[go: up one dir, main page]

USRE28076E - Vapor deposition apparatus including air mask - Google Patents

Vapor deposition apparatus including air mask Download PDF

Info

Publication number
USRE28076E
USRE28076E US28076DE USRE28076E US RE28076 E USRE28076 E US RE28076E US 28076D E US28076D E US 28076DE US RE28076 E USRE28076 E US RE28076E
Authority
US
United States
Prior art keywords
vapor
outlet
stream
air
intake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Application granted granted Critical
Publication of USRE28076E publication Critical patent/USRE28076E/en
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/245Oxides by deposition from the vapour phase
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/211SnO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/212TiO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/152Deposition methods from the vapour phase by cvd

Definitions

  • VAPOR DEPOSITION APPARATUS INCLUDING AIR [ASK Original Filed Nov. 4, 1969 4 Sheets-Shoat 2 HIM [1V VEN TURS 89x57 Awe/$73304 y Puss'ng 0 5ou77ww v M if July 16, 1974 a. o. AUGUSTSSON ETAL Re. 28,076
  • ABSTRACT OF THE DISCLOSURE Vapor deposition means in combination with means to deliver an air stream adjacent to the vapor stream whereby to mask predetermined portions of a substrate.
  • Separate exhaust means are opposed to the respective coating and masking streams.
  • Means convey the substrate between the opposed delivery and exhaust means.
  • This invention relates to apparatus for applying inorganic coatings to glassware. More particularly, this invention is concerned with apparatus for applying a metal oxide coating, such as a tin or titanium oxide coating, to glass bottles and other glass containers.
  • a metal oxide coating such as a tin or titanium oxide coating
  • glass can be provided with an "iridescent" coating by directing a vapor stream of a thermally decomposable metal compound, such as titanium or tin tetrachloride, against the surface of glassware maintained at elevated temperatures, whereby the metal compound decomposes to form a metal oxide coating which, if thick enough, reflects sufficient light to cause the glassware to appear more or less iridescent.
  • a thermally decomposable metal compound such as titanium or tin tetrachloride
  • the thickness must be less than about 120 Angstroms and titanium oxide coatings must be less than 90 Angstroms in thickness.
  • the metal oxide coating must be at least 15 to 20 Angstroms thick before any improvement in scratch resistance and permanency is observed in the composite coating, and at least 40 Angstroms thick to achieve maximum scratch resistance and permanency.
  • the thickness of the metal thickness must be maintained within rather narrow limits. The magnitude of this problem is compounded by the need to maintain a high degree of uniformity and reproducibility, not only on each item of glassware but also from one item to the next.
  • a further object of this invention is to provide such apparatus whereby a high degree of coating uniformity, both on each item and from item to item, is obtained.
  • Still another object is to provide apparatus for applying such coatings which is simple to operate and service.
  • Another object is to provide an apparatus for applying an inorganic coating to the sides, but not the finish of beverage bottles.
  • a still further object is to provide an apparatus for applying such coatings which reduces or eliminates the escape of fumes from the working area.
  • the apparatus of the present invention comprises a chamber for applying an inorganic coating to series of glass containers, typified by beverage bottles, especially non-returnable bottles, being carried through the chamber on a suitable conveyor.
  • the chamber comprises two opposed side unit disposed adjacent to and longitudinally of the conveyor and a top.
  • Each side unit includes a positive pressure gas outlet and a gas intake, each outlet and intake being desirably divided into a lower, or vapor laden air section and an upper, or substantially vapor-free air section, as well as means for circulating vapor laden air from the intake to the outlet, and means for introducing vapor into the circulating vapor laden air.
  • each unit is so constructed and disposed about and along the conveyor that the forced air discharged from the gas outlet of each unit is directed into the intake of the opposed unit, thus providing, in essence, a closed vapor cir cuit.
  • each unit includes means for introducing vapor-free air at positive pressure through said air outlet and means for exhausting air after a single traverse of the chamber.
  • vapor as employed herein, is meant the vaporized metal compound which is applied to the glassware to form the metal oxide coating.
  • This compound preferably is tin tetrachloride, although other metal compounds known to be useful also can be employed.
  • titanium tetrachloride, tetraisopropyl titanate, and a variety of other inorganic and metallo-organic compounds have been employed in the past to provide metal oxide coatings on glassware.
  • specific reference will be made to tin tetrachloride, but it is to be understood that other metal compounds may be substituted therefor.
  • FIG. 1 is a perspective view of one form of the apparatus of this invention
  • FIG. 2 is an end view, partly in cross-section, of the apparatus shown in FIG. 1,
  • FIG. 3 is a partial plan view, partly in cross-section, of the apparatus shown in FIG. 1,
  • FIG. 4 is a side elevation partly in cross-section, of the apparatus of FIG. 1,
  • FIG. 5 is a partial plan view, partly in cross-section of a modified form of the apparatus of FIG. 1,
  • FIG. 6 is a graphical representation of the relative air velocities in the vapor stream in the apparatus of this invention.
  • FIG. 7 is a cross-sectional view of a bottle treated in the apparatus of FIG. 1.
  • the apparatus of this invention comprises enclosure 10 disposed over and along generally horizontal conveyor 12 adapted to carry bottles 14 therethrough in single file.
  • Enclosure I0 is composed of identical side units 16, 16 surmounted by hood 18.
  • Each side unit comprises sidewall 20, a positive pressure gas outlet system comprising gas outlet 22, blowers 24 and 26 driven by motor 28, a gas intake system comprising intake 30 and exhaust stack 32, and a vapor circulation system including duct 34 and vapor feed line 36.
  • the enclosure is desirably provided with auxiliary exhaust means to minimize the escape of vapors.
  • hood 18 is provided with exhaust duct 38 which, together with stacks 32, communicates with duct 40, and each side unit is provided with vertical exhaust port 42 communicating through duct 44 with stack 32 to draw off fumes which might otherwise escape removal through intake 30.
  • gas outlet 22 comprises a duct of generally rectangular cross-section having top 46, bottom 48 and sidewalls 50 and 52.
  • Outlet 22 is subdivided into lower, or vapor outlet passage 54 and upper, or vapor-free air outlet passage 56, by generally horizontal partition 58.
  • the outer edge of partition 58 is at a level not higher than the shoulder of bottle 14, and desirably not more than one-fourth inch below the shoulder.
  • Partition 58 may be fixed or may be adjustable to permit use of the apparatus of this invention for the treatment of bottles of varying design. It is generally impractical, however, to provide sufficient adjustability to partition 58 to handle bottles of widely varying shoulder heights such as 12 ounce and quart bottles.
  • gas intake 30 is a duct of generally rectangular cross-section having top 60, bottom 62, and sides 64 and 66. Like outlet duct 22, intake 30 is provided with generally horizontal partition 68, thus subdividing outlet 30 into upper, or substantially vapor free air intake 70 and lower, or vapor intake 72. Partition 68 is at approximately the same level as partition 58 or somewhat lower, and may also be adjustable but this is not necessary.
  • Vapor intake 72 discharges into duct 34, which also communicates with the intake of blower 24, which in turn discharges into vapor outlet 54.
  • the cross-sectional dimensions of intake 30 at wall 20 are larger than those of outlet 22 at wall 20, and are sufiiciently large that the major portion, and preferably at least about 90 percent of the stream discharged through outlet 22 passes into intake 30.
  • Vapors are introduced into the vapor circuit through tube 36 in duct 34 at a point upstream from blower 24.
  • blower 24 acts as a mixer and assures uniform vapor concentration in the vapor stream passing over conveyor 12.
  • vapor tube 36 discharges downwardly into duct 34.
  • the source of the vapors is in no way critical to the present invention, but the vapor stream introduced through tube 36 is desirably dry air saturated with tin tetrachlo ride or other metal compound such as is obtained by bubbling dry air through or passing dry air over the surface of liquid tin tetrachloride in known manner.
  • the circuit is provided with means to heat the circulating air.
  • a heater such as electric heater 74 is provided in the bottom of duct 34 opposed to the opening of tube 36.
  • the apparatus of this invention comprises two air systems.
  • the first is the closed vapor circuit, wherein vapor laden air is directed through a vapor outlet across a conveyor in a generally horizontal direction and onto the bottles riding on the conveyor, recovered in an opposed intake admixed with make-up vapor and circulated via a blower back across the conveyor through an outlet at a point spaced along the conveyor.
  • the second air system is the fresh or ambient air system wherein ambient, vapor-free air is drawn in through the intake ports of a blower, directed across the conveyor in a parallel superposed relationship with the vapor laden stream and, together with various exhaust streams, vented.
  • this system is a single pass, non-cyclic system.
  • hood 18 is provided with downwardly diverging channels 76 having openings 78 in the bottom thereof, whereby air is drawn off along the junctures of hood 18 and walls 20.
  • a particularly important feature of the present invention is the design of the vapor circuit, and more particularly the outlet and intake portions thereof, to assure a uniform concentration of vapor in the stream in contact with the glassware being treated and thus a uniform coating thickness on the glassware regardless of lateral position on the conveyor.
  • Such uniformity is attained through the use of a generally rectangular cross-section and means to minimize divergence of the vapor stream after discharge through outlet 22.
  • the lateral dimensions of the vapor stream should not increase by more than 50 percent, and preferably not more than 35 percent, of the length of the stream from the outlet.
  • FIG. 6 is a plot of relative air velocities at distances of up to 8 inches from a vapor outlet having a height of 4 inches and a width of 3 /2 inches, at a maximum velocity of 10 feet per second.
  • the dimensions of the 10 percent boundary are about 6 inches by 5 inches, representing an increase of 2 inches in height or about 0.3 inch/ inch of stream length, and 1.5 inches in width, or about 0.25 inch/inch of stream length.
  • the vapor outlet is tapered toward its outlet.
  • the degree of taper is not highly critical, but ordinarily will be in the range of from about 2 to about 10, with a 5 taper being presently preferred.
  • Such tapering is not required, however, where other means are present which prevent divergence of the air stream.
  • no taper is required in the bottom of the outlet because the conveyor belt surface prevents dispersion of the bottom of the stream.
  • the superposed vapor free air stream when the superposed vapor free air stream is in use it tends to prevent dispersion of the top boundary of the vapor laden stream, thus rendering a tapering of the top wall of vapor outlet 54, i.e., partition 58, unnecessary. It is, however, permissable but not essential to provide a downward taper to the top of vapor-free air outlet 56.
  • the design of the intake while less critical, should be such that the intake is large enough to accept the air streams from the opposed outlet, and should have outer dimensions at least as large as the 10 percent boundary of the air stream at the side wall. Thus, at a distance of 6 inches from the outlet described with reference to FIG. 6, the intake should have dimensions of at least 6 by 5 inches.
  • the height of central partition 68 is desirably about that of the partition in the opposed outlet, but is preferably slightly, e.g., up to about one-half inch, lower than partition 58 to avoid introduction of the moist ambient air of the superimposed ambient air stream into the vapor circuit. Thus a minor portion of the vapor laden air passes into outlet 56.
  • vapor velocity is quite important to achieving good bottle to bottle reproduceability of the inorganic coating. That is, the rate should be sufficiently high in relation to the speed of the glassware that the stream rapidly restabilizes to form a steady stream after passage of a bottle through it, thus providing a uniform, undisturbed stream for the succeeding bottle, and yet not so high that the bottles are moved laterally on the conveyor by impingement of the stream on the bottle.
  • the vapor stream should have a linear velocity of about 5 to times that of the speed of the conveyor.
  • a gas velocity in the range of from about 5 to about feet per second has been found useful, with a velocity of about 10 feet per second being presently preferred. At such velocities the vapor stream restabilizes almost instantaneously.
  • the velocity of the vapor-free air stream is also important in preventing upward divergence of the vapor laden air stream and deposition of organic coating on the bottle finish.
  • the velocity of this stream should be greater than that of the vapor stream, and normally in the range from about 1.2 to about 2.5 times that of the vapor stream.
  • a velocity of from about 1.5 to about 2.0 times that of the vapor stream is presently preferred.
  • the gas outlet system i.e., the blowers, their associated motor and the vapor and air outlet assembly
  • the gas outlet system i.e., the blowers, their associated motor and the vapor and air outlet assembly
  • the gas outlet system be a removable unit.
  • the faulty unit may be removed and another inserted, thereby minimizing down time.
  • a series of units designed to coat bottles of varying [should] shoulder heights may be employed to facilitate conversion of the hood from one size bottle to another. This is readily accomplished through a gas outlet subassembly as shown in FIG. 1 comprising a removable wall panel having affixed thereto duct 22, blowers 24 and 26 and motor 28.
  • the apparatus shown in FIGS. 14 has only two vapor outlets, and from the standpoint of simplicity and compactness is preferred.
  • the coating on the bottle is not as uniform as might be desired.
  • maintenance of tolerances in a two-outlet system is diflicult because the thickness of the coating varies with the distance from the vapor outlet. That is, the thickest coatings normally form on the bottle surface closest to the outlets, as is shown in exaggerated fashion in FIG. 7, which is across-sectional view of bottle 14 with metal oxide coating 14A travelling in the direction of arrow 148.
  • each side unit comprises two outlets, one directing the air flow generally in the direction of conveyor travel and the other generally opposed to the direction of conveyor travel.
  • the outlets of one side unit should be so spaced that the air streams do not intersect at any point over the conveyor.
  • the streams may diverge, it is preferred that they converge at a point on the opposed sidewall so that a single outlet may be employed as shown in FIG. 5.
  • hood 18 is rotatably attached to duct 38 to facilitate access to the portion of the conveyor within enclosure 10 in the case of breakage, jamming or other mishap, and to facilitate periodic clearing of intake 30. It is also desirable to provide a longitudinal slot, a series of ports, or other means along the juncture of hood 18 and wall 20 to allow ambient air to be drawn into and up through hood 18 and ducts 38 and 40, thus further minimizing the escape of fumes from the chamber.
  • the present invention provides a means for applying a uniform metal oxide, especially tin oxide, coating to beverage bottles while mini mizing metal oxide deposits on the bottle finish.
  • the rectangular cross-section and non-divergent form of the vapor stream assures uniform vapor concentration across the conveyor, and thus provides a uniform coating regardless of the lateral position of the bottle on the conveyor;
  • the positive-pressure, high velocity vapor stream assures bottle-to-bottle coating uniformity;
  • the use of a plurality of vapor outlets facilitates uniformity of coating thickness on each bottle, and the superimposed vapor stream minimizes metal oxide deposition on the finish.
  • Apparatus for applying a metal oxide coating to glassware travelling on a conveyor comprising opposed units positioned along and longitudinally of said conveyor, each of said units including two laterally displaced first outlet means comprising generally rectangular ducts having convergently tapering sidewalls for forming positive pressure, substantially non-divergent, generally rectangular streams of air containing a vapor of at least one of an inorganic metallic compound and an organometallic compound which thermally decomposes to form a metal oxide transverse to said conveyor, second outlet means above and adjacent to each of said first outlet means for forming vapor-free air streams parallel to and superimposed over said vapor-containing air streams, a laterally displaced first intake means for recovering a portion of the positive pressure vapor-containing streams from the opposed unit, a second intake means above said first intake means for recovering said vapor-free air streams, and means for recycling the vapor stream recovered by said first intake to said first outlet, said units being so positioned that the streams discharged from the outlet means of one unit are at an angle of about 45 to
  • Apparatus for applying a metal oxide coating to glassware travelling on a conveyor comprising opposed units positioned along and longitudinally of said conveyor, each of said units including a first outlet means comprising a generally rectangular duct having convergently tapering sidewalls for forming a positive pressure, substantially non-divergent, generally rectangular stream of air containing a vapor of at least one of an inorganic metallic compound and an organometallic compound which thermally decomposes to form a metal oxide transverse to said conveyor, a second outlet means above and adjacent to said first outlet means for forming a vapor-free air stream parallel to and superimposed over said vapor-containing air stream, a laterally displaced first intake means for recovering a portion of the positive pressure vapor-containing stream from the opposed unit, a second intake means above said first intake means for recovering said vapor-free air stream, and means for recycling the vapor stream recovered by said first intake to said first outlet, said units being so positioned that the air streams discharged from each unit feed into the intakes of the opposed unit

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

VAPOR DEPOSITION MEANS IN COMBINATION WITH MEANS TO DELIVER AN AIR STREAM ADJACENT TO THE VAPOR STREAM WHEREBY TO MASK PREDETERMINED PORTIONS OF A SUBSTRATE. SEPARATE EXHAUST MEANS ARE OPPOSED TO THE RESPECTIVE COATING AND MASKING STREAMS. MEANS CONVEY THE SUBSTRATE BETWEEN THE OPPOSED DELIVERY AND EXHAUST MEANS.

Description

July 16, 1974 O AUGUSTSSQN ETAL Re. 28,076
Original Filed Nov. 4, 1969 4 Sheets-Shut 1 INVENTURS l 07 4 aaszzssc v q By Poss DJor/n/w/c July 16, 1974 a. o. AUGUSTSSON ErAL Re. 28,076
VAPOR DEPOSITION APPARATUS INCLUDING AIR [ASK Original Filed Nov. 4, 1969 4 Sheets-Shoat 2 HIM [1V VEN TURS 89x57 Awe/$73304 y Puss'ng 0 5ou77ww v M if July 16, 1974 a. o. AUGUSTSSON ETAL Re. 28,076
VAPOR DEPOSITION APPARATUS INCLUDING AIR IIASK Original Filed Nov. 4, 1969 4 Sheets-Shoot :5
C) J 0 WIN V I N VEN TORS &N67' 0. flucgusrssory BY @SSELL D. 5ou7ww/ck P YUS July 16, 1974 Q ugus'rssou ErAL Re. 28,076
VROR DEPOSITION APPARATUS INCLUDING AIR MASK Original Filed Nov. 4, 1969 4 Sheets-Sheet 4 R N w Q g 2 l N R f I i k I I 1/ xv) -4 e L b I & \L u fi i g l J/ *4 I l I \1 a... x \/l\- g x E v i g l Q u] l T wau/sg/ 760L166 7lvJA 0Z/A Of/ U woulszy fivar 5y @sscufl Sou/mu United States Patent 28,076 VAPOR DEPOSITION APPARATUS INCLUDING AIR MASK Bengt 0. Augustsson, Surte, Sweden, and Russell D. Southwick, Butler, Pa., assignors to Glass Container Manufacturers Institute, Inc., New York, N. Original No. 3,688,737, dated Sept. 5, 1972, Ser. No. 873,916, Nov. 4, 1969. Application for reissue Aug. 24, 1973, Ser. No. 391,036
Int. Cl. C231: 13/08 US. Cl. 118-48 4 Claims Matter enclosed in heavy brackets II] appears in the original patent but forms no part of this reissue specification; matter printed in italics indicates the additions made by reissue.
ABSTRACT OF THE DISCLOSURE Vapor deposition means in combination with means to deliver an air stream adjacent to the vapor stream whereby to mask predetermined portions of a substrate. Separate exhaust means are opposed to the respective coating and masking streams. Means convey the substrate between the opposed delivery and exhaust means.
This invention relates to apparatus for applying inorganic coatings to glassware. More particularly, this invention is concerned with apparatus for applying a metal oxide coating, such as a tin or titanium oxide coating, to glass bottles and other glass containers.
It has long been known that glass can be provided with an "iridescent" coating by directing a vapor stream of a thermally decomposable metal compound, such as titanium or tin tetrachloride, against the surface of glassware maintained at elevated temperatures, whereby the metal compound decomposes to form a metal oxide coating which, if thick enough, reflects sufficient light to cause the glassware to appear more or less iridescent. An early technique is disclosed by Lyle in US. Pat. No. 2,375,482.
More recently it has been discovered that such inorganic coatings, if applied to virgin glass shortly after molding and before annealing has occurred, can cause a substantial increase in the scratch resistance imparted by and the permanency of a second coating of a lubricious organic material which is applied to the glassware after annealing. Such composite coatings are of particular interest for nonretumable beverage bottles.
For such use, however, it is desired that the iridescent eifects be avoided. Thus, in the case of tin oxide coatings the thickness must be less than about 120 Angstroms and titanium oxide coatings must be less than 90 Angstroms in thickness. 0n the other hand, the metal oxide coating must be at least 15 to 20 Angstroms thick before any improvement in scratch resistance and permanency is observed in the composite coating, and at least 40 Angstroms thick to achieve maximum scratch resistance and permanency. Thus it can be seen that the thickness of the metal thickness must be maintained within rather narrow limits. The magnitude of this problem is compounded by the need to maintain a high degree of uniformity and reproducibility, not only on each item of glassware but also from one item to the next. In addition, when bottles are being treated, it has been found necessary to keep the metal oxide coating off of the finish to avoid corrosion of bottle caps. Until the present invention, however, there has been no apparatus capable of providing the high degree of control essential to the achievement of uniformity and reproducibility of coating thickness while avoiding deposition of a coating on the finish of bottles.
Re. 28,076 Reisaued July 16, 1974 It is an object of this invention to provide an improved apparatus for applying metal oxide coatings to glassware.
A further object of this invention is to provide such apparatus whereby a high degree of coating uniformity, both on each item and from item to item, is obtained.
Still another object is to provide apparatus for applying such coatings which is simple to operate and service.
Another object is to provide an apparatus for applying an inorganic coating to the sides, but not the finish of beverage bottles.
A still further object is to provide an apparatus for applying such coatings which reduces or eliminates the escape of fumes from the working area.
Still other objects will be apparent from the ensuing specification, the drawings and claims.
In general, the apparatus of the present invention comprises a chamber for applying an inorganic coating to series of glass containers, typified by beverage bottles, especially non-returnable bottles, being carried through the chamber on a suitable conveyor. The chamber comprises two opposed side unit disposed adjacent to and longitudinally of the conveyor and a top. Each side unit includes a positive pressure gas outlet and a gas intake, each outlet and intake being desirably divided into a lower, or vapor laden air section and an upper, or substantially vapor-free air section, as well as means for circulating vapor laden air from the intake to the outlet, and means for introducing vapor into the circulating vapor laden air. The units are so constructed and disposed about and along the conveyor that the forced air discharged from the gas outlet of each unit is directed into the intake of the opposed unit, thus providing, in essence, a closed vapor cir cuit. In addition to the vapor circuit, each unit includes means for introducing vapor-free air at positive pressure through said air outlet and means for exhausting air after a single traverse of the chamber.
By the word vapor, as employed herein, is meant the vaporized metal compound which is applied to the glassware to form the metal oxide coating. This compound preferably is tin tetrachloride, although other metal compounds known to be useful also can be employed. For example, titanium tetrachloride, tetraisopropyl titanate, and a variety of other inorganic and metallo-organic compounds have been employed in the past to provide metal oxide coatings on glassware. In the following discussion specific reference will be made to tin tetrachloride, but it is to be understood that other metal compounds may be substituted therefor.
The apparatus is illustrated in the drawings of which:
FIG. 1 is a perspective view of one form of the apparatus of this invention,
FIG. 2 is an end view, partly in cross-section, of the apparatus shown in FIG. 1,
FIG. 3 is a partial plan view, partly in cross-section, of the apparatus shown in FIG. 1,
FIG. 4 is a side elevation partly in cross-section, of the apparatus of FIG. 1,
FIG. 5 is a partial plan view, partly in cross-section of a modified form of the apparatus of FIG. 1,
FIG. 6 is a graphical representation of the relative air velocities in the vapor stream in the apparatus of this invention, and
FIG. 7 is a cross-sectional view of a bottle treated in the apparatus of FIG. 1.
With reference to FIG. 1, the apparatus of this invention comprises enclosure 10 disposed over and along generally horizontal conveyor 12 adapted to carry bottles 14 therethrough in single file. Enclosure I0 is composed of identical side units 16, 16 surmounted by hood 18. Each side unit comprises sidewall 20, a positive pressure gas outlet system comprising gas outlet 22, blowers 24 and 26 driven by motor 28, a gas intake system comprising intake 30 and exhaust stack 32, and a vapor circulation system including duct 34 and vapor feed line 36.
The enclosure is desirably provided with auxiliary exhaust means to minimize the escape of vapors. For example, hood 18 is provided with exhaust duct 38 which, together with stacks 32, communicates with duct 40, and each side unit is provided with vertical exhaust port 42 communicating through duct 44 with stack 32 to draw off fumes which might otherwise escape removal through intake 30.
With further reference to FIGS. 2 and 3, gas outlet 22 comprises a duct of generally rectangular cross-section having top 46, bottom 48 and sidewalls 50 and 52. Outlet 22 is subdivided into lower, or vapor outlet passage 54 and upper, or vapor-free air outlet passage 56, by generally horizontal partition 58. The outer edge of partition 58 is at a level not higher than the shoulder of bottle 14, and desirably not more than one-fourth inch below the shoulder. Partition 58 may be fixed or may be adjustable to permit use of the apparatus of this invention for the treatment of bottles of varying design. It is generally impractical, however, to provide sufficient adjustability to partition 58 to handle bottles of widely varying shoulder heights such as 12 ounce and quart bottles.
Still referring to FIGS. 2 and 3, gas intake 30 is a duct of generally rectangular cross-section having top 60, bottom 62, and sides 64 and 66. Like outlet duct 22, intake 30 is provided with generally horizontal partition 68, thus subdividing outlet 30 into upper, or substantially vapor free air intake 70 and lower, or vapor intake 72. Partition 68 is at approximately the same level as partition 58 or somewhat lower, and may also be adjustable but this is not necessary.
Vapor intake 72 discharges into duct 34, which also communicates with the intake of blower 24, which in turn discharges into vapor outlet 54. To minimize the loss of vapors, the cross-sectional dimensions of intake 30 at wall 20 are larger than those of outlet 22 at wall 20, and are sufiiciently large that the major portion, and preferably at least about 90 percent of the stream discharged through outlet 22 passes into intake 30.
Vapors are introduced into the vapor circuit through tube 36 in duct 34 at a point upstream from blower 24. In this way blower 24 acts as a mixer and assures uniform vapor concentration in the vapor stream passing over conveyor 12. In the preferred form, as best shown in FIG. 4, vapor tube 36 discharges downwardly into duct 34. The source of the vapors is in no way critical to the present invention, but the vapor stream introduced through tube 36 is desirably dry air saturated with tin tetrachlo ride or other metal compound such as is obtained by bubbling dry air through or passing dry air over the surface of liquid tin tetrachloride in known manner.
It has been found desirable that all surfaces in the vapor circuit be at a temperature greater than about 180 F. to minimize deposition of tin oxides and formation of hydrogen chloride. Accordingly, the circuit is provided with means to heat the circulating air. In a preferred embodiment as illustrated in FIG. 4, a heater such as electric heater 74 is provided in the bottom of duct 34 opposed to the opening of tube 36.
From the foregoing it will be seen that the apparatus of this invention comprises two air systems. The first is the closed vapor circuit, wherein vapor laden air is directed through a vapor outlet across a conveyor in a generally horizontal direction and onto the bottles riding on the conveyor, recovered in an opposed intake admixed with make-up vapor and circulated via a blower back across the conveyor through an outlet at a point spaced along the conveyor.
The second air system is the fresh or ambient air system wherein ambient, vapor-free air is drawn in through the intake ports of a blower, directed across the conveyor in a parallel superposed relationship with the vapor laden stream and, together with various exhaust streams, vented. Thus this system is a single pass, non-cyclic system.
Finally, the apparatus is provided with an auxiliary exhaust system including vertical slots 42 in each of sidewalls 20 adjacent intake 30 and located between intake 30 and the end of wall 20, which communicate with exhaust stacks 32 through conduits 44. In a preferred form shown in FIGS. 1 and 2, hood 18 is provided with downwardly diverging channels 76 having openings 78 in the bottom thereof, whereby air is drawn off along the junctures of hood 18 and walls 20.
A particularly important feature of the present invention is the design of the vapor circuit, and more particularly the outlet and intake portions thereof, to assure a uniform concentration of vapor in the stream in contact with the glassware being treated and thus a uniform coating thickness on the glassware regardless of lateral position on the conveyor. Such uniformity is attained through the use of a generally rectangular cross-section and means to minimize divergence of the vapor stream after discharge through outlet 22. In particular, it has been found that the lateral dimensions of the vapor stream, as measured at the 10 percent velocity boundary, should not increase by more than 50 percent, and preferably not more than 35 percent, of the length of the stream from the outlet. This concept is illustrated in FIG. 6, which is a plot of relative air velocities at distances of up to 8 inches from a vapor outlet having a height of 4 inches and a width of 3 /2 inches, at a maximum velocity of 10 feet per second.
In preparing the plots the vapor stream was traversed, both horizontally and vertically in known manner to measure velocity, and velocities from the center to the sidewalls are plotted in the bottom portion, and those from the centerline to the top are plotted in the top half. In each instance, points at which the air velocity is 10 percent of the maximum velocity are connected by a dotted line to provide the 10 percent velocity boundary.
As can be seen from FIG. 6, as the length of the stream, as measured from the outlet, increases the stream tends to diverge, as shown by the divergence of the 10 percent velocity boundary, and the edges of the curve of the velocity profile tend to level off. At a distance of 6 inches from the outlet, the dimensions of the 10 percent boundary are about 6 inches by 5 inches, representing an increase of 2 inches in height or about 0.3 inch/ inch of stream length, and 1.5 inches in width, or about 0.25 inch/inch of stream length.
To achieve such minimum divergence, the vapor outlet is tapered toward its outlet. The degree of taper is not highly critical, but ordinarily will be in the range of from about 2 to about 10, with a 5 taper being presently preferred. Such tapering is not required, however, where other means are present which prevent divergence of the air stream. Thus, no taper is required in the bottom of the outlet because the conveyor belt surface prevents dispersion of the bottom of the stream. Similarly, when the superposed vapor free air stream is in use it tends to prevent dispersion of the top boundary of the vapor laden stream, thus rendering a tapering of the top wall of vapor outlet 54, i.e., partition 58, unnecessary. It is, however, permissable but not essential to provide a downward taper to the top of vapor-free air outlet 56.
The design of the intake, while less critical, should be such that the intake is large enough to accept the air streams from the opposed outlet, and should have outer dimensions at least as large as the 10 percent boundary of the air stream at the side wall. Thus, at a distance of 6 inches from the outlet described with reference to FIG. 6, the intake should have dimensions of at least 6 by 5 inches. The height of central partition 68 is desirably about that of the partition in the opposed outlet, but is preferably slightly, e.g., up to about one-half inch, lower than partition 58 to avoid introduction of the moist ambient air of the superimposed ambient air stream into the vapor circuit. Thus a minor portion of the vapor laden air passes into outlet 56.
It has also been found that vapor velocity is quite important to achieving good bottle to bottle reproduceability of the inorganic coating. That is, the rate should be sufficiently high in relation to the speed of the glassware that the stream rapidly restabilizes to form a steady stream after passage of a bottle through it, thus providing a uniform, undisturbed stream for the succeeding bottle, and yet not so high that the bottles are moved laterally on the conveyor by impingement of the stream on the bottle. In general, and when the stream is at right angles to a conveyor travelling at commonly employed rates and bottle spacings, e.g., about 0.8 to about 1.5 feet per second, and center-to-center bottle spacings of about 1.5 to about 2 diameters, the vapor stream should have a linear velocity of about 5 to times that of the speed of the conveyor. In general, a gas velocity in the range of from about 5 to about feet per second has been found useful, with a velocity of about 10 feet per second being presently preferred. At such velocities the vapor stream restabilizes almost instantaneously.
The velocity of the vapor-free air stream is also important in preventing upward divergence of the vapor laden air stream and deposition of organic coating on the bottle finish. In general, the velocity of this stream should be greater than that of the vapor stream, and normally in the range from about 1.2 to about 2.5 times that of the vapor stream. A velocity of from about 1.5 to about 2.0 times that of the vapor stream is presently preferred.
It is within the contemplation of the present invention that the gas outlet system, i.e., the blowers, their associated motor and the vapor and air outlet assembly, be a removable unit. Thus in the event of an equipment breakdown the faulty unit may be removed and another inserted, thereby minimizing down time. In addition, a series of units designed to coat bottles of varying [should] shoulder heights may be employed to facilitate conversion of the hood from one size bottle to another. This is readily accomplished through a gas outlet subassembly as shown in FIG. 1 comprising a removable wall panel having affixed thereto duct 22, blowers 24 and 26 and motor 28.
The apparatus shown in FIGS. 14 has only two vapor outlets, and from the standpoint of simplicity and compactness is preferred. However, the coating on the bottle is not as uniform as might be desired. In particular, and especially when titanium oxide coating is being applied, maintenance of tolerances in a two-outlet system is diflicult because the thickness of the coating varies with the distance from the vapor outlet. That is, the thickest coatings normally form on the bottle surface closest to the outlets, as is shown in exaggerated fashion in FIG. 7, which is across-sectional view of bottle 14 with metal oxide coating 14A travelling in the direction of arrow 148. The degree of this variation can be minimized by the use of more than two vapor outlets, with the most satisfactory number being four, each outlet directing the air stream at about a 45 angle to the conveyor belt as shown in FIG. 5. In this embodiment each side unit comprises two outlets, one directing the air flow generally in the direction of conveyor travel and the other generally opposed to the direction of conveyor travel. To avoid undesirable disturbance of the air stream, the outlets of one side unit should be so spaced that the air streams do not intersect at any point over the conveyor. Although the streams may diverge, it is preferred that they converge at a point on the opposed sidewall so that a single outlet may be employed as shown in FIG. 5.
In still a further embodiment hood 18 is rotatably attached to duct 38 to facilitate access to the portion of the conveyor within enclosure 10 in the case of breakage, jamming or other mishap, and to facilitate periodic clearing of intake 30. It is also desirable to provide a longitudinal slot, a series of ports, or other means along the juncture of hood 18 and wall 20 to allow ambient air to be drawn into and up through hood 18 and ducts 38 and 40, thus further minimizing the escape of fumes from the chamber.
It will be readily seen that the present invention provides a means for applying a uniform metal oxide, especially tin oxide, coating to beverage bottles while mini mizing metal oxide deposits on the bottle finish. In particular, the rectangular cross-section and non-divergent form of the vapor stream assures uniform vapor concentration across the conveyor, and thus provides a uniform coating regardless of the lateral position of the bottle on the conveyor; the positive-pressure, high velocity vapor stream assures bottle-to-bottle coating uniformity; the use of a plurality of vapor outlets facilitates uniformity of coating thickness on each bottle, and the superimposed vapor stream minimizes metal oxide deposition on the finish.
What is claimed is:
1. Apparatus for applying a metal oxide coating to glassware travelling on a conveyor comprising opposed units positioned along and longitudinally of said conveyor, each of said units including two laterally displaced first outlet means comprising generally rectangular ducts having convergently tapering sidewalls for forming positive pressure, substantially non-divergent, generally rectangular streams of air containing a vapor of at least one of an inorganic metallic compound and an organometallic compound which thermally decomposes to form a metal oxide transverse to said conveyor, second outlet means above and adjacent to each of said first outlet means for forming vapor-free air streams parallel to and superimposed over said vapor-containing air streams, a laterally displaced first intake means for recovering a portion of the positive pressure vapor-containing streams from the opposed unit, a second intake means above said first intake means for recovering said vapor-free air streams, and means for recycling the vapor stream recovered by said first intake to said first outlet, said units being so positioned that the streams discharged from the outlet means of one unit are at an angle of about 45 to the direction of the conveyor and feed into the single intake of the opposed unit.
2. Apparatus for applying a metal oxide coating to glassware travelling on a conveyor comprising opposed units positioned along and longitudinally of said conveyor, each of said units including a first outlet means comprising a generally rectangular duct having convergently tapering sidewalls for forming a positive pressure, substantially non-divergent, generally rectangular stream of air containing a vapor of at least one of an inorganic metallic compound and an organometallic compound which thermally decomposes to form a metal oxide transverse to said conveyor, a second outlet means above and adjacent to said first outlet means for forming a vapor-free air stream parallel to and superimposed over said vapor-containing air stream, a laterally displaced first intake means for recovering a portion of the positive pressure vapor-containing stream from the opposed unit, a second intake means above said first intake means for recovering said vapor-free air stream, and means for recycling the vapor stream recovered by said first intake to said first outlet, said units being so positioned that the air streams discharged from each unit feed into the intakes of the opposed unit.
3. Apparatus according to claim 2 wherein the taper is in the range of from about 2' to about 10.
8 Smith, Jr. et a1. 118-48 Chenault 118-326 X York et a1. 118-312 Zitkus 118-301 Allen 118-48 Torok 118-48 X Bruno 15-306 A Csok et a1. 118-50 Storbel et a1 118-326 X Bower 118-326 X MORRIS KAPLAN, Primary Examiner US. Cl. X.R.
7 4. Apparatus according to claim 3 wherein said taper 2,418,055 is about 5". 2,519,177 References Cited 2,560,047
The following references, cited by the Examiner, are of record in the patented file of this patent or the original 2953483 patent.
UNITED STATES PATENTS 3,424,129 1/ 1969 Peeps et a1. 118-326 X g: 3,438,803 4/1965 Dubble et a1. 118-48 X 10 2,295,928 3,494,324 2/1970 Bauer et a1. 118-63 X 3,516,811 6/1970 Gatchet et a1 118-323 X 3,561,940 2/1971 Scholes 118-49 X 2,072,948 3/1937 Gelfs 118-326 X 15 2,295,928 9/1942 Bower 118-326 x
US28076D 1969-11-04 1973-08-24 Vapor deposition apparatus including air mask Expired USRE28076E (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US87391669A 1969-11-04 1969-11-04
US39103673A 1973-08-24 1973-08-24

Publications (1)

Publication Number Publication Date
USRE28076E true USRE28076E (en) 1974-07-16

Family

ID=27013363

Family Applications (2)

Application Number Title Priority Date Filing Date
US873916A Expired - Lifetime US3688737A (en) 1969-11-04 1969-11-04 Vapor deposition apparatus including air mask
US28076D Expired USRE28076E (en) 1969-11-04 1973-08-24 Vapor deposition apparatus including air mask

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US873916A Expired - Lifetime US3688737A (en) 1969-11-04 1969-11-04 Vapor deposition apparatus including air mask

Country Status (2)

Country Link
US (2) US3688737A (en)
CA (1) CA944225A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0187515A1 (en) * 1984-12-20 1986-07-16 M & T Chemicals, Inc. Hood for coating glass containers and coating method
US5584903A (en) * 1991-06-20 1996-12-17 Elf Atochem North America, Inc. Permeable attenuating distributor for a glass container coating apparatus and a method for coating containers
US5599369A (en) * 1994-04-29 1997-02-04 Owens-Brockway Glass Container Inc. Hood for metal-oxide vapor coating glass containers
DE102008037159A1 (en) * 2008-08-08 2010-02-11 Krones Ag Apparatus and method for the plasma treatment of hollow bodies

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3805736A (en) * 1971-12-27 1974-04-23 Ibm Apparatus for diffusion limited mass transport
US3790404A (en) * 1972-06-19 1974-02-05 Ibm Continuous vapor processing apparatus and method
US3951100A (en) * 1972-12-15 1976-04-20 Ppg Industries, Inc. Chemical vapor deposition of coatings
US3942469A (en) * 1972-12-15 1976-03-09 Ppg Industries, Inc. Vapor deposition nozzle
US4555416A (en) * 1984-08-27 1985-11-26 Ball Corporation Spray apparatus with self cleaning nozzle
DE19807032A1 (en) * 1998-02-19 1999-08-26 Leybold Systems Gmbh Vapor coating of cylindrical substrates e.g. silicon dioxide coating for sealing plastic carbonated drinks bottles
EP3381873A1 (en) * 2017-03-31 2018-10-03 Arkema B.V. Coating apparatus for containers
US11131017B2 (en) 2018-08-17 2021-09-28 Owens-Brockway Glass Container Inc. Vaporized metal application hood

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3172780A (en) * 1965-03-09 Apparatus for treating textile filaments
US2072948A (en) * 1931-11-30 1937-03-09 Vilbiss Co Spray coating machine
US2295928A (en) * 1938-04-29 1942-09-15 Taylor Smith & Taylor Company Method and apparatus for glazing ceramic ware
US2349622A (en) * 1941-12-18 1944-05-23 Gen Electric Manufacture of rectifiers of the blocking layer type
US2560047A (en) * 1947-09-20 1951-07-10 Firestone Tire & Rubber Co Apparatus for electrostatically depositing gas-suspended solids
US2519177A (en) * 1949-03-02 1950-08-15 Dow Chemical Co Apparatus for coating cylindrical vessels
US2721535A (en) * 1953-11-09 1955-10-25 Owens Illinois Glass Co Apparatus for decorating glassware
US2736289A (en) * 1954-11-23 1956-02-28 Alfred W Allen Apparatus for applying a plastic coating to threads, yarns, etc.
US2953483A (en) * 1956-08-13 1960-09-20 Owens Illinois Glass Co Method and apparatus for applying coatings to selected areas of articles
US3045273A (en) * 1956-12-27 1962-07-24 Oxy Dry Sprayer Corp Cleaning and tension control systems for paper and other products
NL131679C (en) * 1961-01-05
US3438803A (en) * 1965-05-18 1969-04-15 Anchor Hocking Glass Corp Method and means for vapor coating
US3516811A (en) * 1966-10-04 1970-06-23 Indian Head Inc Method of and apparatus for coating glassware retaining its heat of formation
US3424129A (en) * 1967-04-20 1969-01-28 Devilbiss Co Spray booth
US3561940A (en) * 1967-10-02 1971-02-09 Ball Corp Method and apparatus for preparing glass articles
US3494324A (en) * 1968-03-04 1970-02-10 United States Steel Corp System for controlling the air supply to coating-screeding air knives

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0187515A1 (en) * 1984-12-20 1986-07-16 M & T Chemicals, Inc. Hood for coating glass containers and coating method
US5584903A (en) * 1991-06-20 1996-12-17 Elf Atochem North America, Inc. Permeable attenuating distributor for a glass container coating apparatus and a method for coating containers
US5599369A (en) * 1994-04-29 1997-02-04 Owens-Brockway Glass Container Inc. Hood for metal-oxide vapor coating glass containers
DE102008037159A1 (en) * 2008-08-08 2010-02-11 Krones Ag Apparatus and method for the plasma treatment of hollow bodies

Also Published As

Publication number Publication date
US3688737A (en) 1972-09-05
CA944225A (en) 1974-03-26

Similar Documents

Publication Publication Date Title
US4668268A (en) Coating hood with air flow guide for minimizing deposition of coating compound on finish of containers
USRE28076E (en) Vapor deposition apparatus including air mask
US4389234A (en) Glass coating hood and method of spray coating glassware
US4431692A (en) Process for making glass surfaces abrasion-resistant and article produced thereby
US3424129A (en) Spray booth
AU634092B2 (en) Apparatus for depositing a metal-oxide coating on glass articles
US4879970A (en) Coating hood for applying coating compound on containers
US4917717A (en) Apparatus for and process of coating glass
SE463767B (en) SET FOR PYROLYTIC PREPARATION OF A GLASS METAL OXIDE COATING AND DEVICE
US3623854A (en) Vapor treatment of containers with finish air barrier
EP0519597B1 (en) Glass-coating apparatus and methods
US3684469A (en) Method of coating glassware
US4880698A (en) Coated flat glass
US20160319429A1 (en) Coating apparatus
US5599369A (en) Hood for metal-oxide vapor coating glass containers
US3690289A (en) Vapor treatment hood
WO2001025503A1 (en) Glass container coating hood
GB2069475A (en) Process and Apparatus for Making Glass Surfaces Abrasion- Resistant and Article Produced Thereby
US3920433A (en) Apparatus and method for improved glassware coating
US20230167556A1 (en) Coating apparatus
JPH03205326A (en) Method and means for distribution control coating of glass container
JPH06296901A (en) Device for distributing powdery solid to base material surface
JP2606817B2 (en) Method of applying a protective coating to a glass container having a main body and a finished part and a coated hood therefor