effects 0.000 title abstract description 6
- 238000003786 synthesis reaction Methods 0.000 title abstract description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims abstract description 40
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims abstract description 27
- 238000000034 method Methods 0.000 claims abstract description 26
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 claims abstract description 20
- 229910052711 selenium Inorganic materials 0.000 claims abstract description 20
- 239000011669 selenium Substances 0.000 claims abstract description 20
- 150000001408 amides Chemical class 0.000 claims abstract description 17
- 229910052714 tellurium Inorganic materials 0.000 claims abstract description 17
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 claims abstract description 17
- 239000002904 solvent Substances 0.000 claims abstract description 8
- 238000006243 chemical reaction Methods 0.000 claims abstract description 7
- 229910052717 sulfur Inorganic materials 0.000 claims description 19
- 239000011593 sulfur Substances 0.000 claims description 19
- 229910052798 chalcogen Inorganic materials 0.000 claims description 13
- 150000001787 chalcogens Chemical class 0.000 claims description 13
- XBDYBAVJXHJMNQ-UHFFFAOYSA-N Tetrahydroanthracene Natural products C1=CC=C2C=C(CCCC3)C3=CC2=C1 XBDYBAVJXHJMNQ-UHFFFAOYSA-N 0.000 claims description 12
- IFLREYGFSNHWGE-UHFFFAOYSA-N tetracene Chemical compound C1=CC=CC2=CC3=CC4=CC=CC=C4C=C3C=C21 IFLREYGFSNHWGE-UHFFFAOYSA-N 0.000 claims description 12
- 150000001875 compounds Chemical class 0.000 claims description 9
- 238000010992 reflux Methods 0.000 claims description 8
- 239000007810 chemical reaction solvent Substances 0.000 claims description 6
- SLIUAWYAILUBJU-UHFFFAOYSA-N pentacene Chemical compound C1=CC=CC2=CC3=CC4=CC5=CC=CC=C5C=C4C=C3C=C21 SLIUAWYAILUBJU-UHFFFAOYSA-N 0.000 claims description 6
- AVQQQNCBBIEMEU-UHFFFAOYSA-N 1,1,3,3-tetramethylurea Chemical compound CN(C)C(=O)N(C)C AVQQQNCBBIEMEU-UHFFFAOYSA-N 0.000 claims description 4
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 claims description 4
- SUAKHGWARZSWIH-UHFFFAOYSA-N N,N‐diethylformamide Chemical compound CCN(CC)C=O SUAKHGWARZSWIH-UHFFFAOYSA-N 0.000 claims description 4
- 101150108015 STR6 gene Proteins 0.000 claims 1
- 230000035484 reaction time Effects 0.000 abstract description 4
- 239000004065 semiconductor Substances 0.000 abstract description 3
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 abstract description 2
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 9
- 239000000047 product Substances 0.000 description 7
- RELMFMZEBKVZJC-UHFFFAOYSA-N 1,2,3-trichlorobenzene Chemical compound ClC1=CC=CC(Cl)=C1Cl RELMFMZEBKVZJC-UHFFFAOYSA-N 0.000 description 4
- 238000009835 boiling Methods 0.000 description 4
- 239000006227 byproduct Substances 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- PXJJSXABGXMUSU-UHFFFAOYSA-N disulfur dichloride Chemical compound ClSSCl PXJJSXABGXMUSU-UHFFFAOYSA-N 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- MHCVCKDNQYMGEX-UHFFFAOYSA-N 1,1'-biphenyl;phenoxybenzene Chemical compound C1=CC=CC=C1C1=CC=CC=C1.C=1C=CC=CC=1OC1=CC=CC=C1 MHCVCKDNQYMGEX-UHFFFAOYSA-N 0.000 description 1
- PBKONEOXTCPAFI-UHFFFAOYSA-N 1,2,4-trichlorobenzene Chemical compound ClC1=CC=C(Cl)C(Cl)=C1 PBKONEOXTCPAFI-UHFFFAOYSA-N 0.000 description 1
- GTVXHLKDHOYLLZ-UHFFFAOYSA-N 5,11-dichlorotetracene Chemical compound C1=CC=C2C=C3C(Cl)=C(C=CC=C4)C4=CC3=C(Cl)C2=C1 GTVXHLKDHOYLLZ-UHFFFAOYSA-N 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 101100386054 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) CYS3 gene Proteins 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical compound C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000002140 halogenating effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000002329 infrared spectrum Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 150000002964 pentacenes Chemical class 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 239000012429 reaction media Substances 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 101150035983 str1 gene Proteins 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D495/00—Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
- C07D495/02—Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
- C07D495/06—Peri-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D327/00—Heterocyclic compounds containing rings having oxygen and sulfur atoms as the only ring hetero atoms
Definitions
- the present invention relates to novel methods for preparing chalcogen-substituted polyacenes and particularly to methods for preparing tetracene and pentacene compounds in which sulfur .[., selenium, or tellurium.]. atoms are attached to interior reactive carbon atoms of the polyacene nucleus to form heterocyclic rings with the nucleus.
- Tetrathiotetracene for example, which has the formula: ##STR1## is reported by Matsunaga in J. Chem. Phys., 42, 2248 (1965) as possessing a specific resistance of 104 ⁇ at 15° C when in molded form. Accordingly, such compounds are useful as organic semiconductors at room temperature. Additionally, these compounds have utility in that they readily form ion-radical salts which are themselves organic semiconductors having even lower electrical resistivity. Matsunaga U.S. Pat. No. 3,403,165 discloses such tetrathiotetracene ion-radical salts and their semiconductive properties.
- Synthesis of substituted polyacenes has been carried out in the past by reacting a polyacene with an elemental chalcogen such as sulfur, selenium, and tellurium in the presence of hot solvent such as trichlorobenzene or Dowtherm, a eutectic of biphenyl and biphenyl oxide sold by the Dow Chemical Company.
- a polyacene with an elemental chalcogen such as sulfur, selenium, and tellurium
- hot solvent such as trichlorobenzene or Dowtherm
- tetrathiotetracene is ordinarily synthesized by reacting tetracene with elemental sulfur in hot trichlorobenzene. Synthesis carried out by this method produces considerable amounts of undesirable by-products and requires a reaction time of from 20 to 24 hours.
- chalcogen-substituted polyacene compounds involves the reaction of a halogenated polyacene with an elemental chalcogen in the presence of trichlorobenzene.
- Tetrathiotetracene can be prepared according to this method by reacting elemental sulfur with 5,11-dichlorotetracene in trichlorobenzene. This method requires the additional step of halogenating the tetracene.
- Still another method for producing tetrathiotetracene involves heating sulfur monochloride and tetracene in trichlorobenzene.
- Sulfur monochloride is a very powerful reagent which must be freshly distilled before use.
- the reaction is carried out in a current of carbon dioxide and tends to produce significant amounts of undesirable by-products.
- the present invention is directed to overcoming the deficiencies of the prior art by providing methods for producing chalcogen-substituted polyacenes which require relatively short reaction times while practically eliminating substantial amounts of undesirable by-products. Additionally, the present invention requires no prior synthesis of halogenated reactant or use of a strong oxidizing agent. Further, the present invention produces high yields of relatively pure products which can ordinarily be utilized without further purification.
- Preferred alkylated amides useful in carrying out the method of the present invention include N,N-dimethylformamide, N,N-diethylformamide, N,N-dimethylacetamide, and N,N,N',N'-tetramethylurea.
- N,N'-dimethylformamide is the solvent most preferred when carrying out the method of the present invention.
- Tetracene (20 g.) and flowers of sulfur (40 g.) are placed in a flask containing 500 ml. of N,N-dimethylformamide.
- the reaction mixture is heated to boiling, and boiling is continued for about 31/2 hours. Small additions of N,N-dimethylformamide are made at intervals to replace the solvent lost by evaporation.
- the insoluble dark green product is separated by filtering while still hot and is finally washed with benzene and ligroine. After drying under ambient conditions, a yield of 29.3 g. (94.8 percent) of tetrathiotetracene is obtained.
- Tetracene (0.7 g.) and flowers of sulfur (1.4 g.) are placed in a flask containing 30 ml. of N,N,N',N'-tetramethylurea and provided with a reflux condenser. The mixture is heated to boiling, and refluxed for about 3 hours. The insoluble product is then filtered and washed with benzene and ligroine. After drying, a yield of 0.96 g. (89 percent) of tetrathiotetracene is obtained.
- Example 2 A procedure identical to that of Example 2 is used with the exception that 1 g. of tetracene, 2 g. of flowers of sulfur, and 50 ml. of N,N-dimethylacetamide are used as reagents. The yield of tetrathiotetracene is 1.2 g. (78 percent).
- a reaction is carried out as described in Example 3 with the exception that N,N-diethylformamide is used as solvent, the reaction time is 21/4 hours, and the product is recovered after the reaction medium is cooled to room temperature.
- the yield of tetrathiotetracene is 0.93 g. (60 percent).
- Pentacene (1 g.) and flowers of sulfur (2 g.) are placed in a flask containing 40 ml. of N,N-dimethylformamide and provided with an air-cooled reflux condenser. The mixture is heated to boiling, under a blanket of nitrogen gas, and refluxed in the dark for about 31/2 hours. The insoluble product is then filtered hot and washed with benzene and ligroine. After drying in air, a yield of 1.15 g. (68.5 percent) of blue-green hexathiopentacene is obtained.
- a reaction can be carried out as described in Example 2 with the exception that 3.5 g. of selenium are used instead of flowers of sulfur to yield tetraselenotetracene..].
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
Abstract
Chalcogenated polyacenes including organic semiconductors such as tetrathiotetracene, .[.tetraselenotetracene.]., and hexathiopentacene are produced by reaction of a polyacene with elemental sulfur, .[.selenium, and tellurium.]. in the presence of nitrogen-containing hot solvents, preferably alkylated amides. N,N-dimethylformamide is the preferred solvent. The disclosed method of synthesis produces substituted polyacenes of high yield and purity in considerably shorter reaction times than achievable by prior art methods.
Description
The present invention relates to novel methods for preparing chalcogen-substituted polyacenes and particularly to methods for preparing tetracene and pentacene compounds in which sulfur .[., selenium, or tellurium.]. atoms are attached to interior reactive carbon atoms of the polyacene nucleus to form heterocyclic rings with the nucleus.
Certain polyacenes, notably tetrathiotetracene, .[.tetraselenotetracene,.]. and hexathiopentacene are known to have low electrical resistivity. Tetrathiotetracene, for example, which has the formula: ##STR1## is reported by Matsunaga in J. Chem. Phys., 42, 2248 (1965) as possessing a specific resistance of 104Ω at 15° C when in molded form. Accordingly, such compounds are useful as organic semiconductors at room temperature. Additionally, these compounds have utility in that they readily form ion-radical salts which are themselves organic semiconductors having even lower electrical resistivity. Matsunaga U.S. Pat. No. 3,403,165 discloses such tetrathiotetracene ion-radical salts and their semiconductive properties.
Synthesis of substituted polyacenes has been carried out in the past by reacting a polyacene with an elemental chalcogen such as sulfur, selenium, and tellurium in the presence of hot solvent such as trichlorobenzene or Dowtherm, a eutectic of biphenyl and biphenyl oxide sold by the Dow Chemical Company. For example, tetrathiotetracene is ordinarily synthesized by reacting tetracene with elemental sulfur in hot trichlorobenzene. Synthesis carried out by this method produces considerable amounts of undesirable by-products and requires a reaction time of from 20 to 24 hours.
Another method for producing chalcogen-substituted polyacene compounds involves the reaction of a halogenated polyacene with an elemental chalcogen in the presence of trichlorobenzene. Tetrathiotetracene can be prepared according to this method by reacting elemental sulfur with 5,11-dichlorotetracene in trichlorobenzene. This method requires the additional step of halogenating the tetracene.
Still another method for producing tetrathiotetracene involves heating sulfur monochloride and tetracene in trichlorobenzene. Sulfur monochloride is a very powerful reagent which must be freshly distilled before use. In addition, the reaction is carried out in a current of carbon dioxide and tends to produce significant amounts of undesirable by-products.
Accordingly, the present invention is directed to overcoming the deficiencies of the prior art by providing methods for producing chalcogen-substituted polyacenes which require relatively short reaction times while practically eliminating substantial amounts of undesirable by-products. Additionally, the present invention requires no prior synthesis of halogenated reactant or use of a strong oxidizing agent. Further, the present invention produces high yields of relatively pure products which can ordinarily be utilized without further purification.
It has been discovered that the shortcomings of the prior art methods for producing chalcogen-substituted polyacenes, particularly those having the general formulas: ##STR2## and ##STR3## wherein X and Y each represent .[.identical atoms selected from the group consisting of.]. sulfur .[., selenium, and tellurium,.]. can be overcome by reacting an elemental .[.chalcogen selected from the group consisting of.]. sulfur .[.selenium,.]. and tellurium with a polyacene such as tetracene or pentacene in the presence of a reaction solvent comprising a nitrogen-containing organic solvent, preferably an alkylated amide maintained at high temperatures, usually at about reflux temperatures. Preferred alkylated amides useful in carrying out the method of the present invention include N,N-dimethylformamide, N,N-diethylformamide, N,N-dimethylacetamide, and N,N,N',N'-tetramethylurea. N,N'-dimethylformamide is the solvent most preferred when carrying out the method of the present invention.
Effectiveness of the novel methods of synthesis provided by the present invention is demonstrated by the following examples.
Tetracene (20 g.) and flowers of sulfur (40 g.) are placed in a flask containing 500 ml. of N,N-dimethylformamide. The reaction mixture is heated to boiling, and boiling is continued for about 31/2 hours. Small additions of N,N-dimethylformamide are made at intervals to replace the solvent lost by evaporation. After the reaction is completed the insoluble dark green product is separated by filtering while still hot and is finally washed with benzene and ligroine. After drying under ambient conditions, a yield of 29.3 g. (94.8 percent) of tetrathiotetracene is obtained. Comparison of the infrared spectrum of this product with that of purified authentic samples of tetrathiotetracene reveals the presence of only minor impurities. The product, as prepared above, is then successfully utilized without further purification to prepare ion-radical derivatives of tetrathiotetracene as described by Matsunaga in U.S. Pat. No. 3,403,165.
Elemental analysis of a typical sample of tetrathiotetracene prepared by the method of Example 1 is as follows:
Theory (percent): C, 61.4; H, 2.3; S, 36.4; Cl, 0; N, .0
Found (percent): C, 61.1; H, 2.5; S, 36.4; Cl, <.1; N, <.1
Tetracene (0.7 g.) and flowers of sulfur (1.4 g.) are placed in a flask containing 30 ml. of N,N,N',N'-tetramethylurea and provided with a reflux condenser. The mixture is heated to boiling, and refluxed for about 3 hours. The insoluble product is then filtered and washed with benzene and ligroine. After drying, a yield of 0.96 g. (89 percent) of tetrathiotetracene is obtained.
A procedure identical to that of Example 2 is used with the exception that 1 g. of tetracene, 2 g. of flowers of sulfur, and 50 ml. of N,N-dimethylacetamide are used as reagents. The yield of tetrathiotetracene is 1.2 g. (78 percent).
A reaction is carried out as described in Example 3 with the exception that N,N-diethylformamide is used as solvent, the reaction time is 21/4 hours, and the product is recovered after the reaction medium is cooled to room temperature. The yield of tetrathiotetracene is 0.93 g. (60 percent).
Pentacene (1 g.) and flowers of sulfur (2 g.) are placed in a flask containing 40 ml. of N,N-dimethylformamide and provided with an air-cooled reflux condenser. The mixture is heated to boiling, under a blanket of nitrogen gas, and refluxed in the dark for about 31/2 hours. The insoluble product is then filtered hot and washed with benzene and ligroine. After drying in air, a yield of 1.15 g. (68.5 percent) of blue-green hexathiopentacene is obtained.
A reaction can be carried out as described in Example 2 with the exception that 3.5 g. of selenium are used instead of flowers of sulfur to yield tetraselenotetracene..].
The invention has been described in detail with particular reference to certain preferred embodiments thereof, but it will be understood that variations and modifications can be effected within the spirit and scope of the invention.
Claims (8)
1. In a method for preparing a compound having the formula: ##STR4## or ##STR5## wherein X and Y each represent identical atoms selected from the group consisting of sulfur.[., selenium, and tellurium,.]. by a reaction of elemental .[.chalcogen selected from the group consisting of.]. sulfur.[., selenium, and tellurium.]. and a polyacene selected from the group consisting of tetracene and pentacene in the presence of a hot solvent, the improvement which comprises employing an alkylated amide as said solvent.
2. A method for preparing a compound having the formula: ##STR6## or ##STR7## wherein X and Y each represent identical .[.atoms selected from the group consisting of.]. sulfur.[., selenium, and tellurium.]. which comprises reacting an elemental .[.chalcogen selected from the group consisting of.]. sulfur.[., selenium, and tellurium.]. with a polyacene selected from the group consisting of tetracene and pentacene in the presence of a reaction solvent comprising an alkylated amide maintained at about reflux temperatures.
3. A method for preparing a compound having the formula: ##STR8## wherein X represents identical atoms .[.selected from the group consisting of.]. sulfur .[., selenium, and tellurium.]. which comprises reacting an elemental .[.chalcogen selected from the group consisting of.]. sulfur.[., selenium, and tellurium.]. with tetracene in the presence of a reaction solvent comprising an alkylated amide maintained at about reflux temperatures.
4. A method for preparing a compound having the formula: ##STR9## wherein X represents identical atoms .[.selected from the group consisting.]. of sulfur.[., selenium, and tellurium.]. which comprises reacting an elemental .[.chalcogen selected from the group consisting of.]. sulfur.[., selenium, and tellurium.]. with tetracene in the presence of a reaction solvent comprising an alkylated amide maintained at about reflux temperatures, said alkylated amide selected from the group consisting of N,N-dimethylformamide, N,N-diethylformamide, N,N-dimethylacetamide, and N,N,N',N'-tetramethylurea.
5. The method according to claim 4 wherein said alkylated amide is N,N-dimethylformamide. .[.6. The method according to claim 4 wherein the elemental chalcogen is selected from the group consisting of sulfur and selenium, and the alkylated amide is N,N-dimethylformamide..]. .[.7. The method according to claim 6 wherein the elemental chalcogen is sulfur and the alkylated amide is N,N-dimethylformamide..]. .[.8. The method according to claim 6 wherein the elemental chalcogen is selenium and the
alkylated amide is N,N-dimethylformamide..]. 9. A method for preparing a compound having the formula: ##STR10## wherein Y represents identical atoms .[.selected from the group consisting.]. of sulfur.[., selenium, and tellurium,.]. which comprises reacting an elemental .[.chalcogen selected from the group consisting of.]. sulfur.[., selenium, and tellurium.]. with pentacene in the presence of a reaction solvent comprising an alkylated amide maintained at about
reflux temperatures. 10. A method for preparing a compound having the formula: ##STR11## wherein Y represents identical atoms .[.selected from the group consisting.]. of sulfur.[., selenium, and tellurium.]. which comprises reacting an elemental .[.chalcogen selected from the group consisting of.]. sulfur.[., selenium, and tellurium.]. with pentacene in the presence of a reaction solvent comprising an alkylated amide maintained at about reflux temperatures, said alkylated amide selected from the group consisting of N,N-dimethylformamide, N,N-diethylformamide,
N,N-dimethylacetamide, and N,N,N',N'-tetramethylurea. 11. The method according to claim 10 wherein said alkylated amide is N,N-dimethylformamide. .[.12. The method according to claim 10 wherein the elemental chalcogen is sulfur and the alkylated amide is N,N-dimethylformamide..].
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US05/662,382 USRE29210E (en) | 1971-06-01 | 1976-03-01 | Synthesis of chalcogenated polyacenes |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US14905671A | 1971-06-01 | 1971-06-01 | |
| US05/662,382 USRE29210E (en) | 1971-06-01 | 1976-03-01 | Synthesis of chalcogenated polyacenes |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14905671A Reissue | 1971-06-01 | 1971-06-01 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| USRE29210E true USRE29210E (en) | 1977-05-10 |
Family
ID=22528614
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US00149056A Expired - Lifetime US3723417A (en) | 1971-06-01 | 1971-06-01 | Synthesis of chalcogenated polyacenes |
| US05/662,382 Expired - Lifetime USRE29210E (en) | 1971-06-01 | 1976-03-01 | Synthesis of chalcogenated polyacenes |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US00149056A Expired - Lifetime US3723417A (en) | 1971-06-01 | 1971-06-01 | Synthesis of chalcogenated polyacenes |
Country Status (4)
| Country | Link |
|---|---|
| US (2) | US3723417A (en) |
| BE (1) | BE783733A (en) |
| FR (1) | FR2141080A5 (en) |
| GB (1) | GB1377701A (en) |
Families Citing this family (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3923753A (en) * | 1973-01-14 | 1975-12-02 | Standard Oil Co | 1,4-Dihydronaphthalene derivatives |
| CH591473A5 (en) * | 1974-08-09 | 1977-09-15 | Ciba Geigy Ag | |
| US4046950A (en) | 1976-03-18 | 1977-09-06 | Eastman Kodak Company | Chalcogenated tetracene organic metals |
| US4754028A (en) * | 1984-09-24 | 1988-06-28 | The Dow Chemical Company | 3,4,5-triselena-tricyclo-[5.2.1.0.2,6 ]decanes and derivatives thereof |
| US4861859A (en) * | 1988-03-28 | 1989-08-29 | The United States Of America As Represented By The Secretary Of The Navy | Conductive polymers of transition-metal complexes coordinated by a diamino-dichalcogen-benzene compound |
| JP6263118B2 (en) * | 2012-06-12 | 2018-01-17 | 株式会社ダイセル | Solvent or solvent composition for organic transistor production |
-
1971
- 1971-06-01 US US00149056A patent/US3723417A/en not_active Expired - Lifetime
-
1972
- 1972-05-18 FR FR7217770A patent/FR2141080A5/fr not_active Expired
- 1972-05-19 BE BE783733A patent/BE783733A/en unknown
- 1972-05-31 GB GB2548872A patent/GB1377701A/en not_active Expired
-
1976
- 1976-03-01 US US05/662,382 patent/USRE29210E/en not_active Expired - Lifetime
Non-Patent Citations (1)
| Title |
|---|
| chemical Abstracts, vol. 44, cols. 3399-3401 (1950), abstracting Marschalk et al., "Bull. Soc. Chim France," (1948), pp. 418-428. * |
Also Published As
| Publication number | Publication date |
|---|---|
| BE783733A (en) | 1972-09-18 |
| GB1377701A (en) | 1974-12-18 |
| US3723417A (en) | 1973-03-27 |
| FR2141080A5 (en) | 1973-01-19 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Simmons et al. | Thiacyanocarbons. I. Tetracyano-1, 4-dithiin, Tetracyanothiophene and Tricyano-1, 4-dithiino [c] isothiazole | |
| US4500459A (en) | Tetracyanoanthraquinodimethane compounds | |
| US4578220A (en) | Charge transfer complexes of tetrathio/seleno-fulvalene derivatives and biscyanimine derivatives; biscyanimine derivatives and method for producing same | |
| USRE29210E (en) | Synthesis of chalcogenated polyacenes | |
| SA91110352B1 (en) | An improved process for the preparation of substituted endolone derivatives | |
| US4478753A (en) | Process for the production of 11,11,12,12-tetracyano-9,10-anthraquinodimehane _or its derivatives | |
| Barluenga et al. | C-Alkylation and N-acylation of 4-amino-1-azabutadiene derivatives. A convenient route to monoalkylated 1, 3-diketones | |
| EP0061264B1 (en) | Tetracyanoanthraquinodimethane compounds and processes for the production thereof, polymers and charge-transfer complexes derived therefrom | |
| DE69119961T2 (en) | Process for the reduction of acridine containing carbonyl | |
| US4243601A (en) | Cyano substituted diphenoquinones and a process for preparing them | |
| US5062990A (en) | Discotic octasubstituted tetrapyrazinotetraazaporphyrazines | |
| Tamborski et al. | Reactions of 1, 2-bis (trifluoroacetyl) benzene with nucleophiles leading to heterocyclic compounds | |
| JPS5988486A (en) | Manufacture of 3,4,9,10-tetrathioperylene and 3,4,9,10- tetraselenoperylene | |
| JPH06100566A (en) | Octakis@(3754/24)alkoxyphenyl)tetrapyrazinoporphyradine compounds and composition containing the same and capable of forming discotic liquid crystal phase | |
| Kumar et al. | An efficient approach to the synthesis of 4H-1-benzothiopyran-4-ones via intramolecular Wittig reaction | |
| RU2111960C1 (en) | Method of synthesis of 1-amino-1-cyanamido-2,2-dicyanethylene sodium salt | |
| JPS60188393A (en) | Novel ferrocene compound and its preparation | |
| CA1105469A (en) | Derivatives of m-diethylaminophenol useful as intermediates for dyes | |
| US4929730A (en) | Bis(1,2,5)thiadiazolo(3,4-b:3',4'-E) pyrazine, a process for the preparation thereof and a method of using same | |
| US3769276A (en) | Selenium and tellurim compounds of halogenated arenes and preparation | |
| US3347941A (en) | Triphenyl methane free radicals and their preparation | |
| JPS63185976A (en) | Method for producing thiophenes from alpha-methylene ketone by one stage reaction and novel orthocondensed thiophene produced using said method | |
| Lalezari et al. | Selenium heterocycles XXIII. Synthesis of 4, 5‐dihydrophenanthro [1, 3‐d]‐1, 2, 3‐selenadiazoles and 10, 11‐dihydrophenanthro [1, 2‐d]‐1, 2, 3‐selenadiazoles | |
| JPS5936638B2 (en) | Method for producing bisdithiolium salts | |
| US3471496A (en) | Process for preparing tetrabromopyrazine |