USH2035H1 - Method for applying a polymer coating to a substrate - Google Patents
Method for applying a polymer coating to a substrate Download PDFInfo
- Publication number
- USH2035H1 USH2035H1 US09/556,928 US55692800A USH2035H US H2035 H1 USH2035 H1 US H2035H1 US 55692800 A US55692800 A US 55692800A US H2035 H USH2035 H US H2035H
- Authority
- US
- United States
- Prior art keywords
- powder
- substrate
- thermal spray
- polymer
- polar
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000576 coating method Methods 0.000 title claims abstract description 64
- 239000000758 substrate Substances 0.000 title claims abstract description 56
- 239000011248 coating agent Substances 0.000 title claims abstract description 42
- 238000000034 method Methods 0.000 title claims abstract description 34
- 229920000642 polymer Polymers 0.000 title claims description 49
- 239000007921 spray Substances 0.000 claims abstract description 48
- 239000000843 powder Substances 0.000 claims abstract description 37
- 239000007789 gas Substances 0.000 claims abstract description 30
- 238000005260 corrosion Methods 0.000 claims abstract description 23
- 230000007797 corrosion Effects 0.000 claims abstract description 23
- 229920006113 non-polar polymer Polymers 0.000 claims abstract description 20
- 239000000203 mixture Substances 0.000 claims abstract description 9
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 7
- 239000001301 oxygen Substances 0.000 claims abstract description 7
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 7
- -1 polyethylene Polymers 0.000 claims description 17
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 12
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 10
- 229910052751 metal Inorganic materials 0.000 claims description 9
- 239000002184 metal Substances 0.000 claims description 9
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 claims description 9
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 claims description 9
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 claims description 8
- 238000005507 spraying Methods 0.000 claims description 8
- 239000004642 Polyimide Substances 0.000 claims description 7
- 239000001257 hydrogen Substances 0.000 claims description 7
- 229910052739 hydrogen Inorganic materials 0.000 claims description 7
- 229920001721 polyimide Polymers 0.000 claims description 7
- 230000008569 process Effects 0.000 claims description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 6
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 6
- 239000001569 carbon dioxide Substances 0.000 claims description 6
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 6
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 claims description 6
- BKIMMITUMNQMOS-UHFFFAOYSA-N nonane Chemical compound CCCCCCCCC BKIMMITUMNQMOS-UHFFFAOYSA-N 0.000 claims description 6
- 239000002245 particle Substances 0.000 claims description 6
- 229920002492 poly(sulfone) Polymers 0.000 claims description 6
- 235000013824 polyphenols Nutrition 0.000 claims description 6
- 229920002635 polyurethane Polymers 0.000 claims description 6
- 239000004814 polyurethane Substances 0.000 claims description 6
- 239000004699 Ultra-high molecular weight polyethylene Substances 0.000 claims description 5
- 229920000728 polyester Polymers 0.000 claims description 5
- 229920000785 ultra high molecular weight polyethylene Polymers 0.000 claims description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 4
- 239000004677 Nylon Substances 0.000 claims description 4
- 239000004696 Poly ether ether ketone Substances 0.000 claims description 4
- 239000004698 Polyethylene Substances 0.000 claims description 4
- 239000004743 Polypropylene Substances 0.000 claims description 4
- 239000002174 Styrene-butadiene Substances 0.000 claims description 4
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 claims description 4
- 229920003235 aromatic polyamide Polymers 0.000 claims description 4
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 claims description 4
- 239000000835 fiber Substances 0.000 claims description 4
- 229920001778 nylon Polymers 0.000 claims description 4
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 4
- 239000004417 polycarbonate Substances 0.000 claims description 4
- 229920000515 polycarbonate Polymers 0.000 claims description 4
- 229920002530 polyetherether ketone Polymers 0.000 claims description 4
- 229920000573 polyethylene Polymers 0.000 claims description 4
- 239000004926 polymethyl methacrylate Substances 0.000 claims description 4
- 229920001155 polypropylene Polymers 0.000 claims description 4
- 239000004800 polyvinyl chloride Substances 0.000 claims description 4
- 239000001294 propane Substances 0.000 claims description 4
- 229920003048 styrene butadiene rubber Polymers 0.000 claims description 4
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical group CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 claims description 3
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 3
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 claims description 3
- 239000004593 Epoxy Substances 0.000 claims description 3
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 claims description 3
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 claims description 3
- 239000004793 Polystyrene Substances 0.000 claims description 3
- 229920002396 Polyurea Polymers 0.000 claims description 3
- 229920001328 Polyvinylidene chloride Polymers 0.000 claims description 3
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 claims description 3
- 150000001298 alcohols Chemical class 0.000 claims description 3
- 229910052786 argon Inorganic materials 0.000 claims description 3
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 claims description 3
- 239000001273 butane Substances 0.000 claims description 3
- VNWKTOKETHGBQD-YPZZEJLDSA-N carbane Chemical compound [10CH4] VNWKTOKETHGBQD-YPZZEJLDSA-N 0.000 claims description 3
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 3
- 229920002301 cellulose acetate Polymers 0.000 claims description 3
- SLGWESQGEUXWJQ-UHFFFAOYSA-N formaldehyde;phenol Chemical compound O=C.OC1=CC=CC=C1 SLGWESQGEUXWJQ-UHFFFAOYSA-N 0.000 claims description 3
- 239000001307 helium Substances 0.000 claims description 3
- 229910052734 helium Inorganic materials 0.000 claims description 3
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 3
- 229920001903 high density polyethylene Polymers 0.000 claims description 3
- 239000004700 high-density polyethylene Substances 0.000 claims description 3
- 150000002431 hydrogen Chemical class 0.000 claims description 3
- 229910000037 hydrogen sulfide Inorganic materials 0.000 claims description 3
- 229910052743 krypton Inorganic materials 0.000 claims description 3
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 claims description 3
- 229920000126 latex Polymers 0.000 claims description 3
- 239000004816 latex Substances 0.000 claims description 3
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 claims description 3
- 229910052754 neon Inorganic materials 0.000 claims description 3
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 claims description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 claims description 3
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims description 3
- 229920001568 phenolic resin Polymers 0.000 claims description 3
- 229920001748 polybutylene Polymers 0.000 claims description 3
- 229920001296 polysiloxane Polymers 0.000 claims description 3
- 229920002223 polystyrene Polymers 0.000 claims description 3
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 3
- 229920000915 polyvinyl chloride Polymers 0.000 claims description 3
- 239000005033 polyvinylidene chloride Substances 0.000 claims description 3
- 238000007788 roughening Methods 0.000 claims description 3
- 239000011115 styrene butadiene Substances 0.000 claims description 3
- 239000011269 tar Substances 0.000 claims description 3
- 229920001169 thermoplastic Polymers 0.000 claims description 3
- 229920001187 thermosetting polymer Polymers 0.000 claims description 3
- 239000004416 thermosoftening plastic Substances 0.000 claims description 3
- 229920001567 vinyl ester resin Polymers 0.000 claims description 3
- 239000001993 wax Substances 0.000 claims description 3
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 claims 2
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 claims 2
- 239000004810 polytetrafluoroethylene Substances 0.000 claims 2
- 238000004140 cleaning Methods 0.000 claims 1
- 239000000654 additive Substances 0.000 abstract description 6
- 230000001590 oxidative effect Effects 0.000 abstract description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 16
- 230000003647 oxidation Effects 0.000 description 9
- 238000007254 oxidation reaction Methods 0.000 description 9
- 150000002500 ions Chemical class 0.000 description 7
- 229920006112 polar polymer Polymers 0.000 description 7
- 238000010521 absorption reaction Methods 0.000 description 6
- 238000003780 insertion Methods 0.000 description 6
- 230000037431 insertion Effects 0.000 description 6
- 238000002485 combustion reaction Methods 0.000 description 5
- 229940098458 powder spray Drugs 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 230000035515 penetration Effects 0.000 description 3
- 230000010287 polarization Effects 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 229920000271 Kevlar® Polymers 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000008030 elimination Effects 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 239000004761 kevlar Substances 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 229920000052 poly(p-xylylene) Polymers 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- JHWNWJKBPDFINM-UHFFFAOYSA-N Laurolactam Chemical compound O=C1CCCCCCCCCCCN1 JHWNWJKBPDFINM-UHFFFAOYSA-N 0.000 description 1
- 229920000299 Nylon 12 Polymers 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000037429 base substitution Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000002144 chemical decomposition reaction Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000009969 flowable effect Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 235000003642 hunger Nutrition 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 238000005325 percolation Methods 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000007127 saponification reaction Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 150000004756 silanes Chemical class 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000037351 starvation Effects 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical compound FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D1/00—Processes for applying liquids or other fluent materials
- B05D1/02—Processes for applying liquids or other fluent materials performed by spraying
- B05D1/08—Flame spraying
- B05D1/10—Applying particulate materials
Definitions
- the present invention relates generally to corrosion resistant coatings for metallic or nonmetallic substrates, and more particularly to novel non-polar or non-polarizable polymer corrosion resistant coatings and system and method for applying the coatings.
- the invention solves or substantially reduces in critical importance the problems with corrosion resistant polymer coatings in the prior art wherein non-polar and preferably also non-polarizable polymer powders are deposited by high temperature thermal and impact energy spray or plasma spray process as coatings for corrosion protection for metallic substrates.
- High temperature is considered herein to mean a temperature at which oxidation of the polymer may occur.
- Water being a polar molecule, has an affinity for other polar molecules, including polar polymers, additives and substrates, but has no affinity for non-polar polymers.
- the non-polar materials in the coatings of the invention act to prevent water and dissolved ions from absorbing in, percolating through, or deteriorating the coating, and coating/substrate interface which allows corroding of the substrate.
- the surface of the substrate may need to be roughened, such as by mechanical roughening (abrasion, sanding or the like) or by applying a semi-molten metal fiber or particle layer to the substrate prior to coating.
- the invention is further enhanced if the metal is a less corrosion prone version of the substrate metal being protected.
- Another aspect of the invention is the prevention of non-polar polymers, additives and fillers from being polarized by oxidation during the high temperature thermal spray, plasma spray, or subsequent cure of the coating.
- oxidation may be prevented first by using a mixture of a shielding gas or reducing gas, or combination of the two, at one or more locations along the thermal spray to capture or preferentially react with ambient oxygen or residual oxy/fuel thermal spray oxygen.
- An additional advantage of the invention is substantial elimination of voids in the sprayed coating resulting from the momentum of impact from the velocity sprayed powder particles. Adsorption of water within thermal sprayed powder coatings is avoided by the elimination of free volume voids.
- the free volume in conventional coatings results from evaporation of solvents, condensing coatings with random voids, condensation chain extensions of oligomers with random voids, or cross-linking with random residual voids.
- corrosion resistant non-polar polymer coatings and method for applying the coatings to substrates wherein a source of non-polar polymer powder is deposited as a coating onto the surface of a substrate by high temperature thermal spray, wherein the non-polar character of the powder and any additives thereto is substantially preserved during the high temperature thermal spray by using a mixture of a non-oxidizing shielding gas or reducing gas, or combination of the two, at one or more locations along the thermal spray to displace or react with ambient oxygen.
- FIG. 1 is a schematic illustration in a sectional view of the undercutting of a polar polymer coating by water absorption and migration;
- FIG. 2 shows a sectional view of a non-polar polymer coating deposited on a substrate in accordance with the invention and illustrating water beading on the coating without absorption;
- FIG. 3 is a schematic sectional view of a non-polar polymer coating of the invention applied over a substrate having a particulate layer first applied thereon;
- FIG. 4 shows schematically in axial section a thermal spray device useful in the application of polymer powder spray with the insertion of reducing and shielding gases to prevent oxidation and polarization in the polymer during coating of a substrate according to the invention
- FIG. 5 is a schematic illustration in axial section of a thermal spray device useful in the application of polymer powder spray with the insertion of excess reducing gas in the combustion chamber, and insertion of reducing and/or shielding gases along the thermal spray direction for preventing oxidation and polarization of the polymer powder in the spray.
- FIG. 1 shown therein is an illustration of the disbandment of a polar polymer from the substrate from acid/base substitutions and/or chemical degradation, such as saponification process of a polar polymer coating and rapid further subsequent migration, absorption and undercutting of the coating by water and its contained chemical ions when driven by the accompanying created oxygen starvation galvanic corrosion potential cell activity.
- Contact of the polar polymer coating 11 with water 13 and its contained ions can result in the degradation of the polymer which may result in eventual contact of the water 13 and its contained ions with substrate 15 and undercutting and separation 17 of coating 11 from substrate 15 . Severe corrosion of substrate 15 by water and its contained ions may then result. Water 13 with sufficient ion content at high enough pH could chemically degrade the polymer coating 11 .
- non-polar polymer coating 21 applied to substrate 25 according to the invention.
- Water 23 being a polar molecule, in contact with coating 21 beads up on the non-polar polymer without absorption into the polymer, because the existence of non-polar covalent bonds only in the polymer provides chemical resistance and the lack of polar sites prevents moisture absorption or percolation.
- coating 21 of the invention comprises a non-polar or non-polarizable polymer that may be applied to a substrate 25 according to methods suggested herein below.
- Polymers that may be used in the practice of the invention in obtaining a corrosion resistant coating for a substrate may therefore be selected from polymer materials including thermoplastic type polymers including ultra-high molecular weight polyethylene (UMPE), polyethylene, high density polyethylene, polypropylene, nylon, polytetrafluoroethylene (TEFLON), polyvinyl-chloride, polybutylene, tar, wax, latex, polyvinylidene chloride, or other flowable powders, including pure and non-polar polymer copolymers of acrylic, polycarbonate, polyaramid (KEVLAR), polysulfone, polyimide, polymethylmethacrylate, cellulose acetate, polyurethane, phenolics, nitrophenolics, polyetheretherketone (PEEK), phenol-formaldehyde, polystyrene, acrylonitrile butadiene styrene (ABS), nylon, or thermoset polymers including acrylic, polycarbonate, polyaramid (KEVLAR), polys
- Non-polar or non-polarizable additives to the selected polymer may include pigments and beads based on polypropylene, polyethylene, Nylon 12, polyvinyl chloride (PVC), TEFLON, and pigments surface created to prevent water absorption or penetration, with, for example, stearic acid, silanes, silicon, or cross-linked barrier films such as parylene (polyparaxylylene) or other similar materials occurring to one skilled in the applicable art guided by these teachings, which may also enhance the water repellant attribute and consequently the corrosion resistance of the polymer coating.
- PVC polyvinyl chloride
- TEFLON polyvinyl chloride
- pigments surface created to prevent water absorption or penetration with, for example, stearic acid, silanes, silicon, or cross-linked barrier films such as parylene (polyparaxylylene) or other similar materials occurring to one skilled in the applicable art guided by these teachings, which may also enhance the water repellant attribute and consequently the corrosion resistance of the polymer coating.
- substrate surface 27 first be cleaned by any suitable process known in the applicable art, and then surface 27 may be roughened, such as by mechanical roughening, prior to the application of the polymer coating. Roughness to approximately 0.002 inch average was found sufficient for satisfactory adherence of polymer coating 21 to substrate 25 .
- a roughened surface on substrate 35 may be provided in the form of a layer 37 of metal fibers and/or particles applied to the surface of substrate 35 by any suitable means known in the art, such as by thermal or arc plasma spray.
- the application of a non-polar or non-polarizable polymer coating 31 over layer 37 as suggested in FIG. 3 will result in polymer penetration into and mechanical interlocking with the rough surface of layer 37 .
- Polymer layer 31 adheres to metal substrates to which the polymer might otherwise not satisfactorily adhere, and is resistant to penetration from water 33 .
- a sprayed metallic layer 37 may also provide galvanic protection to the substrate.
- Substrates 25 , 35 may optionally be heated during the spraying process by means (not shown) in order to prevent premature cooling of the applied polymer coating.
- thermal spray device 40 useful in the application of polymer powder spray 41 with the insertion of reducing or shielding gases 43 , or combination thereof, to prevent oxidation and polarization in the non-polar or non-polarizable polymer, additives and fillers during thermal spray coating of substrate 45 in accordance with the invention.
- a high velocity spray 46 originates within combustion chamber 47 .
- Spray device 40 may be in the form of high or low velocity thermal spray gun, plasma spray gun, fluidized bed, electrostatic spray gun, or other device suitable for applying the desired coating.
- Combustion chamber 47 may be of any suitable type for the intended purpose, such as metal or ceramic, fueled by propylene, propane, methane, natural gas, acetylene, or hydrogen.
- Operating temperature for thermal spray device 40 is typically in the range of from about 200 to 1,500° F. (preferably about 1,000° F.).
- the high velocity spray is typically applied at about 10 to 900 miles per hour (mph) (preferably about 700 mph).
- Oxidation of the sprayed materials within thermal spray 46 may be avoided using a mixture of shielding and reducing gases 43 at substantially any location or combination of locations along the direction of thermal spray 46 between combustion chamber 47 and substrate 45 .
- thermal spray device 50 useful in the application of polymer powder 51 spray provides for the addition of excess reducing gas 54 in combustion chamber 57 , in addition to the insertion of reducing and/or shielding gases 53 at one or more locations along the thermal spray 56 direction, including insertion with polymer powder 51 .
- shielding gas or reducing gas may be used as might occur to the skilled artisan as appropriate for the intended purpose, including shielding gases such as carbon dioxide, nitrogen, argon, helium, krypton, carbon monoxide, or neon, and reducing gases such as hydrogen, methane, ethane, propane, butane, pentane, hexane, septane, octane, nonane, decane, alcohols, acetylene, propylene, ethylene, butylene, pentylene, hexylene, septylene, octylene or hydrogen sulfide, and any selected mixture of suitable shielding and reducing gases.
- a preferred gas mixture used in demonstration of the invention was 90% carbon dioxide and 10% hydrogen. Tests using this mixture with UMPE on a high velocity, thermal spray machine showed a three-fold increase in corrosion resistance lifetime of a deposited polymer coating in a salt spray test chamber as compared to a coating applied without protective gas.
- the invention therefore provides a novel non-polar or non-polarizable polymer corrosion resistant coatings and system and method for applying the coatings. It is understood that certain modifications to the invention may be made as might occur to one skilled in the field of the invention within the scope of the appended claims. All embodiments contemplated hereunder that achieve the objects of the invention have therefore not been shown in complete detail. Other embodiments may be developed without departing from the spirit of the invention or from the scope of the appended claims.
Landscapes
- Coating By Spraying Or Casting (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
Abstract
Corrosion resistant non-polar polymer coatings and method for applying the coatings to substrates is described, wherein a source of non-polar polymer powder is deposited as a coating onto the surface of a substrate by high temperature thermal spray, wherein the non-polar character of the powder and any additives thereto is substantially preserved during the high temperature thermal spray by using a mixture of a non-oxidizing shielding gas or reducing gas, or combination of the two, at one or more locations along the thermal spray to displace or react with ambient oxygen.
Description
The invention described herein may be manufactured and used by or for the Government of the United States for all governmental purposes without the payment of any royalty.
The present invention relates generally to corrosion resistant coatings for metallic or nonmetallic substrates, and more particularly to novel non-polar or non-polarizable polymer corrosion resistant coatings and system and method for applying the coatings.
Conventional corrosion control or prevention coatings for metallic substrates typically use polar polymers in order to enhance adhesion to the substrate. However, the polar bonds represent a weakness in the coating of potentially allowing adsorption and transport of water and dissolved ions to the substrate and consequent corrosion of the substrate.
The invention solves or substantially reduces in critical importance the problems with corrosion resistant polymer coatings in the prior art wherein non-polar and preferably also non-polarizable polymer powders are deposited by high temperature thermal and impact energy spray or plasma spray process as coatings for corrosion protection for metallic substrates. High temperature is considered herein to mean a temperature at which oxidation of the polymer may occur. Water, being a polar molecule, has an affinity for other polar molecules, including polar polymers, additives and substrates, but has no affinity for non-polar polymers. Accordingly, the non-polar materials in the coatings of the invention act to prevent water and dissolved ions from absorbing in, percolating through, or deteriorating the coating, and coating/substrate interface which allows corroding of the substrate. Because non-polar polymers do not usually adhere well to most substrates, the surface of the substrate may need to be roughened, such as by mechanical roughening (abrasion, sanding or the like) or by applying a semi-molten metal fiber or particle layer to the substrate prior to coating. The invention is further enhanced if the metal is a less corrosion prone version of the substrate metal being protected.
Another aspect of the invention is the prevention of non-polar polymers, additives and fillers from being polarized by oxidation during the high temperature thermal spray, plasma spray, or subsequent cure of the coating. In accordance with the teachings of the invention, oxidation may be prevented first by using a mixture of a shielding gas or reducing gas, or combination of the two, at one or more locations along the thermal spray to capture or preferentially react with ambient oxygen or residual oxy/fuel thermal spray oxygen.
An additional advantage of the invention is substantial elimination of voids in the sprayed coating resulting from the momentum of impact from the velocity sprayed powder particles. Adsorption of water within thermal sprayed powder coatings is avoided by the elimination of free volume voids. The free volume in conventional coatings results from evaporation of solvents, condensing coatings with random voids, condensation chain extensions of oligomers with random voids, or cross-linking with random residual voids.
It is therefore a principal object of the invention to provide an improved corrosion resistant coating for metallic or non-metallic substrates.
It is a further object of the invention to provide a corrosion resistant coating using non-polar and non-polarizable polymers.
It is another object of the invention to provide low-cost corrosion resistant polymer coatings.
It is another object of the invention to provide void-free corrosion resistant polymer coatings for metallic substrates and method for applying the void-free coatings.
It is a further object of the invention to provide an improved method for applying corrosion resistant polymer coatings without oxidation of the polymer.
It is another object of the invention to provide an improved device to implement shielding with reducing gas for high velocity, high temperature thermal spray.
It is yet another object of the invention to provide a device, gas, or method for shielding the powder from oxidation during the spray process.
These and other objects of the invention will become apparent as the detailed description of representative embodiments proceeds.
In accordance with the foregoing principles and objects of the invention, corrosion resistant non-polar polymer coatings and method for applying the coatings to substrates is described, wherein a source of non-polar polymer powder is deposited as a coating onto the surface of a substrate by high temperature thermal spray, wherein the non-polar character of the powder and any additives thereto is substantially preserved during the high temperature thermal spray by using a mixture of a non-oxidizing shielding gas or reducing gas, or combination of the two, at one or more locations along the thermal spray to displace or react with ambient oxygen.
The invention will be more clearly understood from the following detailed description of representative embodiments thereof read in conjunction with the accompanying drawings wherein:
FIG. 1 is a schematic illustration in a sectional view of the undercutting of a polar polymer coating by water absorption and migration;
FIG. 2 shows a sectional view of a non-polar polymer coating deposited on a substrate in accordance with the invention and illustrating water beading on the coating without absorption;
FIG. 3 is a schematic sectional view of a non-polar polymer coating of the invention applied over a substrate having a particulate layer first applied thereon;
FIG. 4 shows schematically in axial section a thermal spray device useful in the application of polymer powder spray with the insertion of reducing and shielding gases to prevent oxidation and polarization in the polymer during coating of a substrate according to the invention; and
FIG. 5 is a schematic illustration in axial section of a thermal spray device useful in the application of polymer powder spray with the insertion of excess reducing gas in the combustion chamber, and insertion of reducing and/or shielding gases along the thermal spray direction for preventing oxidation and polarization of the polymer powder in the spray.
Referring now to FIG. 1, shown therein is an illustration of the disbandment of a polar polymer from the substrate from acid/base substitutions and/or chemical degradation, such as saponification process of a polar polymer coating and rapid further subsequent migration, absorption and undercutting of the coating by water and its contained chemical ions when driven by the accompanying created oxygen starvation galvanic corrosion potential cell activity. Contact of the polar polymer coating 11 with water 13 and its contained ions can result in the degradation of the polymer which may result in eventual contact of the water 13 and its contained ions with substrate 15 and undercutting and separation 17 of coating 11 from substrate 15. Severe corrosion of substrate 15 by water and its contained ions may then result. Water 13 with sufficient ion content at high enough pH could chemically degrade the polymer coating 11.
Referring now to FIG. 2, shown therein is an example non-polar polymer coating 21 applied to substrate 25 according to the invention. Water 23, being a polar molecule, in contact with coating 21 beads up on the non-polar polymer without absorption into the polymer, because the existence of non-polar covalent bonds only in the polymer provides chemical resistance and the lack of polar sites prevents moisture absorption or percolation. In accordance therefore with a principal feature of the invention, coating 21 of the invention comprises a non-polar or non-polarizable polymer that may be applied to a substrate 25 according to methods suggested herein below. Polymers that may be used in the practice of the invention in obtaining a corrosion resistant coating for a substrate may therefore be selected from polymer materials including thermoplastic type polymers including ultra-high molecular weight polyethylene (UMPE), polyethylene, high density polyethylene, polypropylene, nylon, polytetrafluoroethylene (TEFLON), polyvinyl-chloride, polybutylene, tar, wax, latex, polyvinylidene chloride, or other flowable powders, including pure and non-polar polymer copolymers of acrylic, polycarbonate, polyaramid (KEVLAR), polysulfone, polyimide, polymethylmethacrylate, cellulose acetate, polyurethane, phenolics, nitrophenolics, polyetheretherketone (PEEK), phenol-formaldehyde, polystyrene, acrylonitrile butadiene styrene (ABS), nylon, or thermoset polymers including acrylic, polycarbonate, polyaramid (KEVLAR), polysulfone, polyimide, polymethylmethacrylate, polyester, epoxy, vinyl ester, polyurethane, phenolic, styrene butadiene (SBR), silicone, polyimide, polyurea, or nitrophenolics. Although powder size range is not critical to the process described herein, the preferred size range for polymer powders useful in the practice of the invention may be from about 1 to about 250 microns. Non-polar or non-polarizable additives to the selected polymer (for example, for purposes of flow control or crystallinity control within the polymer) may include pigments and beads based on polypropylene, polyethylene, Nylon 12, polyvinyl chloride (PVC), TEFLON, and pigments surface created to prevent water absorption or penetration, with, for example, stearic acid, silanes, silicon, or cross-linked barrier films such as parylene (polyparaxylylene) or other similar materials occurring to one skilled in the applicable art guided by these teachings, which may also enhance the water repellant attribute and consequently the corrosion resistance of the polymer coating.
It is noted that non-polar polymers do not adhere to metallic substrates as well as polar polymers do. Accordingly, in the application of polymer coatings to metal substrates according to the invention, it is preferred that substrate surface 27 first be cleaned by any suitable process known in the applicable art, and then surface 27 may be roughened, such as by mechanical roughening, prior to the application of the polymer coating. Roughness to approximately 0.002 inch average was found sufficient for satisfactory adherence of polymer coating 21 to substrate 25.
Alternatively, as suggested in FIG. 3, a roughened surface on substrate 35 may be provided in the form of a layer 37 of metal fibers and/or particles applied to the surface of substrate 35 by any suitable means known in the art, such as by thermal or arc plasma spray. The application of a non-polar or non-polarizable polymer coating 31 over layer 37 as suggested in FIG. 3 will result in polymer penetration into and mechanical interlocking with the rough surface of layer 37. Polymer layer 31 adheres to metal substrates to which the polymer might otherwise not satisfactorily adhere, and is resistant to penetration from water 33. A sprayed metallic layer 37 may also provide galvanic protection to the substrate. Substrates 25,35 may optionally be heated during the spraying process by means (not shown) in order to prevent premature cooling of the applied polymer coating.
Referring now to FIG. 4, shown therein is a schematic illustration in axial section of thermal spray device 40 useful in the application of polymer powder spray 41 with the insertion of reducing or shielding gases 43, or combination thereof, to prevent oxidation and polarization in the non-polar or non-polarizable polymer, additives and fillers during thermal spray coating of substrate 45 in accordance with the invention. In the operation of device 40, a high velocity spray 46 originates within combustion chamber 47. Spray device 40 may be in the form of high or low velocity thermal spray gun, plasma spray gun, fluidized bed, electrostatic spray gun, or other device suitable for applying the desired coating. Application of the high temperature polymer powder spray may best be accomplished utilizing commercially available high-velocity thermal spray equipment manufactured by Weidman Inc., Fort Myers, Fla. Combustion chamber 47 may be of any suitable type for the intended purpose, such as metal or ceramic, fueled by propylene, propane, methane, natural gas, acetylene, or hydrogen. Operating temperature for thermal spray device 40 is typically in the range of from about 200 to 1,500° F. (preferably about 1,000° F.). The high velocity spray is typically applied at about 10 to 900 miles per hour (mph) (preferably about 700 mph).
Oxidation of the sprayed materials within thermal spray 46 may be avoided using a mixture of shielding and reducing gases 43 at substantially any location or combination of locations along the direction of thermal spray 46 between combustion chamber 47 and substrate 45. For example, in FIG. 5 thermal spray device 50 useful in the application of polymer powder 51 spray provides for the addition of excess reducing gas 54 in combustion chamber 57, in addition to the insertion of reducing and/or shielding gases 53 at one or more locations along the thermal spray 56 direction, including insertion with polymer powder 51. Any suitable shielding gas or reducing gas may be used as might occur to the skilled artisan as appropriate for the intended purpose, including shielding gases such as carbon dioxide, nitrogen, argon, helium, krypton, carbon monoxide, or neon, and reducing gases such as hydrogen, methane, ethane, propane, butane, pentane, hexane, septane, octane, nonane, decane, alcohols, acetylene, propylene, ethylene, butylene, pentylene, hexylene, septylene, octylene or hydrogen sulfide, and any selected mixture of suitable shielding and reducing gases. A preferred gas mixture used in demonstration of the invention was 90% carbon dioxide and 10% hydrogen. Tests using this mixture with UMPE on a high velocity, thermal spray machine showed a three-fold increase in corrosion resistance lifetime of a deposited polymer coating in a salt spray test chamber as compared to a coating applied without protective gas.
As noted above, a significant additional advantage is realized in the high velocity high temperature application of non-polar polymer coatings, in that the momentum of the powder particles striking the substrate results in a substantially void free coating that further precludes the adsorption of water into the coating and subsequent corrosion of the substrate.
The invention therefore provides a novel non-polar or non-polarizable polymer corrosion resistant coatings and system and method for applying the coatings. It is understood that certain modifications to the invention may be made as might occur to one skilled in the field of the invention within the scope of the appended claims. All embodiments contemplated hereunder that achieve the objects of the invention have therefore not been shown in complete detail. Other embodiments may be developed without departing from the spirit of the invention or from the scope of the appended claims.
Claims (18)
1. A method for applying a corrosion resistant non-polar polymer coating to a substrate comprising the steps of:
(a) providing a source of non-polar polymer powder,
(b) generating a high temperature thermal spray of said powder for spraying said powder onto a substrate;
(c) introducing into said thermal spray at least one gas for substantially displacing or reacting with oxygen in said thermal spray and substantially preserving the non-polar character of said powder during the step of spraying said powder onto a substrate; and
(d) applying said powder as a coating onto said substrate using said thermal spray.
2. The method of claim 1 wherein said non-polar polymer powder comprises a thermoplastic type polymer selected from the group consisting of polyethylene, ultra-high molecular weight polyethylene, high density polyethylene, polypropylene, nylon, polytetrafluoroethylene, polystyrene, polyester, acrylic, polymethylmethacrylate, acrylonitrile butadiene styrene, polyvinyl-chloride, polybutylene, polycarbonate, polyaramid, polysulfone, polyimide, tar, wax, latex, polyurethane, polyvinylidene chloride, cellulose acetate, phenolics, nitrophenolics, polyetheretherketone, and phenol-formaldehyde, or a thermoset type polymer selected from the group consisting of polyester, epoxy, acrylic, vinyl ester, polyurethane, phenolic, styrene butadiene, silicone, polyimide, polyurea, polysulfone, and nitrophenolics.
3. The method of claim 1 wherein the step of generating a high temperature thermal spray of said powder is performed using a thermal spray gun.
4. The method of claim 3 wherein said powder is sprayed at a velocity of about 10 to 900 mph.
5. The method of claim 4 wherein said powder is sprayed at a velocity of about 700 mph.
6. The method of claim 1 wherein said polymer powder is in the size range of from about 1 to about 250 microns.
7. The method of claim 1 wherein said at least one gas is selected from the group consisting of carbon dioxide, nitrogen, argon, helium, krypton, carbon monoxide, neon, hydrogen, methane, ethane, propane, butane, pentane, hexane, septane, octane, nonane, decane, alcohols, acetylene, propylene, ethylene, butylene, pentylene, hexylene, septylene, octylene and hydrogen sulfide.
8. The method of claim 7 wherein the step of introducing at least one gas is performed using a gas mixture consisting essentially of 90% carbon dioxide and 10% hydrogen.
9. The method of claim 1 further comprising the steps of providing said substrate, cleaning a surface of said substrate to which said polymer coating is to be applied, and roughening said surface to a roughness of about 0.002 inch average prior to the application of said polymer coating.
10. A method for applying a corrosion resistant non-polar polymer coating to a substrate comprising the steps of:
(a) providing a substrate for receiving a polymer coating;
(b) spraying onto said substrate a layer of metal fibers or particles;
(c) providing a source of non-polar polymer powder;
(d) generating a high temperature thermal spray of said powder for spraying said powder onto said substrate;
(e) introducing into said thermal spray at least one gas for substantially displacing or reacting with oxygen in said thermal spray and substantially preserving the non-polar character of said powder during the step of spraying said powder onto a substrate; and
(f) applying said powder as a coating onto said substrate using said thermal spray.
11. The method of claim 10 wherein the step of spraying said substrate with a layer of metal fibers or particles is performed using a thermal spray process.
12. The method of claim 10 wherein said non-polar polymer powder comprises a thermoplastic type polymer selected from the group consisting of polyethylene, ultra-high molecular weight polyethylene, high density polyethylene, polypropylene, nylon, polytetrafluoroethylene, polystyrene, polyester, acrylic, polymethylmethacrylate, acrylonitrile butadiene styrene, polyvinyl-chloride, polybutylene, polycarbonate, polyaramid, polysulfone, polyimide, tar, wax, latex, polyurethane, polyvinylidene chloride, cellulose acetate, phenolics, nitrophenolics, polyetheretherketone, and phenol-formaldehyde, or a thermoset type polymer selected from the group consisting of polyester, epoxy, acrylic, vinyl ester, polyurethane, phenolic, styrene butadiene, silicone, polyimide, polyurea, polysulfone, and nitrophenolics.
13. The method of claim 10 wherein the step of generating a high temperature thermal spray of said powder is performed using a thermal spray gun.
14. The method of claim 13 wherein said powder is sprayed at a velocity of about 10 to 900 mph.
15. The method of claim 14 wherein said powder is sprayed at a velocity of about 700 mph.
16. The method of claim 10 wherein said polymer powder is in the size range of from about 1 to about 250 microns.
17. The method of claim 10 wherein said at least one gas is selected from the group consisting of carbon dioxide, nitrogen, argon, helium, krypton, carbon monoxide, neon, hydrogen, methane, ethane, propane, butane, pentane, hexane, septane, octane, nonane, decane, alcohols, acetylene, propylene, ethylene, butylene, pentylene, hexylene, septylene, octylene and hydrogen sulfide.
18. The method of claim 17 wherein the step of introducing at least one gas is performed using a gas mixture consisting essentially of 90% carbon dioxide and 10% hydrogen.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US09/556,928 USH2035H1 (en) | 2000-04-21 | 2000-04-21 | Method for applying a polymer coating to a substrate |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US09/556,928 USH2035H1 (en) | 2000-04-21 | 2000-04-21 | Method for applying a polymer coating to a substrate |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| USH2035H1 true USH2035H1 (en) | 2002-07-02 |
Family
ID=24223384
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/556,928 Abandoned USH2035H1 (en) | 2000-04-21 | 2000-04-21 | Method for applying a polymer coating to a substrate |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | USH2035H1 (en) |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20030209610A1 (en) * | 2001-12-14 | 2003-11-13 | Edward Miller | High velocity oxygen fuel (HVOF) method for spray coating non-melting polymers |
| US20050048218A1 (en) * | 2003-08-29 | 2005-03-03 | Weidman Larry G. | Process for coating substrates with polymeric compositions |
| US20050233066A1 (en) * | 2004-04-20 | 2005-10-20 | Takuya Sunagawa | Manufacturing method of chemical battery electrode and battery |
| US20060024440A1 (en) * | 2004-07-27 | 2006-02-02 | Applied Materials, Inc. | Reduced oxygen arc spray |
| US20160017178A1 (en) * | 2013-03-15 | 2016-01-21 | Clariant International Ltd. | Cellulose-Containing Paint Systems |
| CN113549863A (en) * | 2020-04-26 | 2021-10-26 | 中国兵器工业第五九研究所 | Wear-resistant superhydrophobic substrate protective coating and preparation method thereof |
Citations (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3723165A (en) * | 1971-10-04 | 1973-03-27 | Metco Inc | Mixed metal and high-temperature plastic flame spray powder and method of flame spraying same |
| US4206248A (en) | 1977-03-03 | 1980-06-03 | Eltreva Ag | Process for depositing a selected coating having dual layers |
| US4707379A (en) * | 1985-12-24 | 1987-11-17 | Ceskoslovenska Akademie Ved | Protective layer for carbonaceous materials and method of applying the same |
| US4812335A (en) | 1986-10-27 | 1989-03-14 | Nippon Paint Co., Ltd. | Method of painting |
| US5041713A (en) | 1988-05-13 | 1991-08-20 | Marinelon, Inc. | Apparatus and method for applying plasma flame sprayed polymers |
| US5106910A (en) | 1989-11-09 | 1992-04-21 | Applied Polymer Systems | High concentration acid resistant coatings |
| US5285967A (en) | 1992-12-28 | 1994-02-15 | The Weidman Company, Inc. | High velocity thermal spray gun for spraying plastic coatings |
| US5322715A (en) | 1989-12-23 | 1994-06-21 | Basf Lacke+Farber Aktiengesellschaft | Process for production of a multicoat coating |
| US5439710A (en) | 1991-10-17 | 1995-08-08 | Herberts G.M.B.H. | Method of producing multilayer coatings, more particularly for lacquering of motor vehicles, having good adhesion between layers |
| US5585146A (en) | 1992-12-15 | 1996-12-17 | Nippon Paint Co., Ltd. | Two coat one bake coating method |
-
2000
- 2000-04-21 US US09/556,928 patent/USH2035H1/en not_active Abandoned
Patent Citations (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3723165A (en) * | 1971-10-04 | 1973-03-27 | Metco Inc | Mixed metal and high-temperature plastic flame spray powder and method of flame spraying same |
| US4206248A (en) | 1977-03-03 | 1980-06-03 | Eltreva Ag | Process for depositing a selected coating having dual layers |
| US4707379A (en) * | 1985-12-24 | 1987-11-17 | Ceskoslovenska Akademie Ved | Protective layer for carbonaceous materials and method of applying the same |
| US4812335A (en) | 1986-10-27 | 1989-03-14 | Nippon Paint Co., Ltd. | Method of painting |
| US5041713A (en) | 1988-05-13 | 1991-08-20 | Marinelon, Inc. | Apparatus and method for applying plasma flame sprayed polymers |
| US5106910A (en) | 1989-11-09 | 1992-04-21 | Applied Polymer Systems | High concentration acid resistant coatings |
| US5322715A (en) | 1989-12-23 | 1994-06-21 | Basf Lacke+Farber Aktiengesellschaft | Process for production of a multicoat coating |
| US5439710A (en) | 1991-10-17 | 1995-08-08 | Herberts G.M.B.H. | Method of producing multilayer coatings, more particularly for lacquering of motor vehicles, having good adhesion between layers |
| US5585146A (en) | 1992-12-15 | 1996-12-17 | Nippon Paint Co., Ltd. | Two coat one bake coating method |
| US5285967A (en) | 1992-12-28 | 1994-02-15 | The Weidman Company, Inc. | High velocity thermal spray gun for spraying plastic coatings |
Non-Patent Citations (1)
| Title |
|---|
| Metals Handbook, Ninth Edition, vol. 5: Surface Cleaning, Finishing, and Coating, American Society for Metals, pp. 361 and 375, 1982. * |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20030209610A1 (en) * | 2001-12-14 | 2003-11-13 | Edward Miller | High velocity oxygen fuel (HVOF) method for spray coating non-melting polymers |
| US20050048218A1 (en) * | 2003-08-29 | 2005-03-03 | Weidman Larry G. | Process for coating substrates with polymeric compositions |
| US20050233066A1 (en) * | 2004-04-20 | 2005-10-20 | Takuya Sunagawa | Manufacturing method of chemical battery electrode and battery |
| US20060024440A1 (en) * | 2004-07-27 | 2006-02-02 | Applied Materials, Inc. | Reduced oxygen arc spray |
| US20160017178A1 (en) * | 2013-03-15 | 2016-01-21 | Clariant International Ltd. | Cellulose-Containing Paint Systems |
| CN113549863A (en) * | 2020-04-26 | 2021-10-26 | 中国兵器工业第五九研究所 | Wear-resistant superhydrophobic substrate protective coating and preparation method thereof |
| CN113549863B (en) * | 2020-04-26 | 2022-10-11 | 中国兵器工业第五九研究所 | Wear-resistant superhydrophobic substrate protective coating and preparation method thereof |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP0822995B1 (en) | Modification of surfaces of polymers | |
| Gettings et al. | Surface analysis of polysiloxane/metal oxide interfaces | |
| US6342272B1 (en) | Multi-layer corrosion resistant coatings | |
| US4698256A (en) | Articles coated with adherent diamondlike carbon films | |
| USH2035H1 (en) | Method for applying a polymer coating to a substrate | |
| US20050048218A1 (en) | Process for coating substrates with polymeric compositions | |
| Ronkainen et al. | Characterization of wear surfaces in dry sliding of steel and alumina on hydrogenated and hydrogen-free carbon films | |
| O'kane et al. | Preparation and characterization of glow discharge fluorocarbon-type polymers | |
| JP2010031376A (en) | Method for removal of polymeric coating layer from coated substrate | |
| US5279866A (en) | Process for depositing wear-resistant coatings | |
| Wang et al. | Characterization of surface properties of plasma‐polymerized fluorinated hydrocarbon layers: Surface stability as a requirement for permanent water repellency | |
| US6746721B1 (en) | Polar polymeric coating | |
| WO2001012705A1 (en) | Product having a thin film polymer coating and method of making | |
| Eufinger et al. | DC‐Plasma Polymerization of Hexamethyldisiloxane Part II. Surface and Interface Characterization of Films Deposited on Stainless‐steel Substrates | |
| US6174405B1 (en) | Liquid crystal polymer in situ coating for co-cured composite structure | |
| Gravis et al. | Role of adsorbed water on PEEK surfaces prior to− and after− atmospheric plasma activation | |
| Yan et al. | Peel‐strength behavior of bilayer thermal‐sprayed polymer coatings | |
| Ross | Coatings for Video Discs | |
| DiFelice | An investigation of plasma pretreatments and plasma polymerized thin films for titanium/polyimide adhesion | |
| CA2165585A1 (en) | Method for the prevention of cathodic disbondment | |
| Sadhir et al. | Deposition of conducting thin films of organometallic monomers by plasma polymerization | |
| Kieser et al. | Large scale microwave plasma polymerization: A study on hydrogenated carbon films | |
| Moser et al. | A versatile plasma technique to improve plastic materials against gas and water-vapour permeation | |
| JPH01280304A (en) | Highly anti-corrosion and impact resistant magnet | |
| Lin et al. | Methane plasma polymerization by low‐temperature cascade arc discharge for enhanced adhesion of primer to thermoplastic olefins |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: AIR FORCE, GOVERNMENT OF THE UNITED STATES OF AMER Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HALLIWELL, MICHAEL J.;REEL/FRAME:010794/0276 Effective date: 20000412 |
|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |