USRE28192E - Process for producing crystalline alkah metal citrates by precipita- tion - Google Patents
Process for producing crystalline alkah metal citrates by precipita- tion Download PDFInfo
- Publication number
- USRE28192E USRE28192E US28192DE USRE28192E US RE28192 E USRE28192 E US RE28192E US 28192D E US28192D E US 28192DE US RE28192 E USRE28192 E US RE28192E
- Authority
- US
- United States
- Prior art keywords
- citrate
- citric acid
- calcium
- sodium
- solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000000034 method Methods 0.000 title claims abstract description 60
- 238000001556 precipitation Methods 0.000 title description 6
- 150000001860 citric acid derivatives Chemical class 0.000 title description 5
- 229910052751 metal Inorganic materials 0.000 title description 5
- 239000002184 metal Substances 0.000 title description 5
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical class OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims abstract description 449
- 229910052783 alkali metal Inorganic materials 0.000 claims abstract description 59
- 238000000855 fermentation Methods 0.000 claims abstract description 56
- 230000004151 fermentation Effects 0.000 claims abstract description 56
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 43
- -1 ALKALI METAL CITRATES Chemical class 0.000 claims abstract description 41
- 239000012452 mother liquor Substances 0.000 claims abstract description 40
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 claims abstract description 26
- 239000001509 sodium citrate Substances 0.000 claims abstract description 26
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 claims abstract description 24
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims abstract description 18
- 239000011575 calcium Substances 0.000 claims abstract description 18
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 18
- 238000002425 crystallisation Methods 0.000 claims abstract description 18
- 230000008025 crystallization Effects 0.000 claims abstract description 18
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 claims abstract description 18
- 238000001704 evaporation Methods 0.000 claims abstract description 17
- 230000008020 evaporation Effects 0.000 claims abstract description 17
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 claims abstract description 15
- 239000001110 calcium chloride Substances 0.000 claims abstract description 14
- 229910001628 calcium chloride Inorganic materials 0.000 claims abstract description 14
- 229910000019 calcium carbonate Inorganic materials 0.000 claims abstract description 12
- 241000228245 Aspergillus niger Species 0.000 claims abstract description 11
- 229940043430 calcium compound Drugs 0.000 claims abstract description 11
- 150000001674 calcium compounds Chemical class 0.000 claims abstract description 11
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 claims abstract description 10
- 239000000920 calcium hydroxide Substances 0.000 claims abstract description 10
- 229910001861 calcium hydroxide Inorganic materials 0.000 claims abstract description 10
- 150000003388 sodium compounds Chemical class 0.000 claims abstract description 7
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 claims abstract description 6
- 229910000030 sodium bicarbonate Inorganic materials 0.000 claims abstract description 3
- 235000017557 sodium bicarbonate Nutrition 0.000 claims abstract description 3
- XLYOFNOQVPJJNP-PWCQTSIFSA-N Tritiated water Chemical compound [3H]O[3H] XLYOFNOQVPJJNP-PWCQTSIFSA-N 0.000 claims abstract 5
- MQRJBSHKWOFOGF-UHFFFAOYSA-L disodium;carbonate;hydrate Chemical compound O.[Na+].[Na+].[O-]C([O-])=O MQRJBSHKWOFOGF-UHFFFAOYSA-L 0.000 claims abstract 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 abstract description 42
- 238000001914 filtration Methods 0.000 abstract description 20
- 239000010440 gypsum Substances 0.000 abstract description 20
- 229910052602 gypsum Inorganic materials 0.000 abstract description 20
- IISIZTZBVOYMAH-UHFFFAOYSA-K calcium;sodium;2-hydroxypropane-1,2,3-tricarboxylate Chemical compound [Na+].[Ca+2].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O IISIZTZBVOYMAH-UHFFFAOYSA-K 0.000 abstract description 18
- 239000002244 precipitate Substances 0.000 abstract description 17
- HWPKGOGLCKPRLZ-UHFFFAOYSA-M monosodium citrate Chemical compound [Na+].OC(=O)CC(O)(C([O-])=O)CC(O)=O HWPKGOGLCKPRLZ-UHFFFAOYSA-M 0.000 abstract description 5
- 239000000243 solution Substances 0.000 description 138
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 18
- 239000001354 calcium citrate Substances 0.000 description 18
- 235000013337 tricalcium citrate Nutrition 0.000 description 18
- 239000013078 crystal Substances 0.000 description 16
- WKZJASQVARUVAW-UHFFFAOYSA-M potassium;hydron;2-hydroxypropane-1,2,3-tricarboxylate Chemical compound [K+].OC(=O)CC(O)(C(O)=O)CC([O-])=O WKZJASQVARUVAW-UHFFFAOYSA-M 0.000 description 16
- 238000005341 cation exchange Methods 0.000 description 13
- 239000002253 acid Substances 0.000 description 12
- CEYULKASIQJZGP-UHFFFAOYSA-L disodium;2-(carboxymethyl)-2-hydroxybutanedioate Chemical compound [Na+].[Na+].[O-]C(=O)CC(O)(C(=O)O)CC([O-])=O CEYULKASIQJZGP-UHFFFAOYSA-L 0.000 description 11
- 235000011083 sodium citrates Nutrition 0.000 description 11
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 10
- 238000005406 washing Methods 0.000 description 10
- SPGDAODMONVAAC-UHFFFAOYSA-K calcium;potassium;2-hydroxypropane-1,2,3-tricarboxylate Chemical compound [K+].[Ca+2].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O SPGDAODMONVAAC-UHFFFAOYSA-K 0.000 description 8
- 238000000909 electrodialysis Methods 0.000 description 8
- HRXKRNGNAMMEHJ-UHFFFAOYSA-K trisodium citrate Chemical class [Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O HRXKRNGNAMMEHJ-UHFFFAOYSA-K 0.000 description 8
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical class [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 7
- 239000012528 membrane Substances 0.000 description 7
- 150000003839 salts Chemical class 0.000 description 7
- 235000019263 trisodium citrate Nutrition 0.000 description 7
- 229940038773 trisodium citrate Drugs 0.000 description 7
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 6
- FNAQSUUGMSOBHW-UHFFFAOYSA-H calcium citrate Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O.[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O FNAQSUUGMSOBHW-UHFFFAOYSA-H 0.000 description 6
- 229910052739 hydrogen Inorganic materials 0.000 description 6
- 239000001257 hydrogen Substances 0.000 description 6
- 239000012535 impurity Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 230000003472 neutralizing effect Effects 0.000 description 6
- 150000003112 potassium compounds Chemical class 0.000 description 6
- 150000001339 alkali metal compounds Chemical class 0.000 description 5
- 239000002518 antifoaming agent Substances 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 235000013379 molasses Nutrition 0.000 description 5
- 229910000027 potassium carbonate Inorganic materials 0.000 description 5
- 235000011181 potassium carbonates Nutrition 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 4
- 238000007792 addition Methods 0.000 description 4
- 239000003011 anion exchange membrane Substances 0.000 description 4
- 239000000706 filtrate Substances 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 238000005342 ion exchange Methods 0.000 description 4
- 230000001376 precipitating effect Effects 0.000 description 4
- 239000010802 sludge Substances 0.000 description 4
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 229910001413 alkali metal ion Inorganic materials 0.000 description 3
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 3
- 239000000292 calcium oxide Substances 0.000 description 3
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- PFKGDYCESFRMAP-UHFFFAOYSA-L dicalcium citrate Chemical compound [Ca+2].[O-]C(=O)CC(O)(C(=O)O)CC([O-])=O PFKGDYCESFRMAP-UHFFFAOYSA-L 0.000 description 3
- 239000006260 foam Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000006386 neutralization reaction Methods 0.000 description 3
- 229920001296 polysiloxane Polymers 0.000 description 3
- 229910001414 potassium ion Inorganic materials 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- KNIUHBNRWZGIQQ-UHFFFAOYSA-N 7-diethoxyphosphinothioyloxy-4-methylchromen-2-one Chemical compound CC1=CC(=O)OC2=CC(OP(=S)(OCC)OCC)=CC=C21 KNIUHBNRWZGIQQ-UHFFFAOYSA-N 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 229910000288 alkali metal carbonate Inorganic materials 0.000 description 2
- 150000008041 alkali metal carbonates Chemical class 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 159000000007 calcium salts Chemical class 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000002444 monopotassium citrate Substances 0.000 description 2
- 235000015861 monopotassium citrate Nutrition 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 229960003975 potassium Drugs 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 description 2
- 159000000000 sodium salts Chemical class 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- WOLQREOUPKZMEX-BZSNNMDCSA-N (2s)-2-[[(4s)-4-[[(4s)-4-[[4-[(2-amino-4-oxo-1h-pteridin-6-yl)methylamino]benzoyl]amino]-4-carboxybutanoyl]amino]-4-carboxybutanoyl]amino]pentanedioic acid Chemical compound C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)N[C@@H](CCC(=O)N[C@@H](CCC(=O)N[C@@H](CCC(O)=O)C(O)=O)C(O)=O)C(O)=O)C=C1 WOLQREOUPKZMEX-BZSNNMDCSA-N 0.000 description 1
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 241000212342 Sium Species 0.000 description 1
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- 150000001721 carbon Chemical class 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000003729 cation exchange resin Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 238000005325 percolation Methods 0.000 description 1
- 229920001467 poly(styrenesulfonates) Polymers 0.000 description 1
- 239000011736 potassium bicarbonate Substances 0.000 description 1
- 229910000028 potassium bicarbonate Inorganic materials 0.000 description 1
- 235000015497 potassium bicarbonate Nutrition 0.000 description 1
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 description 1
- 235000011118 potassium hydroxide Nutrition 0.000 description 1
- ALVOEUTXKIPYGD-UHFFFAOYSA-M potassium;3-carboxy-3,5-dihydroxy-5-oxopentanoate;2-hydroxypropane-1,2,3-tricarboxylic acid Chemical compound [K+].OC(=O)CC(O)(C(O)=O)CC(O)=O.OC(=O)CC(O)(C(O)=O)CC([O-])=O ALVOEUTXKIPYGD-UHFFFAOYSA-M 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000011403 purification operation Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C59/00—Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
- C07C59/235—Saturated compounds containing more than one carboxyl group
- C07C59/245—Saturated compounds containing more than one carboxyl group containing hydroxy or O-metal groups
- C07C59/265—Citric acid
Definitions
- ABSTRACT OF THE DISCLOSURE A method for making specific crystalline alkali metal salts, in particular the mono-potassium di-hydrogen citrate and the three sodium citrates from liquids. A method for precipitating other citrate salts like the mono-alkali metal calcium citrate from liquids.
- the present invention relates to an improved process of producing citric acid and more particularly to a process of producing citric acid by fermentation of aqueous sugar solutions by means of Aspergillus niger.
- citric acid It is known to produce citric acid by fermentation of aqueous sugar solutions by means of Aspergillus niger.
- the citrc acid obtained in such a fermentation process contains, after fermentation is completed, unferrnented sugar as well as ionogenic and non-ionogenic impurities which have been formed as by-products of the fermentation process. Solutions which are very considerably contaminated by such by-products are obtained when using molasses as starting material in place of pure sugar solutions. Molasses is the most commonly used starting ma terial in the large scale production of citric acid by fermentation.
- the citric acid is precipitated in the form of its tri-calcium salt.
- a process has become known according to which calcium monohydrogen citrate is precipitated which is subsequently treated with sulfuric acid in the above described manner.
- the aqueous citric acid solution obtained according to this process is still contaminated by dissolved calcium sulfate and other ionogenic and non-ionogenic impurities.
- citric acid It is also known to cause citric acid to directly crystallize from fermentation solutions. However, such a directly crystallized citric acid requires complicated purification operations in order to yield a substantially pure product. This process, furthermore, is applicable only to specific fermentation solutions.
- Another object of the present invention is to provide a simple and effective process of isolating and purifying alkali metal citrates of remarkable purity from fcrmcnlation solutions.
- a further object of the present invention is to provide a simple and effective process of working up the mother liquors and wash waters obtained in the recovery of citric acid and its alkali metal salts from fermentation solutions.
- the improved process according to the present invention consists in isolating the citrc acid from the fermentation solution in the form of its alkali metal salts and in recovering the acid from such salts directly in one single operation.
- This new and improved process is based on the surprising fact that certain alkali metal salts of citric acid crystallize from a citric acid containing fermentation solution when neutralizing such a solution by the addition of alkaline alkali metal compounds in such a manner that the mono-, di-, or trialkali metal citratcs are obtained.
- the fermentation solution be concentrated by evaporation in a vacuum to a concentration of at least 40%, calculated for free citric acid. That certain alkali metal salts of citric acid would crystallize in a good yield under such conditions is quite surprising because it is known that the alkali metal salts of citric acid crystallize rather difficulty even from their pure aqueous solutions. Furthermore, it was not to be expected that such difficulty crystallizablc salt would be obtained from aqueous solutions containing impurities derived from the molasses used as starting material. It is well known that such impurities impede or even inhibit crystallization.
- alkali metal salts of citric acid can be produced in crystalline form according to the present invention.
- the potassium metal salts only the mono-potassium di-hydrogen citrate of the formula can be obtained in crystalline form.
- the sodium salts all three possible salts can be recovered in the form of crystals.
- Partial or complete neutralization of a citric acid fermentation solution by means of alkali metal hydroxides, bicarbonatcs, or carbonates can be effected before concentrating by evaporation the solution, or thereafter.
- nculraliyation is carried out after concentration because the fermentation solution foams in a vacuum very considerably when partly or completely neutralized, i.e. the higher its pH-valuc is, the greater is its tendency to foam.
- the alkali metal salts crystallize on standing or on slowly stirring the solution.
- seed crystals are added. Crystallization is ordinarily completed within 24 hours. Separation of the crystals from the mother liquor is effected by the usual methods, for instance. by centrifuging. On washing the crystals with a very small amount of water, there is obtained an almost white or slightly yellowishbrown crystalline precipitate depending upon the type of alkali metal citrate recovered. Said crystalline precipitate is directly worked up to citric acid as will be described hereinafter. The yield of alkali metal citrate.
- citric acid fermentation solution is neutralized by the addition of the respective alkali metal hydroxide. bicarbonate or carbonate in an amount sufficient to produce a salt of the composition of the desired crystals. Slight variations of the required neutralization value are of no significant importance. Their effect upon crystallization of the desired alkali metal citrate depends upon the kind of impurities present in the fermentation solution and can readily be determined by preliminary experiments. For instance, when recovering mono-potassium di-hydrogen citrate from a citric acid fermentation solution obtained by fermentation of molasses.
- the molasses contains considerable amounts of potassium ions so that the citric acid is present in the fermentation solution, at least partly, in the form the mono-potassium di-hydrogen citrate.
- the potassium ions initially present in the fermentation solution are preferably sufficient for neutralizing 8 to l4 moles of each 100 moles of the citric acid present in the fermentation solution.
- the yield of citric acid on recovering it in the form of its alkali metal salts is between about 50% and about 80% depending upon the selected salt.
- Citric acid which remains in the mother liquor together with most of the impurities is recovered therefrom by precipitation in the form of a calcium salt.
- the citric acid is not precipitated as tricalcium citrate and also not as calcium monohydrogen citrate as it was known heretofore, but in the form of the mono-alkali metal calcium citrate.
- one mole of calcium ions per mole of citric acid present in the mother liquor is added thereto.
- a calcium chloride solution When using a completely neutralized mother liquor, as obtained when recovering the tertiary alkali metal salts, a calcium chloride solution has proved to be especially suitable for the precipitation of said mono-alkali metal calcium citrate.
- precipitation is preferably effected by means of calcium carbonate and/or calcium hydroxide.
- the precipitated mono-alkali metal calcium citrate is preferably precipitated while heating and is washed with hot water. It is more readily filterable than tri-caleium citrate and calcium mono-hydrogen citrate which have been previously precipitated as intermediate products.
- the resulting mono-alkali metal calcium citrate is then reacted with 1 mole of sulfuric acid calculated for 1 mole of citrate. Thereby. a mono-alkali metal citrate solution and gypsum are obtained. While, when recovering citric acid by means of tricalcium citrate, 1.5 moles of sulfuric acid are required for one mole of citric acid and, when recovering the citric acid in the form of calcium monohydrogen citrate. 1 mole of sulfuric acid is required for one mole of citric acid, only 0.5 mol to 0.2 mole of sulfuric acid are consumed per mole of citric acid, when proceeding according to the present invention, depending upon the yield of the alkali metal citrate.
- a further particular advantage of the process according to the present invention consists in the formation of ready filtrable gypsum crystals due to the presence of alkali metal ions. It has been found that gypsum, which is produced according to the present invention by reacting mono-alkali metal calcium citrate with sulfuric acid, filters about five to six times more rapidly and can also be more rapidly washed than gypsum as it is produced according to the heretofore known processes in the absence of alkali metal ions. At the same time, the amount of water which is required in order to completely wash the gypsum can be reduced by about 20% to about 25%.
- the solution obtained after filtering off the gypsum contains in general only the mono-alkali metal di-hydrogen citrate. Said solution is further worked up either as such or, preferably, together with the alkali metal citrate crystals obtained as described hereinabove. If the initially obtained crystalline product obtained from the concentrated citric acid fermentation solution is also the mono-alkali metal di-hydrogen citrate, it is dissolved in the filtrate obtained on gypsum preparation and filtration. The resulting solution of mono-alkali metal di-hydrogen citrate is then further worked up to citric acid. Such further working up can be effected either by percolation through a number of columns containing cation exchange material in the hydrogen form. Said columns are arranged one after the other.
- citric acid is recovered from said solution by electrodialysis as described in Example 3, If dior tri alkali metal citrates have been obtained in crystalline form from the citric acid fermentation solution, simple ion exchange treatment for the production of the free acid will not be economical. in this case, recovery of citric acid by elcctrodialysis is the preferred procedure.
- Example 1 Three cu. m. of fermentation citric acid solution of a citric acid content of 20.8% which is partly neutralized to 8.4% equivalent percent by means of potassium ions, is mixed with a small amount of defoaming agent such as the product sold as Silicone Bayer 66 by the firm Wegriken Bayer Aktiengesellschaft, Leverkusen, Germany, and is concentrated in a vacuum of about 300 mm. Hg to a volume of one cu. m. 4l0 kg. of anhydrous potassium carbonate are gradually added to said concentrated fermentation citric acid solution.
- defoaming agent such as the product sold as Silicone Bayer 66 by the firm Wegriken Bayer Aktiengesellschaft, Leverkusen, Germany
- a comparatively solid crystalline sludge is obtained which is filled into a centrifuge and is centrifuged at 2800 revolutions per minute for 8 minutes.
- the centrifuged crystals are Washed in the centrifuge with 100 l. of cold water.
- About 650 kg. of a crystalline sludge are obtained which contain 425 kg. of citric acid corresponding to about 67% of the amount of citric acid initially charged.
- the resulting 340 l. of mother liquor and wash water are diluted to a volume of 600 l. and are heated to 95 C.
- a suspension of 60 kg. of calcium oxide in 500 l. of water is added thereto.
- the resulting precipitate is filtered by suction on a suction filter and is washed with 200 l. of water.
- the compositon of the resulting white crystals powder is determined analytically. It shows a molecular proportion of potassium:calcuim:citric acid corresponding to l.0l:0.98:l.00.
- the total amount of mono-potassium calcium citrate contains 186 kg. of citric acid corresponding to a total yield of 98%.
- the resulting mono-potassium calcium citrate is converted into a suspension by stirring with a dilute (about 4%) citric acid solution. Said solution is added in a thin stream to 125 kg. of 78% sulfuric acid. After stirring for 2 hours, the precipitated gypsum is filtered off and washed.
- the crystalline mono-potassium di-hydrogen citrate obtained in the first crystallization step described hereinabove is then dissolved in the gypsum filtrate containing mono-potassium di-hydrogen citrate and the mixture is diluted with water to a concentration of about 45% calculated for citric acid.
- This solution is passed progressively through 5 cation exchange columns, each containing 300 l. of cation exchange material. The columns are washed with water.
- the citric acid solution discharged from the columns is almost colorless and has an ash content of 0.04%. It can directly be used for crystallization of a substantially pure citric acid.
- the first two ion exchange columns are filled with a sulfonated carbon exchange material which has not only cation exchange properties but also acts as decolorizing agent.
- the following three cation exchange columns are filled with a strongly acid cation exchange resin of the type of a sulfonated polystyrene resin in the hydrogen form.
- the cation exchange material used in the ion exchange columns may, of course, be of different nature and origin. The following materials have proved to be highly etfective:
- Example 2 A fermentation citric acid solution to which a small amount of defoaming agent, for instance, a silicone defoaming agent is added, is concentrated by evaporation in a vacuum in a pilot plant apparatus to a citric acid concentration of about 76% of citric acid.
- the resulting warm solution is neutralized by means of a 6 N sodium hydroxide solution to a pH-value of 7.8 and is then cooled to 28 C. within about 4 hours by cooling with water while stirring.
- the resulting crystalline sludge is placed on a suction filter, the mother liquor is filtered off by suction, and the remaining crystalline sludge (trisodium citrate) is washed with a small amount of cold water.
- Example 3 A fermentation citric acid solution as used in Example 2 is concentrated by evaporation in a vacuum until its citric acid content amounts to 56%. Sodium carbonate solution is carefully added thereto in an amount suflicient to produce di-sodium mono-hydrogen citrate. The resulting partly neutralized citric acid solution is then cooled, while stirring, to about 20 C. On adding a small amount of (ii-sodium mono-hydrogen citrate crystals for seeding, crystallization of said salt is initiated. The crystals are filtered off by suction and are washed with a small amount of cold water.
- the mother li uor is diluted with twice its amount of water and its citric acid content is determined analytically.
- Calcium carbonate is then gradually added thereto in an amount corresponding to one mole of calcium for one mole of citric acid.
- the mono-sodium calcium citrate precipitates. It is worked up in the same manner as described in Example 1 for the mono-potassium calcium citrate and yields substantially pure citric acid.
- calcium oxide and calcium chloride can also be added in an amount sulficient to precipitate, on cooling, sodium calcium citrate.
- the crystallized di-sodium mono-hydrogen citrate ob tained in the first step of the above mentioned reaction is worked up to citric acid by electrodialysis.
- the di-sodium monohydrogen citrate is dissolved in water to a concentration of 20% calculated for citric acid.
- This solution is introduced into the second chamber of an electrodialytic cell consisting of all together four chambers.
- the chambers of the cell are formed by successive arrangement of:
- a stainless steel cathode, a permselective cation exchange membrane, an anion exchange membrane, a cation exchange membrane, and a graphite anode is filled with about 2 N sodium hydroxide solution, the second chamber contains the above mentioned solution of di sodium mono-hydrogen citrate.
- the third chamber flows a stream of pure citric acid solution and the last chamber, the anode compartment, contains about 1 N sulfuric acid.
- the sodium ions of the di-sodium mono-hydrogen citrate migrate through the cation exchange membrane on the left side of the solution towards the cathode compartment to form there sodium hydroxide.
- citrate anions migrate in direction of the anode and pass the anion exchange membrane.
- the required hydrogen ions to form citric acid with the transferred citrate anion are supplied from the fourth compartment from which hydrogen ions migrate into the chamber of citric acid. On this way the concentration of pure free acid rises and may be drawn off as the product (see the appended diagrammatic illustration).
- Example 4 The procedure is the same as described in Example 1, but the fermentation citric acid solution is concentrated by evaporation in a vacuum after neutralization with potassium carbonate. The party neutralized citric acid and solution has a greater tendency to foam on concentration than the non-neutralized solution. Therefore, concentration by evaporation must be effected quite carefully and slowly. Yield and purity of the resulting mono-potassium di-hvdrogen citrate and critic acid are about the same as those achieved when proceeding according to Example 1.
- Defoaming agents as they can be used when concentrating the fermentation citric acid solutions are, for instance, the defoaming agent sold under the trademark Silicone Bayer 66 by the firm Wegriken Bayer A.G., Leverkusen, Germany.
- the steps which comprise concentrating by evaporation in a vacuum the fermentation citric acid solution to a citric acid concentration between about 40% and about 85%, adding to the concentrated citric acid solution an alkali metal compound selected from the group consisting of an alkali metal hydroxide, an alkali metal carbonate, and an alkali metal bicarbonate in an amount sufficient to form an alkali metal citrate, allowing the resulting citrate solution to stand until crystallization is completed, separating the precipitated crystalline alkali metal citrate from the mother liquor, washing said alkali metal citrate with water, combining the mother liquor and the wash water, adding to said combined mother liquor and wash water a calcium compound selected from the group consisting of calcium hydroxide, calcium carbon
- the steps which comprise adding to such a citric acid solution an alkali metal compound selected from the group consisting of an alkali metal hy droxide, an alkali metal carbonate, and an alkali metal bicarbonate in an amount sufiicient to form the monoalkali metal di-hydrogen citrate, concentrating by evaporation in a vacuum the partly neutralized citric acid solution to a citric acid concentration between about 40% and about allowing the resulting citrate solution to stand until crystallization is completed, separating the precipitated crystalline alkali metal citrate from the mother liquor, washing said alkali metal citrate with water, combining the mother liquor and the wash water, adding to said combined mother liquor and wash water a calcium compound selected from the group consist
- the steps which comprise concentrating by evaporation in a vacuum the fermentation citric acid solution to a citric acid concentration between about 40% and about 85%, adding to the concentrated citric acid solution sodium hydroxide in an amount sufiicient to convert said acid into the tri-sodium citrate, allowing the resulting citrate solution to stand until crystallization is completed, separating the precipitated crystalline tri-sodium citrate from the mother liquor, washing said citrate with water, heating the combined mother liquor and wash water to about C., adding thereto calcium chloride in an amount suflicient to precipitate mono-sodium calcium citrate, filtering off said mono-sodium calcium citrate, suspending said citrate in water, adding thereto the stoichiometric amount of sulfuric acid to react with and precipitate substantially all the calcium present in said mono-sodium calcium citrate, filtering off the precipitated g
- the steps which comprise concentrating by evaporation in a vacuum the fermentation citric acid solution to a citric acid concentration between about 40% and about 85%, adding to the concentrated citric acid solu tion sodium hydroxide in an amount sufficient to convert said acid into the di-sodium mono-hydrogen citrate, allowing the resulting citrate solution to stand until crystallization is completed, separating the precipitated crysalline di-sodium mono-hydrogen citrate from the mother liquor, washing said citrate with water, heating the combined mother liquor and wash water to about 95 0, adding thereto calcium oxide and calcium chloride in an amount sutficient to precipitate, on cooling, mono-sodium calcium citrate, filtering off said mono-sodium calcium citrate, suspending said citrate in water, adding thereto the stoichiometric amount of sulfuric acid to react with and precipitate substantially all the calcium present in said monoso
- the steps which comprise concentrating by evaporation in a vacuum the fermentation citric acid solution to a citric acid concentration between about 40% and about 85%, adding to the concentrated citric acid solution a sodium compound selected from the group consisting of sodium hydroxide, sodium carbonate, and sodium bicarbonate in an amount suflicient to form a sodium citrate, allowing the resulting citrate solution to stand until crystallization is completed, separating the precipitated crystalline sodium citrate from the mother liquor, recovering a portion of the crystalline sodium citrate, washing the remainder of the sodium citrate with water, combining the mother liquor and the wash water, adding to said combined mother liquor and wash water a calcium compound selected from the group consisting of calcium hydroxide, calcium carbonate, and calcium chloride in an amount corresponding to one mole of calium for one mole of calculated citric acid present in the mother liquor, filtering ofi
- the steps which comprise concentrating by evaporation in a vacuum the fermentation citric acid solution to a citric acid concentration between about 40% and about 85%, adding to the concentrated citric acid solution a potassium compound selected from the group consisting of potassium hydroxide, potassium carbonate, and potassium bicarbonate in an amount sufiicient to form the mono-potassium di-hydrogen citrate, allowing the resulting citrate solution to stand until crystallization is completed, separating the precipitated crystalline monopotassium di-hydrogen citrate from the mother liquor, recovering a portion of the crystalline mono-potassium dihydrogen citrate, washing the remainder of the monopotassium citrate with water, combining the mother liquor and the wash water, adding to said combined mother liquor and wash water a calcium compound selected from the group consisting of calcium hydroxide, calcium carbonate, and calcium chloride, in an amount
- the precipitated mono-potassium calcium citrate suspending said mono-potassium calcium citrate in water, adding thereto the stoichiometric amount of sulfuric acid to react with and precipitate substantially all the calcium present in said mono-potassium calcium citrate, filtering oh the precipitated gypsum from the resulting solution of the mono-potassium di-hydrogen citrate.
- the process of preparing a crystalline sodium citrate directly from strongly contaminated citric acid solutions obtained on fermentations of sugar-containing solutions which comprises concentrating the citric acid fermentation solution to a citric acid concentration between about 40% and about 85%, adding to the concentrated citric acid solution a sodium compound selected from the group consisting of the hydroxide, carbonate, bicarbonate in an amount sufficient to form the sodium citrate, allowing the resulting citrate solution to stand until crystallization is completed and separating the precipitated crystalline citrate from the mother liquor.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
7. IN A PROCESS OF RECOVERING ALKALI METAL CITRATES FROM STRONGLY CONTAMINATED CITRIC ACID SOLUTIONS OBTAINED ON FERMENTATION OF SUGAR-CONTAINING SOLUTIONS BY MEANS OF ASPERGILLUS NIGER, THE STEPS WHICH COMPRISES CONCENTRATING BY EVAPORATION IN A VACUUM THE FERMENTATION CITRIC ACID SOLUTION TO A CITRIC ACID CONCENTRATION BETWEEN ABOUT 40% AND ABOUT 85%, ADDING TO THE CONCENTRATED CITRIC ACID SOLUTION A SODIUM COMPOUND SELECTED FROM THE GROUP CONSISTING OF SODIUM HYDROXIDE SODIUM CARBONATE, AND SODIUM BICARBONATE IN AN AMOUNT SUFFICIENT TO FORM A SODIUM CITRATE, ALLOWING THE RESULTING CITRATE SOLUTION TO STAND UNTIL CRYSTALLIZATION IS COMPLETED SEPARATING THE PRECIPITATED CRYSTALLINE SODIUM CITRATE FROM THE MOTHER LIQUOR, RECOVERING A PORTION OF THE CRYSTALLINE SODIUM CITRATE, WASHING THE REMAINDER OF THE SODIUM CITRATE WITH WATER, COMBINING THE MOTHER LIQUOR AND THE WASH WATER, ADDING TO SAID COMBINED MOTHER LIQUOR AND WASH WATER A CALCIUM COMPOUND SELECTED FROM THE GROUP CONSISTING OF CALCIUM HYDROXIDE, CALCIUM CARBONATE, AND CALCIUM CHLORIDE IN AN AMOUNT CORRESPONDING TO ONE MOLE OF CALCIUM
FOR ONE MOLE OF CALCULATED CITRIC ACID PRESENT IN THE MOTHER LIQOR, FILTERING OFF THE PRECIPITATED MONO-SODIUM CALCIUM CITRATE, SUSPENDING SAID MONO-SODIUM CALCIUM CITRATE IN WATER, ADDING THERETO THE STOICHIOMETRIC AMOUNT OF SULFURIC ACID TO REACT WITH AND PRECIPITATE SUBSTANTIALLY ALL THE CALCIUM PRESENT IN SAID MONO-SODIUM CALCIUM CITRATE, AND FILTERING OFF THE PRECIPITATED GYPSUM FROM THE RESULTING SOLUTION OF THE MONO-SODIUM DI-HYDROGEN CITRATE.
FOR ONE MOLE OF CALCULATED CITRIC ACID PRESENT IN THE MOTHER LIQOR, FILTERING OFF THE PRECIPITATED MONO-SODIUM CALCIUM CITRATE, SUSPENDING SAID MONO-SODIUM CALCIUM CITRATE IN WATER, ADDING THERETO THE STOICHIOMETRIC AMOUNT OF SULFURIC ACID TO REACT WITH AND PRECIPITATE SUBSTANTIALLY ALL THE CALCIUM PRESENT IN SAID MONO-SODIUM CALCIUM CITRATE, AND FILTERING OFF THE PRECIPITATED GYPSUM FROM THE RESULTING SOLUTION OF THE MONO-SODIUM DI-HYDROGEN CITRATE.
Description
Oct. 8, 1974 scHu z RG- 2&12
PROCESS FOR PRODUCING CRYSTALLINE ALKALI IETAL CITMTES BY PRECIPITATION Original Filed Aug. 10, 1959 No. N0 H H OH CIT CH 50 1 STAINLESS Srea CAT/V006 GJPAPH/ r6 Amaoe C I CAT/ON Exam v65 M-MBQA/Yf A /4/W0n/ fA'C/M/YGE Newapqzys 4 Z, 5, 4 U/756(J6 Or Com mprms/vra United" States Patent hafen (Rhine), Germany Original No. 3,086,928, dated Apr. 23, 1963, Ser. No. 832,446, Aug. 10, 1959. Application for reissue Nov. 4, 1971, Ser. No. 195,826
Claims priority, applicatiogggermany, Aug. 9, 1958,
B 1m. (:1. C07c /42, 51/02, 55/22 US. Cl. zo4 1s0 P 23 Claims Matter enclosed in heavy brackets appears in the original patent but forms no part of this reissue specification; matter printed in italics indicates the additions made by reissue.
ABSTRACT OF THE DISCLOSURE A method for making specific crystalline alkali metal salts, in particular the mono-potassium di-hydrogen citrate and the three sodium citrates from liquids. A method for precipitating other citrate salts like the mono-alkali metal calcium citrate from liquids.
The present invention relates to an improved process of producing citric acid and more particularly to a process of producing citric acid by fermentation of aqueous sugar solutions by means of Aspergillus niger.
It is known to produce citric acid by fermentation of aqueous sugar solutions by means of Aspergillus niger. The citrc acid obtained in such a fermentation process contains, after fermentation is completed, unferrnented sugar as well as ionogenic and non-ionogenic impurities which have been formed as by-products of the fermentation process. Solutions which are very considerably contaminated by such by-products are obtained when using molasses as starting material in place of pure sugar solutions. Molasses is the most commonly used starting ma terial in the large scale production of citric acid by fermentation.
All the heretofore known processes of recovering substantially pure citric acid from the resulting strongly contaminated fermentation citric acid solutions consist in precipitating the citric acid in the form of one of its difficultly soluble calcium salts. The filtered citrate is then reacted with sulfuric acid to yield free citric acid and gypsum, which are separated by filtration.
Ordinarily, the citric acid is precipitated in the form of its tri-calcium salt. Recently, a process has become known according to which calcium monohydrogen citrate is precipitated which is subsequently treated with sulfuric acid in the above described manner. The aqueous citric acid solution obtained according to this process, however, is still contaminated by dissolved calcium sulfate and other ionogenic and non-ionogenic impurities.
It is also known to cause citric acid to directly crystallize from fermentation solutions. However, such a directly crystallized citric acid requires complicated purification operations in order to yield a substantially pure product. This process, furthermore, is applicable only to specific fermentation solutions.
All these known processes of precipitating. separating, and purifying citric acid from fermentation solutions have many disadvantages and are rather complicated.
It is one object of the present invention to provide an improved process of isolating citric acid from fermentation solutions in a simple and effective manner and in a substantially pure state.
Another object of the present invention is to provide a simple and effective process of isolating and purifying alkali metal citrates of remarkable purity from fcrmcnlation solutions.
A further object of the present invention is to provide a simple and effective process of working up the mother liquors and wash waters obtained in the recovery of citric acid and its alkali metal salts from fermentation solutions.
Other objects of the present invention and adxantageous features thereof will become apparent as the description proceeds.
In principle, the improved process according to the present invention consists in isolating the citrc acid from the fermentation solution in the form of its alkali metal salts and in recovering the acid from such salts directly in one single operation. This new and improved process is based on the surprising fact that certain alkali metal salts of citric acid crystallize from a citric acid containing fermentation solution when neutralizing such a solution by the addition of alkaline alkali metal compounds in such a manner that the mono-, di-, or trialkali metal citratcs are obtained.
It has been found to be an essential feature of this process that the fermentation solution be concentrated by evaporation in a vacuum to a concentration of at least 40%, calculated for free citric acid. That certain alkali metal salts of citric acid would crystallize in a good yield under such conditions is quite surprising because it is known that the alkali metal salts of citric acid crystallize rather difficulty even from their pure aqueous solutions. Furthermore, it was not to be expected that such difficulty crystallizablc salt would be obtained from aqueous solutions containing impurities derived from the molasses used as starting material. It is well known that such impurities impede or even inhibit crystallization. It is, therefore, not surprising that not all the theoretically conceivable alkali metal salts of citric acid can be produced in crystalline form according to the present invention. For instance, of the potassium metal salts only the mono-potassium di-hydrogen citrate of the formula can be obtained in crystalline form. Of the sodium salts, however, all three possible salts can be recovered in the form of crystals.
Partial or complete neutralization of a citric acid fermentation solution by means of alkali metal hydroxides, bicarbonatcs, or carbonates can be effected before concentrating by evaporation the solution, or thereafter. Preferably. however, nculraliyation is carried out after concentration because the fermentation solution foams in a vacuum very considerably when partly or completely neutralized, i.e. the higher its pH-valuc is, the greater is its tendency to foam. In any case, it is advisable to add a small amount of dcfoaming agent to the solution.
After concentrating by evaporation and neutralizing the citric acid fermentation solution to a concentration of at least 40%, calculated for free citric acid, the alkali metal salts crystallize on standing or on slowly stirring the solution. Preferably seed crystals are added. Crystallization is ordinarily completed within 24 hours. Separation of the crystals from the mother liquor is effected by the usual methods, for instance. by centrifuging. On washing the crystals with a very small amount of water, there is obtained an almost white or slightly yellowishbrown crystalline precipitate depending upon the type of alkali metal citrate recovered. Said crystalline precipitate is directly worked up to citric acid as will be described hereinafter. The yield of alkali metal citrate. calculated for citric acid, as obtained by a single crystallization of the neutralized acid fermentation solution depends upon the final concentration which is attained on concentrating the solution. It was found, however, that the alkali metal citrate solution can be concentrated by evaporation only to a maximum content of 85% of citric acid when continuing the concentration to a still higher salt content, no crystalline precipitate is obtained from the resulting sirupy mass. The optimum concentrations for crystallization differ with respect to the variou alkali metal citrates. They are about as follows:
Percent of citric acid Mono-potassium di-hydrogen citrate 58-65 Mono-sodium di-hydrogen citrate 55-68 Disodium monohydrogen citrate 5262 Tri-sodium citrate 65-85 In general. the citric acid fermentation solution is neutralized by the addition of the respective alkali metal hydroxide. bicarbonate or carbonate in an amount sufficient to produce a salt of the composition of the desired crystals. Slight variations of the required neutralization value are of no significant importance. Their effect upon crystallization of the desired alkali metal citrate depends upon the kind of impurities present in the fermentation solution and can readily be determined by preliminary experiments. For instance, when recovering mono-potassium di-hydrogen citrate from a citric acid fermentation solution obtained by fermentation of molasses. care must be taken that the molasses contains considerable amounts of potassium ions so that the citric acid is present in the fermentation solution, at least partly, in the form the mono-potassium di-hydrogen citrate. The potassium ions initially present in the fermentation solution are preferably sufficient for neutralizing 8 to l4 moles of each 100 moles of the citric acid present in the fermentation solution.
The yield of citric acid on recovering it in the form of its alkali metal salts is between about 50% and about 80% depending upon the selected salt. Citric acid which remains in the mother liquor together with most of the impurities is recovered therefrom by precipitation in the form of a calcium salt. Preferably. the citric acid is not precipitated as tricalcium citrate and also not as calcium monohydrogen citrate as it was known heretofore, but in the form of the mono-alkali metal calcium citrate. For this purpose, one mole of calcium ions per mole of citric acid present in the mother liquor is added thereto. When using a completely neutralized mother liquor, as obtained when recovering the tertiary alkali metal salts, a calcium chloride solution has proved to be especially suitable for the precipitation of said mono-alkali metal calcium citrate. When using partly neutralized mother liquors. as they are obtained on crystallizing the primary or secondary alkali metal citrates, precipitation. is preferably effected by means of calcium carbonate and/or calcium hydroxide.
The precipitated mono-alkali metal calcium citrate is preferably precipitated while heating and is washed with hot water. It is more readily filterable than tri-caleium citrate and calcium mono-hydrogen citrate which have been previously precipitated as intermediate products.
The resulting mono-alkali metal calcium citrate is then reacted with 1 mole of sulfuric acid calculated for 1 mole of citrate. Thereby. a mono-alkali metal citrate solution and gypsum are obtained. While, when recovering citric acid by means of tricalcium citrate, 1.5 moles of sulfuric acid are required for one mole of citric acid and, when recovering the citric acid in the form of calcium monohydrogen citrate. 1 mole of sulfuric acid is required for one mole of citric acid, only 0.5 mol to 0.2 mole of sulfuric acid are consumed per mole of citric acid, when proceeding according to the present invention, depending upon the yield of the alkali metal citrate. It is evident that not only considerable savings in chemicals are achieved when proceeding according to the present invention, but also that the amount of the waste product gypsum is considerably reduced. A further particular advantage of the process according to the present invention consists in the formation of ready filtrable gypsum crystals due to the presence of alkali metal ions. it has been found that gypsum, which is produced according to the present invention by reacting mono-alkali metal calcium citrate with sulfuric acid, filters about five to six times more rapidly and can also be more rapidly washed than gypsum as it is produced according to the heretofore known processes in the absence of alkali metal ions. At the same time, the amount of water which is required in order to completely wash the gypsum can be reduced by about 20% to about 25%.
The solution obtained after filtering off the gypsum contains in general only the mono-alkali metal di-hydrogen citrate. Said solution is further worked up either as such or, preferably, together with the alkali metal citrate crystals obtained as described hereinabove. If the initially obtained crystalline product obtained from the concentrated citric acid fermentation solution is also the mono-alkali metal di-hydrogen citrate, it is dissolved in the filtrate obtained on gypsum preparation and filtration. The resulting solution of mono-alkali metal di-hydrogen citrate is then further worked up to citric acid. Such further working up can be effected either by percolation through a number of columns containing cation exchange material in the hydrogen form. Said columns are arranged one after the other. Or citric acid is recovered from said solution by electrodialysis as described in Example 3, If dior tri alkali metal citrates have been obtained in crystalline form from the citric acid fermentation solution, simple ion exchange treatment for the production of the free acid will not be economical. in this case, recovery of citric acid by elcctrodialysis is the preferred procedure.
To set free citric acid by electrodialysis has the further advantage that this method permits recovery of the alkali metal compound used for neutralizing the citric acid fcrmentation solution. Thereby, a pure citric acid solution is obtained in continuous operation.
The various reactions which take place when operating according to the present invention are illustrated by the following reaction equations:
it) Intonation KUlI kir tonnou nu) Fermentation l'ulallized manocitrie acid potassium (ll hydrogen tllt'tli e Klnronnon Ua(Ul[) KCa(Cail501)+ 2 Mother liquor Precipitated monool (1) pet; sium calciltnl citrate KCa(C H O H 804 Kll'flUa'lIsO-rl 0.1804
KIlg(Cul'Is r) RH 3(0011'507) RK lon Pure citric Exchanger acid RK 11 50 RH KIIS O4 KHflCelI Oy) KOII HMCMMO Eleetroilialysis The following examples serve to illustrate the present invention without, however, limiting the same thereto.
Example 1 Three cu. m. of fermentation citric acid solution of a citric acid content of 20.8% which is partly neutralized to 8.4% equivalent percent by means of potassium ions, is mixed with a small amount of defoaming agent such as the product sold as Silicone Bayer 66 by the firm Farbenfabriken Bayer Aktiengesellschaft, Leverkusen, Germany, and is concentrated in a vacuum of about 300 mm. Hg to a volume of one cu. m. 4l0 kg. of anhydrous potassium carbonate are gradually added to said concentrated fermentation citric acid solution. On addition of a small amount of mono-potassium citrate crystals serving as seed crystals and on allowing the seeded solution to stand for 20 hours, a comparatively solid crystalline sludge is obtained which is filled into a centrifuge and is centrifuged at 2800 revolutions per minute for 8 minutes. The centrifuged crystals are Washed in the centrifuge with 100 l. of cold water. About 650 kg. of a crystalline sludge are obtained which contain 425 kg. of citric acid corresponding to about 67% of the amount of citric acid initially charged.
The resulting 340 l. of mother liquor and wash water are diluted to a volume of 600 l. and are heated to 95 C. A suspension of 60 kg. of calcium oxide in 500 l. of water is added thereto. The resulting precipitate is filtered by suction on a suction filter and is washed with 200 l. of water. The compositon of the resulting white crystals powder is determined analytically. It shows a molecular proportion of potassium:calcuim:citric acid corresponding to l.0l:0.98:l.00. The total amount of mono-potassium calcium citrate contains 186 kg. of citric acid corresponding to a total yield of 98%.
The resulting mono-potassium calcium citrate is converted into a suspension by stirring with a dilute (about 4%) citric acid solution. Said solution is added in a thin stream to 125 kg. of 78% sulfuric acid. After stirring for 2 hours, the precipitated gypsum is filtered off and washed.
The crystalline mono-potassium di-hydrogen citrate obtained in the first crystallization step described hereinabove is then dissolved in the gypsum filtrate containing mono-potassium di-hydrogen citrate and the mixture is diluted with water to a concentration of about 45% calculated for citric acid. This solution is passed progressively through 5 cation exchange columns, each containing 300 l. of cation exchange material. The columns are washed with water. The citric acid solution discharged from the columns is almost colorless and has an ash content of 0.04%. It can directly be used for crystallization of a substantially pure citric acid.
The first two ion exchange columns are filled with a sulfonated carbon exchange material which has not only cation exchange properties but also acts as decolorizing agent. The following three cation exchange columns are filled with a strongly acid cation exchange resin of the type of a sulfonated polystyrene resin in the hydrogen form. The cation exchange material used in the ion exchange columns may, of course, be of different nature and origin. The following materials have proved to be highly etfective:
A material of the sulfonated carbon type sold under the trademark Dusarit S by the firm Imacti, Netherlands.
Example 2 A fermentation citric acid solution to which a small amount of defoaming agent, for instance, a silicone defoaming agent is added, is concentrated by evaporation in a vacuum in a pilot plant apparatus to a citric acid concentration of about 76% of citric acid. The resulting warm solution is neutralized by means of a 6 N sodium hydroxide solution to a pH-value of 7.8 and is then cooled to 28 C. within about 4 hours by cooling with water while stirring. The resulting crystalline sludge is placed on a suction filter, the mother liquor is filtered off by suction, and the remaining crystalline sludge (trisodium citrate) is washed with a small amount of cold water.
Twice the amount of water is added to the mother liquor. Its citric acid content is determined analytically and the stoichiometrical amount of calcium chloride is added thereto to yield a molar ratio of 1:1 calculated for calcium chloride to citric acid. On heating to a temperature at 90 C. and on adjusting the pH-value to value of 8.0-8.2, a precipitate is obtained which, after filtering otf by suction and washing, has a composition corresponding to a molar ratio of calcium to citric acid of 1.09:1.0. This precipitate consists of mono-sodium calcium citrate which is reacted with the stoichiornetrical amount of sulfuric acid, calculated for its calcium content, as described in Example I. The resulting monosodium di-hydrogen citrate solution is filtered to remove gypsum. It can be converted into substantially pure citric acid in the same manner as described for monopotassium di-hydrogen citrate in Example 1.
Example 3 A fermentation citric acid solution as used in Example 2 is concentrated by evaporation in a vacuum until its citric acid content amounts to 56%. Sodium carbonate solution is carefully added thereto in an amount suflicient to produce di-sodium mono-hydrogen citrate. The resulting partly neutralized citric acid solution is then cooled, while stirring, to about 20 C. On adding a small amount of (ii-sodium mono-hydrogen citrate crystals for seeding, crystallization of said salt is initiated. The crystals are filtered off by suction and are washed with a small amount of cold water.
The mother li uor is diluted with twice its amount of water and its citric acid content is determined analytically. Calcium carbonate is then gradually added thereto in an amount corresponding to one mole of calcium for one mole of citric acid. Thereby the mono-sodium calcium citrate precipitates. It is worked up in the same manner as described in Example 1 for the mono-potassium calcium citrate and yields substantially pure citric acid. In place of calcium carbonate, calcium oxide and calcium chloride can also be added in an amount sulficient to precipitate, on cooling, sodium calcium citrate.
The crystallized di-sodium mono-hydrogen citrate ob tained in the first step of the above mentioned reaction, is worked up to citric acid by electrodialysis. For this purpose the di-sodium monohydrogen citrate is dissolved in water to a concentration of 20% calculated for citric acid. This solution is introduced into the second chamber of an electrodialytic cell consisting of all together four chambers. The chambers of the cell are formed by successive arrangement of:
A stainless steel cathode, a permselective cation exchange membrane, an anion exchange membrane, a cation exchange membrane, and a graphite anode. The first chamber of said cell (numbered from left to right), defined by the cathode and the first cation exchange membrane, is filled with about 2 N sodium hydroxide solution, the second chamber contains the above mentioned solution of di sodium mono-hydrogen citrate. Through the third chamber flows a stream of pure citric acid solution and the last chamber, the anode compartment, contains about 1 N sulfuric acid. If a potential difference is applied to the electrodes of this cell the sodium ions of the di-sodium mono-hydrogen citrate migrate through the cation exchange membrane on the left side of the solution towards the cathode compartment to form there sodium hydroxide. At the same time citrate anions migrate in direction of the anode and pass the anion exchange membrane. The required hydrogen ions to form citric acid with the transferred citrate anion are supplied from the fourth compartment from which hydrogen ions migrate into the chamber of citric acid. On this way the concentration of pure free acid rises and may be drawn off as the product (see the appended diagrammatic illustration).
Example 4 The procedure is the same as described in Example 1, but the fermentation citric acid solution is concentrated by evaporation in a vacuum after neutralization with potassium carbonate. The party neutralized citric acid and solution has a greater tendency to foam on concentration than the non-neutralized solution. Therefore, concentration by evaporation must be effected quite carefully and slowly. Yield and purity of the resulting mono-potassium di-hvdrogen citrate and critic acid are about the same as those achieved when proceeding according to Example 1.
Of course, many changes and variations in the reaction condit ons, temperature, and duration, and in the method of working up and of purifying the various citrates and solutions and the like may be made by those skilled in the art in accordance with the principles set forth herein and in the claims annexed hereto.
Defoaming agents as they can be used when concentrating the fermentation citric acid solutions are, for instance, the defoaming agent sold under the trademark Silicone Bayer 66 by the firm Farbenfabriken Bayer A.G., Leverkusen, Germany.
I claim:
[1. In a process of recovering citric acid from strongly contaminated citric acid solutions obtained on fermentation of sugar-containing solutions by means of Aspergillus niger, the steps which comprise concentrating by evaporation in a vacuum the fermentation citric acid solution to a citric acid concentration between about 40% and about 85%. adding to the concentrated citric acid solution an alkali metal compound selected from the group consisting of an alkali metal hydroxide, an alkali H precipitated crystalline mono-alkali metal di-hydrogen H citrate from the mother liquor, washing said mono-alkali metal dihydrogen citrate with water, combining the mother liquor and the wash water, adding to said combined mother liquor and wash water a calcium compound selected from the group consisting of calcium hydroxide, calcium carbonate, and calcium chloride, in an amount corresponding to one mole of calcium for one mole of calculated citric acid present in the mother liquor, filtering off the precipitated mono-alkali metal calcium citrate, suspending said mono-alkali metal calcium citrate in water, adding thereto the stoichiometric amount of sulfuric acid to react with and precipitate substantially all the calcium present in said mono-alkali metal calcium citrate, filtering off the precipitated gypsum, and
converting the resulting mono-alkali metal di-hydrogen i citrate into substantially pure citric acid by electrodialysis] [2. In a process of recovering alkali metal citrates from strongly contaminated citric acid solutions obtained on fermentation of sugar-containing solutions by means of Aspergillus niger, the steps which comprise concentrating by evaporation in a vacuum the fermentation citric acid solution to a citric acid concentration between about 40% and about 85%, adding to the concentrated citric acid solution an alkali metal compound selected from the group consisting of an alkali metal hydroxide, an alkali metal carbonate, and an alkali metal bicarbonate in an amount sufficient to form an alkali metal citrate, allowing the resulting citrate solution to stand until crystallization is completed, separating the precipitated crystalline alkali metal citrate from the mother liquor, washing said alkali metal citrate with water, combining the mother liquor and the wash water, adding to said combined mother liquor and wash water a calcium compound selected from the group consisting of calcium hydroxide, calcium carbonate, and calcium chloride in an amount corresponding to one mole of calcium for one mole of calculated citric acid present in the mother liquor, filtering off the precipitated mono-alkali metal calcium citrate, suspending said mono-alkali metal calcium citrate in water, adding thereto the stoichiometric amount of sulfuric acid to react with and precipitate substantially all the calcium present in said mono-alkali metal calcium citrate. and filtering off the precipitated gypsum from the resulting solution of the alkali metal citrate] [3. In a process of recovering mono-alkali metal citrates from strongly contaminated citric acid solutions obtained on fermentation of sugar-containing solutions by means of Aspergillus niger, the steps which comprise adding to such a citric acid solution an alkali metal compound selected from the group consisting of an alkali metal hy droxide, an alkali metal carbonate, and an alkali metal bicarbonate in an amount sufiicient to form the monoalkali metal di-hydrogen citrate, concentrating by evaporation in a vacuum the partly neutralized citric acid solution to a citric acid concentration between about 40% and about allowing the resulting citrate solution to stand until crystallization is completed, separating the precipitated crystalline alkali metal citrate from the mother liquor, washing said alkali metal citrate with water, combining the mother liquor and the wash water, adding to said combined mother liquor and wash water a calcium compound selected from the group consisting of calcium hydroxide, calcium carbonate, and calcium chloride, in an amount corresponding to one mole of calcium for one mole of calculated citric acid present in the mother liquor, filtering off the precipitated monoalkali metal calcium citrate, suspending said mono-alkali metal calcium citrate in water, adding thereto the stoichiometric amount of sulfuric acid to react with and precipitate substantially all the calcium present in said monoalkali metal calcium citrate, and filtering off the precipitated gypsum from the resulting solution of the alkali metal citrate] [4. In a process of recovering citric acid from strongly contaminated citric acid solutions obtained on fermentation of sugar-containing solutions by means of Aspergillus niger, the steps which comprise concentrating by evaporation in a vacuum the fermentation citric acid solution to a citric acid concentration between about 40% and about 85%, adding to the concentrated citric acid solution sodium hydroxide in an amount sufiicient to convert said acid into the tri-sodium citrate, allowing the resulting citrate solution to stand until crystallization is completed, separating the precipitated crystalline tri-sodium citrate from the mother liquor, washing said citrate with water, heating the combined mother liquor and wash water to about C., adding thereto calcium chloride in an amount suflicient to precipitate mono-sodium calcium citrate, filtering off said mono-sodium calcium citrate, suspending said citrate in water, adding thereto the stoichiometric amount of sulfuric acid to react with and precipitate substantially all the calcium present in said mono-sodium calcium citrate, filtering off the precipitated gypsum, combining the filtrate containing mono-sodium di-hydrogen citrate with the washed tri-sodium citrate obtained by neutralizing the concentrated fermentation citric acid solution, and converting the citrates into substantially pure citric acid by electrodialysis] [5. In a process of recovering citric acid from strongly contaminated citric acid solutions obtained on fermentation of sugar-containing solutions by means of Aspergillus niger, the steps which comprise concentrating by evaporation in a vacuum the fermentation citric acid solution to a citric acid concentration between about 40% and about 85%, adding to the concentrated citric acid solu tion sodium hydroxide in an amount sufficient to convert said acid into the di-sodium mono-hydrogen citrate, allowing the resulting citrate solution to stand until crystallization is completed, separating the precipitated crysalline di-sodium mono-hydrogen citrate from the mother liquor, washing said citrate with water, heating the combined mother liquor and wash water to about 95 0, adding thereto calcium oxide and calcium chloride in an amount sutficient to precipitate, on cooling, mono-sodium calcium citrate, filtering off said mono-sodium calcium citrate, suspending said citrate in water, adding thereto the stoichiometric amount of sulfuric acid to react with and precipitate substantially all the calcium present in said monosodium calcium citrate, filtering off the precipitated gypsum, combining the filtrate containing mono-sodium (ii-hydrogen citrate with the washed di-sodium monohydrogen citrate obtained by neutralizing the concentrated fermentation citric acid solution, and converting the citrates into substantially pure citric acid by electrodialysis] [6. The process according to claim 1 wherein conversion of the alkali metal citrate into pure citric acid by electrodialysis is efl'ected by passing the alkali metal citrate solution through the second chamber of a four-compartment electrodialysis cell, said cell being formed by successive arrangement of a stainless steel cathode, a permselective cation exchange membrane, an anion exchange membrane, a cation exchange membrane, and a graphite anode, the cathode compartment of said cell being filled with a 2 N alkali metal hydroxide solution, the neighboring second chamber containing said citrate solution, the next following chamber being supplied with a solution of pure citric acid, the anode compartment being filled with N sulfuric acid, and a direct current being passed through said cell, said current causing the alkali metal ions of said citrate solution to pass through the first mentioned cation exchange membrane and to form alkali metal hydroxide at the cathode, and the citrate anions to pass through said anion exchange membrane and to increase the concentration of the citric acid in its compartment, and withdrawing the citric acid from the citric acid chamber] 7. In a process of recovering alkali metal citrates from strongly contaminated citric acid solutions obtained on fermentation of sugar-containing solutions by means of Aspergillus niger, the steps which comprise concentrating by evaporation in a vacuum the fermentation citric acid solution to a citric acid concentration between about 40% and about 85%, adding to the concentrated citric acid solution a sodium compound selected from the group consisting of sodium hydroxide, sodium carbonate, and sodium bicarbonate in an amount suflicient to form a sodium citrate, allowing the resulting citrate solution to stand until crystallization is completed, separating the precipitated crystalline sodium citrate from the mother liquor, recovering a portion of the crystalline sodium citrate, washing the remainder of the sodium citrate with water, combining the mother liquor and the wash water, adding to said combined mother liquor and wash water a calcium compound selected from the group consisting of calcium hydroxide, calcium carbonate, and calcium chloride in an amount corresponding to one mole of calium for one mole of calculated citric acid present in the mother liquor, filtering ofi the precipitated mono-sodium calcium citrate, suspending said mono-sodium calcium citrate in water, adding thereto the stoichiometric amount of sulfuric acid to react with and precipitate substantially all the calcium present in said mono-sodium calcium citrate, and filtering off the precipitated gypsum from the resulting solution of the mono-sodium di-hydrogen citrate.
8. The process of claim 7 which comprises recovering a portion of the washed crystalline sodium citrate.
9. The process of claim 7 wherein the citric acid solution is first neutralized with the sodium compound and then concentrated between about 40% and about 80%.
10. In a process of recovering alkali metal citrates from strongly contaminated citric acid solutions obtained on fermentations of sugar containing solutions by means of Aspergillus niger, the steps which comprise concentrating by evaporation in a vacuum the fermentation citric acid solution to a citric acid concentration between about 40% and about 85%, adding to the concentrated citric acid solution a potassium compound selected from the group consisting of potassium hydroxide, potassium carbonate, and potassium bicarbonate in an amount sufiicient to form the mono-potassium di-hydrogen citrate, allowing the resulting citrate solution to stand until crystallization is completed, separating the precipitated crystalline monopotassium di-hydrogen citrate from the mother liquor, recovering a portion of the crystalline mono-potassium dihydrogen citrate, washing the remainder of the monopotassium citrate with water, combining the mother liquor and the wash water, adding to said combined mother liquor and wash water a calcium compound selected from the group consisting of calcium hydroxide, calcium carbonate, and calcium chloride, in an amount corresponding to one mole of calcium for one mole of calculated citric acid present in the mother liquor, filtering of? the precipitated mono-potassium calcium citrate, suspending said mono-potassium calcium citrate in water, adding thereto the stoichiometric amount of sulfuric acid to react with and precipitate substantially all the calcium present in said mono-potassium calcium citrate, filtering oh the precipitated gypsum from the resulting solution of the mono-potassium di-hydrogen citrate.
I l The process of claim 10 which comprises recovering a portion of the washed crystalline di-hydrogen citrate.
12. The process of claim 10 wherein the citric acid solution is first neutralized with the potassium compound and then concentrated between about 40% and about 13. The process of claim 7 wherein a portion of the precipitated mono-sodium calcium citrate is recovered prior to treating the remainder with sulfuric acid.
14. The process of claim 10 wherein a portion of the mono-potassium calcium citrate is recovered prior to treating the remainder with sulfuric acid.
15. The process of claim 7 wherein there are added crystals of the sodium salt to the citric acid solution.
16. The process of claim 7 wherein the citric acid solution is concentrated to about 55 to 17. The process of claim 10 wherein the citric acid solution is concentrated to about 58 to 65%.
18. The process of claim 10 wherein the potassium compound is potassium carbonate.
]9. The process of claim 7 wherein the crystalline sodium citrate is recovered by centrifuging.
20. The process of preparing a crystalline mono-potas sium (ii-hydrogen citrate directly from strongly contaminated citric acid solutions obtained on ferrnentations of sugar-containing solutions which comprises concentrating the citric acid fermentation solution to a citric acid concentration between about 40% and about 85%, adding to the concentrated citric acid solution a potassium compound selected frorn the group consisting of the hydroxide. carbonate, bicarbonate in an amount sufiicient to form the mono-alkali metal di-hydrogen citrate, allowing the resulting citrate solution to stand until crystallization is completed, and separating the precipitated crystalline mono potassium til-hydrogen citrate from the mother liquor.
21. The process of claim 20 wherein the potassium compound is potassium carbonate.
22. The process of claim 20 wherein the citric acid solution has a concentration of about 58 to 65%.
23. The process of claim 20 wherein there are added mono-potassium di-hydrogen citrate crystals to the citric acid solution.
24. The process of claim 20 wherein the potassium compound is added to the citric acid solution prior to concerttrating it.
25. The process of preparing a crystalline sodium citrate directly from strongly contaminated citric acid solutions obtained on fermentations of sugar-containing solutions which comprises concentrating the citric acid fermentation solution to a citric acid concentration between about 40% and about 85%, adding to the concentrated citric acid solution a sodium compound selected from the group consisting of the hydroxide, carbonate, bicarbonate in an amount sufficient to form the sodium citrate, allowing the resulting citrate solution to stand until crystallization is completed and separating the precipitated crystalline citrate from the mother liquor.
26. The process of claim 25 wherein there is added enough sodium compound to fully neutralize the citric acid solution and precipitate the crystalline tri-sodium citrate.
27. The process of claim 25 wherein there is added enough sodium compound to partially neutralize the citric acid solution to produce the di-sodium mono-hydrogen citrate and precipitate the crystalline di-sodium monohydrogen citrate.
28. The process of claim 25 wherein the citric acid solution has a concentration of about 55 to 85%.
29. The process of claim 25 wherein there are added sodium citrate crystals to the citric acid solution.
30. The process of claim .25 which comprises washing the crystalline citrate after precipitation.
31. The process of preparing calcium citrate as a monopotassium or a mono-sodium calcium citrate from a monopotassium dihydrogen citrate solution or from a sodium citrate solution which comprises adding to said solution a calcium compound selected from the group consisting of calcium hydroxide, calcium carbonate, and calcium chloride in an amount corresponding to one mole of calcium for one mole of calculated citric acid present in the solution, precipitating and separating the mono-potassium calcium citrate or the mono-sodium calcium citrate, respectively.
32. The process of claim 31 wherein the starting solution which is fully neutralized contains tri-sodium citrate and the calcium compound added is calcium chloride.
33. The process of claim 31 wherein the starting solution which is partially neutralized contains mono-potassium di-hydrogen citrate and the calcium compound added is one of the following: calcium carbonate or calcium hydroxide.
34. The process of claim 31 wherein the calcium compound is added to the heated citrate solution.
References Cited The following references, cited by the Examiner, are of record in the patented file of this patent or the original patent.
OTHER REFERENCES Royals, Advanced Organic Chemistry (1954), p. 722. Nachad et al., Ion Exchange Technology (1956), pp. 138-141.
F. C. EDMUNDSON, Primary Examiner U.S. Cl. X.R. 260-535 P
Claims (1)
- 7. IN A PROCESS OF RECOVERING ALKALI METAL CITRATES FROM STRONGLY CONTAMINATED CITRIC ACID SOLUTIONS OBTAINED ON FERMENTATION OF SUGAR-CONTAINING SOLUTIONS BY MEANS OF ASPERGILLUS NIGER, THE STEPS WHICH COMPRISES CONCENTRATING BY EVAPORATION IN A VACUUM THE FERMENTATION CITRIC ACID SOLUTION TO A CITRIC ACID CONCENTRATION BETWEEN ABOUT 40% AND ABOUT 85%, ADDING TO THE CONCENTRATED CITRIC ACID SOLUTION A SODIUM COMPOUND SELECTED FROM THE GROUP CONSISTING OF SODIUM HYDROXIDE SODIUM CARBONATE, AND SODIUM BICARBONATE IN AN AMOUNT SUFFICIENT TO FORM A SODIUM CITRATE, ALLOWING THE RESULTING CITRATE SOLUTION TO STAND UNTIL CRYSTALLIZATION IS COMPLETED SEPARATING THE PRECIPITATED CRYSTALLINE SODIUM CITRATE FROM THE MOTHER LIQUOR, RECOVERING A PORTION OF THE CRYSTALLINE SODIUM CITRATE, WASHING THE REMAINDER OF THE SODIUM CITRATE WITH WATER, COMBINING THE MOTHER LIQUOR AND THE WASH WATER, ADDING TO SAID COMBINED MOTHER LIQUOR AND WASH WATER A CALCIUM COMPOUND SELECTED FROM THE GROUP CONSISTING OF CALCIUM HYDROXIDE, CALCIUM CARBONATE, AND CALCIUM CHLORIDE IN AN AMOUNT CORRESPONDING TO ONE MOLE OF CALCIUM
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US19582671A | 1971-11-04 | 1971-11-04 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| USRE28192E true USRE28192E (en) | 1974-10-08 |
Family
ID=22722977
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US28192D Expired USRE28192E (en) | 1971-11-04 | 1971-11-04 | Process for producing crystalline alkah metal citrates by precipita- tion |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | USRE28192E (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4400535A (en) | 1980-01-17 | 1983-08-23 | Dr. Madaus & Co. | Acidic alkali citrate and compositions for adjusting the pH of urine |
| EP0221880A1 (en) * | 1985-10-03 | 1987-05-13 | VOGELBUSCH GESELLSCHAFT m.b.H. | Process for the isolation of high-purity tri-calcium citrate from aqueous solutions containing citric acid |
| US4670117A (en) | 1985-02-16 | 1987-06-02 | Osaka University | Electrodialytic method of growing water-soluble ionic crystal |
-
1971
- 1971-11-04 US US28192D patent/USRE28192E/en not_active Expired
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4400535A (en) | 1980-01-17 | 1983-08-23 | Dr. Madaus & Co. | Acidic alkali citrate and compositions for adjusting the pH of urine |
| US4670117A (en) | 1985-02-16 | 1987-06-02 | Osaka University | Electrodialytic method of growing water-soluble ionic crystal |
| EP0221880A1 (en) * | 1985-10-03 | 1987-05-13 | VOGELBUSCH GESELLSCHAFT m.b.H. | Process for the isolation of high-purity tri-calcium citrate from aqueous solutions containing citric acid |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3086928A (en) | Process of producing citric acid | |
| CA2787596C (en) | Process for manufacturing succinic acid | |
| US3421846A (en) | Production of sodium phosphates | |
| US3755294A (en) | Process for the production of d-arabinose | |
| US4215223A (en) | Process for the preparation of D(-)αphenylglycine | |
| US2024565A (en) | Process for the production of lactic acid | |
| CA2043351C (en) | Process for the production of alkali metal hypophosphites | |
| IE66570B1 (en) | Process for separating 2-keto-L-gulonic acid from a fermented medium | |
| USRE28192E (en) | Process for producing crystalline alkah metal citrates by precipita- tion | |
| US3666647A (en) | Separation of fructose and glucose | |
| US3816174A (en) | Process for preparing a lactulose syrup | |
| USRE28203E (en) | Process of producing citric acid | |
| AU624931B2 (en) | Recovery of glycine and glauber's salt from waste crystal liquors | |
| SU556721A3 (en) | The method of obtaining citric acid | |
| CN111778294A (en) | Method for preparing gluconic acid and method for preparing zinc gluconate by using gluconic acid | |
| US2735866A (en) | Method for producing glucoheptonic | |
| SU1018951A1 (en) | Process for isolating and purifying sodium d-glucouronate and/or sodium 1,2-0-isopropylidene-d-glucouronate from mixtures also containing inorganic salts and/or carbonaceous impurities | |
| US2303602A (en) | Calcium tartrate production | |
| US3360554A (en) | Process for crystallizing out l-glutamic acid | |
| US3974215A (en) | Process for directly obtaining the calcium and magnesium salts of the N-acetyl-amino-6-hexanoic acid from acetyl-caprolactame | |
| US3172830A (en) | Koh ore | |
| US2842592A (en) | Glutamic acid recovery | |
| JPH0633304B2 (en) | Method for producing lactulose from lactose by epimerization with sodium aluminate | |
| US3355485A (en) | Preparation of sodium cyclohexyl sulfamate free of sulfate ions | |
| US3049535A (en) | Dihydrodesoxystreptomycins and process for preparing same |