USRE44482E1 - CMOS active image sensor with common pixel transistors and binning capability - Google Patents
CMOS active image sensor with common pixel transistors and binning capability Download PDFInfo
- Publication number
- USRE44482E1 USRE44482E1 US13/343,843 US201213343843A USRE44482E US RE44482 E1 USRE44482 E1 US RE44482E1 US 201213343843 A US201213343843 A US 201213343843A US RE44482 E USRE44482 E US RE44482E
- Authority
- US
- United States
- Prior art keywords
- photocarrier
- photocarriers
- integrators
- photodiode
- integrator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/483—Details of pulse systems
- G01S7/486—Receivers
- G01S7/487—Extracting wanted echo signals, e.g. pulse detection
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F39/00—Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
- H10F39/80—Constructional details of image sensors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F39/00—Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
- H10F39/80—Constructional details of image sensors
- H10F39/803—Pixels having integrated switching, control, storage or amplification elements
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F39/00—Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
- H10F39/10—Integrated devices
- H10F39/12—Image sensors
- H10F39/18—Complementary metal-oxide-semiconductor [CMOS] image sensors; Photodiode array image sensors
Definitions
- U.S. Pat. No. 6,794,214 is a continuation of U.S. patent application Ser. No. 09/378,565, filed Aug. 19, 1999 now U.S. Pat. No. 6,239,456, which claims the benefit of the U.S. Provisional Application No. 60/097,135, filed on Aug. 19, 1998, which is incorporated herein by reference.
- Certain applications require measuring aspects that are based on the speed of light.
- range finding can be carried out using optics.
- An optical signal is sent.
- the reflection therefrom is received.
- the time that it takes to receive the reflection of the optical signal gives an indication of the distance.
- the so called lock-in technique uses an encoded temporal pattern as a signal reference.
- the device locks into the received signal to find the time of receipt.
- noise can mask the temporal pattern.
- CCDs are well known to have relatively large power consumption.
- the present application describes a special kind of lock in detector formed using CMOS technology. More specifically, a lock in detector is formed from a pinned photodiode. The photodiode is modified to enable faster operation.
- the pinned photodiode provides virtually complete charge transfer readout.
- Fast separation of the photo-generated carriers is obtained by separating the diode into smaller sub-parts and summing the output values of the subparts to obtain an increased composite signal.
- FIG. 1 shows a basic block diagram of the system
- FIG. 2 shows a block diagram of the multiple photodiode parts
- FIG. 3 shows a block diagram of the system as used in range finding
- FIGS. 4a and 4b show pixel layouts
- FIG. 5 shows a cross section of the pinned photodiode.
- the present application uses a special, multiple output port pinned photodiode as the lock in pixel element.
- the photodiode is preferably part of a CMOS active pixel image sensor, of the type described in U.S. Pat. No. 5,471,505 5,471,515.
- the system preferably includes in-pixel buffer transistors and selection transistors, in addition to the CMOS photodetector.
- FIG. 1 shows a pinned photodiode with four output ports, labeled as out 1 -out 4 .
- Each of the output ports is used to receive a reflection for a specified time duration.
- Each output becomes a “bin”. The counting of the amount of information in the bins enables determination of the reflection time, and hence the range.
- Pinned photodiodes are well known in the art and described in U.S. Pat, No, 5,904,493.
- a pinned photodiode is also known as a hole accumulation diode or HAD, or a virtual phase diode or VP diode.
- Advantages of these devices are well known in the art. They have small dark current due to suppression of surface generation. They have good quantum efficiency since there are few or no polysilicon gates over the photosensitive region. Pinned photodiodes can also be made into smaller pixels because they have fewer gates.
- FIG. 1 The basic structure of the pinned photodiode lock in pixel is shown in FIG. 1 .
- Four switched integrators are formed respectively at four output ports. Each gate is enabled during a specified period.
- the different integrators integrate carriers accumulated during the different periods.
- the first integrator accumulates carriers between 0 and ⁇ /2, the second between ⁇ /2 and ⁇ , the third between ⁇ and 3 ⁇ /2 and the fourth between 3 ⁇ /2 and 2 ⁇ time slots.
- phase shift of the detected light is given by arctan[(L 1 ⁇ L 3 )/(L 2 ⁇ L 4 )], where L 1 , L 2 , L 3 and L 4 are the amplititudes of the samples from the respective first, second, third and fourth integrators. These four phases are obtained from the four outputs of the photodiode.
- the first pinned photodiode 100 is connected to an output drain 102 via gate 1 , element 104 . This receives the charge for the first bin. Similarly, gates 2 , 3 and 4 are turned on to integrate/bin from the second, third and fourth periods.
- the present system divides the one larger photodiode into a number of smaller diodes, each with multiple output ports.
- FIG. 2 shows the system.
- a number of subpixels are formed. Each includes a number of pinned photodiodes 200 , each with four parts. Each of the corresponding ports are connected together in a way that allows summing the outputs of the photodiodes. For example, all the gate 1 control lines are connected together as shown. The outputs from all the port 1 s are also summed, and output as a simple composite output. Similarly, ports 2 , 3 and 4 's are all summed.
- FIG. 3 shows the circuit and driving waveforms for the system when used as a range finder.
- a pulse generator drives selection of the active output. Each time period is separately accumulated, and output. If a 40 MHZ pulse generator is used, 25 ns resolution can be obtained.
- FIGS. 4A and 4B show representative pixel layouts.
- FIG. 4A shows a 6 by 6 square micron pixel layout while FIG. 4B shows an 81 ⁇ 2 by 81 ⁇ 2 micron pixel layout. In both Figures, four outputs are shown.
- FIG. 5 shows a cross sectional potential diagram of an exemplary pinned photodiode.
- the generator carrier has a time of flight within this limit. This resolution time constrains the size of the detector.
- the characteristic diffusion time in a semiconductor device is L 2 /D, where D is the diffusion coefficient. This time originates from the continuity equation and the diffusion equation, and defines how soon the steady state will be established in the area of size L. Hence, for a 10 cm square per second electron diffusion coefficient, the characteristic size of the pinned photodiode could be less than 5 microns.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Solid State Image Pick-Up Elements (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
Abstract
A lock in pinned photodiode photodetector includes a plurality of output ports which are sequentially enabled. Each time when the output port is enabled is considered to be a different bin of time. A specified pattern is sent, and the output bins are investigated to look for that pattern. The time when the pattern is received indicates the time of flightA CMOS active pixel image sensor includes a plurality of pinned photodiode photodetectors that use a common output transistor. In one configuration, the charge from two or more pinned photodiodes may be binned together and applied to the gate of an output transistor.
Description
This applicationNotice: More than one reissue application has been filed for the Reissue of U.S. Pat. No. 6,794,214. The reissue applications are the present application, U.S. patent application Ser. No. 13/343,843, which is a continuation of U.S. patent application Ser. No. 13/009,268 filed on Jan. 19, 2011, which is a continuation of U.S. patent application Ser. No. 12/413,626 filed on Mar. 30, 2009 which issued as U.S. Pat. No. Re. 42,292 on Apr. 12, 2011, which is a divisional application of U.S. patent application Ser. No. 11/524,495 filed Sep. 21, 2006, which issued as U.S. Pat. No. Re. 41,340 on May 18, 2010, which is a reissue of U.S. Pat. No. 6,794,214 which issued on Sep. 21, 2004. U.S. Pat. No. 6,794,214 is a continuation of U.S. patent application Ser. No. 09/378,565, filed Aug. 19, 1999 now U.S. Pat. No. 6,239,456, which claims the benefit of the U.S. Provisional Application No. 60/097,135, filed on Aug. 19, 1998, which is incorporated herein by reference.
Certain applications require measuring aspects that are based on the speed of light.
For example, range finding can be carried out using optics. An optical signal is sent. The reflection therefrom is received. The time that it takes to receive the reflection of the optical signal gives an indication of the distance.
The so called lock-in technique uses an encoded temporal pattern as a signal reference. The device locks into the received signal to find the time of receipt. However, noise can mask the temporal pattern.
A lock in photodetector based on charged coupled devices or CCDs has been described in Miagawa and Kanada “CCD based range finding sensor” IEEE Transactions on Electronic Devices, volume 44 pages 1648-1652 1997.
CCDs are well known to have relatively large power consumption.
The present application describes a special kind of lock in detector formed using CMOS technology. More specifically, a lock in detector is formed from a pinned photodiode. The photodiode is modified to enable faster operation.
It is advantageous to obtain as much readout as possible to maximize the signal to noise ratio. The pinned photodiode provides virtually complete charge transfer readout.
Fast separation of the photo-generated carriers is obtained by separating the diode into smaller sub-parts and summing the output values of the subparts to obtain an increased composite signal.
These an other aspects will now be described in detail with reference to the accompanying drawings, wherein:
The present application uses a special, multiple output port pinned photodiode as the lock in pixel element. The photodiode is preferably part of a CMOS active pixel image sensor, of the type described in U.S. Pat. No. 5,471,505 5,471,515. Hence, the system preferably includes in-pixel buffer transistors and selection transistors, in addition to the CMOS photodetector.
Pinned photodiodes are well known in the art and described in U.S. Pat, No, 5,904,493. A pinned photodiode is also known as a hole accumulation diode or HAD, or a virtual phase diode or VP diode. Advantages of these devices are well known in the art. They have small dark current due to suppression of surface generation. They have good quantum efficiency since there are few or no polysilicon gates over the photosensitive region. Pinned photodiodes can also be made into smaller pixels because they have fewer gates.
The basic structure of the pinned photodiode lock in pixel is shown in FIG. 1 . Four switched integrators are formed respectively at four output ports. Each gate is enabled during a specified period. The different integrators integrate carriers accumulated during the different periods. The first integrator accumulates carriers between 0 and π/2, the second between π/2 and π, the third between π and 3π/2 and the fourth between 3π/2 and 2πtime slots.
Assuming the light to be a cosine phase, then the phase shift of the detected light is given by
arctan[(L1−L3)/(L2−L4)],
where L1, L2, L3 and L4 are the amplititudes of the samples from the respective first, second, third and fourth integrators. These four phases are obtained from the four outputs of the photodiode.
arctan[(L1−L3)/(L2−L4)],
where L1, L2, L3 and L4 are the amplititudes of the samples from the respective first, second, third and fourth integrators. These four phases are obtained from the four outputs of the photodiode.
The first pinned photodiode 100 is connected to an output drain 102 via gate 1, element 104. This receives the charge for the first bin. Similarly, gates 2, 3 and 4 are turned on to integrate/bin from the second, third and fourth periods.
It is important to obtain as much signal as possible from the photodiode. This can be done by using a large photodiode. However, it can take the electrons a relatively long time to escape from a large photodetector.
The present system divides the one larger photodiode into a number of smaller diodes, each with multiple output ports. FIG. 2 shows the system.
A number of subpixels are formed. Each includes a number of pinned photodiodes 200, each with four parts. Each of the corresponding ports are connected together in a way that allows summing the outputs of the photodiodes. For example, all the gate 1 control lines are connected together as shown. The outputs from all the port 1s are also summed, and output as a simple composite output. Similarly, ports 2, 3 and 4's are all summed.
Assuming the operation frequency of modulated light is 10 megahertz with a 25 nanosecond integration slot, the generator carrier has a time of flight within this limit. This resolution time constrains the size of the detector. In addition, the characteristic diffusion time in a semiconductor device is L2/D, where D is the diffusion coefficient. This time originates from the continuity equation and the diffusion equation, and defines how soon the steady state will be established in the area of size L. Hence, for a 10 cm square per second electron diffusion coefficient, the characteristic size of the pinned photodiode could be less than 5 microns.
Other embodiments are also contemplated to exist within this disclosure. For example, other numbers of output ports, e.g. 2-8, are possible. While this application describes using a pinned photodiode, similar operations could be carried out with other CMOS photodetectors, e.g., photodiodes and photogates.
Such modifications are intended to be encompassed within the following claims.
Claims (31)
1. A method, comprising:
accumulating photocarriers in each of a plurality of photocarrier integrators and successively enabling each of said plurality of photocarrier integrators to connect to a common photodiode, each of said photocarrier integrators connecting to said common photodiode through a respective photodiode output port, said plurality of photocarrier integrators accumulating photocarriers generated by said photodiode during different time periods from one another.
2. A method as in claim 1 , wherein said enabling comprises actuating a gate that is connected between each said photocarrier integrator and said photodiode.
3. A method as in claim 2 , further comprising, after said enabling, detecting a number of carriers accumulated in said photodiode during at least two of said time periods by detecting the number of photocarriers accumulated in at least two said photocarrier integrators.
4. A method as an claim 2 , wherein said photodiode is a pinned photodiode, and further comprising, after said enabling, detecting a number of carriers accumulated in said pinned photodiode during at least two of said time periods by decting the number of photocarriers accumulated in at least two said photocarrier integrators.
5. A method as in claim 1 , wherein there are four of said photocarrier integrators, and said successively enabling comprises using a first photocarrier integrator to accumulate photocarrier between times 0 and π/2, a second photocarrier integrator to accumulate photocarriers between times π/2 and π; a third photocarrier integrator to accumulate photocarriers between times π and 3π/2, and a fourth photocarrier integrator to accumulate photocarriers between times 3π/2 and 2π.
6. A method as in claim 1 , further comprising detecting a phase shift of light received by said photodiode by detecting accumulated charge in at least two photocarrier integrators.
7. A method, comprising:
generating photocarriers in a photodiode within a pixel during a plurality of time periods;
accumulating photocarriers in each of a plurality of photocarrier integrators within said pixel such that each photocarrier integrator accumulates photocarriers generated during a time period different from a time period in which other photocarrier integrators accumulate photocarriers; and
sampling said photocarriers from said photocarrier integrators;
determining a range of an object using said sampled photocarriers.
8. A method as in claim 7 , further comprising controlling each of said photocarrier integrators to be connected to said photodiode during said different time period.
9. A method as in claim 8 , wherein said controlling comprises enabling a gate, said gate being connected to said photodiode and to one of said photocarrier integrators.
10. A method as in claim 9 , wherein there are four of said photocarrier integrators, and wherein said enabling comprises successively enabling a first photocarrier integrator to accumulate photocarriers between times 0 and π/2, a second photocarrier integrator to accumulate photocarriers between times π/2 and π; a third photocarrier integrator to accumulate photocarriers between times π and 3π/2, and a fourth photocarrier integrator to accumulate photocarriers between times 3π/2 and 2π.
11. A method as in claim 7 , wherein there are four of said photocarriers integrators, and said sampling comprises sampling photo carriers which are 90 degrees out of phase with one another.
12. A method, comprising:
sampling a plurality of different samples of light in a photodiode, each of said plurality of different samples being 90 degrees out of phase with one another; and
successively gating photocarriers representing each of said different samples from said photodiode through a respective output port, each output port associated with a respective photocarrier integrator, such that each photocarrier integrator accumulates a different sample than other of said photocarrier integrators.
13. A method as in claim 12 , further comprising detecting a phase shift using said samples of light.
14. A method as in claim 12 , wherein there are four different gates connected to said photodiode each gating a different sample.
15. A method as in claim 12 , wherein there are four photocarrier integrators, and wherein said act of gating comprises successively enabling a first photocarrier integrator to accumulate photocarriers between times 0 and π/2, a second photocarrier integrator to accumulate photocarriers between times π/2 and π; a third photocarrier integrator to accumulate photocarriers between times π and 3π/2, and a fourth photocarrier integrator to accumulate photocarriers between times 3π/2 and 2π.
16. A method of operating a range finding sensor, the method comprising;
providing a plurality of photodiodes, each photodiode having a first output port for switchably coupling each respective photodiode to a first photocarrier integrator in a same pixel as said photodiode and a second output port for switchably coupling each photodiode to a second photocarrier integrator in a same pixel as said photodiode;
generating first photocarriers in said photodiodes in response to light received during a first time period;
transferring said first photocarriers to respective first photocarrier integrators via said first output ports;
generating second photocarriers in said photodiodes in response to light received during a second time period; and
transferring said second photocarriers to respective second photocarrier integrators via said second output ports.
17. The method of claim 16 , further comprising outputting said first photocarriers from first photocarrier integrators and outputting said second photocarriers from second photocarrier integrators.
18. The method of claim 17 , wherein the act of outputting said first photocarriers comprises summing outputs of all of said first photocarrier integrators, and wherein the act of outputting said second photocarriers comprises summing outputs of all of said second photocarrier integrators.
19. The method of claim 16 , further comprising counting the amount of photocarriers in said first photocarriers integrator and counting the amount of said second photocarriers in said second photocarrier integrator.
20. The method of claim 19 , further comprising determining a range of an object using the results of said acts of counting.
21. The method of claim 16 , wherein said act of providing a plurality of photodiodes includes providing said plurality of photodiodes within a common pixel.
22. The method of claim 16 , wherein said act of transferring said first photocarriers comprises transferring said first photocarriers to respective first output drains by operating first gates connected to said photodiodes and said first output drains, and wherein said act of transferring said second photocarriers comprises transferring said second photocarriers to respective second output drains by operating second gates connected to said photodiodes and said second output drains.
23. The method of claim 16 , wherein each photodiode further has a third output port for switchably coupling each photodiode to a third photocarrier integrator in a same pixel as said photodiode and a fourth output port for switchably coupling each photodiode to a fourth photocarrier integrator in a same pixel as said photodiode, and further comprising:
generating third photocarriers in said photodiodes in response to light received during a third time period;
transferring said third photocarriers to respective third photocarrier integrators via said third output ports;
generating fourth photocarriers in said photodiodes in response to light received during a fourth time period; and
transferring said fourth photocarriers to respective fourth photocarrier integrators via said fourth output ports.
24. The method of claim 23 , further comprising outputting said first photocarriers from said first photocarrier integrators, outputting said second photocarriers from said second photocarrier integrators, outputting said third photocarriers from said third photocarrier integrators, and outputting said fourth photocarriers from said fourth photocarrier integrators.
25. The method of claim 24 , wherein the act of outputting said first photocarriers comprises summing outputs of all of said first photocarrier integrators, wherein the act of outputting said second photocarriers comprises summing outputs of all of said second photocarrier integrators, wherein the act of outputting said third photocarriers comprises summing outputs of all of said third photocarrier integrators, and wherein the act of outputting said fourth photocarriers comprises summing outputs of all of said fourth photocarrier integrators.
26. A CMOS active image sensor comprising:
a first pinned photodiode of a first pixel for accumulating charge therein wherein the first pinned photodiode of the first pixel occupies a first row of an array of photodiodes;
a first transistor for transferring charge from the first pinned photodiode directly to a first diffusion region;
a second pinned photodiode of a second pixel for accumulating charge therein wherein the second pinned photodiode of the second pixel occupies a second row, below the first row, of the array;
a second transistor for transferring charge from the second pinned photodiode directly to the first diffusion region;
a third pinned photodiode of a third pixel for accumlating charge therein wherein the third pinned photodiode of the third pixel occupies a third row, below the second row, of the array;
a third transistor for transferring charge from the third pinned photodiode directly to a second diffusion region, separate from the first diffusion region;
a fourth pinned photodiode of a fourth pixel that accumulates charge therein wherein the fourth pinned photodiode of the fourth pixel occupies a fourth row, below the third row, of the array;
a fourth transistor that transfers charge from the fourth pinned photodiode directly to the second diffusion region;
the first diffusion region configured to apply charge to a gate of a fifth transistor coupled between a supply voltage and an output; and
the second diffusion region configured to apply charge to the gate of the fifth transistor, wherein the fifth transistor is an in-pixel buffer transistors common to the first, second, third, and fourth pixels.
27. The CMOS active image sensor of claim 26 wherein the first transistor and the second transistor are configured to be turned on during a same period of time during operation of the image sensor.
28. The CMOS active image sensor of claim 27, wherein the third transistor and the fourth transistor are configured to be turned on during a same period of time during operation of the image sensor.
29. The CMOS active image sensor of claim 26, wherein the first and second diffusion regions are reset via a single reset transistor.
30. The CMOS active image sensor of claim 29 further comprising in-pixel selection transistors.
31. The CMOS active image sensor of claim 26 further comprising in-pixel selection transistors.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US13/343,843 USRE44482E1 (en) | 1998-08-19 | 2012-01-05 | CMOS active image sensor with common pixel transistors and binning capability |
Applications Claiming Priority (7)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US9713598P | 1998-08-19 | 1998-08-19 | |
| US09/378,565 US6239456B1 (en) | 1998-08-19 | 1999-08-19 | Lock in pinned photodiode photodetector |
| US09/867,846 US6794214B2 (en) | 1998-08-19 | 2001-05-29 | Lock in pinned photodiode photodetector |
| US11/524,495 USRE41340E1 (en) | 1998-08-19 | 2006-09-21 | Pinned photodiode photodetector with common buffer transistor and binning capability |
| US12/413,626 USRE42292E1 (en) | 1998-08-19 | 2009-03-30 | Pinned photodiode photodetector with common pixel transistors and binning capability |
| US201113009268A | 2011-01-19 | 2011-01-19 | |
| US13/343,843 USRE44482E1 (en) | 1998-08-19 | 2012-01-05 | CMOS active image sensor with common pixel transistors and binning capability |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/867,846 Reissue US6794214B2 (en) | 1998-08-19 | 2001-05-29 | Lock in pinned photodiode photodetector |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| USRE44482E1 true USRE44482E1 (en) | 2013-09-10 |
Family
ID=44509844
Family Applications (6)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/378,565 Expired - Lifetime US6239456B1 (en) | 1998-08-19 | 1999-08-19 | Lock in pinned photodiode photodetector |
| US09/867,846 Ceased US6794214B2 (en) | 1998-08-19 | 2001-05-29 | Lock in pinned photodiode photodetector |
| US10/459,595 Expired - Lifetime US6750485B2 (en) | 1998-08-19 | 2003-06-12 | Lock in pinned photodiode photodetector |
| US11/524,495 Expired - Lifetime USRE41340E1 (en) | 1998-08-19 | 2006-09-21 | Pinned photodiode photodetector with common buffer transistor and binning capability |
| US12/413,626 Expired - Lifetime USRE42292E1 (en) | 1998-08-19 | 2009-03-30 | Pinned photodiode photodetector with common pixel transistors and binning capability |
| US13/343,843 Expired - Lifetime USRE44482E1 (en) | 1998-08-19 | 2012-01-05 | CMOS active image sensor with common pixel transistors and binning capability |
Family Applications Before (5)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/378,565 Expired - Lifetime US6239456B1 (en) | 1998-08-19 | 1999-08-19 | Lock in pinned photodiode photodetector |
| US09/867,846 Ceased US6794214B2 (en) | 1998-08-19 | 2001-05-29 | Lock in pinned photodiode photodetector |
| US10/459,595 Expired - Lifetime US6750485B2 (en) | 1998-08-19 | 2003-06-12 | Lock in pinned photodiode photodetector |
| US11/524,495 Expired - Lifetime USRE41340E1 (en) | 1998-08-19 | 2006-09-21 | Pinned photodiode photodetector with common buffer transistor and binning capability |
| US12/413,626 Expired - Lifetime USRE42292E1 (en) | 1998-08-19 | 2009-03-30 | Pinned photodiode photodetector with common pixel transistors and binning capability |
Country Status (1)
| Country | Link |
|---|---|
| US (6) | US6239456B1 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20130229557A1 (en) * | 2012-03-01 | 2013-09-05 | Canon Kabushiki Kaisha | Image pickup apparatus, image pickup system, driving method for image pickup apparatus, and driving method for image pickup system |
Families Citing this family (38)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7199410B2 (en) * | 1999-12-14 | 2007-04-03 | Cypress Semiconductor Corporation (Belgium) Bvba | Pixel structure with improved charge transfer |
| US6239456B1 (en) | 1998-08-19 | 2001-05-29 | Photobit Corporation | Lock in pinned photodiode photodetector |
| US20020063198A1 (en) * | 2000-10-26 | 2002-05-30 | Krymski Alexander I. | Frame shutter for CMOS APS |
| US6906793B2 (en) * | 2000-12-11 | 2005-06-14 | Canesta, Inc. | Methods and devices for charge management for three-dimensional sensing |
| US6987240B2 (en) * | 2002-04-18 | 2006-01-17 | Applied Materials, Inc. | Thermal flux processing by scanning |
| US7489352B2 (en) * | 2002-11-15 | 2009-02-10 | Micron Technology, Inc. | Wide dynamic range pinned photodiode active pixel sensor (APS) |
| JP4235729B2 (en) * | 2003-02-03 | 2009-03-11 | 国立大学法人静岡大学 | Distance image sensor |
| US7750958B1 (en) | 2005-03-28 | 2010-07-06 | Cypress Semiconductor Corporation | Pixel structure |
| US7808022B1 (en) | 2005-03-28 | 2010-10-05 | Cypress Semiconductor Corporation | Cross talk reduction |
| US7671460B2 (en) * | 2006-01-25 | 2010-03-02 | Teledyne Licensing, Llc | Buried via technology for three dimensional integrated circuits |
| US7947941B2 (en) * | 2006-11-01 | 2011-05-24 | Finisar Corporation | Photodiode having rounded edges for high electrostatic discharge threshold |
| US7923763B2 (en) * | 2007-03-08 | 2011-04-12 | Teledyne Licensing, Llc | Two-dimensional time delay integration visible CMOS image sensor |
| US7724293B2 (en) * | 2007-03-12 | 2010-05-25 | Aptina Imaging Corporation | Multi-purpose image sensor circuits, imager, system and method of operation |
| DE602007008561D1 (en) * | 2007-08-31 | 2010-09-30 | Em Microelectronic Marin Sa | Optoelectronic circuit comprising a photoreceiver and a laser diode and module comprising the same |
| US20090166684A1 (en) * | 2007-12-26 | 2009-07-02 | 3Dv Systems Ltd. | Photogate cmos pixel for 3d cameras having reduced intra-pixel cross talk |
| WO2009111556A1 (en) * | 2008-03-04 | 2009-09-11 | Mesa Imaging Ag | Drift field demodulation pixel with pinned photo diode |
| EP2296368B1 (en) | 2008-06-04 | 2017-01-04 | Shizuoka University | Imaging device |
| JP5501358B2 (en) * | 2008-07-17 | 2014-05-21 | マイクロソフト インターナショナル ホールディングス ビイ.ヴイ. | CMOS photogate 3D camera system with improved charge sensing cell and pixel geometry |
| US7795650B2 (en) * | 2008-12-09 | 2010-09-14 | Teledyne Scientific & Imaging Llc | Method and apparatus for backside illuminated image sensors using capacitively coupled readout integrated circuits |
| EP2441246A1 (en) * | 2009-06-09 | 2012-04-18 | MESA Imaging AG | System for charge-domain electron subtraction in demodulation pixels and method therefor |
| US9117712B1 (en) | 2009-07-24 | 2015-08-25 | Mesa Imaging Ag | Demodulation pixel with backside illumination and charge barrier |
| US9410800B1 (en) | 2010-08-02 | 2016-08-09 | Heptagon Micro Optics Pte. Ltd. | 3D TOF camera with masked illumination |
| US8785831B2 (en) | 2011-01-05 | 2014-07-22 | Luxima Technology LLC | Image sensors and methods with high speed global shutter pixels |
| JP6174011B2 (en) | 2011-05-12 | 2017-08-02 | デピュー シンセス プロダクツ, インコーポレーテッドDePuy Synthes Products, Inc. | Region optimization of pixel array using stacking scheme for hybrid image sensor with minimum vertical interconnection |
| BR112015001555A2 (en) | 2012-07-26 | 2017-07-04 | Olive Medical Corp | continuous video in low light environment |
| JP6461790B2 (en) | 2012-07-26 | 2019-01-30 | デピュー シンセス プロダクツ, インコーポレーテッドDePuy Synthes Products, Inc. | Camera system using minimum area monolithic CMOS image sensor |
| JP6284937B2 (en) | 2012-07-26 | 2018-02-28 | デピュー シンセス プロダクツ, インコーポレーテッドDePuy Synthes Products, Inc. | YCbCr pulse illumination system in an environment with insufficient light |
| AU2014223163A1 (en) | 2013-02-28 | 2015-08-20 | Olive Medical Corporation | Videostroboscopy of vocal chords with CMOS sensors |
| US8908063B2 (en) * | 2013-03-11 | 2014-12-09 | Texas Instruments Incorporated | Method and apparatus for a time-of-flight sensor with charge storage |
| CA2907116A1 (en) | 2013-03-15 | 2014-09-18 | Olive Medical Corporation | Controlling the integral light energy of a laser pulse |
| US10517469B2 (en) | 2013-03-15 | 2019-12-31 | DePuy Synthes Products, Inc. | Image sensor synchronization without input clock and data transmission clock |
| AU2014233192B2 (en) | 2013-03-15 | 2018-11-22 | DePuy Synthes Products, Inc. | Minimize image sensor I/O and conductor counts in endoscope applications |
| EP2967301B1 (en) | 2013-03-15 | 2021-11-03 | DePuy Synthes Products, Inc. | Scope sensing in a light controlled environment |
| WO2014144947A1 (en) | 2013-03-15 | 2014-09-18 | Olive Medical Corporation | Super resolution and color motion artifact correction in a pulsed color imaging system |
| US9369648B2 (en) | 2013-06-18 | 2016-06-14 | Alexander Krymski | Image sensors, methods, and pixels with tri-level biased transfer gates |
| US9762890B2 (en) | 2013-11-08 | 2017-09-12 | Samsung Electronics Co., Ltd. | Distance sensor and image processing system including the same |
| US10084944B2 (en) | 2014-03-21 | 2018-09-25 | DePuy Synthes Products, Inc. | Card edge connector for an imaging sensor |
| KR102042328B1 (en) | 2015-03-31 | 2019-11-07 | 고쿠리츠 다이가꾸 호우진 시즈오까 다이가꾸 | Measurement device and solid-state imaging device |
Citations (56)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4809075A (en) | 1986-10-17 | 1989-02-28 | Hitachi, Ltd. | Solid-state imaging device having an amplifying means in the matrix arrangement of picture elements |
| US4827345A (en) | 1984-07-17 | 1989-05-02 | Canon Kabushiki Kaisha | Image readout apparatus |
| US5043568A (en) | 1989-04-11 | 1991-08-27 | Hamamatsu Photonics K. K. | Optical signal detector incorporating means for eluminating background light |
| JPH044681A (en) | 1990-04-23 | 1992-01-09 | Canon Inc | Photoelectric converter |
| JPH044682A (en) | 1990-04-23 | 1992-01-09 | Canon Inc | Photoelectric converter |
| US5099694A (en) | 1987-05-19 | 1992-03-31 | Canon Kabushiki Kaisha | Vibration detecting apparatus |
| US5148268A (en) | 1991-04-26 | 1992-09-15 | Xerox Corporation | Multiplexing arrangement for controlling data produced by a color images sensor array |
| US5172249A (en) | 1989-05-31 | 1992-12-15 | Canon Kabushiki Kaisha | Photoelectric converting apparatus with improved switching to reduce sensor noises |
| US5179565A (en) | 1990-06-07 | 1993-01-12 | Hamamatsu Photonics, K.K. | Low noise pulsed light source utilizing laser diode and voltage detector device utilizing same low noise pulsed light source |
| JPH05207376A (en) | 1992-01-29 | 1993-08-13 | Olympus Optical Co Ltd | Solid-state image pickup device and its control method |
| US5262871A (en) | 1989-11-13 | 1993-11-16 | Rutgers, The State University | Multiple resolution image sensor |
| EP0616464A2 (en) | 1993-03-15 | 1994-09-21 | Canon Kabushiki Kaisha | Signal processor |
| US5471505A (en) | 1993-10-01 | 1995-11-28 | Elsag International N.V. | Method and apparatus for increasing the resolution of a digital to analog converted pulse width modulated signal |
| US5497390A (en) | 1992-01-31 | 1996-03-05 | Nippon Telegraph And Telephone Corporation | Polarization mode switching semiconductor laser apparatus |
| EP0707417A2 (en) | 1994-10-11 | 1996-04-17 | AT&T Corp. | An active pixel image sensor |
| US5635705A (en) | 1995-09-11 | 1997-06-03 | Irvine Sensors Corporation | Sensing and selecting observed events for signal processing |
| US5691486A (en) | 1996-07-30 | 1997-11-25 | Bayer Corporation | Apparatus and methods for selecting a variable number of test sample aliquots to mix with respective reagents |
| US5717199A (en) | 1996-01-26 | 1998-02-10 | Cid Technologies, Inc. | Collective charge reading and injection in random access charge transfer devices |
| US5739562A (en) | 1995-08-01 | 1998-04-14 | Lucent Technologies Inc. | Combined photogate and photodiode active pixel image sensor |
| US5781233A (en) | 1996-03-14 | 1998-07-14 | Tritech Microelectronics, Ltd. | MOS FET camera chip and methods of manufacture and operation thereof |
| US5790191A (en) | 1996-03-07 | 1998-08-04 | Omnivision Technologies, Inc. | Method and apparatus for preamplification in a MOS imaging array |
| US5880495A (en) | 1998-01-08 | 1999-03-09 | Omnivision Technologies, Inc. | Active pixel with a pinned photodiode |
| US5898168A (en) | 1997-06-12 | 1999-04-27 | International Business Machines Corporation | Image sensor pixel circuit |
| US5904493A (en) | 1995-04-13 | 1999-05-18 | Eastman Kodak Company | Active pixel sensor integrated with a pinned photodiode |
| US5936986A (en) | 1996-07-30 | 1999-08-10 | Bayer Corporation | Methods and apparatus for driving a laser diode |
| US5949483A (en) | 1994-01-28 | 1999-09-07 | California Institute Of Technology | Active pixel sensor array with multiresolution readout |
| US5955753A (en) | 1995-08-02 | 1999-09-21 | Canon Kabushiki Kaisha | Solid-state image pickup apparatus and image pickup apparatus |
| US5970115A (en) | 1996-11-29 | 1999-10-19 | Varian Medical Systems, Inc. | Multiple mode digital X-ray imaging system |
| US5973311A (en) | 1997-02-12 | 1999-10-26 | Imation Corp | Pixel array with high and low resolution mode |
| US5986510A (en) | 1998-01-09 | 1999-11-16 | Reticon Corporation | Method and apparatus for amplifying input signals in one of multiple modes of resolution |
| US6043478A (en) | 1998-06-25 | 2000-03-28 | Industrial Technology Research Institute | Active pixel sensor with shared readout structure |
| JP2000152086A (en) | 1998-11-11 | 2000-05-30 | Canon Inc | Imaging device and imaging system |
| US6084229A (en) | 1998-03-16 | 2000-07-04 | Photon Vision Systems, Llc | Complimentary metal oxide semiconductor imaging device |
| US6084259A (en) | 1998-06-29 | 2000-07-04 | Hyundai Electronics Industries Co., Ltd. | Photodiode having charge transfer function and image sensor using the same |
| US6107655A (en) | 1997-08-15 | 2000-08-22 | Eastman Kodak Company | Active pixel image sensor with shared amplifier read-out |
| US6127697A (en) | 1997-11-14 | 2000-10-03 | Eastman Kodak Company | CMOS image sensor |
| US6160281A (en) | 1997-02-28 | 2000-12-12 | Eastman Kodak Company | Active pixel sensor with inter-pixel function sharing |
| US6233013B1 (en) | 1997-10-23 | 2001-05-15 | Xerox Corporation | Color readout system for an active pixel image sensor |
| US6249618B1 (en) | 1998-12-18 | 2001-06-19 | Syscan, Inc. | Circuit architecture and method for switching sensor resolution |
| US6252217B1 (en) | 1997-12-18 | 2001-06-26 | Simage Oy | Device for imaging radiation |
| US6297070B1 (en) | 1996-12-20 | 2001-10-02 | Eastman Kodak Company | Active pixel sensor integrated with a pinned photodiode |
| JP2001298177A (en) | 2000-04-14 | 2001-10-26 | Canon Inc | Solid-state imaging device and imaging system |
| US6377304B1 (en) | 1998-02-05 | 2002-04-23 | Nikon Corporation | Solid-state image-pickup devices exhibiting faster video-frame processing rates, and associated methods |
| US6388243B1 (en) | 1999-03-01 | 2002-05-14 | Photobit Corporation | Active pixel sensor with fully-depleted buried photoreceptor |
| US20020180875A1 (en) | 1997-10-29 | 2002-12-05 | Robert M. Guidash | Active pixel sensor with programmable color balance |
| US6512546B1 (en) | 1998-07-17 | 2003-01-28 | Analog Devices, Inc. | Image sensor using multiple array readout lines |
| US6519371B1 (en) | 1999-09-30 | 2003-02-11 | California Institute Of Technology | High-speed on-chip windowed centroiding using photodiode-based CMOS imager |
| US6614479B1 (en) | 1997-09-29 | 2003-09-02 | Sony Corporation | Solid-state image pickup device in-layer lens with antireflection film with intermediate index of refraction |
| US6657665B1 (en) | 1998-12-31 | 2003-12-02 | Eastman Kodak Company | Active Pixel Sensor with wired floating diffusions and shared amplifier |
| US6693670B1 (en) | 1999-07-29 | 2004-02-17 | Vision - Sciences, Inc. | Multi-photodetector unit cell |
| US6731335B1 (en) | 1998-05-08 | 2004-05-04 | Hyundai Electronics Industries Co., Ltd. | CMOS image sensor having common outputting transistors and method for driving the same |
| US6831690B1 (en) | 1999-12-07 | 2004-12-14 | Symagery Microsystems, Inc. | Electrical sensing apparatus and method utilizing an array of transducer elements |
| US20050001283A1 (en) | 1996-05-30 | 2005-01-06 | Kabushiki Kaisha Toshiba | Semiconductor integrated circuit device and method of testing the same |
| US6977684B1 (en) | 1998-04-30 | 2005-12-20 | Canon Kabushiki Kaisha | Arrangement of circuits in pixels, each circuit shared by a plurality of pixels, in image sensing apparatus |
| US7209173B2 (en) | 1998-02-17 | 2007-04-24 | Micron Technology, Inc. | Methods of operating photodiode-type pixel and imager device |
| USRE41340E1 (en) | 1998-08-19 | 2010-05-18 | Micron Technology, Inc. | Pinned photodiode photodetector with common buffer transistor and binning capability |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7859581B2 (en) | 2003-07-15 | 2010-12-28 | Eastman Kodak Company | Image sensor with charge binning and dual channel readout |
-
1999
- 1999-08-19 US US09/378,565 patent/US6239456B1/en not_active Expired - Lifetime
-
2001
- 2001-05-29 US US09/867,846 patent/US6794214B2/en not_active Ceased
-
2003
- 2003-06-12 US US10/459,595 patent/US6750485B2/en not_active Expired - Lifetime
-
2006
- 2006-09-21 US US11/524,495 patent/USRE41340E1/en not_active Expired - Lifetime
-
2009
- 2009-03-30 US US12/413,626 patent/USRE42292E1/en not_active Expired - Lifetime
-
2012
- 2012-01-05 US US13/343,843 patent/USRE44482E1/en not_active Expired - Lifetime
Patent Citations (58)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4827345A (en) | 1984-07-17 | 1989-05-02 | Canon Kabushiki Kaisha | Image readout apparatus |
| US4809075A (en) | 1986-10-17 | 1989-02-28 | Hitachi, Ltd. | Solid-state imaging device having an amplifying means in the matrix arrangement of picture elements |
| US5099694A (en) | 1987-05-19 | 1992-03-31 | Canon Kabushiki Kaisha | Vibration detecting apparatus |
| US5043568A (en) | 1989-04-11 | 1991-08-27 | Hamamatsu Photonics K. K. | Optical signal detector incorporating means for eluminating background light |
| US5172249A (en) | 1989-05-31 | 1992-12-15 | Canon Kabushiki Kaisha | Photoelectric converting apparatus with improved switching to reduce sensor noises |
| US5262871A (en) | 1989-11-13 | 1993-11-16 | Rutgers, The State University | Multiple resolution image sensor |
| JPH044681A (en) | 1990-04-23 | 1992-01-09 | Canon Inc | Photoelectric converter |
| JPH044682A (en) | 1990-04-23 | 1992-01-09 | Canon Inc | Photoelectric converter |
| US5179565A (en) | 1990-06-07 | 1993-01-12 | Hamamatsu Photonics, K.K. | Low noise pulsed light source utilizing laser diode and voltage detector device utilizing same low noise pulsed light source |
| US5148268A (en) | 1991-04-26 | 1992-09-15 | Xerox Corporation | Multiplexing arrangement for controlling data produced by a color images sensor array |
| JPH05207376A (en) | 1992-01-29 | 1993-08-13 | Olympus Optical Co Ltd | Solid-state image pickup device and its control method |
| US5497390A (en) | 1992-01-31 | 1996-03-05 | Nippon Telegraph And Telephone Corporation | Polarization mode switching semiconductor laser apparatus |
| EP0616464A2 (en) | 1993-03-15 | 1994-09-21 | Canon Kabushiki Kaisha | Signal processor |
| US5471505A (en) | 1993-10-01 | 1995-11-28 | Elsag International N.V. | Method and apparatus for increasing the resolution of a digital to analog converted pulse width modulated signal |
| US5949483A (en) | 1994-01-28 | 1999-09-07 | California Institute Of Technology | Active pixel sensor array with multiresolution readout |
| EP0707417A2 (en) | 1994-10-11 | 1996-04-17 | AT&T Corp. | An active pixel image sensor |
| US5904493A (en) | 1995-04-13 | 1999-05-18 | Eastman Kodak Company | Active pixel sensor integrated with a pinned photodiode |
| US6100551A (en) | 1995-04-13 | 2000-08-08 | Eastman Kodak Company | Active pixel sensor integrated with a pinned photodiode |
| US5739562A (en) | 1995-08-01 | 1998-04-14 | Lucent Technologies Inc. | Combined photogate and photodiode active pixel image sensor |
| US5955753A (en) | 1995-08-02 | 1999-09-21 | Canon Kabushiki Kaisha | Solid-state image pickup apparatus and image pickup apparatus |
| US5635705A (en) | 1995-09-11 | 1997-06-03 | Irvine Sensors Corporation | Sensing and selecting observed events for signal processing |
| US5717199A (en) | 1996-01-26 | 1998-02-10 | Cid Technologies, Inc. | Collective charge reading and injection in random access charge transfer devices |
| US5790191A (en) | 1996-03-07 | 1998-08-04 | Omnivision Technologies, Inc. | Method and apparatus for preamplification in a MOS imaging array |
| US5781233A (en) | 1996-03-14 | 1998-07-14 | Tritech Microelectronics, Ltd. | MOS FET camera chip and methods of manufacture and operation thereof |
| US20050001283A1 (en) | 1996-05-30 | 2005-01-06 | Kabushiki Kaisha Toshiba | Semiconductor integrated circuit device and method of testing the same |
| US5936986A (en) | 1996-07-30 | 1999-08-10 | Bayer Corporation | Methods and apparatus for driving a laser diode |
| US5691486A (en) | 1996-07-30 | 1997-11-25 | Bayer Corporation | Apparatus and methods for selecting a variable number of test sample aliquots to mix with respective reagents |
| US5970115A (en) | 1996-11-29 | 1999-10-19 | Varian Medical Systems, Inc. | Multiple mode digital X-ray imaging system |
| US6297070B1 (en) | 1996-12-20 | 2001-10-02 | Eastman Kodak Company | Active pixel sensor integrated with a pinned photodiode |
| US5973311A (en) | 1997-02-12 | 1999-10-26 | Imation Corp | Pixel array with high and low resolution mode |
| US6160281A (en) | 1997-02-28 | 2000-12-12 | Eastman Kodak Company | Active pixel sensor with inter-pixel function sharing |
| US5898168A (en) | 1997-06-12 | 1999-04-27 | International Business Machines Corporation | Image sensor pixel circuit |
| US6107655A (en) | 1997-08-15 | 2000-08-22 | Eastman Kodak Company | Active pixel image sensor with shared amplifier read-out |
| US6614479B1 (en) | 1997-09-29 | 2003-09-02 | Sony Corporation | Solid-state image pickup device in-layer lens with antireflection film with intermediate index of refraction |
| US6233013B1 (en) | 1997-10-23 | 2001-05-15 | Xerox Corporation | Color readout system for an active pixel image sensor |
| US20020180875A1 (en) | 1997-10-29 | 2002-12-05 | Robert M. Guidash | Active pixel sensor with programmable color balance |
| US6127697A (en) | 1997-11-14 | 2000-10-03 | Eastman Kodak Company | CMOS image sensor |
| US6252217B1 (en) | 1997-12-18 | 2001-06-26 | Simage Oy | Device for imaging radiation |
| US5880495A (en) | 1998-01-08 | 1999-03-09 | Omnivision Technologies, Inc. | Active pixel with a pinned photodiode |
| US5986510A (en) | 1998-01-09 | 1999-11-16 | Reticon Corporation | Method and apparatus for amplifying input signals in one of multiple modes of resolution |
| US6377304B1 (en) | 1998-02-05 | 2002-04-23 | Nikon Corporation | Solid-state image-pickup devices exhibiting faster video-frame processing rates, and associated methods |
| US7209173B2 (en) | 1998-02-17 | 2007-04-24 | Micron Technology, Inc. | Methods of operating photodiode-type pixel and imager device |
| US6084229A (en) | 1998-03-16 | 2000-07-04 | Photon Vision Systems, Llc | Complimentary metal oxide semiconductor imaging device |
| US6977684B1 (en) | 1998-04-30 | 2005-12-20 | Canon Kabushiki Kaisha | Arrangement of circuits in pixels, each circuit shared by a plurality of pixels, in image sensing apparatus |
| US6731335B1 (en) | 1998-05-08 | 2004-05-04 | Hyundai Electronics Industries Co., Ltd. | CMOS image sensor having common outputting transistors and method for driving the same |
| US6043478A (en) | 1998-06-25 | 2000-03-28 | Industrial Technology Research Institute | Active pixel sensor with shared readout structure |
| US6084259A (en) | 1998-06-29 | 2000-07-04 | Hyundai Electronics Industries Co., Ltd. | Photodiode having charge transfer function and image sensor using the same |
| US6512546B1 (en) | 1998-07-17 | 2003-01-28 | Analog Devices, Inc. | Image sensor using multiple array readout lines |
| USRE41340E1 (en) | 1998-08-19 | 2010-05-18 | Micron Technology, Inc. | Pinned photodiode photodetector with common buffer transistor and binning capability |
| USRE42292E1 (en) * | 1998-08-19 | 2011-04-12 | Round Rock Research, Llc | Pinned photodiode photodetector with common pixel transistors and binning capability |
| JP2000152086A (en) | 1998-11-11 | 2000-05-30 | Canon Inc | Imaging device and imaging system |
| US6249618B1 (en) | 1998-12-18 | 2001-06-19 | Syscan, Inc. | Circuit architecture and method for switching sensor resolution |
| US6657665B1 (en) | 1998-12-31 | 2003-12-02 | Eastman Kodak Company | Active Pixel Sensor with wired floating diffusions and shared amplifier |
| US6388243B1 (en) | 1999-03-01 | 2002-05-14 | Photobit Corporation | Active pixel sensor with fully-depleted buried photoreceptor |
| US6693670B1 (en) | 1999-07-29 | 2004-02-17 | Vision - Sciences, Inc. | Multi-photodetector unit cell |
| US6519371B1 (en) | 1999-09-30 | 2003-02-11 | California Institute Of Technology | High-speed on-chip windowed centroiding using photodiode-based CMOS imager |
| US6831690B1 (en) | 1999-12-07 | 2004-12-14 | Symagery Microsystems, Inc. | Electrical sensing apparatus and method utilizing an array of transducer elements |
| JP2001298177A (en) | 2000-04-14 | 2001-10-26 | Canon Inc | Solid-state imaging device and imaging system |
Non-Patent Citations (4)
| Title |
|---|
| Bouffaul T et al., "High speed cameras using CCD image sensor and a new high speed imag-e sensor for biological applications," SPIE vol. 2513, pp. 252-258 (May 30, 1995). |
| Kemeny et al., "CMOS Active Pixel Sensor Array with Programmable Multiresolution Readout", IEEE (1997), pp. 127-131. |
| Ricquier et al., "The CIVIS Sensor: A Flexible Smart Imager with ProgFammable resolution," SPIE vol. 2172, pp. 2-10 (1994). |
| Zhou et al., "Frame-Transfer CMOS Active Pixel Sensor With Pixel Binning," IEEE Transactions on Electron Devices, vol. 44, No. 10, pp. p2-1-p2-4 (Oct. 1997). |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20130229557A1 (en) * | 2012-03-01 | 2013-09-05 | Canon Kabushiki Kaisha | Image pickup apparatus, image pickup system, driving method for image pickup apparatus, and driving method for image pickup system |
| US9077921B2 (en) * | 2012-03-01 | 2015-07-07 | Canon Kabushiki Kaisha | Image pickup apparatus, image pickup system, driving method for image pickup apparatus, and driving method for image pickup system using two analog-to-digital conversions |
Also Published As
| Publication number | Publication date |
|---|---|
| US6794214B2 (en) | 2004-09-21 |
| USRE42292E1 (en) | 2011-04-12 |
| US20010052605A1 (en) | 2001-12-20 |
| US6750485B2 (en) | 2004-06-15 |
| US6239456B1 (en) | 2001-05-29 |
| USRE41340E1 (en) | 2010-05-18 |
| US20030213984A1 (en) | 2003-11-20 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| USRE44482E1 (en) | CMOS active image sensor with common pixel transistors and binning capability | |
| US7119350B2 (en) | Spatial information detecting device using intensity-modulated light and a beat signal | |
| US7884310B2 (en) | Device and method for the demodulation electromagnetic wave fields having separated detection and demodulation regions | |
| US7443437B2 (en) | Image sensor with a gated storage node linked to transfer gate | |
| Taylor | CCD and CMOS imaging array technologies: technology review | |
| US20090173874A1 (en) | Optoelectronic Detector with Multiple Readout Nodes and Its Use Thereof | |
| US20090224139A1 (en) | Drift Field Demodulation Pixel with Pinned Photo Diode | |
| JP2002516490A (en) | Apparatus and method for detecting phase and amplitude of electromagnetic wave | |
| Burke et al. | Charge-injection imaging: Operating techniques and performances characteristics | |
| WO2001084182A1 (en) | Device and method for spatially resolved photodetection and demodulation of modulated electromagnetic waves | |
| CN102187658A (en) | Demodulation pixel with daisy chain charge storage sites and method of operation therefor | |
| US6498346B1 (en) | Large dynamic range focal plane array | |
| US20200119060A1 (en) | Image sensor with a gated storage node linked to transfer gate | |
| US6765186B2 (en) | Multi-mode imager with pinned photo region photoreceptors | |
| Hong | On-chip spatial image processing with CMOS active pixel sensors | |
| US7269359B1 (en) | Focal plane array with synchronous detection circuits for an active remote sensing system | |
| Bonnard et al. | New 3D-integrated burst image sensor architectures with in-situ A/D conversion | |
| Weimer et al. | Self-scanned image sensors based on charge transfer by the bucket-brigade method | |
| US6881941B1 (en) | Multi-mode imager with pinned photo region photoreceptors | |
| EP0066020B1 (en) | Infrared energy detector system utilizing a charge transfer device sensor | |
| US20220113425A1 (en) | Device of acquisition of a 2d image and of a depth image of a scene | |
| Weckler et al. | Design possibilities for photodiode arrays with integral silicon-gate scan generators | |
| Baker et al. | Recent developments in CdHgTe-silicon hybrid focal planes | |
| Chen et al. | A high speed tapped CCD photodiode linear image sensor | |
| Popov | New Integrated Photoreceiver Systems—Charge Coupled Devices (CCDs) |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: ROUND ROCK RESEARCH, LLC, NEW JERSEY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:030864/0650 Effective date: 20091223 |
|
| FPAY | Fee payment |
Year of fee payment: 12 |