USH41H - Halftone imaging silver halide emulsions, photographic elements, and processes which employ novel arylhydrazides - Google Patents
Halftone imaging silver halide emulsions, photographic elements, and processes which employ novel arylhydrazides Download PDFInfo
- Publication number
- USH41H USH41H US06/761,716 US76171685A USH41H US H41 H USH41 H US H41H US 76171685 A US76171685 A US 76171685A US H41 H USH41 H US H41H
- Authority
- US
- United States
- Prior art keywords
- silver halide
- pat
- arylhydrazides
- arylhydrazide
- emulsions
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000839 emulsion Substances 0.000 title abstract description 70
- -1 silver halide Chemical class 0.000 title abstract description 62
- 229910052709 silver Inorganic materials 0.000 title abstract description 57
- 239000004332 silver Substances 0.000 title abstract description 57
- 238000000034 method Methods 0.000 title abstract description 13
- 238000003384 imaging method Methods 0.000 title abstract description 8
- 230000008569 process Effects 0.000 title abstract description 7
- 125000003118 aryl group Chemical group 0.000 claims abstract description 24
- 125000001931 aliphatic group Chemical group 0.000 claims abstract description 8
- 229910052798 chalcogen Inorganic materials 0.000 claims abstract description 7
- 150000001787 chalcogens Chemical class 0.000 claims abstract description 7
- 125000004432 carbon atom Chemical group C* 0.000 claims description 14
- 101150108015 STR6 gene Proteins 0.000 claims 1
- 235000002566 Capsicum Nutrition 0.000 abstract description 23
- 239000006002 Pepper Substances 0.000 abstract description 23
- 235000016761 Piper aduncum Nutrition 0.000 abstract description 23
- 235000017804 Piper guineense Nutrition 0.000 abstract description 23
- 235000008184 Piper nigrum Nutrition 0.000 abstract description 23
- 244000203593 Piper nigrum Species 0.000 abstract 1
- 101100386054 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) CYS3 gene Proteins 0.000 abstract 1
- 101150035983 str1 gene Proteins 0.000 abstract 1
- 241000722363 Piper Species 0.000 description 22
- 239000002667 nucleating agent Substances 0.000 description 22
- 238000000576 coating method Methods 0.000 description 20
- 238000011160 research Methods 0.000 description 15
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 14
- 239000011248 coating agent Substances 0.000 description 12
- 125000000217 alkyl group Chemical group 0.000 description 11
- 238000011161 development Methods 0.000 description 11
- 238000012545 processing Methods 0.000 description 9
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 8
- 239000003795 chemical substances by application Substances 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 206010070834 Sensitisation Diseases 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 230000008313 sensitization Effects 0.000 description 7
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 125000000219 ethylidene group Chemical group [H]C(=[*])C([H])([H])[H] 0.000 description 6
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 6
- KIWUVOGUEXMXSV-UHFFFAOYSA-N rhodanine Chemical compound O=C1CSC(=S)N1 KIWUVOGUEXMXSV-UHFFFAOYSA-N 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 125000001424 substituent group Chemical group 0.000 description 6
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 5
- 230000003213 activating effect Effects 0.000 description 5
- 239000000084 colloidal system Substances 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 239000000975 dye Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- OECVCYPIABDSEN-UHFFFAOYSA-N 2-[2,4-bis(2-methylbutan-2-yl)phenoxy]-n-[4-(2-formylhydrazinyl)phenyl]butanamide Chemical compound C=1C=C(NNC=O)C=CC=1NC(=O)C(CC)OC1=CC=C(C(C)(C)CC)C=C1C(C)(C)CC OECVCYPIABDSEN-UHFFFAOYSA-N 0.000 description 4
- 108010010803 Gelatin Proteins 0.000 description 4
- 238000007792 addition Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 239000012964 benzotriazole Substances 0.000 description 4
- 125000001951 carbamoylamino group Chemical group C(N)(=O)N* 0.000 description 4
- 229920000159 gelatin Polymers 0.000 description 4
- 239000008273 gelatin Substances 0.000 description 4
- 235000019322 gelatine Nutrition 0.000 description 4
- 235000011852 gelatine desserts Nutrition 0.000 description 4
- 150000002429 hydrazines Chemical class 0.000 description 4
- IOLCXVTUBQKXJR-UHFFFAOYSA-M potassium bromide Chemical compound [K+].[Br-] IOLCXVTUBQKXJR-UHFFFAOYSA-M 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 125000001140 1,4-phenylene group Chemical class [H]C1=C([H])C([*:2])=C([H])C([H])=C1[*:1] 0.000 description 3
- OISVCGZHLKNMSJ-UHFFFAOYSA-N 2,6-dimethylpyridine Chemical compound CC1=CC=CC(C)=N1 OISVCGZHLKNMSJ-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- AGLABPZQCHPXAI-UHFFFAOYSA-N [4-(2-formylhydrazinyl)phenyl] n-ethylcarbamate Chemical compound CCNC(=O)OC1=CC=C(NNC=O)C=C1 AGLABPZQCHPXAI-UHFFFAOYSA-N 0.000 description 3
- 125000002252 acyl group Chemical group 0.000 description 3
- 125000003545 alkoxy group Chemical group 0.000 description 3
- 235000010323 ascorbic acid Nutrition 0.000 description 3
- 229960005070 ascorbic acid Drugs 0.000 description 3
- 239000011668 ascorbic acid Substances 0.000 description 3
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 3
- 150000001565 benzotriazoles Chemical class 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 3
- 125000004433 nitrogen atom Chemical group N* 0.000 description 3
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 239000003755 preservative agent Substances 0.000 description 3
- 239000000376 reactant Substances 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 230000003595 spectral effect Effects 0.000 description 3
- PAPNRQCYSFBWDI-UHFFFAOYSA-N 2,5-Dimethyl-1H-pyrrole Chemical compound CC1=CC=C(C)N1 PAPNRQCYSFBWDI-UHFFFAOYSA-N 0.000 description 2
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- 125000005037 alkyl phenyl group Chemical group 0.000 description 2
- 125000003368 amide group Chemical group 0.000 description 2
- 125000000732 arylene group Chemical group 0.000 description 2
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 125000000623 heterocyclic group Chemical group 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 230000002458 infectious effect Effects 0.000 description 2
- 229920000126 latex Polymers 0.000 description 2
- DZVCFNFOPIZQKX-LTHRDKTGSA-M merocyanine Chemical compound [Na+].O=C1N(CCCC)C(=O)N(CCCC)C(=O)C1=C\C=C\C=C/1N(CCCS([O-])(=O)=O)C2=CC=CC=C2O\1 DZVCFNFOPIZQKX-LTHRDKTGSA-M 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 125000000951 phenoxy group Chemical group [H]C1=C([H])C([H])=C(O*)C([H])=C1[H] 0.000 description 2
- 230000002335 preservative effect Effects 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- NDGRWYRVNANFNB-UHFFFAOYSA-N pyrazolidin-3-one Chemical compound O=C1CCNN1 NDGRWYRVNANFNB-UHFFFAOYSA-N 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 230000001235 sensitizing effect Effects 0.000 description 2
- NVIFVTYDZMXWGX-UHFFFAOYSA-N sodium metaborate Chemical compound [Na+].[O-]B=O NVIFVTYDZMXWGX-UHFFFAOYSA-N 0.000 description 2
- 159000000000 sodium salts Chemical class 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- ANRHNWWPFJCPAZ-UHFFFAOYSA-M thionine Chemical compound [Cl-].C1=CC(N)=CC2=[S+]C3=CC(N)=CC=C3N=C21 ANRHNWWPFJCPAZ-UHFFFAOYSA-M 0.000 description 2
- FYNNIUVBDKICAX-UHFFFAOYSA-M 1,1',3,3'-tetraethyl-5,5',6,6'-tetrachloroimidacarbocyanine iodide Chemical compound [I-].CCN1C2=CC(Cl)=C(Cl)C=C2N(CC)C1=CC=CC1=[N+](CC)C2=CC(Cl)=C(Cl)C=C2N1CC FYNNIUVBDKICAX-UHFFFAOYSA-M 0.000 description 1
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- 125000002030 1,2-phenylene group Chemical class [H]C1=C([H])C([*:1])=C([*:2])C([H])=C1[H] 0.000 description 1
- 150000000183 1,3-benzoxazoles Chemical class 0.000 description 1
- 125000001989 1,3-phenylene group Chemical class [H]C1=C([H])C([*:1])=C([H])C([*:2])=C1[H] 0.000 description 1
- CBCKQZAAMUWICA-UHFFFAOYSA-N 1,4-phenylenediamine Chemical compound NC1=CC=C(N)C=C1 CBCKQZAAMUWICA-UHFFFAOYSA-N 0.000 description 1
- VHUQXPJHMISKGS-UHFFFAOYSA-N 1-(chloromethoxy)propane Chemical compound CCCOCCl VHUQXPJHMISKGS-UHFFFAOYSA-N 0.000 description 1
- XOHZHMUQBFJTNH-UHFFFAOYSA-N 1-methyl-2h-tetrazole-5-thione Chemical compound CN1N=NN=C1S XOHZHMUQBFJTNH-UHFFFAOYSA-N 0.000 description 1
- IBDVWXAVKPRHCU-UHFFFAOYSA-N 2-(2-methylprop-2-enoyloxy)ethyl 3-oxobutanoate Chemical compound CC(=O)CC(=O)OCCOC(=O)C(C)=C IBDVWXAVKPRHCU-UHFFFAOYSA-N 0.000 description 1
- XHZPRMZZQOIPDS-UHFFFAOYSA-N 2-Methyl-2-[(1-oxo-2-propenyl)amino]-1-propanesulfonic acid Chemical compound OS(=O)(=O)CC(C)(C)NC(=O)C=C XHZPRMZZQOIPDS-UHFFFAOYSA-N 0.000 description 1
- CDAWCLOXVUBKRW-UHFFFAOYSA-N 2-aminophenol Chemical compound NC1=CC=CC=C1O CDAWCLOXVUBKRW-UHFFFAOYSA-N 0.000 description 1
- JKFYKCYQEWQPTM-UHFFFAOYSA-N 2-azaniumyl-2-(4-fluorophenyl)acetate Chemical compound OC(=O)C(N)C1=CC=C(F)C=C1 JKFYKCYQEWQPTM-UHFFFAOYSA-N 0.000 description 1
- 125000000143 2-carboxyethyl group Chemical group [H]OC(=O)C([H])([H])C([H])([H])* 0.000 description 1
- YPIFLXOVPCARGI-UHFFFAOYSA-N 2-ethyl-1,3-benzoxazole Chemical compound C1=CC=C2OC(CC)=NC2=C1 YPIFLXOVPCARGI-UHFFFAOYSA-N 0.000 description 1
- XWKFPIODWVPXLX-UHFFFAOYSA-N 2-methyl-5-methylpyridine Natural products CC1=CC=C(C)N=C1 XWKFPIODWVPXLX-UHFFFAOYSA-N 0.000 description 1
- ZSLUVFAKFWKJRC-IGMARMGPSA-N 232Th Chemical compound [232Th] ZSLUVFAKFWKJRC-IGMARMGPSA-N 0.000 description 1
- MUBAIQNAOOUIDW-UHFFFAOYSA-M 3-ethyl-2-[3-(3-ethyl-1,3-benzothiazol-3-ium-2-yl)-2-methylprop-2-enylidene]-1,3-benzothiazole;bromide Chemical compound [Br-].S1C2=CC=CC=C2[N+](CC)=C1/C=C(\C)/C=C1/N(CC)C2=CC=CC=C2S1 MUBAIQNAOOUIDW-UHFFFAOYSA-M 0.000 description 1
- DNJANJSHTMOQOV-UHFFFAOYSA-N 4-bromo-2h-benzotriazole Chemical compound BrC1=CC=CC2=C1N=NN2 DNJANJSHTMOQOV-UHFFFAOYSA-N 0.000 description 1
- NGKNMHFWZMHABQ-UHFFFAOYSA-N 4-chloro-2h-benzotriazole Chemical compound ClC1=CC=CC2=NNN=C12 NGKNMHFWZMHABQ-UHFFFAOYSA-N 0.000 description 1
- ZFIQGRISGKSVAG-UHFFFAOYSA-N 4-methylaminophenol Chemical compound CNC1=CC=C(O)C=C1 ZFIQGRISGKSVAG-UHFFFAOYSA-N 0.000 description 1
- PZBQVZFITSVHAW-UHFFFAOYSA-N 5-chloro-2h-benzotriazole Chemical compound C1=C(Cl)C=CC2=NNN=C21 PZBQVZFITSVHAW-UHFFFAOYSA-N 0.000 description 1
- SEBIXVUYSFOUEL-UHFFFAOYSA-N 5-methyl-1,3-benzothiazole Chemical compound CC1=CC=C2SC=NC2=C1 SEBIXVUYSFOUEL-UHFFFAOYSA-N 0.000 description 1
- LRUDIIUSNGCQKF-UHFFFAOYSA-N 5-methyl-1H-benzotriazole Chemical compound C1=C(C)C=CC2=NNN=C21 LRUDIIUSNGCQKF-UHFFFAOYSA-N 0.000 description 1
- AEUQLELVLDMMKB-UHFFFAOYSA-N 5-nitro-1,3-benzothiazole Chemical compound [O-][N+](=O)C1=CC=C2SC=NC2=C1 AEUQLELVLDMMKB-UHFFFAOYSA-N 0.000 description 1
- XPAZGLFMMUODDK-UHFFFAOYSA-N 6-nitro-1h-benzimidazole Chemical class [O-][N+](=O)C1=CC=C2N=CNC2=C1 XPAZGLFMMUODDK-UHFFFAOYSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-M Carbamate Chemical compound NC([O-])=O KXDHJXZQYSOELW-UHFFFAOYSA-M 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 239000004606 Fillers/Extenders Substances 0.000 description 1
- 101000713575 Homo sapiens Tubulin beta-3 chain Proteins 0.000 description 1
- 101000713585 Homo sapiens Tubulin beta-4A chain Proteins 0.000 description 1
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical compound ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- 229910021612 Silver iodide Inorganic materials 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- ZMZDMBWJUHKJPS-UHFFFAOYSA-M Thiocyanate anion Chemical compound [S-]C#N ZMZDMBWJUHKJPS-UHFFFAOYSA-M 0.000 description 1
- 241001061127 Thione Species 0.000 description 1
- 229910052776 Thorium Inorganic materials 0.000 description 1
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical class CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 1
- 102100036790 Tubulin beta-3 chain Human genes 0.000 description 1
- 102100036788 Tubulin beta-4A chain Human genes 0.000 description 1
- 229910052770 Uranium Inorganic materials 0.000 description 1
- IDTVXGLGCSQRLP-UHFFFAOYSA-N [4-(2-formylhydrazinyl)phenyl] n-butylcarbamate Chemical compound CCCCNC(=O)OC1=CC=C(NNC=O)C=C1 IDTVXGLGCSQRLP-UHFFFAOYSA-N 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 150000001447 alkali salts Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 125000004391 aryl sulfonyl group Chemical group 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 150000001556 benzimidazoles Chemical class 0.000 description 1
- IOJUPLGTWVMSFF-UHFFFAOYSA-N benzothiazole Chemical class C1=CC=C2SC=NC2=C1 IOJUPLGTWVMSFF-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000004061 bleaching Methods 0.000 description 1
- 229910021538 borax Inorganic materials 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- JLQUFIHWVLZVTJ-UHFFFAOYSA-N carbosulfan Chemical compound CCCCN(CCCC)SN(C)C(=O)OC1=CC=CC2=C1OC(C)(C)C2 JLQUFIHWVLZVTJ-UHFFFAOYSA-N 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 238000010908 decantation Methods 0.000 description 1
- 238000011026 diafiltration Methods 0.000 description 1
- GRWZHXKQBITJKP-UHFFFAOYSA-L dithionite(2-) Chemical compound [O-]S(=O)S([O-])=O GRWZHXKQBITJKP-UHFFFAOYSA-L 0.000 description 1
- RIFGWPKJUGCATF-UHFFFAOYSA-N ethyl chloroformate Chemical compound CCOC(Cl)=O RIFGWPKJUGCATF-UHFFFAOYSA-N 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- XDDAORKBJWWYJS-UHFFFAOYSA-N glyphosate Chemical compound OC(=O)CNCP(O)(O)=O XDDAORKBJWWYJS-UHFFFAOYSA-N 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 125000001188 haloalkyl group Chemical group 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229940042795 hydrazides for tuberculosis treatment Drugs 0.000 description 1
- 125000000717 hydrazino group Chemical group [H]N([*])N([H])[H] 0.000 description 1
- 150000002431 hydrogen Chemical group 0.000 description 1
- ZMZDMBWJUHKJPS-UHFFFAOYSA-N hydrogen thiocyanate Natural products SC#N ZMZDMBWJUHKJPS-UHFFFAOYSA-N 0.000 description 1
- 125000002883 imidazolyl group Chemical group 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 238000002386 leaching Methods 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000006224 matting agent Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- JIJNOXGGMCEUMF-UHFFFAOYSA-N n-(4-aminoanilino)formamide Chemical compound NC1=CC=C(NNC=O)C=C1 JIJNOXGGMCEUMF-UHFFFAOYSA-N 0.000 description 1
- ONMGZXWDPCQHQQ-UHFFFAOYSA-N n-[4-(hexylcarbamoylamino)anilino]formamide Chemical compound CCCCCCNC(=O)NC1=CC=C(NNC=O)C=C1 ONMGZXWDPCQHQQ-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 125000002971 oxazolyl group Chemical group 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 239000004848 polyfunctional curative Substances 0.000 description 1
- 235000020004 porter Nutrition 0.000 description 1
- BHZRJJOHZFYXTO-UHFFFAOYSA-L potassium sulfite Chemical compound [K+].[K+].[O-]S([O-])=O BHZRJJOHZFYXTO-UHFFFAOYSA-L 0.000 description 1
- 235000019252 potassium sulphite Nutrition 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- JEXVQSWXXUJEMA-UHFFFAOYSA-N pyrazol-3-one Chemical compound O=C1C=CN=N1 JEXVQSWXXUJEMA-UHFFFAOYSA-N 0.000 description 1
- 125000004076 pyridyl group Chemical group 0.000 description 1
- 150000003233 pyrroles Chemical class 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- MGSWNRQHYBKTSX-UHFFFAOYSA-N s-[4-(2-formylhydrazinyl)phenyl] n-ethoxycarbamothioate Chemical compound CCONC(=O)SC1=CC=C(NNC=O)C=C1 MGSWNRQHYBKTSX-UHFFFAOYSA-N 0.000 description 1
- SOUHUMACVWVDME-UHFFFAOYSA-N safranin O Chemical compound [Cl-].C12=CC(N)=CC=C2N=C2C=CC(N)=CC2=[N+]1C1=CC=CC=C1 SOUHUMACVWVDME-UHFFFAOYSA-N 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000011669 selenium Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000003352 sequestering agent Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- ADZWSOLPGZMUMY-UHFFFAOYSA-M silver bromide Chemical compound [Ag]Br ADZWSOLPGZMUMY-UHFFFAOYSA-M 0.000 description 1
- ZUNKMNLKJXRCDM-UHFFFAOYSA-N silver bromoiodide Chemical compound [Ag].IBr ZUNKMNLKJXRCDM-UHFFFAOYSA-N 0.000 description 1
- 229940045105 silver iodide Drugs 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 235000010265 sodium sulphite Nutrition 0.000 description 1
- 235000010339 sodium tetraborate Nutrition 0.000 description 1
- 239000004328 sodium tetraborate Substances 0.000 description 1
- VGTPCRGMBIAPIM-UHFFFAOYSA-M sodium thiocyanate Chemical compound [Na+].[S-]C#N VGTPCRGMBIAPIM-UHFFFAOYSA-M 0.000 description 1
- AKHNMLFCWUSKQB-UHFFFAOYSA-L sodium thiosulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=S AKHNMLFCWUSKQB-UHFFFAOYSA-L 0.000 description 1
- 235000019345 sodium thiosulphate Nutrition 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 125000000446 sulfanediyl group Chemical group *S* 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-L sulfite Chemical class [O-]S([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-L 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 description 1
- 125000000335 thiazolyl group Chemical group 0.000 description 1
- 125000002813 thiocarbonyl group Chemical group *C(*)=S 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 150000003918 triazines Chemical class 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- QYSXJUFSXHHAJI-YRZJJWOYSA-N vitamin D3 Chemical compound C1(/[C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@H](C)CCCC(C)C)=C\C=C1\C[C@@H](O)CCC1=C QYSXJUFSXHHAJI-YRZJJWOYSA-N 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C271/00—Derivatives of carbamic acids, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
- C07C271/06—Esters of carbamic acids
- C07C271/40—Esters of carbamic acids having oxygen atoms of carbamate groups bound to carbon atoms of six-membered aromatic rings
- C07C271/58—Esters of carbamic acids having oxygen atoms of carbamate groups bound to carbon atoms of six-membered aromatic rings with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of a six-membered aromatic ring
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C271/00—Derivatives of carbamic acids, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
- C07C271/06—Esters of carbamic acids
- C07C271/08—Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms
- C07C271/26—Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of a six-membered aromatic ring
- C07C271/28—Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of a six-membered aromatic ring to a carbon atom of a non-condensed six-membered aromatic ring
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D213/00—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
- C07D213/02—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
- C07D213/04—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D213/60—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D213/62—Oxygen or sulfur atoms
- C07D213/63—One oxygen atom
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03C—PHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
- G03C1/00—Photosensitive materials
- G03C1/005—Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
- G03C1/06—Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein with non-macromolecular additives
- G03C1/061—Hydrazine compounds
Definitions
- the invention is directed to novel unballasted arylhydazides, to silver halide emulsions and photographic elements capable of producing halftone images, and to processes for their use.
- Lithographic printing plates contain areas that accept ink, areas that repel ink, and, ideally, no areas of intermediate properties.
- the illusion that some areas of a printed image are of intermediate density is created by the viewer's inability to resolve tiny dots of maximum density and background areas of minimum density that separate them.
- Such images are referred to as halftone images.
- Halftone images are typically produced on lithographic printing plates by contact exposure through a high contrast photographic transparency--often referred to as a lith type photographic element.
- a lith type photographic element To be useful for the exposure of lithographic printing plates the photographic element must have a contrast of at least 10 (hereinafter designated by reference to high contrast) and more typically near or above 20. Over and above contrast requirements, however, it is important that a lith type photographic element applied to halftone imaging exhibit the characteristic of producing high dot quality. That is, the dots must be well resolved--e.g., with sharp as opposed to soft or ragged edges.
- arylhydrazides The hydrazines preferred for their higher effectiveness in increasing contrast are arylhydrazides.
- the acyl moiety o arylhydrazides increases activity while the aryl moiety acts to increase stability.
- the following are illustrative of specific arylhydrazides employed with negative working surface latent image forming silver halide emulsions primarily to increase contrast:
- arylhydrazide is preferably incorporated directly in a photographic element, it can be incorporated in processing solution for the element.
- a preferred processing solution is disclosed in the following patent:
- Pepper fog differs from ordinary fog in that it takes the form of small, maximum density areas randomly distributed on a substantially uniform minimum density background.
- a photographic element exhibiting pepper fog When viewed under magnification, the impression to the viewer is often that the magnified field of view has been sprinkled with grains of pepper.
- arylhydrazides produce pepper fog, and, until very recently, this has interfered with the commercial use of arylhydrazides in halftone imaging.
- An illustration of severe pepper fog appears in FIG. 1.
- FIG. 2 is an illustration of pepper fog at its highest acceptable level.
- FIGS. 1 and 2 is an actual photograph of a field of view enlarged 20X.
- arylhydrazides have been employed extensively as nucleating agents in direct positive silver halide emulsions.
- the function of the arylhydrazide is to replace uniform light exposure or aerial oxidation as a technique for selectively accelerating development of unexposed internal latent image forming silver halide grains. This increases maximum density without increasing minimum density of the direct positive image.
- a hydrazine as a nucleating agent was first taught by
- arylhydrazides employed as nucleating agents in internal latent image forming direct positive emulsions are illustrated by the following:
- ballasting groups such as alkyl, alkoxy, amido, carbamoyl, oxyamido, carbamoyloxy, carboxy, oxycarbamoyl, phenyl, alkylphenyl, phenoxy, and alkylphenoxy groups as well as groups which are combinations thereof.
- an adsorption promoting moiety such as an oxythioamido substituent, is disclosed.
- this invention is directed to an unballasted arylhydrazide, the aryl moiety of which is substituted with a group of the formula ##STR2## where one of X and X' represents --NH--, the other represents a divalent chalcogen, and R represents an aliphatic or aromatic residue.
- this invention is directed to a high contrast negative working surface latent image forming silver halide emulsion comprised of an unballasted arylhydrazide, the aryl moiety of which is substituted with a group according to formula (I).
- this invention is directed to a negative working photographic element capable of producing halftone image comprised of a support, an arylhydrazide, and a monodispersed surface latent image forming silver halide emulsion capable of producing a high contrast image in the presence of the arylhydrazide, further characterized in that the arylhydrazide is an unballasted arylhydrazide, the aryl moiety of which is substituted with a group according to formula (I).
- this invention is directed to an improved process for producing a halftone image by imagewise exposing through a halftone mask a negative working photographic element comprised of a support, an arylhydrazide, and a surface latent image forming silver halide emulsion capable of producing a high contrast image in the presence of the arylhydrazide, further characterized in that the arylhydrazide is an unballasted arylhydrazide, the aryl moiety of which is substituted with a group according to formula (I).
- a ureido substituted arylhydazide when employed in combination with a ballasted arylhydrazide, can increase dot quality, the proportion of the ureido substituted arylhydrazide must be limited to avoid unacceptably high levels of pepper fog.
- the art has been faced with the limitations of (i) employing a combination of arylhydrazides and (ii) employing ureido substituted arylhydrazides within a narrow concentration range marked by poor dot quality on the lower border of the concentration range and unacceptably high pepper fog levels on the upper border of the concentration range.
- the present invention overcomes the limitations heretofore encountered in the art by allowing halftone images of good dot quality and acceptably low pepper fog levels to be achieved with a novel unballasted arylhydrazide that can be employed alone or, if desired, in combination with other conventional arylhydrazides within a wide range of relative proportions.
- FIG. 1 is a photograph enlarged 20X showing a typical pattern of severe pepper fog
- FIG. 2 is a photographic enlarged 20X showing the highest acceptable level of pepper fog.
- Ar represents a divalent aromatic group
- R represents an aliphatic or aromatic residue
- R 1 and R 2 can be either hydrogen or a sulfinic acid radical substituent, with the proviso that only one can be a sulfinic acid radical substituent;
- one of X and X' represents --NH-- and the other represents a divalent chalcogen.
- activating groups are not essential to increasing contrast with hydrazines, the most effective contrast increasing compounds are recognized to include at least one activating group.
- a variety of activating groups are described in RD-3, cited above.
- Preferred activating groups are acyl groups. Specifically preferred acyl groups can be represented by the formula: ##STR4## where R 3 is hydrogen or an aliphatic or aromatic moiety. The highest activity levels are achieved when R 3 is hydrogen.
- R 3 can take the form of an alkyl group, with lower alkyl groups of from 1 to 3 carbon atoms being preferred, since activity for corresponding aryl-hydrazides generally declines as the number of carbon atoms forming the alkyl group increases.
- R 3 is an aromatic moiety, it is preferably a phenyl group.
- the divalent aromatic moiety Ar performs a stabilizing function by providing a direct linkage of the ⁇ nitrogen atom of the hydrazide to a tertiary carbon atom.
- the divalent aromatic moiety is a carbocyclic aromatic moiety--i.e., an arylene moiety, such as phenylene or naphthalene.
- the arylene moiety can be further ring substituted at any remaining available position. Examples of other useful substituents include hydroxy, amino, carboxy, alky, alkoxy, halo, and haloalkyl. As herein defined cycloalkyl is subsumed within alkyl moieties.
- Ar is a phenylene group, it can take the form of an o-, p-, or m-phenylene group, but it is most preferably a p-phenylene group with any additional substituents, if present, being preferably ortho substituents.
- R can take the form of an aliphatic or aromatic residue.
- R should be chosen to retain mobility of the arylhydrazide in a silver halide emulsion or hydrophilic colloid layer of a photographic element.
- R can be an arylhydrazide.
- R can take any of the forms of the arylhydrazide shown to the right of X' in formula (II).
- R contains 8 or fewer carbon atoms.
- R is an alkyl group, optimally an alkyl group containing from 2 to 6 carbon atoms.
- R is preferably phenyl. Five and six member heterocyclic ring containing aromatic residues are also contemplated, such as pyridyl, thiazolyl, oxazolyl, and imidazolyl groups.
- R 1l and R 2 are preferably hydrogen. It has been recognized that when one of the nitrogen atoms of the hydrazino moiety is displaced by a sulfinic acid radical substituent, preferably an arylsulfonyl group, an increase in photographic speed can be realized. As between R 1 and R 2 it is preferred that R 1 be a sulfinic acid radical substituent. However, photographic speeds fully acceptable for halftone imaging applications can be readily achieved in the absence of a sulfinic acid radical substituent attached to either of the nitrogen atoms ⁇ or ⁇ to the Ac moiety in formula (II), and overall characteristic curve shape in the toe and shoulder regions is generally superior in the absence of the sulfinic acid radical subtituent.
- X and X' represent a divalent chalcogen (e.g., an oxy or thio linking atom)
- the other represents --NH--.
- X can be chosen to complete a carbamoyloxy (--NH--C(O)--O--) or carbamoylthio (--NH--C(O)--S--) group.
- X' is represented by --NH--and X completes a thiocarbamido (--S--C(O)--NH--) and, most preferably, an oxycarbamido (--O--C(O)--NH--) group.
- arylhydrazides according to the present invention can be represented by the following formula: ##STR5## where Ar is a phenylene, preferably a p-phenylene, group;
- R is alkyl of from 1 to 8 carbon atoms, preferably 2 to 6 carbon atoms, or a phenyl substituent
- R 3 is hydrogen, lower alkyl of from 1 to 3 carbon atoms, or phenyl.
- the arylhydrazides of this invention can be incorporated in the silver halide emulsion or other hydrophilic colloid layers of photographic elements in any effective concentration up to the limit of their solubility. Generally no advantage is realized from introducing concentrations above about 10 -2 mole per mole of silver. Concentration of levels of at least 10 -3 mole per mole of silver are generally employed. A preferred concentration range for high halftone dot quality is from above about 1.5 ⁇ 10 -3 to 2 ⁇ 10 -3 mole per mole of silver.
- the arylhydrazides of this invention can be employed in combination with conventional arylhydrazides, such as those disclosed in P-1 through P-6 and RD-3, cited above and here incorporated by reference, known to increase contrast in negative working surface latent image forming silver halide emulsions.
- conventional arylhydrazides such as those disclosed in P-1 through P-6 and RD-3, cited above and here incorporated by reference, known to increase contrast in negative working surface latent image forming silver halide emulsions.
- the total arylhydrazide concentration can still be maintained within the ranges indicated above, but the minimum concentration of the novel unballasted arylhydrazide can be reduced, with the preferred concentration of the novel unballasted arylhydrazide being at least 5 ⁇ 10 -4 mole per mole of silver.
- the molar ratio of the novel unballasted arylhydrazide to other arylhydazide should be at least 1 to 2.
- the arylhydrazides of this invention are employed in combination with conventional ballasted arylhydrazides.
- One or more ballasting moieties are preferably present in arylhydrazides incorporated in photographic elements for the purpose of restricting mobility of the arylhydrazides.
- Ballasted arylhydrazides though restricted in their mobility, are not confined to silver halide grain surfaces and are to be distinguished from arylhydrazides having a silver halide grain adsorption promoting moiety, such as a thiocarbonyl moiety.
- Suitable ballasting groups can take conventional forms.
- the ballasting groups can be similar to those found in common incorporated couplers. Ballasting groups are generally recognized to require at least 8 carbon atoms and frequently contain 30 or more carbon atoms.
- the ballast groups typically contain aliphatic and/or aromatic groups that are relatively unreactive, such as alkyl, alkoxy, amido, carbamoyl, oxyamido, carbamoyloxy, carboxy, oxycarbonyl, phenyl, alkylphenyl, phenoxy, alkylphenoxy, and similar groups, with individual ballasts frequently being comprised of combinations of these groups.
- Ballasted arylhydrazides though restricted in mobility, retain sufficient residual mobility to promote infectious development. Suitable ballasted arylhydrazides can be selected from among those disclosed by P-1 through P-6 and RD-3.
- the arylhydrazide compounds are employed in combination with negative working photographic emulsions comprised of radiation sensitive silver halide grains capable of forming a surface latent image and a vehicle.
- the silver halide emulsions include the high chloride emulsions conventionally employed in forming lith photographic elements as well as silver bromide and silver bromoiodide emulsions, which are recognized in the art to be capable of attaining higher photographic speeds.
- the iodide content of the silver halide emulsions is less than about 10 mole percent silver iodide, based on total silver halide.
- the silver halide grains of the emulsions are capable of forming a surface latent image, as opposed to being of the internal latent image forming type.
- Surface latent image silver halide grains are employed in the overwhelming majority of negative working silver halide emulsions, whereas internal latent image forming silver halide grains, though capable of forming a negative image when developed in an internal developer, are usually employed with surface developers to form direct positive images.
- the distinction between surface latent image and internal latent image silver halide grains is generally well recognized in the art. Generally some additional ingredient or step is required in preparation to form silver halide grains capable of preferentially forming an internal latent image as compared to a surface latent image.
- the emulsion is of a type which is "capable of forming a surface latent image" or, more succinctly, it is a surface latent image emulsion.
- the sensitivity is defined by the following equation:
- the emulsion is processed at 20° C. for 10 minutes in a developer solution of the following composition:
- the emulsion is processed at about 20° C. for 10 minutes in a bleaching solution containing 3 g of potassium ferricyanide per liter and 0.0125 g of phenosafranine per liter and washed with water for 10 minutes and developed at 20° C. for 10 minutes in a developer solution having the following composition:
- the silver halide grains when the emulsions are used for lith applications, have a mean grain size of not larger than about 0.7 micron, preferably about 0.4 micron or less.
- Mean grain size is well understood by those skilled in the art, as illustrated by Mees and James, The Theory of the Photographic Process, 3rd Ed., MacMillan 1966, Chapter 1, pages 36-43.
- the photographic emulsions of this invention are capable of producing higher photographic speeds than would be expected from their mean grain sizes.
- the photographic emulsions can be coated to provide emulsion layers in the photographic elements of any conventional silver coverage. Common conventional silver coating coverages fall within the range of from about 0.5 to about 10 grams per square meter.
- the term "monodispersed" is employed to indicate emulsions having a coefficient of variation of less than 20%.
- the monodispersed emulsions have a coefficient of variation of less than 10%. (As employed herein the coefficient of variation is defined as 100 times the standard deviation of the grain diameter divided by the average grain diameter.)
- Silver halide emulsions contain in addition to silver halide grains a vehicle.
- the proportion of vehicle can be widely varied, but typically is within the range of from about 20 to 250 grams per mole of silver halide. Excessive vehicle can have the effect of reducing maximum density and consequently also reducing contrast. Thus for contrast values of 10 or more it is preferred that the vehicle be present in a concentration of 250 grams per mole of silver halide or less.
- the specific vehicle materials present in the emulsion and any other layers of the photographic elements can be chosen from among conventional vehicle materials.
- Preferred vehicles are water permeable hydrophilic colloids employed alone or in combination with extenders such as synthetic polymeric peptizers, carriers, latices, and binders. Such materials are more specifically described in Research Disclosure, Vol. 176, December 1978, Item 17643, Section IX. Vehicles are commonly employed with one or more hardeners, such as those described in Section X.
- Emulsions according to this invention having silver halide grains of any conventional geometric form can be prepared by a variety of techniques--e.g., single-jet, double-jet (including continuous removal techniques), accelerated flow rate and interrupted precipitation techniques, as illustrated by Trivelli and Smith, The Photographic Journal, Vol. LXXIX, May, 1939pages 330--338; T. H. James The Theory of the Photographic Process, 4th Ed., Macmillan, 1977, Chapter 3; Terwilliger et al Research Disclosure, Vol. 149, September 1976, Item 14987; Research Disclosure, Vol.
- Double-jet accelerated flow rate precipitation techniques are preferred for forming monodispersed emulsions.
- Sensitizing compounds such as compounds of copper, thallium, cadmium, rhodium, tungsten, thorium, iridium and mixtures thereof, can be present during precipitation of the silver halide emulsion, as illustrated by Arnold et al U.S. Pat. No. 1,195,432; Hochstetter U.S. Pat. No. 1,951,933; Trivelli et al, U.S. Pat. No. 2,448,060; Overman U.S. Pat. No. 2,628,167; Mueller U.S. Pat. No. 2,950,972; Sidebotham U.S. Pat. No. 3,488,709; and Rosecrants et al U.S. Pat. No. 3,737,313.
- the individual reactants can be added to the reaction vessel through surface or sub-surface delivery tubes by gravity feed or by delivery apparatus for maintaining control of the pH and/or pAg of the reaction vessel contents, as illustrated by Culhane et al U.S. Pat. No. 3,821,002, Oliver U.S. Pat. No. 3,031,304 and Claes et al Photographische Korrespondenz, Band 102, Number 10, 1967, page 162.
- specially constructed mixing devices can be employed, as illustrated by Audran U.S. Pat. No. 2,996,287, McCrossen et al U.S. Pat. No. 3,342,605, Frame et al U.S. Pat. No.
- An enclosed reaction vessel can be employed to receive and mix reactants upstream of the main reaction vessel, as illustrated by Forster et al U.S. Pat. No. 3,897,935 and Posse et al U.S. Pat. No. 3,790,386.
- the grain size distribution of the silver halide emulsions can be controlled by silver halide grain separation techniques or by blending silver halide emulsions of differing grain sizes.
- the emulsions can include ammoniacal emulsions, as illustrated by Glafkides, Photographic Chemistry, Vol. 1, Fountain Press, London, 1958, pages 365-368 and pages 301-304; thiocyanate ripened emulsions, as illustrated by Illingsworth U.S. Pat. No. 3,320,069; thioether ripened emulsions as illustrated by McBride U.S. Pat. No. 3,271,157, Jones U.S. Pat. No. 3,574,628 and Rosecrants et al U.S. Pat.
- the silver halide emulsion can be unwashed or washed to remove soluble salts.
- the soluble salts can be removed by chill setting and leaching, as illustrated by Craft U.S. Pat. No. 2,316,845 and McFall et al U.S. Pat. No. 3,396,027; by coagulation washing, as illustrated by Hewitson et al U.S. Pat. No. 2,618,556, Yutzy et al U.S. Pat. No. 2,614,928.
- Patent 1,305,409 and Dersch et al U.K. Patent 1,167,159 by centrifugation and decantation of a coagulated emulsion, as illustrated by Murray U.S. Pat. No. 2,463,794, Ujihara et al U.S. Pat. No. 3,707,378, Audran U.S. Pat. No. 2,996,287 and Timson U.S. Pat. No. 3,498,454; by employing hydrocyclones alone or in combination with centrifuges, as illustrated by U.K. Patent 1,336,692, Claes U.K. Patent 1,356,573 and Ushomirskii et al Soviet Chemical Industry, Vol. 6No.
- the emulsions employed need not be chemically sensitized.
- Sensitization with one or more middle chalcogens, sulfur, selenium, and/or tellurium is a preferred surface chemical sensitization.
- Such sensitization can be achieved by the use of active gelatin or by the addition of middle chalcogen sensitizers, such as disclosed by Research Disclosure, Item 17643, cited above, Section III. Reduction and other conventional chemical sensitization techniques disclosed therein which do not unacceptably reduce contrast can also be employed.
- Spectral sensitization of the high contrast silver halide emulsions is not required, but can be undertaken conventional spectral sensitizers, singly or in combination, as illustrated by Research Disclosure, Item 17643, cited above Section IV. For black-and-white imaging orthochromatic and panchromatic sensitizations are frequently preferred.
- the dyes can be cationic, anionic or nonionic.
- Preferred dyes are cationic cyanine and merocyanine dyes.
- Emulsions containing cyanine and merocyanine dyes have been observed to exhibit relatively high contrasts.
- Spectral sensitizing dyes specifically preferred for use in the practice of this invention are as follows:
- the photographic elements can be protected against fog by incorporation of antifoggants and stabilizers in the element itself or in the developer in which the element is to be processed.
- Conventional antifoggants such as those disclosed by Mifune et al U.S. Pat. Nos. 4,241,164, 4,311,781, 4,166,742, and 4,237,214, and Okutsu et al U.S. Pat. No. 4,221,857, can be employed.
- Preferred antifoggants are benzotriazoles, such as benzotriazole (that is, the unsubstituted benzotriazole compound), halo-substituted benzotriazoles (e.g., 5-chlorobenzotriazole, 4-bromobenzotriazole, and 4-chlorobenzotriazole), and alkyl-substituted benzotriazoles wherein the alkyl moiety contains from about 1 to 12 carbon atoms (e.g., 5-methylbenzotriazole).
- benzimidazoles such as 5-nitrobenzimidazoles
- benzothiazoles such as 5-nitrobenzothiazole and 5-methylbenzothiazole
- heterocyclic thiones such as, 1-methyl-2-tetrazoline-5-thione
- triazines such as 2,4-dimethylamino-6-chloro-5-triazine
- benzoxazoles such as ethyl
- the antifoggants can be employed in conventional concentrations.
- the benzotriazole can be located in the emulsion layer or in any hydrophilic colloid layer of the photographic element in a concentration in the range of from 10 -4 to 10 -1 , preferably 10 -3 to 3 ⁇ 10 -2 , mole per mole of silver.
- the benzotriazole antifoggant is added to the developer, it is employed in a concentration of from 10 -6 to about 10 -1 , preferably 3 ⁇ 10 -5 and 3 ⁇ 10 -2 , mole per liter of developer.
- the photographic elements can contain developing agents (described below in connection with the processing steps), development modifiers, plasticizers and lubricants, coating aids, antistatic material, and matting agents, these conventional materials being illustrated in Research Disclosure, cited above, Item 17643, Sections XII, XIII, XVI, and XX. The elements can be exposed as described in Section XVIII.
- the light sensitive silver halide contained in the photographic elements can be processed following exposure to form a relatively high contrast image by associating the silver halide with an aqueous alkaline medium in the presence of a developing agent contained in the medium or the element.
- Processing formulations and techniques are described in L. F. Mason, Photographic Processing Chemistry, Focal Press, London, 1966; Processing Chemicals and Formulas, Publication J-1, Eastman Kodak Company, 1973; Photo-Lab Index, Morgan and Morgan, Inc., Dobbs Ferry, New York 1977; and Neblette's Handbook of Photographic and Reprographic Materials, Processes and Systems, VanNostrand Reinhold Company, 7th Ed., 1977.
- the photographic elements can be processed in conventional developers generally as opposed to specialized developers conventionally employed in conjunction with lith photographic elements to obtain very high contrast images.
- the photographic elements can be processed in an activator, which can be identical to the developer in composition, but lacking a developing agent.
- Very high contrast images can be obtained at pH values in the range of from 10 to 13.0, preferably 10.5 to 12.5.
- alkali sulfites e.g., sodium or potassium sulfite, bisulfite or metasulfite
- Any preservative or preservative concentration conventional in lower contrast processing can be employed, such as, for instance, a sulfite ion concentration in the range of from about 0.15 to 1.2 mole per liter of developer.
- the developers are typically aqueous solutions, although organic solvents, such as diethylene glycol, can also be included to facilitate the solvency of organic components.
- the developers contain one or a combination of conventional developing agents, such as polyhydroxybenzene, aminophenol, para-phenylenediamine, ascorbic acid, pyrazolidone, pyrazolone, pyrimidine, dithionite, hydroxylamine or other conventional developing agents. It is preferred to employ hydroquinone and 3-pyrazolidone developing agents in combination.
- the pH of the developers can be adjusted with alkali metal hydroxides and carbonates, borax and other basic salts. To reduce gelatin swelling during development, compounds such as sodium sulfate can be incorporated into the developer.
- any conventional developer composition can be employed in the practice of this invention.
- Specific illustrative photographic developers are disclosed in the Handbook of Chemistry and Physics, 36th Edition, under the title "Photographic Formulae” at page 3001 et seq., and in Processing Chemicals and Formulas, 6th Edition, published by Eastman Kodak Company (1963), the disclosures of which are here incorporated by reference.
- the photographic elements can, of course, be processed with conventional developers for lith photographic elements, as illustrated by Masseth U.S. Pat. No. 3,573,914 and VanReusel U.K. Patent 1,376,600.
- a preferred developer is disclosed by P-7.
- Comparative Coatings 1 through 12 illustrate the poor level of pepper fog obtained when non-carbamate nucleating agents are used in a high-contrast lith film alone or in combination.
- the nucleating agents are 1-formyl-2- ⁇ 4-[2-(2,4-di-t-pentylphenoxy)butyramido]phenyl ⁇ hydrazine (N-1) and 1-[4-(2-formylhydrazino)phenyl]-3-n-hexyl-urea (N-2).
- a layer comprising a monodispersed 0.22 ⁇ m AgBrI (2.5 mole % iodide) emulsion at 3.50 g/m 2 Ag, 2.47 g/m 2 gelatin, and 1.06 g/m 2 of a latex copolymer of methyl acrylate, 2-methyl-2-acrylamido-1-propanesulfonic acid, and acetoacetoxyethyl methacrylate (90:4:6 monomer weight ratio). No chemical sensitization step was performed on the emulsion.
- AgBrI 2.5 mole % iodide
- the emulsion was spectrally sensitized with 216 mg/Ag mole of anhydro-5,5'-dichloro-9-ethyl-3,3'-di-(3-sulfopropyl)oxacarbocyanine hydroxide, triethylamine salt.
- Additions of nucleating agents N-1 and N-2 were made as listed in Table I, totaling 11 ⁇ 10 -4 moles/Ag mole.
- a protective overcoat of 1.38 g/m 2 gelatin was coated over the emulsion layer.
- the coatings were prepared, exposed, and processed as described above, but with nucleating agent additions as listed in Table II. A total nucleating agent level of 19 ⁇ 10 -4 moles per Ag mole was used in each coating. The results are tabulated in Table II. The relative speeds are normalized to that of Coating 1 of Table I taken as 100.
- Comparative Example 3 shows that nucleating agent N-2 when used alone is unable to provide both good half-tone dot quality and an acceptable pepper fog level, while nucleating agent AH-7 of the invention used alone can provide excellent dot quality at an acceptable pepper fog level.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- General Physics & Mathematics (AREA)
- Silver Salt Photography Or Processing Solution Therefor (AREA)
Abstract
An unballasted arylhydrazide is disclosed the aryl moiety of which is substituted with a group of the formula ##STR1## where one of X and X' represents -NH-, the other represents a divalent chalcogen, and R represents an aliphatic or aromatic residue. The arylhydrazides, when applied to halftone imaging in conjunction with silver halide emulsions, photographic elements, and imaging processes, produce images of improved dot quality and low levels of pepper fog.
Description
This is a division of application Ser. No. 658,921, filed Oct. 9, 1984 (now U.S. Pat. No. 4,560,638).
FIELD OF THE INVENTION
The invention is directed to novel unballasted arylhydazides, to silver halide emulsions and photographic elements capable of producing halftone images, and to processes for their use.
Lithographic printing plates contain areas that accept ink, areas that repel ink, and, ideally, no areas of intermediate properties. The illusion that some areas of a printed image are of intermediate density is created by the viewer's inability to resolve tiny dots of maximum density and background areas of minimum density that separate them. Such images are referred to as halftone images.
Halftone images are typically produced on lithographic printing plates by contact exposure through a high contrast photographic transparency--often referred to as a lith type photographic element. To be useful for the exposure of lithographic printing plates the photographic element must have a contrast of at least 10 (hereinafter designated by reference to high contrast) and more typically near or above 20. Over and above contrast requirements, however, it is important that a lith type photographic element applied to halftone imaging exhibit the characteristic of producing high dot quality. That is, the dots must be well resolved--e.g., with sharp as opposed to soft or ragged edges.
The use of hydrazines in negative working surface latent image forming silver halide emulsions and photographic elements to increase speed and contrast is taught by Trivelli et al U.S. Pat. No. 2,419,975. Increased contrast attributable to hydrazines in negative working surface latent image forming silver halide emulsions is believed to result from the promotion of infectious development.
The hydrazines preferred for their higher effectiveness in increasing contrast are arylhydrazides. The acyl moiety o arylhydrazides increases activity while the aryl moiety acts to increase stability. The following are illustrative of specific arylhydrazides employed with negative working surface latent image forming silver halide emulsions primarily to increase contrast:
P-1: Takada et al.; U.S. Pat. No. 4,168,977
P-2: Takada et al.; U.S. Pat. No. 4,224,401
P-3: Okutsu et al.; U.S. Pat. No. 4,221,857
P-4: Mifune et al.; U.S. Pat. No. 4,243,739
P-5: Mifune et al.; U.S. Pat. No. 4,272,614
P-6: Mifune et al.; U.S. Pat. No. 4,323,645.
While the arylhydrazide is preferably incorporated directly in a photographic element, it can be incorporated in processing solution for the element. A preferred processing solution is disclosed in the following patent:
P-7: Nothnagle; U.S. Pat. No. 4,269,929.
In surface latent image forming silver halide emulsions the grains which are exposed to light are rendered developable while grains which are not exposed to light are not intended to be developed. Nevertheless, some of these unexposed grains develop spontaneously. In fulltone imaging the spontaneously developing grains raise minimum density more or less uniformly. Such minimum density levels are referred to as fog and, so long as they remain low, are not objectionable.
Pepper fog differs from ordinary fog in that it takes the form of small, maximum density areas randomly distributed on a substantially uniform minimum density background. When a photographic element exhibiting pepper fog is viewed under magnification, the impression to the viewer is often that the magnified field of view has been sprinkled with grains of pepper. It has been long recognized that arylhydrazides produce pepper fog, and, until very recently, this has interfered with the commercial use of arylhydrazides in halftone imaging. An illustration of severe pepper fog appears in FIG. 1. FIG. 2 is an illustration of pepper fog at its highest acceptable level. Each of FIGS. 1 and 2 is an actual photograph of a field of view enlarged 20X.
In addition to their use to increase contrast in negative working silver halide emulsions arylhydrazides have been employed extensively as nucleating agents in direct positive silver halide emulsions. When employed as a nucleating agent the function of the arylhydrazide is to replace uniform light exposure or aerial oxidation as a technique for selectively accelerating development of unexposed internal latent image forming silver halide grains. This increases maximum density without increasing minimum density of the direct positive image. The use of a hydrazine as a nucleating agent was first taught by
P-8: Ives; U.S. Pat. No. 2,563,785.
Exemplary arylhydrazides employed as nucleating agents in internal latent image forming direct positive emulsions are illustrated by the following:
P-9: Whitmore; U.S. Pat. No. 3,227,552
P-10: Leone et al.; U.S. Pat. No. 4,030,925
P-11: Leone et al.; U.S. Pat. No. 4,031,127
P-12: Leone et al.; U.S. Pat. No. 4,080,207
P-13: Tsujino et al.; U.S. Pat. No. 4,245,037
P-14: Hirano et al.; U.S. Pat. No. 4,255,511
P-15: Adachi et al.; U.S. Pat. No. 4,266,013
P-16: Leone; U.S. Pat. No. 4,276,364
RD-1: Research Disclosure, Vol. 151, November 1976, Item 15162
RD-2: Sidhu et al Research Disclosure, Vol. 176, December 1978, Item 17626
Research Disclosure is published by Kenneth Mason Publications, Ltd., The Old Harbourmaster's, 8 North Street, Emsworth, Hampshire P010 7DD, England.
Parton et al. U.S. Pat. No. 4,459,347 discloses oxythioamido substituted arylhydrazides to be useful in increasing the speed of negative working surface latent image silver halide emulsions and as nucleating agents in direct positive internal latent image forming silver halide emulsions.
Hess et al U.S. Ser. No. 493,480, filed May 11, 1983, commonly assigned, discloses sulfinic acid radical substituted arylhydrazides to be effective for (i) increasing contrast of negative working surface latent image forming silver halide emulsions, (ii) nucleating direct positive internal latent image forming silver halide emulsions, and (iii) increasing the speed of negative working emulsions of less than high contrast when absorbed to grain surfaces. For applications (i) and (ii) ballasting groups are disclosed, such as alkyl, alkoxy, amido, carbamoyl, oxyamido, carbamoyloxy, carboxy, oxycarbamoyl, phenyl, alkylphenyl, phenoxy, and alkylphenoxy groups as well as groups which are combinations thereof. For applications (ii) and (iii) the use an adsorption promoting moiety, such as an oxythioamido substituent, is disclosed.
A patent literature summary of arylhydrazides employed to increase contrast in negative working silver halide emulsions and to perform nucleation in direct positive silver halide emulsions, which includes a discussion of the mechanism of activity in each system is provided by the following publication:
RD-3: Research Disclosure, Vol. 235, November 1983, Item 23510.
An oxycarbamido substituent of an arylhydrazide is disclosed.
In one aspect this invention is directed to an unballasted arylhydrazide, the aryl moiety of which is substituted with a group of the formula ##STR2## where one of X and X' represents --NH--, the other represents a divalent chalcogen, and R represents an aliphatic or aromatic residue.
In another aspect this invention is directed to a high contrast negative working surface latent image forming silver halide emulsion comprised of an unballasted arylhydrazide, the aryl moiety of which is substituted with a group according to formula (I).
In still another aspect this invention is directed to a negative working photographic element capable of producing halftone image comprised of a support, an arylhydrazide, and a monodispersed surface latent image forming silver halide emulsion capable of producing a high contrast image in the presence of the arylhydrazide, further characterized in that the arylhydrazide is an unballasted arylhydrazide, the aryl moiety of which is substituted with a group according to formula (I).
In an additional aspect this invention is directed to an improved process for producing a halftone image by imagewise exposing through a halftone mask a negative working photographic element comprised of a support, an arylhydrazide, and a surface latent image forming silver halide emulsion capable of producing a high contrast image in the presence of the arylhydrazide, further characterized in that the arylhydrazide is an unballasted arylhydrazide, the aryl moiety of which is substituted with a group according to formula (I).
It has been discovered that halftone images of good dot quality and acceptably low levels of pepper fog can be achieved when an unballasted arylhydrazide is employed containing an aryl sustituent satisfying formula (I). Prior to this invention this desirable combination of properties has been achieved only by employing an arylhydrazide, the aryl moiety of which is substituted with a ureido group, in combination with a ballasted arylhydrazide. The requirement of a second arylhydrazide and, particularly, a ballasted arylhydrazide adds to the coating bulk of the photographic element. While a ureido substituted arylhydazide when employed in combination with a ballasted arylhydrazide, can increase dot quality, the proportion of the ureido substituted arylhydrazide must be limited to avoid unacceptably high levels of pepper fog. Thus, prior to the present invention the art has been faced with the limitations of (i) employing a combination of arylhydrazides and (ii) employing ureido substituted arylhydrazides within a narrow concentration range marked by poor dot quality on the lower border of the concentration range and unacceptably high pepper fog levels on the upper border of the concentration range. The present invention overcomes the limitations heretofore encountered in the art by allowing halftone images of good dot quality and acceptably low pepper fog levels to be achieved with a novel unballasted arylhydrazide that can be employed alone or, if desired, in combination with other conventional arylhydrazides within a wide range of relative proportions.
The invention can be better appreciated by reference to the following detailed description considered in conjunction with the drawings, in which FIG. 1 is a photograph enlarged 20X showing a typical pattern of severe pepper fog and
FIG. 2 is a photographic enlarged 20X showing the highest acceptable level of pepper fog.
The advantages realized with the present invention can be primarily attributed to novel unballasted arylhydrazides, the aryl moiety of which is substituted with a group satisfying formula (I), as described above. An unballasted arylhydrazide within the contemplation of the present invention can be represented by the following formula: ##STR3## wherein Ac represents an activating group;
Ar represents a divalent aromatic group;
R represents an aliphatic or aromatic residue;
R1 and R2 can be either hydrogen or a sulfinic acid radical substituent, with the proviso that only one can be a sulfinic acid radical substituent; and
one of X and X' represents --NH-- and the other represents a divalent chalcogen.
Although activating groups are not essential to increasing contrast with hydrazines, the most effective contrast increasing compounds are recognized to include at least one activating group. A variety of activating groups are described in RD-3, cited above. Preferred activating groups are acyl groups. Specifically preferred acyl groups can be represented by the formula: ##STR4## where R3 is hydrogen or an aliphatic or aromatic moiety. The highest activity levels are achieved when R3 is hydrogen. In another preferred form R3 can take the form of an alkyl group, with lower alkyl groups of from 1 to 3 carbon atoms being preferred, since activity for corresponding aryl-hydrazides generally declines as the number of carbon atoms forming the alkyl group increases. When R3 is an aromatic moiety, it is preferably a phenyl group.
The divalent aromatic moiety Ar performs a stabilizing function by providing a direct linkage of the β nitrogen atom of the hydrazide to a tertiary carbon atom. In a preferred form the divalent aromatic moiety is a carbocyclic aromatic moiety--i.e., an arylene moiety, such as phenylene or naphthalene. In addition to the group represented by formula (I), the arylene moiety can be further ring substituted at any remaining available position. Examples of other useful substituents include hydroxy, amino, carboxy, alky, alkoxy, halo, and haloalkyl. As herein defined cycloalkyl is subsumed within alkyl moieties. Unless otherwise stated, all aliphatic and aromatic moieties referred to are understood to contain fewer than 8 carbon atoms. When Ar is a phenylene group, it can take the form of an o-, p-, or m-phenylene group, but it is most preferably a p-phenylene group with any additional substituents, if present, being preferably ortho substituents.
R can take the form of an aliphatic or aromatic residue. R should be chosen to retain mobility of the arylhydrazide in a silver halide emulsion or hydrophilic colloid layer of a photographic element. In one form R can be an arylhydrazide. For example, it can take any of the forms of the arylhydrazide shown to the right of X' in formula (II). In a preferred form R contains 8 or fewer carbon atoms. In a specifically preferred form R is an alkyl group, optimally an alkyl group containing from 2 to 6 carbon atoms. In an aromatic form R is preferably phenyl. Five and six member heterocyclic ring containing aromatic residues are also contemplated, such as pyridyl, thiazolyl, oxazolyl, and imidazolyl groups.
R1l and R2 are preferably hydrogen. It has been recognized that when one of the nitrogen atoms of the hydrazino moiety is displaced by a sulfinic acid radical substituent, preferably an arylsulfonyl group, an increase in photographic speed can be realized. As between R1 and R2 it is preferred that R1 be a sulfinic acid radical substituent. However, photographic speeds fully acceptable for halftone imaging applications can be readily achieved in the absence of a sulfinic acid radical substituent attached to either of the nitrogen atoms α or β to the Ac moiety in formula (II), and overall characteristic curve shape in the toe and shoulder regions is generally superior in the absence of the sulfinic acid radical subtituent.
When one of X and X' represents a divalent chalcogen (e.g., an oxy or thio linking atom), the other represents --NH--. When X is --NH--, X' can be chosen to complete a carbamoyloxy (--NH--C(O)--O--) or carbamoylthio (--NH--C(O)--S--) group. In a specifically preferred form of the invention X' is represented by --NH--and X completes a thiocarbamido (--S--C(O)--NH--) and, most preferably, an oxycarbamido (--O--C(O)--NH--) group.
From the foregoing it is apparent that specifically preferred arylhydrazides according to the present invention can be represented by the following formula: ##STR5## where Ar is a phenylene, preferably a p-phenylene, group;
R is alkyl of from 1 to 8 carbon atoms, preferably 2 to 6 carbon atoms, or a phenyl substituent; and
R3 is hydrogen, lower alkyl of from 1 to 3 carbon atoms, or phenyl.
The following are illustrative of specific arylhydrazides within the contemplation of this invention:
______________________________________
AH-1 2-(2,6-dichloro-4-methoxycarbamidophenyl)-
1-propionylhydrazine
AH-2 2-(4-ethylcarbamoyloxyphenyl)-1-formyl-
hydrazine
AH-3 2-(4-ethoxycarbamoylthiophenyl)-1-formyl-
hydrazine
AH-4 2-(4-ethoxycarbamidophenyl)-1-formylhydrazine
AH-5 2-(4-ethoxycarbamidophenyl)-1-formyl-2- -p-
tosylhydrazine
AH-6 1-acetyl-2-(4-propoxycarbamidophenyl)hydra-
zine
AH-7 2-(4-butoxycarbamidophenyl)-1-formylhydrazine
AH-8 2-(4-butylthiocarbamidophenyl)-1-formyl-
hydrazine
AH-9 2-(4-butylcarbamoyloxyphenyl)-1-formyl-
hydrazine
AH-10 1-benzoyl-2-(4-butylcarbamoylthio-2-tri-
fluoromethyl)hydrazine
AH-11 1-benzoyl-2-(2-pentoxycarbamidophenyl)-
hydrazine
AH-12 2-(4-iso-propoxycarbamidophenyl)-1-formyl-
hydrazine
AH-13 2-(4-hexoxycarbamidophenyl)-1-formylhydrazine
AH-14 1-formyl-2-(4-phenoxycarbamidophenyl)-
hydrazine
AH-15 1-formyl-2-(2-methoxy-4-N--pyridyloxycarb-
amidophenyl)hydrazine
AH-16 1-formyl-2-(2-N,N--diethylamine-4-phenyl-
thiocarbamidophenyl)hydrazine
______________________________________
The arylhydrazides of this invention can be incorporated in the silver halide emulsion or other hydrophilic colloid layers of photographic elements in any effective concentration up to the limit of their solubility. Generally no advantage is realized from introducing concentrations above about 10-2 mole per mole of silver. Concentration of levels of at least 10-3 mole per mole of silver are generally employed. A preferred concentration range for high halftone dot quality is from above about 1.5×10-3 to 2×10-3 mole per mole of silver.
Athough not required, it is specifically recognized that the arylhydrazides of this invention can be employed in combination with conventional arylhydrazides, such as those disclosed in P-1 through P-6 and RD-3, cited above and here incorporated by reference, known to increase contrast in negative working surface latent image forming silver halide emulsions. When one or more additional arylhydrazides are employed, the total arylhydrazide concentration can still be maintained within the ranges indicated above, but the minimum concentration of the novel unballasted arylhydrazide can be reduced, with the preferred concentration of the novel unballasted arylhydrazide being at least 5×10-4 mole per mole of silver. Generally the molar ratio of the novel unballasted arylhydrazide to other arylhydazide should be at least 1 to 2.
In one preferred form the arylhydrazides of this invention are employed in combination with conventional ballasted arylhydrazides. One or more ballasting moieties are preferably present in arylhydrazides incorporated in photographic elements for the purpose of restricting mobility of the arylhydrazides. Ballasted arylhydrazides, though restricted in their mobility, are not confined to silver halide grain surfaces and are to be distinguished from arylhydrazides having a silver halide grain adsorption promoting moiety, such as a thiocarbonyl moiety.
Suitable ballasting groups can take conventional forms. For example, the ballasting groups can be similar to those found in common incorporated couplers. Ballasting groups are generally recognized to require at least 8 carbon atoms and frequently contain 30 or more carbon atoms. The ballast groups typically contain aliphatic and/or aromatic groups that are relatively unreactive, such as alkyl, alkoxy, amido, carbamoyl, oxyamido, carbamoyloxy, carboxy, oxycarbonyl, phenyl, alkylphenyl, phenoxy, alkylphenoxy, and similar groups, with individual ballasts frequently being comprised of combinations of these groups. Ballasted arylhydrazides, though restricted in mobility, retain sufficient residual mobility to promote infectious development. Suitable ballasted arylhydrazides can be selected from among those disclosed by P-1 through P-6 and RD-3.
The arylhydrazide compounds are employed in combination with negative working photographic emulsions comprised of radiation sensitive silver halide grains capable of forming a surface latent image and a vehicle. The silver halide emulsions include the high chloride emulsions conventionally employed in forming lith photographic elements as well as silver bromide and silver bromoiodide emulsions, which are recognized in the art to be capable of attaining higher photographic speeds. Generally the iodide content of the silver halide emulsions is less than about 10 mole percent silver iodide, based on total silver halide.
The silver halide grains of the emulsions are capable of forming a surface latent image, as opposed to being of the internal latent image forming type. Surface latent image silver halide grains are employed in the overwhelming majority of negative working silver halide emulsions, whereas internal latent image forming silver halide grains, though capable of forming a negative image when developed in an internal developer, are usually employed with surface developers to form direct positive images. The distinction between surface latent image and internal latent image silver halide grains is generally well recognized in the art. Generally some additional ingredient or step is required in preparation to form silver halide grains capable of preferentially forming an internal latent image as compared to a surface latent image.
Although the difference between a negative image produced by a surface latent image emulsion and a positive image produced by an internal latent image emulsion when processed in a surface developer is a qualitative difference which is visually apparent to even the unskilled observer, a number of tests have been devised to distinguish quantitatively surface latent image forming and internal latent image forming emulsions. For example, according to one such test when the sensitivity resulting from surface development (A), described below, is greater than that resulting from internal development (B), described below, the emulsion being previously light exposed for a period of from 1 to 0.01 second, the emulsion is of a type which is "capable of forming a surface latent image" or, more succinctly, it is a surface latent image emulsion. The sensitivity is defined by the following equation:
S=100/Eh
in which S represents the sensitivity and Eh represents the quantity of exposure necessary to obtain a mean density--i.e., 1/2 (D-max+D-min).
Surface Development (A)
The emulsion is processed at 20° C. for 10 minutes in a developer solution of the following composition:
______________________________________
N--methyl- -p-aminophenyl hemisulfate
2.5 g
Ascorbic acid 10 g
Sodium metaborate (with 4
35 g
molecules of water)
Potassium bromide 1 g
Water to bring the total to
1 liter.
______________________________________
Internal Development (B)
The emulsion is processed at about 20° C. for 10 minutes in a bleaching solution containing 3 g of potassium ferricyanide per liter and 0.0125 g of phenosafranine per liter and washed with water for 10 minutes and developed at 20° C. for 10 minutes in a developer solution having the following composition:
______________________________________
N--methyl- -p-aminophenol hemisulfate
2.5 g
Ascorbic acid 10 g
Sodium metaborate (with 4
35 g
moles of water)
Potassium bromide 1 g
Sodium thiosulfate 3 g
Water to bring the total to
1 liter.
______________________________________
The silver halide grains, when the emulsions are used for lith applications, have a mean grain size of not larger than about 0.7 micron, preferably about 0.4 micron or less. Mean grain size is well understood by those skilled in the art, as illustrated by Mees and James, The Theory of the Photographic Process, 3rd Ed., MacMillan 1966, Chapter 1, pages 36-43. The photographic emulsions of this invention are capable of producing higher photographic speeds than would be expected from their mean grain sizes. The photographic emulsions can be coated to provide emulsion layers in the photographic elements of any conventional silver coverage. Common conventional silver coating coverages fall within the range of from about 0.5 to about 10 grams per square meter.
As is generally recognized in the art, higher contrasts can be achieved by employing relatively monodispersed emulsions, particularly when larger grain size emulsions are employed. As herein employed, the term "monodispersed" is employed to indicate emulsions having a coefficient of variation of less than 20%. For the highest levels of contrast it is generally preferred that the monodispersed emulsions have a coefficient of variation of less than 10%. (As employed herein the coefficient of variation is defined as 100 times the standard deviation of the grain diameter divided by the average grain diameter.)
Silver halide emulsions contain in addition to silver halide grains a vehicle. The proportion of vehicle can be widely varied, but typically is within the range of from about 20 to 250 grams per mole of silver halide. Excessive vehicle can have the effect of reducing maximum density and consequently also reducing contrast. Thus for contrast values of 10 or more it is preferred that the vehicle be present in a concentration of 250 grams per mole of silver halide or less. The specific vehicle materials present in the emulsion and any other layers of the photographic elements can be chosen from among conventional vehicle materials. Preferred vehicles are water permeable hydrophilic colloids employed alone or in combination with extenders such as synthetic polymeric peptizers, carriers, latices, and binders. Such materials are more specifically described in Research Disclosure, Vol. 176, December 1978, Item 17643, Section IX. Vehicles are commonly employed with one or more hardeners, such as those described in Section X.
Emulsions according to this invention having silver halide grains of any conventional geometric form (e.g., regular octahedral or, preferably, cubic crystalline form) can be prepared by a variety of techniques--e.g., single-jet, double-jet (including continuous removal techniques), accelerated flow rate and interrupted precipitation techniques, as illustrated by Trivelli and Smith, The Photographic Journal, Vol. LXXIX, May, 1939pages 330--338; T. H. James The Theory of the Photographic Process, 4th Ed., Macmillan, 1977, Chapter 3; Terwilliger et al Research Disclosure, Vol. 149, September 1976, Item 14987; Research Disclosure, Vol. 225, January 1983, Item 22534; as well as Nietz et al U.S. Pat. No. 2,222,264; Wilgus German OLS 2,107,118; Lewis U.K. Pat. Nos. 1,335,925, 1,430,465 and 1,469,480; Irie et al U.S. Pat. No. 3,650,757; Morgan U.S. Pat. No. 3,917,485 (where pAg cycling is limited to permit surface development); and Miusliner U.S. Pat. No. 3,790,287. Double-jet accelerated flow rate precipitation techniques are preferred for forming monodispersed emulsions. Sensitizing compounds, such as compounds of copper, thallium, cadmium, rhodium, tungsten, thorium, iridium and mixtures thereof, can be present during precipitation of the silver halide emulsion, as illustrated by Arnold et al U.S. Pat. No. 1,195,432; Hochstetter U.S. Pat. No. 1,951,933; Trivelli et al, U.S. Pat. No. 2,448,060; Overman U.S. Pat. No. 2,628,167; Mueller U.S. Pat. No. 2,950,972; Sidebotham U.S. Pat. No. 3,488,709; and Rosecrants et al U.S. Pat. No. 3,737,313.
The individual reactants can be added to the reaction vessel through surface or sub-surface delivery tubes by gravity feed or by delivery apparatus for maintaining control of the pH and/or pAg of the reaction vessel contents, as illustrated by Culhane et al U.S. Pat. No. 3,821,002, Oliver U.S. Pat. No. 3,031,304 and Claes et al Photographische Korrespondenz, Band 102, Number 10, 1967, page 162. In order to obtain rapid distribution of the reactants within the reaction vessel, specially constructed mixing devices can be employed, as illustrated by Audran U.S. Pat. No. 2,996,287, McCrossen et al U.S. Pat. No. 3,342,605, Frame et al U.S. Pat. No. 3,415,650, Porter et al U.S. Pat. No. 3,785,777, Saito et al German OLS 2,556,885 and Sato et al German OLS 2,555,365. An enclosed reaction vessel can be employed to receive and mix reactants upstream of the main reaction vessel, as illustrated by Forster et al U.S. Pat. No. 3,897,935 and Posse et al U.S. Pat. No. 3,790,386.
The grain size distribution of the silver halide emulsions can be controlled by silver halide grain separation techniques or by blending silver halide emulsions of differing grain sizes. The emulsions can include ammoniacal emulsions, as illustrated by Glafkides, Photographic Chemistry, Vol. 1, Fountain Press, London, 1958, pages 365-368 and pages 301-304; thiocyanate ripened emulsions, as illustrated by Illingsworth U.S. Pat. No. 3,320,069; thioether ripened emulsions as illustrated by McBride U.S. Pat. No. 3,271,157, Jones U.S. Pat. No. 3,574,628 and Rosecrants et al U.S. Pat. No. 3,737,313 or emulsions containing weak silver halide solvents, such as ammonium salts, as illustrated by Perignon U.S. Pat. No. 3,784,381 and Research Disclosure, Vol. 134, June 1975, Item 13452.
The silver halide emulsion can be unwashed or washed to remove soluble salts. The soluble salts can be removed by chill setting and leaching, as illustrated by Craft U.S. Pat. No. 2,316,845 and McFall et al U.S. Pat. No. 3,396,027; by coagulation washing, as illustrated by Hewitson et al U.S. Pat. No. 2,618,556, Yutzy et al U.S. Pat. No. 2,614,928. Yackel U.S. Pat. No. 2,565,418, Hart et al U.S. Pat. No. 3,241,969, Waller et al U.S. Pat. No. 2,489,341, Klinger U.K. Patent 1,305,409 and Dersch et al U.K. Patent 1,167,159; by centrifugation and decantation of a coagulated emulsion, as illustrated by Murray U.S. Pat. No. 2,463,794, Ujihara et al U.S. Pat. No. 3,707,378, Audran U.S. Pat. No. 2,996,287 and Timson U.S. Pat. No. 3,498,454; by employing hydrocyclones alone or in combination with centrifuges, as illustrated by U.K. Patent 1,336,692, Claes U.K. Patent 1,356,573 and Ushomirskii et al Soviet Chemical Industry, Vol. 6No. 3, 1974, pages 181-185; by diafiltration with a semipermeable membrane, as illustrated by Research Disclosure, Vol. 102, October 1972, Item 10208, Hagemaier et al Research Disclosure, Vol. 131, March 1975, Item 13122, Bonnet Research Disclosure, Vol. 135July 1975, Item 13577, Berg et al German OLS 2,436,461 and Bolton U.S. Pat. No. 2,495,918 or by employing an ion exchange resin, as illustrated by Maley U.S. Pat. No. 3,782,953 and Noble U.S. Pat. No. 2,827,428. The emulsions, with or without sensitizers, can be dried and stored prior to use as illustrated by Research Disclosure, Vol. 101, September 1972, Item 10152.
For high contrast photographic applications high levels of photographic speed are not necessarily required. Thus, the emulsions employed need not be chemically sensitized. Sensitization with one or more middle chalcogens, sulfur, selenium, and/or tellurium, is a preferred surface chemical sensitization. Such sensitization can be achieved by the use of active gelatin or by the addition of middle chalcogen sensitizers, such as disclosed by Research Disclosure, Item 17643, cited above, Section III. Reduction and other conventional chemical sensitization techniques disclosed therein which do not unacceptably reduce contrast can also be employed.
Spectral sensitization of the high contrast silver halide emulsions is not required, but can be undertaken conventional spectral sensitizers, singly or in combination, as illustrated by Research Disclosure, Item 17643, cited above Section IV. For black-and-white imaging orthochromatic and panchromatic sensitizations are frequently preferred.
By suitable choice of substituent groups the dyes can be cationic, anionic or nonionic. Preferred dyes are cationic cyanine and merocyanine dyes. Emulsions containing cyanine and merocyanine dyes have been observed to exhibit relatively high contrasts. Spectral sensitizing dyes specifically preferred for use in the practice of this invention are as follows:
______________________________________
SS-1 Anhydro-5,5'-dichloro-9-ethyl-3,3'-bis-(3-
sulfopropyl)oxacarbocyanine hydroxide,
sodium salt
SS-2 5,5',6,6'-Tetrachloro-1,1',3,3'-tetra-
ethylbenzimidazolocarbocyanine iodide
SS-3 3,3'-Diethyl-9-methylthiacarbocyanine
bromide
SS-4 3,3-Diethyloxacarbocyanine iodide
SS-5 5,5'-Dichloro-3,3',9-triethylthiacarbo-
cyanine bromide
SS-6 3,3'-Diethylthiocarbocyanine iodide
SS-7 5,5'-Dichloro-2,2'-diethylthiocarbocyanine,
-p-toluene sulfonate salt
SS-8 3-Carboxymethyl-5-[(3-methyl-2-thia-
zolidinylidene)-2-methylethylidene]rhodanine
SS-9 3-Ethyl-3-[(3-ethyl-2-thiazolidinylidene)-
2-methylethylidene]rhodanine
SS-10 5-[(3-{2-Carboxyethyl}-2-thia-
zolidinylidene)ethylidene]-3-ethylrhodanine
SS-11 1-Carboxymethyl-5-[(3-ethyl-2-benzothia-
zolinylidene)ethylidene]-3-phenyl-2-thio-
hydantoin
SS-12 1-Carboxymethyl-5-[(1-ethyl-2(H)--naphtho-
{1,2-d}thiazolin-2-ylidene)ethyli-
dene]-3-phenyl-2-thiohydantoin
SS-13 3-Carboxymethyl-5-[(3-ethyl-2-benzothia-
zolinylidene)ethylidene]rhodanine
SS-14 5-[(3-Ethyl-2-benzoxazolinylidene)ethyl-
idene]-3-heptyl-2-thio-2,4-oxazolidinedione
SS-15 3-Carboxymethyl-5-(3-ethyl-2-benzothia-
zolinylidene)rhodanine
SS-16 3-Carboxymethyl-5-(3-methyl-2-benzoxa-
zolinylidene)rhodanine
SS-17 3-Ethyl-5-[(3-ethyl-2-benzoxazolinyli-
dene)ethylidene]rhodanine
______________________________________
The photographic elements can be protected against fog by incorporation of antifoggants and stabilizers in the element itself or in the developer in which the element is to be processed. Conventional antifoggants, such as those disclosed by Mifune et al U.S. Pat. Nos. 4,241,164, 4,311,781, 4,166,742, and 4,237,214, and Okutsu et al U.S. Pat. No. 4,221,857, can be employed.
Preferred antifoggants are benzotriazoles, such as benzotriazole (that is, the unsubstituted benzotriazole compound), halo-substituted benzotriazoles (e.g., 5-chlorobenzotriazole, 4-bromobenzotriazole, and 4-chlorobenzotriazole), and alkyl-substituted benzotriazoles wherein the alkyl moiety contains from about 1 to 12 carbon atoms (e.g., 5-methylbenzotriazole).Other known useful antifoggants include benzimidazoles, such as 5-nitrobenzimidazoles; benzothiazoles, such as 5-nitrobenzothiazole and 5-methylbenzothiazole; heterocyclic thiones, such as, 1-methyl-2-tetrazoline-5-thione; triazines, such as 2,4-dimethylamino-6-chloro-5-triazine; benzoxazoles, such as ethylbenzoxazole; and pyrroles, such as 2,5-dimethylpyrrole.
The antifoggants can be employed in conventional concentrations. The benzotriazole can be located in the emulsion layer or in any hydrophilic colloid layer of the photographic element in a concentration in the range of from 10-4 to 10-1, preferably 10-3 to 3×10-2, mole per mole of silver. When the benzotriazole antifoggant is added to the developer, it is employed in a concentration of from 10-6 to about 10-1, preferably 3 ×10-5 and 3 ×10-2, mole per liter of developer.
In addition to the components of the photographic emulsions and other hydrophilic colloid layers described above it is appreciated that other conventional element addenda compatible with obtaining relatively high contrast silver images can be present. For example, the photographic elements can contain developing agents (described below in connection with the processing steps), development modifiers, plasticizers and lubricants, coating aids, antistatic material, and matting agents, these conventional materials being illustrated in Research Disclosure, cited above, Item 17643, Sections XII, XIII, XVI, and XX. The elements can be exposed as described in Section XVIII.
The light sensitive silver halide contained in the photographic elements can be processed following exposure to form a relatively high contrast image by associating the silver halide with an aqueous alkaline medium in the presence of a developing agent contained in the medium or the element. Processing formulations and techniques are described in L. F. Mason, Photographic Processing Chemistry, Focal Press, London, 1966; Processing Chemicals and Formulas, Publication J-1, Eastman Kodak Company, 1973; Photo-Lab Index, Morgan and Morgan, Inc., Dobbs Ferry, New York 1977; and Neblette's Handbook of Photographic and Reprographic Materials, Processes and Systems, VanNostrand Reinhold Company, 7th Ed., 1977.
It is a distinct advantage of the present invention that the photographic elements can be processed in conventional developers generally as opposed to specialized developers conventionally employed in conjunction with lith photographic elements to obtain very high contrast images. When the photographic elements contain incorporated developing agents, the elements can be processed in an activator, which can be identical to the developer in composition, but lacking a developing agent. Very high contrast images can be obtained at pH values in the range of from 10 to 13.0, preferably 10.5 to 12.5. It is also an advantage of this invention that relatively high contrast images can be obtained with higher concentrations of preservatives to reduce aerial oxidation of the developing agents, such as alkali sulfites (e.g., sodium or potassium sulfite, bisulfite or metasulfite) than has heretofore been feasible in traditional lith processing. This allows the developers to be stored for longer periods. Any preservative or preservative concentration conventional in lower contrast processing can be employed, such as, for instance, a sulfite ion concentration in the range of from about 0.15 to 1.2 mole per liter of developer.
The developers are typically aqueous solutions, although organic solvents, such as diethylene glycol, can also be included to facilitate the solvency of organic components. The developers contain one or a combination of conventional developing agents, such as polyhydroxybenzene, aminophenol, para-phenylenediamine, ascorbic acid, pyrazolidone, pyrazolone, pyrimidine, dithionite, hydroxylamine or other conventional developing agents. It is preferred to employ hydroquinone and 3-pyrazolidone developing agents in combination. The pH of the developers can be adjusted with alkali metal hydroxides and carbonates, borax and other basic salts. To reduce gelatin swelling during development, compounds such as sodium sulfate can be incorporated into the developer. Also, compounds such as sodium thiocyanate can be present to reduce granularity. Also, chelating and sequestering agents, such as ethylenediaminetetraacetic acid or its sodium salt, can be present. Generally, any conventional developer composition can be employed in the practice of this invention. Specific illustrative photographic developers are disclosed in the Handbook of Chemistry and Physics, 36th Edition, under the title "Photographic Formulae" at page 3001 et seq., and in Processing Chemicals and Formulas, 6th Edition, published by Eastman Kodak Company (1963), the disclosures of which are here incorporated by reference. The photographic elements can, of course, be processed with conventional developers for lith photographic elements, as illustrated by Masseth U.S. Pat. No. 3,573,914 and VanReusel U.K. Patent 1,376,600. A preferred developer is disclosed by P-7.
The invention can be better appreciated by reference to the following specific examples:
Comparative Coatings 1 through 12
Comparative Coatings 1 through 12 illustrate the poor level of pepper fog obtained when non-carbamate nucleating agents are used in a high-contrast lith film alone or in combination. The nucleating agents are 1-formyl-2-{4-[2-(2,4-di-t-pentylphenoxy)butyramido]phenyl}hydrazine (N-1) and 1-[4-(2-formylhydrazino)phenyl]-3-n-hexyl-urea (N-2).
On a polyester support was coated a layer comprising a monodispersed 0.22 μm AgBrI (2.5 mole % iodide) emulsion at 3.50 g/m2 Ag, 2.47 g/m2 gelatin, and 1.06 g/m2 of a latex copolymer of methyl acrylate, 2-methyl-2-acrylamido-1-propanesulfonic acid, and acetoacetoxyethyl methacrylate (90:4:6 monomer weight ratio). No chemical sensitization step was performed on the emulsion. The emulsion was spectrally sensitized with 216 mg/Ag mole of anhydro-5,5'-dichloro-9-ethyl-3,3'-di-(3-sulfopropyl)oxacarbocyanine hydroxide, triethylamine salt. Additions of nucleating agents N-1 and N-2 were made as listed in Table I, totaling 11×10-4 moles/Ag mole. A protective overcoat of 1.38 g/m2 gelatin was coated over the emulsion layer.
Samples of the coatings were exposed through a step tablet for 1 sec to a 600-watt 3000° K. quartz halogen source in an Eastman Model 1B Sensitometer and processed in a KODALITH Model 324® processor, with development in a developer of the type disclosed in U.S. Pat. No. 4,269,929 for 85 sec at 29.5° C. The speed, γ, and qualitatively rated dot quality and pepper fog levels are tabulated in Table I. The relative speeds are normalized to that of Coating 1 taken as 100.
The results of Table I show that combinations of nucleating agents N-1 and N-2 provided acceptable halftone image and pepper fog properties only in a single coating.
TABLE I
______________________________________
Moles ×
Nucleators N-1 and N-2
Coating
10.sup.4 Relative Dot Pepper
No. N-1 N-2 Speed γ
Quality
Fog
______________________________________
C-1 11 0 100 9.5 Soft Dots
None
C-2 10 1 162 15.8 Soft Dots
None
C-3 9 2 276 23.3 Marginal
None
C-4 8 3 302 24.2 Good Acceptable
C-5 7 4 309 24.3 Good Unacceptable
C-6 6 5 339 29.4 Good Unacceptable
C-7 5 6 389 30.1 Good Unacceptable
C-8 4 7 389 30.8 Good Unacceptable
C-9 3 8 363 35.8 Good Unacceptable
C-10 2 9 347 33.1 Good Unacceptable
C-11 1 10 363 31.3 Good Unacceptable
C-12 0 11 380 38.0 Good Severe
______________________________________
Comparative Coatings 13 through 32
These coatings show that excellent half-tone dot quality with complete absence of pepper fog can be obtained by use of the combination of nucleating agent N-1 and a nucleating agent of the invention, 2-(4-n-butoxycarbamidophenyl)-1-formylhydrazine (AH-7).
The coatings were prepared, exposed, and processed as described above, but with nucleating agent additions as listed in Table II. A total nucleating agent level of 19×10-4 moles per Ag mole was used in each coating. The results are tabulated in Table II. The relative speeds are normalized to that of Coating 1 of Table I taken as 100.
The results of Table II show that the combination of nucleating agents N-1 and AH-7 provided acceptable halftone image quality and pepper fog properties over a wide range of relative proportions. When nucleating agent AH-7 of the invention was used alone (Coating No. 32), excellent dot quality was obtained with only a slight level of pepper fog.
TABLE II
______________________________________
Nucleating Agents N-1 and AH-7
Coating
Moles × 10.sup.4
Relative Dot Pepper
No. N-1 AH-7 Speed γ
Quality Fog
______________________________________
13 19 0 89 10.4 Soft Dots
None
14 18 1 138 12.9 Soft Dots
None
15 17 2 214 13.8 Soft Dots
None
16 16 3 246 16.1 Marginally
None
Acceptable
17 15 4 234 18.3 Marginally
None
Acceptable
18 14 5 240 20.4 Good None
19 13 6 276 19.2 Good None
20 12 7 276 23.7 Excellent
None
21 11 8 276 24.9 Excellent
None
22 10 9 295 23.1 Excellent
None
23 9 10 276 20.7 Excellent
None
24 8 11 269 23.2 Excellent
None
25 7 12 295 25.2 Excellent
None
26 6 13 302 24.8 Excellent
None
27 5 14 289 24.3 Excellent
None
28 4 15 302 25.5 Excellent
None
29 3 16 295 24.3 Excellent
None
30 2 17 309 26.1 Excellent
Very
Slight
31 1 18 309 25.6 Excellent
Very
Slight
32 0 19 316 22.7 Excellent
Slight
______________________________________
Comparative Coatings 33 through 46
Comparative Example 3 shows that nucleating agent N-2 when used alone is unable to provide both good half-tone dot quality and an acceptable pepper fog level, while nucleating agent AH-7 of the invention used alone can provide excellent dot quality at an acceptable pepper fog level.
The coatings were prepared, exposed and processed as described above, but with the nucleating agent additions as listed in Table III. The results are tabulated in Table III, with the relative speeds normalized to that of Coating 1 of Table I taken as 100.
The results of Table III show that as the level of nucleating agent N-2 was increased, half-tone dot quality increased, but the pepper fog rapidly reached an unacceptable level. In the case of nucleating agent AH-7 of the invention, however, the pepper fog remained at a fully acceptable level while an excellent dot quality was achieved.
TABLE III
______________________________________
Nucleating Agents N-2 and AH-7
Rela-
Coating
Moles × 10.sup.4
tive Dot Pepper
No. N-2 AH-7 Speed γ
Quality
Fog
______________________________________
33 1 0 110 6.1 Soft Dot
Acceptable
34 2 0 214 12.7 Soft Dots
Acceptable
35 3 0 257 27.3 Marginal
Acceptable
36 4 0 295 15.6 Good Unacceptable
37 5 0 309 19.5 Good Unacceptable
48 6 0 331 27.6 Good Unacceptable
39 0 12 240 16.4 Marginal
Acceptable*
40 0 13 246 16.5 Marginal
Acceptable*
41 0 14 257 18.1 Good Acceptable*
42 0 15 257 17.4 Good Acceptable*
43 0 16 269 19.3 Excellent
Acceptable*
44 0 17 282 17.4 Excellent
Acceptable*
45 0 18 282 20.3 Excellent
Acceptable*
46 0 19 389 18.2 Excellent
Acceptable*
______________________________________
Investigations of 2-(4-hexoxycarbamidophenyl)-1-formylhydrazine (AH-13) and 1-formyl-2-(4-phenoxycarbamidophenyl)hydrazine (AH-14) also demonstrated satisfactory performance levels, whether employed alone or in combination with N-1.
Preparations of the novel unballasted arylhydrazides of this invention can be readily appreciated from the following illustrative preparation:
Preparation of 2-(4-ethylcarbamoyloxyphenyl)-1-formylhyrazine (AH-2)
Ethylchloroformate (9.01 g., 0.066 mol) was added dropwise to a suspension of 4-amino-1-(2'-formylhydrazino)benzene (10.0 g., 0.066 mol) and 2,6-lutidine (7.1 g, 0.066 mol) in acetonitrile (250 ml). Upon heating to reflux, the reaction mixture became homogenous. After three hours the reaction had gone to completion as evidenced by thin layer chromatographic examination. The solvent was removed under reduced pressure. The resulting solid was slurried in water and filtered to remove any water soluble amine starting material. The collected solid was slurried in diethyl ether and filtered to remove ether soluble impurities. The collected solid was recrytallized from methanol to yield a white solid (11.4 g., 77% of theoretical yield, melting point 134° C.).
The invention has been described in detail with particular reference to preferred embodiments thereof, but it will be understood that variations and modifications can be effected within the spirit and scope of the invention.
Claims (5)
1. An unballasted arylhydrazide, the aryl moiety of which is substituted with a group of the formula ##STR6## where one of X and X' represents -NH-, the other represents a divalent chalcogen, and R represents an aliphatic or aromatic residue.
2. An unballasted arylhydrazide according to claim 1 wherein R contains 8 or fewer carbon atoms.
3. An unballasted arylhydrazide according to claim 1 wherein X' is -NH-.
4. An unballasted arylhydrazide according to claim 1 wherein X is -O- or -S-.
5. An unballasted arylhydrazide according to claim 1 wherein R contains 2 to 6 carbon atoms, X is -O-, and X' is -NH-.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US06/761,716 USH41H (en) | 1984-10-09 | 1985-08-02 | Halftone imaging silver halide emulsions, photographic elements, and processes which employ novel arylhydrazides |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US06/658,921 US4560638A (en) | 1984-10-09 | 1984-10-09 | Halftone imaging silver halide emulsions, photographic elements, and processes which employ novel arylhydrazides |
| US06/761,716 USH41H (en) | 1984-10-09 | 1985-08-02 | Halftone imaging silver halide emulsions, photographic elements, and processes which employ novel arylhydrazides |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US06/658,921 Division US4560638A (en) | 1984-10-09 | 1984-10-09 | Halftone imaging silver halide emulsions, photographic elements, and processes which employ novel arylhydrazides |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| USH41H true USH41H (en) | 1986-04-01 |
Family
ID=27097713
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US06/761,716 Abandoned USH41H (en) | 1984-10-09 | 1985-08-02 | Halftone imaging silver halide emulsions, photographic elements, and processes which employ novel arylhydrazides |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | USH41H (en) |
-
1985
- 1985-08-02 US US06/761,716 patent/USH41H/en not_active Abandoned
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP0253665B1 (en) | Silver halide photographic lightsensitive systems | |
| US4224401A (en) | Silver halide photographic emulsions and image forming process | |
| EP0364166B1 (en) | Photographic element and process adapted to provide high contrast development | |
| US4560638A (en) | Halftone imaging silver halide emulsions, photographic elements, and processes which employ novel arylhydrazides | |
| CA2039565A1 (en) | High contrast photographic element including an aryl sulfonamidophenyl hydrazide containing an alkyl pyridinium group | |
| US4618574A (en) | High contrast photographic elements exhibiting reduced pepper fog | |
| US4634661A (en) | High contrast photographic elements exhibiting stabilized sensitivity | |
| JPS62180361A (en) | Image forming method | |
| EP0209010A2 (en) | High contrast photographic elements exhibiting reduced stress sensitivity | |
| GB2190510A (en) | Silver halide photographic material and image-forming method using the same | |
| EP0285308B2 (en) | High contrast photographic materials | |
| US4912016A (en) | High contrast photographic recording material and emulsion and process for their development | |
| USH41H (en) | Halftone imaging silver halide emulsions, photographic elements, and processes which employ novel arylhydrazides | |
| US5155007A (en) | Silver halide photographic material | |
| US4997980A (en) | Ethanedioic acid hydrazide compounds suitable for use in high contrast photographic emulsions | |
| JP2831063B2 (en) | Photographic elements with enhanced sensitometric properties | |
| USH1281H (en) | High-contrast silver halide photographic material | |
| US5306598A (en) | Silver halide photographic emulsions and elements for use in helium/neon laser and light-emitting diode exposure | |
| JPH0252A (en) | High contrast image forming method | |
| GB2297747A (en) | Hydrazides useful in photographic materials | |
| JP3464578B2 (en) | Silver halide photographic light-sensitive material and processing method thereof | |
| JPH04365032A (en) | Silver halogenide photosensitive material | |
| JP2835634B2 (en) | High-contrast silver halide photographic material | |
| EP0797789B1 (en) | Novel dihydrazides as dot-promoting agents in photographic image systems | |
| JP2857738B2 (en) | Silver halide photographic light-sensitive material capable of obtaining high-contrast images |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |