[go: up one dir, main page]

USRE23424E - Power rectifier tube - Google Patents

Power rectifier tube Download PDF

Info

Publication number
USRE23424E
USRE23424E US23424DE USRE23424E US RE23424 E USRE23424 E US RE23424E US 23424D E US23424D E US 23424DE US RE23424 E USRE23424 E US RE23424E
Authority
US
United States
Prior art keywords
cathode
tube
mercury
anode
anodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
Publication date
Application granted granted Critical
Publication of USRE23424E publication Critical patent/USRE23424E/en
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J13/00Discharge tubes with liquid-pool cathodes, e.g. metal-vapour rectifying tubes
    • H01J13/02Details
    • H01J13/48Circuit arrangements not adapted to a particular application of the tube and not otherwise provided for
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J13/00Discharge tubes with liquid-pool cathodes, e.g. metal-vapour rectifying tubes
    • H01J13/50Tubes having a single main anode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2893/00Discharge tubes and lamps
    • H01J2893/0072Disassembly or repair of discharge tubes
    • H01J2893/0088Tubes with at least a solid principal cathode and solid anodes

Definitions

  • the present invention relates to a power rectifier tube of the mercury vapor type.
  • One of the objects of the present invention is to provide a power rectifier tube of the type referred to in which the anode may be located substantially closer to the cathode than in pre- -1 vious known types of mercury vapor rectifiers,
  • Another object of the present invention is to provide a method of and a device for starting v are shielded from one another to prevent shortcircuiting thereof.
  • a further object of the invention is to provide a novel form of shield for insulating the anodes of a power rectifier tube.
  • Fig. 1 is a view in section taken on line ll of Fig. 2, of a multiple anode power rectifier tube embodying my invention, which tube is shown connected in a power circuit by wiring diagram;
  • Fig. 2 is a View in section taken on line 2-2 of Fig. l;
  • Fig. 3 is a fragmentary view of a power rectifier tube showing one anode for disclosing another form of the invention.
  • the cathode In the usual mercury vapor rectifier tubes, the cathode consists of a pool of mercury, and in order to ionize the mercury 'sufliciently to start a flow of current between the anode and cathode, a starter element is dipped into the mercury and then withdrawn while a potential is maintained between 'the element and cathode. This draws an arc causing the ionization desired.
  • the type of tube has limitations in its use due to the liquid character of the cathode and also the tube is not as efiicient as it could be in that the starter mechanism is more or less complicated and the anodes must be spaced sufliciently from the cathode to prevent splashing of mercury thereon.
  • cathode whichretains the mercury to prevent splashing or slapping, and which also presents a rough or irregular surface whereby ionization of the mercury to start the rectifier can be accomplished by a starter element having a sharp point located remote from the cathode.
  • the structure of the rectifier eliminates the smooth surface of the mercury whereby points are provided for the concentration of the starting potential.
  • starting can be accomplished by a relatively low voltage and without relative movement between the starter element and cathode.
  • a rectifier tube indicated generally at 5 which embodies my invention.
  • the tube includes a stainless steel cylindrical member 6 closed at the top by a wall I and at the bottom by a wall 8. These walls may be welded or silver soldered to the cylinder 6 for forming a gastight seal.
  • three graphite anodes II], I l and I2 are suspended into the tube 6 from the wall 1, although more or less anodes could be employed if desired.
  • These anodes are connected to conductor rods I3, l4 and [5, respectively, which rods are each embedded in an [insulated] insulator member I6, which may be formed of glass, and the insulator members are each bonded with the top wall 1 by a gastight joint.
  • each of the anodes is provided with a shield l8, which shields are preferably formed of steatite, or a similar ceramic material, which are open at the bottom and have a partially closed upper wall IS.
  • a circular porous metal cathode 20 is disposed on the bottom wall 8, and this cathode is preferably formed by compressing metal wool and then sintering this mass so that the body of the cathode will be firm and porous, and will be capable of holding liquid mercury therein by molecular attraction.
  • a typical cathode having a diameter of 5 inches and a thickness of inch is formed by taking 10 ounces of steel wool and compressing it to the dimensions mentioned and while in the compressed condition passing an electric charge of 40 volts, 10,000 amps condenser discharge tends upwardly through anfop'ening inthe wan 8 and through the cathode [35120.
  • the rod 21 is provided with a flange 22 which is sealing'ly attached to the bottom of wall 8, as by weldin'gor silver soldering, and a nut 23 is threaded on the upper end of the rod to hold the cathode in place.
  • is extended through a suitable supporting bracket or terminal bar 24 and the rod ;is attached to the bracket by clamp nuts 25.
  • the rod 2 I forms an electrical conductor for the cathode 20- and it alsgserves to support the tube 5.
  • auxiliary anode When a single phase current is rectified, it is desirable to provide an auxiliary anode to form a-keep alive circuit through the rectifier.
  • Such an auxiliary anode is not necessary where the rectifier is a polyphase -type,;s uch as that shown, but to illustrate the construction for a single phase rectifier, I have shown an auxiliary graphite anode 2I supportedon thebottom wall 8 of the tube and this anode is supported by a conductor wire 28 which is embedded in a glass insulator 29 which extends upwardly through the wall 8 and cathode 20.
  • the insulator [21] 29 is [scaledlsealed in an'opening 3B in the wall :8 to form a gastight connection with the wall.
  • a starter device 32 is "also supported by :the bottom wall 8 and the starter 32 comprises wire 33 embedded in a glass insulator 3,4, which insulator extends upwardly through the wall 8 ,and cathode 28 and issealed-in aniopening-35ain wall 8 by a gastight joint.
  • the wire '33 maybe formed .cf'tungsten, and it has a downwardly projecting end portion 36 and the end :portionhas .a sharp point 31 formed thereon.
  • the point is as sharp as that of the usual sewing needle.
  • :I-he spacing of the auxiliary anode 21 and the starter element 32 does 'not necessarily have to be'in the relation shown in the drawings, but any convenient spacing may be used.
  • the starter wirecouldbe in a recessaboye and at one side of the cathode and pointing parallel to the surface of the cathode.
  • the tube 38 is utilized for evacuating the .tube at and for introducing suitable gas intolthe tube since normally the tube 38 is closed'by a apluge lll.
  • the tube may be cooled by passing either air or water in heat transfer [release] relation with the walls of "the cylinder 6.
  • the anode I0 is coniiiected with o'h'e winding of the secondary of the transformer T 'by a wire 48
  • anode I I is connected to another of the transformer secondary windings by awire 48
  • anode I2 is connectedto the third secondary windings of the transformer T by a wire 50.
  • One side of the load L' is connected to the secondary of the transformer T by a line 5I and the other side of the load is connected to cathode 20 through line 52, bracket '24 and rod 2
  • the starter circuit includes a step-up transformer 5 3 having a primary connected with a battery 54 by a circuit including a switch 55.
  • One side of thesecondary of transformer 53 is connected to the wire 33of the starter by a wire 56, and the opposite side of the secondary is eonnected to the cathode through wires 5 '52, bracket 24 and rod 2 I.
  • the transformer 53 and the battery 54 areof-suc'h design and yoltagethat when switch 55 is closed -a peak voltage-of between 2000 and 3000 volts is impressed between the pointed end of wire 33 and the cathode 20 through 50,000 ohms resistance, the polarity at -thepoint-.of the wirebeingpositive.
  • the starter may be connected to a transformer similar to 54 and the iprimary-of the transformer connected with a circuit that is in 'phase with the power'circuit.
  • a :phase shifting network may be provided-to delay the phase on the transformer -so that thestarter will fir at some-time d'uring'each positive h'alf cycle.
  • the auxiliary anode 2.1 may be dispensed with.
  • theqelectrie cal paths between' tli'e einodes are increasedzsoas to prevent fiashbacks or shorting between the anodes.
  • the cathode described, or a cathode falling within the purview of my copending application mentioned hereinbefore the mercury is contained entirely within the pores thereof and jarring or tilting of the rectifier tube cannot cause the mercury to splash and hence the anodes can be placed relatively close to the cathode so that the efficiency of the rectifier tube is greatly increased due to the short path between the anodes and cathode.
  • sleeve for the anodes, which sleeve is shown on an anode H2, which is similar to the anode I2.
  • the sleeve comprises a tubular member formed of cloth Woven of glass fibers. The lower end of this sleeve is open and the [open] upper end may be tied about the conductor rod for the anode H2.
  • This type of sleeve is quite inexpensive and will not break and at the same time it provides a high degree of insulation for the purpose desired.
  • a mercury vapor power rectifier comprising an enclosure, an anode; a porous cathode member saturated with mercury; and a starter element in said enclosure comprising a conductor member having a sharp pointed end.
  • a mercury vapor power rectifier comprising an enclosure, an anode; a porous cathode member saturated with mercury; and a starter element in said enclosure comprising a conductor member having a pointed end comparable to the point of a sewing needle.
  • a mercury vapor power rectifier comprising an enclosure, an anode; a cathode having a rough surface; and a starter element in the enclosure having a pointed end.
  • a mercury vapor power rectifier comprising an enclosure, an anode; a porous metallic cathode member saturated with mercury; and a starter element in said enclosure comprising a conductor member having a pointed end.
  • a mercury vapor power rectifier comprising an enclosure, an anode; a cathode comprising a mass of metal wool compressed and sintered into a relatively rigid form and holding mercury therein by molecular attraction; and a starter element in said enclosure comprising a conductor member having a pointed end.
  • a power rectifier tube including a cathode and a plurality of anodes suspended'above the cathode; an enclosure for the cathode and anodes; and a sleeve consisting of glass cloth surrounding at least one of the [electrodes] anodes, said sleeve extending toward the cathode and below the lower surfaces of the anodes and being closed over the top of said one anode.

Landscapes

  • Lasers (AREA)

Description

Oct. 30, 1951 D. a. CLARK POWER RECTIFIER TUBE Original Filed March 14, 1947 CMESSED 4110 WHO IN V EN TOR. DUDLEY B. CLARK EL 4012 GP. 170M016 A TTURNEY Reissued Oct. 30, 1 951 UNITED STATES PATENT OFFICE POWER RECTIFIER TUBE Dudley B. Clark, Palm Springs, Calif. I
Original No. 2,468,037, dated April 26, 1949, Serial No. 734,712, March 14, 1947. Application for reissue August 9, 1951, Serial No. 241,138
6 Claims. :(Cl. 313-169) Matter enclosed in heavy brackets I: appears in the original patent but forms no part of this reissue specification; matter printed in italics indicates the additions made by reissue.
The present invention relates to a power rectifier tube of the mercury vapor type.
One of the objects of the present invention is to provide a power rectifier tube of the type referred to in which the anode may be located substantially closer to the cathode than in pre- -1 vious known types of mercury vapor rectifiers,
thereby reducing the voltage drop through the tube.
It is also an object of the invention to provide a mercury vapor power rectifier in which a wide range of number of anodes may be utilized without the danger of reverse firing or shorting between the anodes.
Another object of the present invention is to provide a method of and a device for starting v are shielded from one another to prevent shortcircuiting thereof.
A further object of the invention is to provide a novel form of shield for insulating the anodes of a power rectifier tube.
Other objects and advantages of the invention will be apparent from the following description of preferred forms of embodiments of the invention, reference being made to the accompanying drawings wherein:
Fig. 1 is a view in section taken on line ll of Fig. 2, of a multiple anode power rectifier tube embodying my invention, which tube is shown connected in a power circuit by wiring diagram;
Fig. 2 is a View in section taken on line 2-2 of Fig. l; and
Fig. 3 is a fragmentary view of a power rectifier tube showing one anode for disclosing another form of the invention.
In the usual mercury vapor rectifier tubes, the cathode consists of a pool of mercury, and in order to ionize the mercury 'sufliciently to start a flow of current between the anode and cathode, a starter element is dipped into the mercury and then withdrawn while a potential is maintained between 'the element and cathode. This draws an arc causing the ionization desired. The type of tube has limitations in its use due to the liquid character of the cathode and also the tube is not as efiicient as it could be in that the starter mechanism is more or less complicated and the anodes must be spaced sufliciently from the cathode to prevent splashing of mercury thereon.
. 2 In my co-pending application Serial No. 683,808 filed July 16, 1946, now Patent No, 2,528,033, issued October 10, 1950, I have shown and claimed a-mercury vapor rectifier having a porous cathode member in which the mercury of the rectifier is contained so that the mercury will not slop or surge when the rectifier is tilted.
In the present application I have shown another form of cathode whichretains the mercury to prevent splashing or slapping, and which also presents a rough or irregular surface whereby ionization of the mercury to start the rectifier can be accomplished by a starter element having a sharp point located remote from the cathode. The structure of the rectifier eliminates the smooth surface of the mercury whereby points are provided for the concentration of the starting potential. Thus, starting can be accomplished by a relatively low voltage and without relative movement between the starter element and cathode.
Referring to the drawings, I have shown a rectifier tube indicated generally at 5 which embodies my invention. The tube includes a stainless steel cylindrical member 6 closed at the top by a wall I and at the bottom by a wall 8. These walls may be welded or silver soldered to the cylinder 6 for forming a gastight seal. In the form of invention shown, three graphite anodes II], I l and I2 are suspended into the tube 6 from the wall 1, although more or less anodes could be employed if desired. These anodes are connected to conductor rods I3, l4 and [5, respectively, which rods are each embedded in an [insulated] insulator member I6, which may be formed of glass, and the insulator members are each bonded with the top wall 1 by a gastight joint. In the form of the invention shown in Fig. 1, each of the anodes is provided with a shield l8, which shields are preferably formed of steatite, or a similar ceramic material, which are open at the bottom and have a partially closed upper wall IS.
A circular porous metal cathode 20 is disposed on the bottom wall 8, and this cathode is preferably formed by compressing metal wool and then sintering this mass so that the body of the cathode will be firm and porous, and will be capable of holding liquid mercury therein by molecular attraction. For example, a typical cathode having a diameter of 5 inches and a thickness of inch is formed by taking 10 ounces of steel wool and compressing it to the dimensions mentioned and while in the compressed condition passing an electric charge of 40 volts, 10,000 amps condenser discharge tends upwardly through anfop'ening inthe wan 8 and through the cathode [35120. The rod 21 is provided with a flange 22 which is sealing'ly attached to the bottom of wall 8, as by weldin'gor silver soldering, anda nut 23 is threaded on the upper end of the rod to hold the cathode in place. The lower end of rod 2| is extended through a suitable supporting bracket or terminal bar 24 and the rod ;is attached to the bracket by clamp nuts 25. The rod 2 I forms an electrical conductor for the cathode 20- and it alsgserves to support the tube 5.
When a single phase current is rectified, it is desirable to provide an auxiliary anode to form a-keep alive circuit through the rectifier. Such an auxiliary anode is not necessary where the rectifier is a polyphase -type,;s uch as that shown, but to illustrate the construction for a single phase rectifier, I have shown an auxiliary graphite anode 2I supportedon thebottom wall 8 of the tube and this anode is supported by a conductor wire 28 which is embedded in a glass insulator 29 which extends upwardly through the wall 8 and cathode 20. The insulator [21] 29 is [scaledlsealed in an'opening 3B in the wall :8 to form a gastight connection with the wall.
A starter device 32 is "also supported by :the bottom wall 8 and the starter 32 comprises wire 33 embedded in a glass insulator 3,4, which insulator extends upwardly through the wall 8 ,and cathode 28 and issealed-in aniopening-35ain wall 8 by a gastight joint. The wire '33 maybe formed .cf'tungsten, and it has a downwardly projecting end portion 36 and the end :portionhas .a sharp point 31 formed thereon. Preferably, the point is as sharp as that of the usual sewing needle. :I-he spacing of the auxiliary anode 21 and the starter element 32 does 'not necessarily have to be'in the relation shown in the drawings, but any convenient spacing may be used. For example, the starter wirecouldbe in a recessaboye and at one side of the cathode and pointing parallel to the surface of the cathode.
A tube 38 extends upwardlythroughian:open- 1'39 in the bottom WEL1128 and the tube .38 is sealed in the opening =39 by-a gastigh-t joint. The tube 38 is utilized for evacuating the .tube at and for introducing suitable gas intolthe tube since normally the tube 38 is closed'by a apluge lll.
Whenthe tube 5 is assembled as'described',-.the air is withdrawn through the tube 38 rand the assemblyis baked at400 for two hours. ""After the tube has cooled, distilled -mercury is ithen admitted thereto through the inlet ?38 'in sufficient quantity to saturate the porous cathode=2ll, :but leaving no excess loose mercury in the 'ltllbB. Also, a-limited amount of xenon-gas is admitted into the tube to assist in'the'starting-of the-tube. Preferably, the pressurewwithin the -tube willbe approximately .030 mm. at "60 C. It "be apparent that t-he-cathode willhold-themercuny by molecular attraction to -prevent*splashing or running of the I mercury when the "tube is tipped orjarred, and yet mercury isrea 'dily ava'ilable cathode for the reception of a rod 2| which exfor vaporization. The surface of the cathode will be rough and irregular, relative to the surface of a free body of mercury.
It is to be understood that any suitable cooling system may used with the tube, none being disclosed in the present drawings. For example, the tube may be cooled by passing either air or water in heat transfer [release] relation with the walls of "the cylinder 6.
The tube 5 shown connected with a threephase transformer T to supply three-phase halfwavep cwer to 'ailo'a'd L. The anode I0 is coniiiected with o'h'e winding of the secondary of the transformer T 'by a wire 48, anode I I is connected to another of the transformer secondary windings by awire 48, and anode I2 is connectedto the third secondary windings of the transformer T by a wire 50. One side of the load L'is connected to the secondary of the transformer T by a line 5I and the other side of the load is connected to cathode 20 through line 52, bracket '24 and rod 2|.
The starter circuit includes a step-up transformer 5 3 having a primary connected with a battery 54 by a circuit including a switch 55. One side of thesecondary of transformer 53 is connected to the wire 33of the starter by a wire 56, and the opposite side of the secondary is eonnected to the cathode through wires 5 '52, bracket 24 and rod 2 I. The transformer 53 and the battery 54 areof-suc'h design and yoltagethat when switch 55 is closed -a peak voltage-of between 2000 and 3000 volts is impressed between the pointed end of wire 33 and the cathode 20 through 50,000 ohms resistance, the polarity at -thepoint-.of the wirebeingpositive. This causes a cathode spot to be developed and the tube started. This cathode spot will be induced by a cold emission of electrons from minute points-on the cathode surface. -I have found that the tube will also start successfully with the polarity of the cathode and starter reversed :from that just stated, but at ahigher .potential. In aLpolyphase circuit, such as that disclosed, the-arc between the anodes and the cathode will be maintained after the tube has once started, until the power supply is interrupted.
In the event that a-single phase power-current is rectified, the starter may be connected to a transformer similar to 54 and the iprimary-of the transformer connected with a circuit that is in 'phase with the power'circuit. A :phase shifting network may be provided-to delay the phase on the transformer -so that thestarter will fir at some-time d'uring'each positive h'alf cycle. In-this event, the auxiliary anode 2.1 may be dispensed with.
If it is desirable to use the auxiliary anode, when there is a single phase power supply, to maintain ionization within the tube, theanode 21 is connected with =the=positi vekpole-of a battery 60 --through wires :28 :and 15 I and the negative .pole of the battery is connected with the anode by wire -"5I. =A switch :62 is provided in line 6| for-controllingenergization-iof the anode 21. As long as the :switch 62 is maintained closed a voltage will I be maintained -onanode 211, keeping the cathode :spotaliveduring 13119211011- conducting 'half wa've of @the single phasecycle. It is to -be understood that when the:auxil-iary anode 2! is used, it'awillinotvbe necessary 'ito;provide for athe .ofi' cycle starting by the-starterr fl.
*Byutilizing the-ceramic asleeves Id, theqelectrie cal paths between' tli'e einodes are increasedzsoas to prevent fiashbacks or shorting between the anodes. By using the cathode described, or a cathode falling within the purview of my copending application mentioned hereinbefore, the mercury is contained entirely within the pores thereof and jarring or tilting of the rectifier tube cannot cause the mercury to splash and hence the anodes can be placed relatively close to the cathode so that the efficiency of the rectifier tube is greatly increased due to the short path between the anodes and cathode.
Referring to Fig. 3, I have shown another form of sleeve for the anodes, which sleeve is shown on an anode H2, which is similar to the anode I2. The sleeve comprises a tubular member formed of cloth Woven of glass fibers. The lower end of this sleeve is open and the [open] upper end may be tied about the conductor rod for the anode H2. This type of sleeve is quite inexpensive and will not break and at the same time it provides a high degree of insulation for the purpose desired.
It is essential that there be a sharp point at which the starting potential can be concentrated. I have found that by substituting a starter element having an end dull to the touch for the element having the needle point end, starting will not be accomplished at the voltages given for the pointed starter, and the voltage may be increased many fold without successful ignition. To practice my invention, therefore, using a pointed starter element, attention must be given to providing sufiicient sharpness to the starter element so that the practical starting potentials will achieve the desired results.
I have also placed the starting element at various points remote from the cathode without affecting the efficiency thereof. For example, I
have mounted the starter adjacent the top, at the sides and adjacent the bottom with successful results.
It is apparent that by my invention I have provided a power rectifier tube which is much more efiicient that those heretofore used and which can be used in environments where there is likely to be considerable jarring and tilting of the tube without adversely affecting its operation. Also, a plurality of anodes may be used since the conditions generally causing shorting between the anodes is reduced. The starting tube device for the rectifier tube is extremely simple and will not easily be gotten out of order.
It will be understood that although I have described but two embodiments of the invention, it is to be understood that other forms of the invention might be adopted, all falling within the scope of the claims which follow.
I claim:
1. In a mercury vapor power rectifier comprising an enclosure, an anode; a porous cathode member saturated with mercury; and a starter element in said enclosure comprising a conductor member having a sharp pointed end.
2. In a mercury vapor power rectifier comprising an enclosure, an anode; a porous cathode member saturated with mercury; and a starter element in said enclosure comprising a conductor member having a pointed end comparable to the point of a sewing needle.
3. In a mercury vapor power rectifier comprising an enclosure, an anode; a cathode having a rough surface; and a starter element in the enclosure having a pointed end.
4. A mercury vapor power rectifier comprising an enclosure, an anode; a porous metallic cathode member saturated with mercury; and a starter element in said enclosure comprising a conductor member having a pointed end.
5. A mercury vapor power rectifier comprising an enclosure, an anode; a cathode comprising a mass of metal wool compressed and sintered into a relatively rigid form and holding mercury therein by molecular attraction; and a starter element in said enclosure comprising a conductor member having a pointed end.
6. A power rectifier tube including a cathode and a plurality of anodes suspended'above the cathode; an enclosure for the cathode and anodes; and a sleeve consisting of glass cloth surrounding at least one of the [electrodes] anodes, said sleeve extending toward the cathode and below the lower surfaces of the anodes and being closed over the top of said one anode.
DUDLEY B. CLARK.
REFERENCES CITED The following references are of record in the file of this patent or the original patent:
UNITED STATES PATENTS Number Name Date 1,232,470 Farnsworth July 3, 1917 1,664,195 Cremer Mar. 2'7, 1928 2,354,031 LaForge July 18, 1944 FOREIGN PATENTS Number Country Date 179,233 Great Britain May 4, 1922 263,076 Germany July 30, 1913 266,717 Germany Oct. 31, 1913
US23424D Power rectifier tube Expired USRE23424E (en)

Publications (1)

Publication Number Publication Date
USRE23424E true USRE23424E (en) 1951-10-30

Family

ID=2090728

Family Applications (1)

Application Number Title Priority Date Filing Date
US23424D Expired USRE23424E (en) Power rectifier tube

Country Status (1)

Country Link
US (1) USRE23424E (en)

Similar Documents

Publication Publication Date Title
US3187216A (en) Electron gun having a releasably clamped electron emitting element
US2468037A (en) Power rectifier tube and method of starting the same
US2218386A (en) Discharge device
US2128861A (en) Vapor electric discharge device
US2148484A (en) Pool type discharge device
USRE23424E (en) Power rectifier tube
US3989973A (en) Cold-cathode gas-discharge device
US1939063A (en) Shield anode grid glow tube
US2071748A (en) Rectifier tube
US2231674A (en) Auxiliary tube for ignitors
US2169032A (en) Vapor-electric converter
US1889612A (en) Rectifying apparatus
US2907905A (en) Mercury vapor discharge device
US2396294A (en) Arc discharge starting device
US2770710A (en) Arc working apparatus
US1749611A (en) Method of rectifying alternating currents
US1760525A (en) Rectifier
US2523789A (en) Initiating the arc in mercury-pool tubes
GB542393A (en) Improvements in electric discharge apparatus
US2595716A (en) Gaseous discharge device
US3049639A (en) High power switch tube
DE966813C (en) Device for the operation of gas or vapor discharge vessels
US2824254A (en) Pool-type electric discharge apparatus
US2147484A (en) Pool type discharge device
US2293468A (en) Cold cathode rectifier