US9867651B2 - Systems and methods for estimating tissue parameters using surgical devices - Google Patents
Systems and methods for estimating tissue parameters using surgical devices Download PDFInfo
- Publication number
- US9867651B2 US9867651B2 US14/297,812 US201414297812A US9867651B2 US 9867651 B2 US9867651 B2 US 9867651B2 US 201414297812 A US201414297812 A US 201414297812A US 9867651 B2 US9867651 B2 US 9867651B2
- Authority
- US
- United States
- Prior art keywords
- tissue
- mass
- estimated
- thermal resistance
- scale factor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/1206—Generators therefor
- A61B18/1233—Generators therefor with circuits for assuring patient safety
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B18/1442—Probes having pivoting end effectors, e.g. forceps
- A61B18/1445—Probes having pivoting end effectors, e.g. forceps at the distal end of a shaft, e.g. forceps or scissors at the end of a rigid rod
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/01—Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/05—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves
- A61B5/053—Measuring electrical impedance or conductance of a portion of the body
- A61B5/0538—Measuring electrical impedance or conductance of a portion of the body invasively, e.g. using a catheter
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/48—Other medical applications
- A61B5/4836—Diagnosis combined with treatment in closed-loop systems or methods
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00571—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
- A61B2018/00577—Ablation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00642—Sensing and controlling the application of energy with feedback, i.e. closed loop control
- A61B2018/00648—Sensing and controlling the application of energy with feedback, i.e. closed loop control using more than one sensed parameter
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00696—Controlled or regulated parameters
- A61B2018/00702—Power or energy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00696—Controlled or regulated parameters
- A61B2018/00755—Resistance or impedance
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00773—Sensed parameters
- A61B2018/00827—Current
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00773—Sensed parameters
- A61B2018/00892—Voltage
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2505/00—Evaluating, monitoring or diagnosing in the context of a particular type of medical care
- A61B2505/05—Surgical care
Definitions
- the present disclosure relates to estimating tissue parameters. More particularly, the present disclosure relates to systems and methods for estimating tissue parameters, such as tissue mass, via surgical devices and controlling these surgical devices based on the estimated tissue parameters.
- a linear clamping, cutting, and stapling device This device may be employed in a surgical procedure to resect a cancerous or anomalous tissue from a gastro-intestinal tract.
- Conventional linear clamping, cutting and stapling instruments include a pistol grip-styled structure having an elongated shaft. The distal portion of the elongated shaft includes a pair of scissors-styled gripping elements, which clamp the open ends of the colon closed.
- one of the two scissors-styled gripping elements such as the anvil portion, moves or pivots relative to the overall structure, whereas the other gripping element remains fixed relative to the overall structure.
- the actuation of this scissoring device (the pivoting of the anvil portion) is controlled by a grip trigger maintained in the handle.
- the distal portion of the elongated shaft also includes a stapling mechanism.
- the fixed gripping element of the scissoring mechanism includes a staple cartridge receiving region and a mechanism for driving the staples up through the clamped end of the tissue against the anvil portion, thereby sealing the previously opened end.
- the scissoring elements may be integrally formed with the shaft or may be detachable such that various scissoring and stapling elements may be interchangeable.
- Electrosurgery involves the application of high-frequency electric current to cut or modify biological tissue. Electrosurgery is performed using an electrosurgical generator, an active electrode, and a return electrode.
- the electrosurgical generator also referred to as a power supply or waveform generator
- AC alternating current
- the alternating current typically has a frequency above 100 kilohertz (kHz) to avoid muscle and/or nerve stimulation.
- electrosurgery AC generated by the electrosurgical generator is conducted through tissue disposed between the active and return electrodes.
- the tissue's impedance converts the electrical energy (also referred to as electrosurgical energy) associated with the AC into heat, which causes the tissue temperature to rise.
- the electrosurgical generator controls the heating of the tissue by controlling the electric power (i.e., electrical energy per unit time) provided to the tissue.
- the electrosurgical energy is typically used for cutting, dissecting, ablating, coagulating, and/or sealing tissue.
- the two basic types of electrosurgery employed are monopolar and bipolar electrosurgery. Both types of electrosurgery use an active electrode and a return electrode.
- bipolar electrosurgery the surgical instrument includes an active electrode and a return electrode on the same instrument or in very close proximity to one another, usually causing current to flow through a small amount of tissue.
- the return electrode is located elsewhere on the patient's body and is typically not a part of the energy delivery device itself.
- the return electrode is part of a device usually referred to as a return pad.
- An electrosurgical generator includes a controller that controls the power applied to a load, i.e., the tissue, over some period of time.
- the power applied to the load is controlled based upon the power determined at the output of the electrosurgical generator and a power level set by the user or a power level needed to achieve a desired effect on the tissue.
- the power may also be controlled based on other parameters of the tissue being treated such as tissue temperature.
- the systems and methods of the present disclosure estimate the mass of tissue and a thermal resistance scale factor or a thermal coefficient between the tissue and a surgical instrument, such as sealing jaw members of an electrosurgical instrument.
- the level of power supplied to the tissue may be controlled based on the estimated mass of the tissue. Estimation can be performed by commonly available microprocessors, field programmable gate arrays (FPGAs), digital signal processors (DSPs), application specific integrated circuits (ASICs), or programmable DSPs.
- the present disclosure features a system that includes an electrosurgical generator and an energy delivery device, where the electrosurgical generator and the energy delivery device are electrically coupled to each other.
- the electrosurgical generator includes an output stage, a plurality of sensors, and a controller.
- the output stage is configured to generate electrosurgical energy
- the plurality of sensors is configured to sense voltage and current of the generated electrosurgical energy.
- the controller is coupled to the output stage to control the output stage.
- the controller includes a signal processor and an output controller.
- the signal processor estimates a change in tissue impedance based on the sensed voltage and current waveforms, estimates a change in tissue temperature based on the change in tissue impedance, and estimates mass of the tissue and a thermal resistance scale factor of the tissue and the energy delivery device based on the change in tissue temperature and known parameters of the energy delivery device.
- the output controller generates a control signal to control the output stage based on the estimated mass and the estimated thermal resistance scale factor.
- the generator may be a microwave generator and the energy delivery device may be a tissue ablation instrument.
- the signal processor samples voltage and current waveforms sensed by the plurality of voltage and current sensors a predetermined number of times, calculates an impedance of the tissue for each sampled voltage and current waveforms, estimates the change in impedance of the tissue, estimates the tissue temperature and the change in tissue temperature based on the estimated change in tissue impedance by using an equation relating the change in temperature to the change in tissue impedance, and estimates the mass of the tissue and a thermal resistance scale factor between the tissue and the energy deliver device based on the estimated temperature and the estimated change in tissue temperature.
- the signal processor further selects a maximum and a minimum among the estimated changes in temperature, calculates a time at which a predetermined percentage reduction occurs from the maximum to the minimum, calculates an estimate of a thermal resistance scale factor based on the calculated time, and calculates a mass estimate based on the estimate of the thermal resistance scale factor and the time.
- the present disclosure in another aspect, features a method of controlling a system that includes a generator that generates energy to treat tissue.
- the method includes providing a test signal to the tissue, sensing voltage and current waveforms of the test signal, estimating the change in tissue impedance based on the sensed voltage and current waveforms, estimating tissue temperature, change in tissue temperature, and change in temperature of an electrode of the system a predetermined number of times based on the estimated change in tissue impedance, estimating mass of the tissue and a thermal resistance scale factor between the tissue and the electrode, and generating a control signal to control an output stage of the generator based on the estimated mass of the tissue and/or the estimated thermal resistance scale factor.
- the mass of the tissue and the thermal resistance scale factor are estimated by calculating an initial mass estimate and an initial thermal resistance scale factor estimate for each sensed temperature, selecting one of the initial mass estimates as a starting mass estimate and one of the initial thermal resistance scale factor estimates as a starting thermal resistance scale factor estimate, setting a first derivative step for the mass estimate and a second derivative step for the thermal resistance scale factor estimate, and performing an iterative method to estimate the mass and thermal resistance scale factor of the tissue using the starting mass estimate, the starting thermal resistance scale factor estimate, and the first and second derivative steps.
- Estimating the mass of the tissue and the thermal resistance scale factor includes selecting a maximum and a minimum among the estimated changes in temperature, calculating a time at which a predetermined percentage reduction occurs from the maximum to the minimum, calculating an estimate of the thermal resistance scale factor based on the calculated time, and calculating a mass estimate based on the estimate of the thermal resistance scale factor estimate and the calculated time.
- the iterative method may be a gradient descent method that includes calculating a first temperature estimate and a first change in temperature estimate based on the mass estimate and the thermal resistance scale factor estimate, calculating a second temperature estimate and a second change in temperature estimate based on the mass estimate, the thermal resistance scale factor estimate, and a first derivative step for the mass estimate, calculating a third temperature estimate and a third change in temperature estimate based on the mass estimate, the thermal resistance scale factor estimate, and a second derivative step for the thermal resistance scale factor estimate, calculating first errors between the estimated temperature and the first temperature estimate, between the estimated temperature and the second temperature estimate, between the estimated change in temperature and the first change in temperature estimate, and between the estimated change in temperature and the second change in temperature estimate, calculating second errors between the estimated temperature and the first temperature estimate, between the estimated temperature and the third temperature estimate, between the estimated change in temperature and the first change in temperature estimate, and between the estimated change in temperature and the third change in temperature estimate, calculating a first error derivative based on the calculated first errors, calculating a second error derivative
- Calculating the updated mass estimate includes determining whether the first error derivative changes sign, reducing the first derivative step when it is determined that the first error derivative changes sign, and setting the mass estimate as the sum of the mass estimate and the first derivative step.
- Calculating the updated thermal resistance scale factor includes determining whether the second error derivative changes sign, reducing the second derivative step when it is determined that the second error derivative changes sign, and setting the thermal resistance scale factor estimate as the sum of the thermal resistance scale factor estimate and the second derivative step.
- Estimating the mass and the thermal resistance scale factor is based on a system of second order-differential equations of changes in tissue temperature.
- FIG. 1 is an illustration of an electrosurgical system in accordance with embodiments of the present disclosure
- FIG. 2 is a block diagram of a generator circuitry of the electrosurgical generator of FIG. 1 and an energy delivery device connected to the generator circuitry;
- FIG. 3 is a schematic diagram of the controller of FIG. 2 ;
- FIG. 4A is a front cross-sectional view of a jaw member assembly of an electrosurgical forceps of FIG. 1 , which incorporates temperature sensors;
- FIG. 4B is a perspective view of a stapling instrument and FIG. 4C is an expanded view of the distal tip of the stapling instrument of FIG. 4B according to embodiments of the present disclosure;
- FIG. 5 is a flow diagram illustrating a method of estimating tissue mass and the thermal resistance scale factor that may be performed by the digital signal processor of FIG. 2 in accordance with some embodiments of the present disclosure
- FIGS. 6A-6D are flow diagrams illustrating a gradient descent method of estimating tissue mass and the thermal resistance scale factor in accordance with further embodiments of the present disclosure
- FIG. 7 is a flow diagram of a non-iterative method of estimating tissue mass and the thermal resistance scale factor in accordance with still further embodiments of the present disclosure
- FIG. 8 is a flow diagram of a non-iterative method of estimating tissue mass and the thermal resistance scale factor in accordance with still further embodiments of the present disclosure.
- FIG. 9 is a flow diagram of a non-iterative method of estimating tissue mass and the thermal resistance scale factor in accordance with still further embodiments of the present disclosure.
- tissue mass is one of the main variations during sealing.
- smaller masses need a small amount of energy to avoid over cooking, while larger masses need more energy to achieve a tissue temperature within a reasonable amount of time.
- tissue temperature and pressure are significant factors which determine seal performance.
- tissue temperature can be determined without expensive temperature sensors built into the sealing instruments. This can be accomplished by determining the thermal resistance scale factors or the heat transfer coefficients between the tissue and the seal plates, which is dependent on the surface area of the tissue. Once the thermal resistance scale factors or heat transfer coefficients are determined, then the tissue temperature can be modeled using a known input energy.
- the systems and methods according to the present disclosure estimate the mass of tissue being treated based on the changes in tissue impedance and determine the thermal resistance scale factor (k) or the thermal coefficient of heat transfer between the tissue being treated and the energy delivery device, e.g., the seal plate, so that tissue temperature can be estimated over a cycle of an electrosurgical procedure, e.g., a sealing cycle.
- the mass of the tissue, the thermal resistance scale factor (k), and the thermal coefficient of heat transfer are estimated by modeling the temperatures of the tissue and the energy delivery device that is used to transmit electrosurgical energy to the tissue using a set or system of differential equations.
- the set of differential equations incorporates physical characteristics of the tissue and the energy delivery device.
- the physical characteristics include the specific heat of the tissue, the heat conductivity between the tissue and electrodes or antennas of the energy delivery device, and the relationship between changes in tissue resistance and the energy supplied to the tissue.
- the estimated mass, the estimated thermal resistance scale factor, and/or the estimated thermal coefficient of heat transfer may be incorporated into algorithms for controlling energy delivery to the tissue.
- the estimated mass and the estimated thermal coefficient of heat transfer or the thermal resistance scale factor may also be used to predict tissue temperature up to the point of loss of mass (either water or tissue). Once it is determined that there is a loss of mass, the mass and the thermal coefficient of heat transfer, or the thermal resistance scale factor may be further estimated to determine the loss in mass and to predict temperature above the boiling point of water or heat-related tissue mass loss (e.g., due to squeezing tissue between the jaw members of the electrosurgical forceps).
- tissue mass may also be useful in surgical procedures that employ surgical staplers.
- the tissue mass may be used to determine the tissue thickness or size so that the surgical stapler and its staples can be properly configured to staple the tissue. Otherwise, if the tissue is too thin, a normal size staple may damage the tissue and, if the tissue is too thick, a normal size staple may not be effective for stapling the tissue.
- Estimates of tissue mass may also be used in ablation procedures to adjust the microwave energy delivered to the tissue. Otherwise, too much energy delivered to a small mass would damage surrounding tissue and too little energy delivered to a large mass would not be sufficient for ablating tissue.
- the systems and methods for estimating tissue mass and the thermal coefficient of heat transfer or the thermal resistance scale factor may be incorporated into any type of surgical device for treating tissue.
- the systems and methods for estimating tissue mass and the thermal coefficient of heat transfer or the thermal resistance scale factor are described in the present disclosure in the context of electrosurgical systems.
- FIG. 1 illustrates an electrosurgical system 100 in accordance with some embodiments of the present disclosure.
- the electrosurgical system 100 includes an electrosurgical generator 102 which generates electrosurgical energy to treat tissue of a patient.
- the electrosurgical generator 102 generates an appropriate level of electrosurgical energy based on the selected mode of operation (e.g., cutting, coagulating, ablating, or sealing) and/or the sensed voltage and current waveforms of the electrosurgical energy.
- the electrosurgical system 100 may also include a plurality of output connectors corresponding to a variety of energy delivery devices, e.g., electrosurgical instruments.
- the electrosurgical system 100 further includes a number of energy delivery devices.
- system 100 includes monopolar electrosurgical instrument 110 having an electrode for treating tissue of the patient (e.g., an electrosurgical cutting probe or ablation electrode, also known as an electrosurgical pencil) with a return pad 120 .
- the monopolar electrosurgical instrument 110 can be connected to the electrosurgical generator 102 via one of the plurality of output connectors.
- the electrosurgical generator 102 may generate electrosurgical energy in the form of radio frequency (RF) energy.
- RF radio frequency
- the electrosurgical energy is supplied to the monopolar electrosurgical instrument 110 , which applies the electrosurgical energy to treat the tissue.
- the electrosurgical energy is returned to the electrosurgical generator 102 through the return pad 120 .
- the return pad 120 provides a sufficient contact area with the patient's tissue so as to minimize the risk of tissue damage due to the electrosurgical energy applied to the tissue.
- the electrosurgical system 100 also includes a bipolar electrosurgical instrument 130 .
- the bipolar electrosurgical instrument 130 can be connected to the electrosurgical generator 102 via one of the plurality of output connectors.
- the electrosurgical energy is supplied to one of the two jaw members of the bipolar electrosurgical instrument 130 , is applied to treat the tissue, and is returned to the electrosurgical generator 102 through the other of the two jaw members.
- the electrosurgical generator 102 may be any suitable type of generator and may include a plurality of connectors to accommodate various types of electrosurgical instruments (e.g., monopolar electrosurgical instrument 110 and bipolar electrosurgical instrument 130 ).
- the electrosurgical generator 102 may also be configured to operate in a variety of modes, such as ablation, cutting, coagulation, and sealing.
- the electrosurgical generator 102 may include a switching mechanism (e.g., relays) to switch the supply of RF energy among the connectors to which various electrosurgical instruments may be connected. For example, when an electrosurgical instrument 110 is connected to the electrosurgical generator 102 , the switching mechanism switches the supply of RF energy to the monopolar plug.
- the electrosurgical generator 102 may be configured to provide RF energy to a plurality instruments simultaneously.
- the electrosurgical generator 102 includes a user interface having suitable user controls (e.g., buttons, activators, switches, or touch screens) for providing control parameters to the electrosurgical generator 102 . These controls allow the user to adjust parameters of the electrosurgical energy (e.g., the power level or the shape of the output waveform) so that the electrosurgical energy is suitable for a particular surgical procedure (e.g., coagulating, ablating, sealing, or cutting).
- the energy delivery devices 110 and 130 may also include a plurality of user controls.
- the electrosurgical generator 102 may include one or more display screens for displaying a variety of information related to operation of the electrosurgical generator 102 (e.g., intensity settings and treatment complete indicators).
- FIG. 2 is a block diagram of generator circuitry 200 of the electrosurgical generator 102 of FIG. 1 and an energy delivery device 295 connected to the generator circuitry 200 .
- the generator circuitry 200 includes a low frequency (LF) rectifier 220 , a preamplifier 225 , an RF amplifier 230 , a plurality of sensors 240 , analog-to-digital converters (ADCs) 250 , a controller 260 , a hardware accelerator 270 , a processor subsystem 280 , and a user interface (UI) 290 .
- LF low frequency
- ADCs analog-to-digital converters
- the electrosurgical generator 102 by way of the generator circuitry 200 is configured to connect to an alternating current (AC) power source 210 , such as a wall power outlet or other power outlet, which generates AC having a low frequency (e.g., 25 Hz, 50 Hz, or 60 Hz).
- the AC power source 210 provides AC power to the LF rectifier 220 , which converts the AC to direct current (DC).
- the direct current (DC) output from the LF rectifier 220 is provided to the preamplifier 225 which amplifies the DC to a desired level.
- the amplified DC is provided to the RF amplifier 230 , which includes a direct current-to-alternating current (DC/AC) inverter 232 and a resonant matching network 234 .
- the DC/AC inverter 232 converts the amplified DC to an AC waveform having a frequency suitable for an electrosurgical procedure (e.g., 472 kHz, 29.5 kHz, and 19.7 kHz).
- the appropriate frequency for the electrosurgical energy may differ based on electrosurgical procedures and modes of electrosurgery. For example, nerve and muscle stimulations cease at about 100,000 cycles per second (100 kHz) above which point some electrosurgical procedures can be performed safely; i.e., the electrosurgical energy can pass through a patient to targeted tissue with minimal neuromuscular stimulation. For example, typically ablation procedures use a frequency of 472 kHz. Other electrosurgical procedures can be performed at frequencies lower than 100 kHz, e.g., 29.5 kHz or 19.7 kHz, with minimal risk of damaging nerves and muscles.
- the DC/AC inverter 232 can output AC signals with various frequencies suitable for electrosurgical operations.
- the RF amplifier 230 includes a resonant matching network 234 .
- the resonant matching network 234 is coupled to the output of the DC/AC inverter 232 to match the impedance at the DC/AC inverter 232 to the impedance of the tissue so that there is maximum or optimal power transfer between the generator circuitry 200 and the tissue.
- the electrosurgical energy provided by the DC/AC inverter 232 of the RF amplifier 230 is controlled by the controller 260 .
- the voltage and current waveforms of the electrosurgical energy output from the DC/AC inverter 232 are sensed by the plurality of sensors 240 and provided to the controller 260 , which generates control signals to control the output of the preamplifier 225 and the output of the DC/AC inverter 232 .
- the controller 260 also receives input signals via the user interface (UI) 290 .
- the UI 290 allows a user to select a type of electrosurgical procedure (e.g., monopolar or bipolar) and a mode (e.g., coagulation, ablation, sealing, or cutting), or input desired control parameters for the electrosurgical procedure or the mode.
- the plurality of sensors 240 sense voltage and current at the output of the RF amplifier 230 .
- the plurality of sensors 240 may include two or more pairs or sets of voltage and current sensors that provide redundant measurements of the voltage and current. This redundancy ensures the reliability, accuracy, and stability of the voltage and current measurements at the output of the RF amplifier 230 .
- the plurality of sensors 240 may include fewer or more sets of voltage and current sensors depending on the application or the design requirements.
- the plurality of sensors 240 may measure the voltage and current output at the output of the RF amplifier 230 and from other components of the generator circuitry 200 such as the DC/AC inverter 232 or the resonant matching network 234 .
- the plurality of sensors 240 that measures the voltage and current may include any known technology for measuring voltage and current including, for example, a Rogowski coil.
- the DC/AC inverter 232 is electrically coupled to the energy delivery device 295 which may be a bipolar electrosurgical instrument 130 of FIG. 1 , which has two jaw members to grasp and treat tissue with the energy provided by the DC/AC inverter 232 .
- the energy delivery device 295 includes temperature sensors 297 and two jaw members 299 .
- An electrode is disposed on each of the two jaw members 299 .
- the temperature sensors 297 may measure the temperatures of the tissue and the electrodes of the two jaw members 299 .
- At least one of the temperature sensors 297 may be disposed on the energy delivery device 295 so that the at least one of the temperature sensors 297 can measure tissue temperature.
- At least another one of the temperature sensors 297 may be disposed on each jaw member of the bipolar electrosurgical instrument 130 in thermal communication with an electrode of each jaw member so that the temperatures of the jaw members can be measured.
- the temperature sensors 297 may employ any known technology for sensing or measuring temperature.
- the temperature sensors 297 may include resistance temperature detectors, thermocouples, thermostats, thermistors, or any combination of these temperature sensing devices.
- the sensed temperatures, voltage, and current are fed to analog-to-digital converters (ADCs) 250 .
- the ADCs 250 sample the sensed temperatures, voltage, and current to obtain digital samples of the temperatures of the tissue and the jaw members and the voltage and current of the RF amplifier 230 .
- the digital samples are processed by the controller 260 and used to generate a control signal to control the DC/AC inverter 232 of the RF amplifier 230 and the preamplifier 225 .
- the ADCs 250 may be configured to sample outputs of the plurality of sensors 240 and the plurality of the temperature sensors 297 at a sampling frequency that is an integer multiple of the RF frequency.
- the controller 260 includes a hardware accelerator 270 and a processor subsystem 280 . As described above, the controller 260 is also coupled to a UI 290 , which receives input commands from a user and displays output and input information related to characteristics of the electrosurgical energy (e.g., selected power level).
- the hardware accelerator 270 processes the output from the ADCs 250 and cooperates with the processor subsystem 280 to generate control signals.
- the hardware accelerator 270 includes a dosage monitoring and control (DMAC) 272 , an inner power control loop 274 , a DC/AC inverter controller 276 , and a preamplifier controller 278 . All or a portion of the controller 260 may be implemented by a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), a digital signal processor (DSP), and/or a microcontroller.
- DMAC dosage monitoring and control
- ASIC application specific integrated circuit
- DSP digital signal processor
- the DMAC 272 receives samples of the temperatures of the tissue and the jaw members from the ADCs 250 and estimates a mass of the tissue and a thermal resistance scale factor between the tissue and the jaw members, as described in greater detail below.
- the DMAC 272 also calculates power of the energy provided to the tissue based on the sensed voltage and current.
- the DMAC 272 then provides the estimated mass of the tissue and the thermal resistance scale factor to the inner power control loop 274 , which generates a control signal for the DC/AC inverter controller 276 based on the estimated mass and the estimated thermal resistance scale factor.
- the DC/AC inverter controller 276 in turn generates a first pulse-width modulation (PWM) control signal to control the output of the DC/AC inverter 232 .
- PWM pulse-width modulation
- the processor subsystem 280 includes an outer power control loop 282 , a state machine 284 , and a power setpoint circuit 286 .
- the processor subsystem 280 generates a second PWM control signal based on the output of the DMAC 272 and parameters (e.g., electrosurgical mode) selected by the user via the UI 290 .
- the parameters selected by the user are provided to the state machine 284 which determines a state or mode of the generator circuitry 200 .
- the outer power control loop 282 uses this state information and the output from the DMAC 272 to determine control data.
- the control information is provided to the power setpoint circuit 286 which generates a power setpoint based on the control data.
- the preamplifier controller 278 uses the power setpoint to generate an appropriate PWM control signal for controlling the preamplifier 225 to amplify the DC output from the LF rectifier 220 to a desired level. If the user does not provide operational parameters to the state machine 284 via the UI 290 , then the state machine 284 may maintain or enter a default state.
- the energy delivery device 295 may not include the temperature sensors 297 .
- the controller 260 of the generator circuitry 200 estimates changes in tissue impedance by using a forward difference equation or an equation relating temperature changes to changes in tissue impedance as described in more detail below.
- FIG. 3 shows a more detailed functional diagram of the hardware accelerator 270 of FIG. 2 .
- the hardware accelerator 270 implements those functions of the generator circuitry 200 that may have special processing requirements such as high processing speeds.
- the hardware accelerator 270 includes the DMAC 272 , the inner power control loop 274 , the DC/AC inverter controller 276 , and the preamplifier controller 278 .
- the DMAC 272 includes a plurality of analog-to-digital converter (ADC) controllers, e.g., four ADCs 312 a - 312 d but not limited to this number, a digital signal processor 314 , an RF data registers 316 , and DMAC registers 318 .
- the ADC controllers 312 a - 312 d control the operation of the ADCs 250 , which convert sensed temperatures, voltage, and current into digital data which is then provided to the digital signal processor 314 that implements digital signal processing functions, some of which are described in more detail below.
- the sensed temperatures, voltage, and current are input to the ADCs 250 , which sample the sensed temperatures, voltage, and current.
- the ADC controllers 312 a - 312 d provide operational parameters, including a predetermined sampling rate, to the ADCs 250 so that the ADCs sample synchronously the temperatures of the tissue and the jaw members, the voltage, and the current at a predetermined sampling rate, i.e., a predetermined number of digital samples per second, or predetermined sampling period.
- the ADC controllers 312 a - 312 d may be configured to control the ADCs 250 so that the sampling period corresponds to an integer multiple of the RF frequency of the electrosurgical energy.
- the digital data obtained by sampling the sensed temperatures, voltage, and current is provided to the digital signal processor 314 via the ADC controllers 312 a - 312 d .
- the digital signal processor 314 uses the digital data to estimate a mass of the tissue and a thermal resistance scale factor between the tissue and the jaw members. The estimation process is done by applying and combining physical principles and mathematical equations. Estimation process and derivation of relationship between the temperature and the mass of the tissue are explained in detail below.
- the output of the digital signal processor 314 is provided to the processor subsystem 280 of FIG. 2 via RF data registers 316 and signal line 379 .
- the DMAC 272 also includes DMAC registers 318 that receive and store relevant parameters for the digital signal processor 314 .
- the digital signal processor 314 further receives signals from a PWM module 346 of the DC/AC inverter controller 276 via signal line 371 .
- the DMAC 272 provides control signals to the inner power control loop 274 via signal lines 321 a and 321 b and to the processor subsystem 280 via signal line 379 . As shown in FIG. 2 , the inner power control loop 274 processes the control signals and outputs a control signal to the DC/AC inverter controller 276 .
- the inner power control loop 274 includes a multiplexer 324 , a compensator 326 , compensator registers 330 , and VI limiter 334 .
- the multiplexer 324 receives the estimated mass of the tissue and the estimated thermal resistance scale factor via signal lines 321 a and 321 b .
- the multiplexer 324 also receives a select control signal, which selects one of the inputs from the compensator registers 330 via signal line 333 a and provides the selected input to the compensator 326 via signal line 325 .
- the digital signal processor 314 of the DMAC 272 generates control signals, which include the estimated mass and the estimated thermal resistance scale factor, and provides them to the multiplexer 324 of the inner power control loop 274 via the signal lines 321 a and 321 b , respectively.
- the processor subsystem 280 When there is a user input, the processor subsystem 280 receives the user input and processes it with the outputs from the digital signal processor 314 via a signal line 379 .
- the processor subsystem 280 provides control signals via a compensator registers 330 to a VI limiter 334 , which corresponds to the power setpoint circuit 286 in FIG. 2 .
- the VI limiter 334 then provides a desired power profile (e.g., a minimum and a maximum limits of the power for a set electrosurgical mode or operation) to the compensator 326 via signal line 335 based on the user input and the output of the digital signal processor 314 , the compensator registers 330 also provide other control parameters to the compensator 326 via signal line 333 b , and then the compensator 326 combines all control parameters from the compensator registers 330 , the multiplexer 324 , and the VI limiter 334 to generate output to the DC/AC inverter controller 276 via signal line 327 .
- a desired power profile e.g., a minimum and a maximum limits of the power for a set electrosurgical mode or operation
- the DC/AC inverter controller 276 receives a control parameter and outputs control signals that drives the DC/AC inverter 232 .
- the DC/AC inverter controller 276 includes a scale unit 342 , PWM registers 344 , and the PWM module 346 .
- the scale unit 342 scales the output of the compensator registers 330 by multiplying and/or adding a number to the output.
- the scale unit 342 receives a number for multiplication and/or a number for addition from the PWM registers 344 via signal lines 341 a and 341 b and provides its scaled result to the PWM registers 344 via signal line 343 .
- the PWM registers 344 store several relevant parameters to control the DC/AC inverter 232 , e.g., a period, a pulse width, and a phase of the AC signal to be generated by the DC/AC inverter 232 and other related parameters.
- the PWM module 346 receives output from the PWM registers 344 via signal lines 345 a - 345 d and generates four control signals, 347 a - 347 d , that control four transistors of the DC/AC inverter 232 of the RF amplifier 230 in FIG. 2 .
- the PWM module 346 also synchronizes its information with the information in the PWM registers 344 via a register sync signal 347 .
- the PWM module 346 further provides control signals to the compensator 326 of the inner power control loop 274 .
- the processor subsystem 280 provides control signals to the PWM module 346 .
- the DC/AC inverter controller 276 can control the DC/AC inverter 232 of the RF amplifier 230 with integrated internal input (i.e., processed results from the plurality of sensors by the DMAC 272 ) and external input (i.e., processed results from the user input by the processor subsystem 280 ).
- the processor subsystem 280 also sends the control signals to the preamplifier controller 278 via signal line 373 .
- the preamplifier controller 278 processes the control signals and generates another control signal so that the preamplifier 225 amplifies direct current to a desired level suitable for being converted by the RF amplifier 230 .
- the Preamplifier controller 278 includes PWM registers 352 and a PWM module 354 .
- the PWM registers 352 receive outputs from the processor subsystem 280 via signal line 373 , stores relevant parameters as the PWM registers 344 does, and provides the relevant parameters to the PWM module 354 via signal lines 353 a - 353 d .
- the PWM module 354 also sends a register sync signal to the PWM registers 352 via signal line 357 and generates four control signals, 355 a - 355 d , that control four transistors of the preamplifier 225 in FIG. 2 .
- FIG. 4A shows a front cross-sectional view of a jaw member assembly 400 of the electrosurgical forceps of FIG. 1 , which incorporate temperature sensors.
- the jaw member assembly 400 may form part of the energy delivery device 295 of FIG. 2 .
- the jaw member assembly 400 includes jaw members 412 , 414 .
- Jaw member 412 includes active electrodes 420 for delivering electrosurgical energy to tissue, and a tissue temperature sensor 430 for sensing the temperature of tissue disposed between jaw members 412 , 414 .
- Jaw member 414 includes a return electrode 425 and a plurality of temperature sensors 440 for sensing the temperature of jaw member 414 .
- Jaw members 412 , 414 may be formed of insulating materials and are coupled to one another via a pivot (not shown) to permit movement of jaw members 412 , 414 between an open position and an approximately closed position for grasping tissue between the jaw members 412 , 414 .
- the tissue temperature sensor 430 and the plurality of jaw member temperature sensors 440 are coupled to the controller 260 of the generator circuitry 200 and send signals representing sensed temperatures of the tissue and the jaw members to the ADCs 250 that sample the sensed temperature signals.
- a sampling rate of the sensed temperatures may be controlled by a portion of the ADC controllers 312 a - 312 d of the DMAC 272 . In this way, the controller 260 processes the digitally sampled temperatures of the tissue and the jaw members.
- the number of sensors of the tissue and of the plurality of sensors of the jaw members can be one or more based on the needs of the electrosurgery.
- FIG. 4B shows a perspective view of a surgical stapler 450 .
- the surgical stapler 450 includes a handle assembly 455 and an elongated body 460 .
- a disposable loading unit 465 is releasably secured to a distal end of elongated body 460 .
- Disposable loading unit 465 includes an end effector 470 having a staple cartridge assembly 472 housing a plurality of surgical staples (not shown) and an anvil 474 movably secured in relation to staple cartridge assembly 472 which is shown in expanded mode.
- Staple cartridge assembly 472 includes a tissue contacting surface 476 and anvil 474 includes a tissue contacting surface 478 juxtaposed to tissue contacting surface 476 of staple cartridge assembly 472 .
- Handle assembly 455 includes a stationary handle member 480 , a movable handle member 482 , and a barrel portion 484 .
- a rotatable member 486 is preferably mounted on the forward end of barrel portion 484 to facilitate rotation of elongated body 460 with respect to handle assembly 455 .
- An articulation lever 488 is also mounted on the forward end of the barrel portion 484 and adjacent to the rotatable member 486 to facilitate articulation of end effector 470 .
- the surgical stapler 450 may include a plurality of sensing devices 490 as shown in FIGS. 4B and 4C .
- sensing devices 490 can be provided along the length of tissue contacting surface 478 of anvil 474 , along the length of tissue contacting surface 476 of staple cartridge assembly 472 , on disposable loading unit 465 , on elongated body 460 , and/or on handle assembly 455 .
- the sensing devices enable the measurement of various parameters of surgical stapler 450 , such as temperatures of and temperature changes between tissue contacting surfaces 476 and 478 of surgical stapler 450 .
- the sensed temperature and temperature changes may be used to estimate the mass of the tissue disposed between the tissue contacting surfaces 476 and 478 .
- the estimated mass may then be used to determine the thickness or size of the tissue so that an operator of the stapler can properly configure the stapler, e.g., adjust the distance between the tissue contacting surfaces 476 and 478 or select a staple of suitable size.
- the mass of the tissue and the thermal resistance scale factor (k) are estimated by modeling the temperatures of the tissue and the energy-based surgical device that is used to heat the tissue using a set or system of differential equations.
- This set of differential equations may be derived as follows.
- the temperature of the tissue increases when heat is added to the tissue, e.g., via electrical heating of the tissue, and the rate of change of the tissue temperature is related to the specific heat of the tissue.
- the following equation describes the relationship between the change in tissue temperature, the mass of the tissue, and the added heat:
- Equation (1) may be rewritten as:
- dT dQ C p ⁇ M , ( 2 )
- dT represents the change in temperature
- dQ represents the heat added to the tissue.
- the change in temperature dT is the ratio between the heat added to the tissue dQ and the product of the specific heat C p and the mass M of the tissue.
- tissue impedance may be expressed as a function of conductivity by the following equation:
- Z 1 ⁇ ⁇ L A , ( 5 )
- Z is the current impedance in ohms
- ⁇ is the current conductivity of the tissue in S/m
- L is the length of the tissue grasped by the jaw members in meters (m)
- A is the area of the tissue grasped by the jaw members in square meters (m 2 ).
- the starting impedance may similarly be expressed by the following equation:
- a thermal resistance scale factor k between the tissue and the jaw members of the energy-based medical device may be incorporated into equation (7) to accommodate different ratios of heat conductivity between the tissue and the jaw members of the energy-based medical device.
- equation (7) becomes:
- Equation (8) is an accurate estimate of the temperature change at the start of a sealing or ablation procedure. However, equation (8) may not be as accurate thereafter. For example, as the jaw members of the energy delivery device transfers electrical energy to the tissue, the electrical energy is converted into heat due to the thermal resistance of the tissue and the temperature of the tissue rises. As the temperature of the tissue rises, water in the tissue starts to vaporize into the environment. Equation (8) is not accurate in this situation because equation (8) assumes that there is no water loss from the tissue and thus no change in impedance.
- equation (8) may not be accurate in this situation either. However, assuming that the water content of the tissue to be treated is very small and vaporization of water is also negligible, equation (8) can be expressed as follows:
- Equation (9) shows that the change in tissue temperature is dependent upon change in impedance assuming that there is negligible water loss.
- equation (9) may be used to determine changes in tissue temperature based upon measurements of the tissue impedance (i.e., measurements of Z 0 and Z) due to a pulse of RF energy applied to the tissue.
- the current impedance can be obtained by solving equation (9) for Z, which results in the following equation:
- the mass of the tissue M may be obtained by combining equations (2) and (9) and solving the combined equations for M, as follows:
- Equation (11) assumes that water content of the tissue to be treated is very small and that the loss of water, i.e., the vaporization of water, is also negligible. Equation (11) does not contemplate energy loss between the tissue and the jaw members of the energy-based medical device and, thus, is not sufficient to model the temperature change between the tissue and the jaw members of the energy-based medical device during a sealing or ablation procedure.
- temperatures of the tissue or the jaw members of the energy-based medical device can be modeled by using heat-related equations.
- the heat loss from the tissue depends on the temperature difference between the tissue and the jaw members of an energy-based medical device, which is represented by the equation:
- T t (t) is the tissue temperature (the subscript t refers to tissue)
- T j (t) is the temperature of the jaw members (the subscript j refers to jaw members)
- k is a thermal resistance scale factor which is
- hA C p ⁇ M between the tissue and the jaw members where h is a heat transfer coefficient, A is the surface area of the jaw member which is in contact with tissue, C p is specific heat, and M is the mass of the tissue grasped by the jaw members. Additionally, the change in the tissue temperature depends on the change of heat added and lost to the jaw members, which is represented by the following equation:
- Equation (13) is another way to represent equation (2).
- the energy-based medical device may be configured to minimize heat loss from the tissue to the jaw members using equation (13).
- equation (13) becomes:
- the temperature change ratio of the jaw members depends on the temperature change between the tissue temperature and the jaw members' temperature. Even though the jaw members are exposed to the environment, heat added from and lost to the environment is assumed to be negligible because of insulation of the jaw member assembly 400 and the large mass of the jaw members as compared to the tissue. Thus, the mathematical term representing the heat added to the environment can be ignored or considered as 0. As a result, the basic temperature difference equation of the jaw members is:
- equation (17) may be applied to equation (16) to eliminate the term T t and the resulting equation may be simply expressed in the form a second order differential equation given by:
- Equations (19) and (20) may be used to predict temperatures of the jaw members and the tissue, respectively. Since the rate of heat change is a form of power, i.e.,
- equations (19) and (20) can also be written as:
- Pwr(t) is the power that may be any forcing function, such as a step response, exponential, sinusoid, single pulse, two pulses, or any other suitable signal for sealing and ablation procedures.
- the power is controlled by the controller 260 of the generator circuitry 200 .
- the plurality of sensors 240 sense the voltage and current at the output of the RF Amp 230 and the DMAC 272 calculates power by multiplying
- Equations (21) and (22) are second-order differential equations that may be used to predict the temperatures of the tissue and the jaw members based upon a known thermal resistance scale factor and a known mass of the jaw members. Conversely, equations (21) and (22) may be used to estimate the thermal resistance scale factor and the mass of the tissue based upon known or measured temperatures of the tissue and jaw members.
- an index i is initialized to zero in step 505 and is incremented by one in step 510 .
- the controller 260 causes the generator circuitry 200 to supply electrosurgical energy, e.g., alternating current, at a desired power level to the tissue to be treated via the jaw members of an electrosurgical instrument coupled to the generator.
- the electrosurgical energy causes the temperature of the tissue to rise. As the temperature of the tissue rises, heat is transferred from the tissue to the jaw members, which causes the temperature of the jaw members to rise. Since the parameters of the jaw members are known, temperature changes in the jaw members can be calculated by using equation (26).
- FIG. 5 illustrates a method 500 for estimating the thermal resistance scale factor and the mass of tissue using an iterative gradient descent algorithm.
- the method 500 utilizes equations (25) and (27) in a discrete sense.
- the method 500 uses a change in temperature or a temperature difference dT t (t) rather than a derivative of the temperature
- the temperature T i of the tissue is sensed by a plurality of temperature sensors 297 in step 520 .
- a temperature difference dT i which is equal to the difference between the current tissue temperature T i and the previous tissue temperature T i-1 , is calculated.
- dT i is zero
- dT i is equal to the difference between current tissue temperature T i and the previous tissue temperature T i-1 .
- the temperature difference dT i may be determined based on changes in measured or estimated tissue impedance.
- the method 500 may first estimate tissue impedance after applying power to the tissue in step 510 and then may estimate temperature changes dT i based on changes in the estimated tissue impedance by using equation (9).
- step 530 the index i is compared to the number of desired iterations N. If the index i is less than the number of iterations N, steps 510 to 525 are repeated. If the index i is equal to N, the mass M and the thermal resistance scale factor K are initialized in step 535 and then estimated using an iterative method in step 545 .
- step 545 the true mass and the true thermal resistance scale factor are estimated by using gradient descent which adjusts a derivative step of the mass and thermal resistance scale factor based on errors and is described in more detail in FIGS. 6B-6D .
- the controller 260 controls levels of power to adjust the temperature of the tissue and the jaw members during electrosurgery based on the estimates of the mass and the thermal resistance scale factor in step 550 .
- FIG. 6A is a flow diagram of a method 600 of determining starting estimates of the mass and the thermal resistance scale factor for the gradient descent method.
- an index i is initialized to zero in step 605 .
- an array of masses M i and thermal resistance scale factors K i corresponding to measured temperatures T i are set to non-zero values, and an array of temperature differences dT i are set to zero in step 605 .
- step 610 the index i is incremented by one.
- step 615 an estimate of the mass M i is calculated based on the thermal resistance scale factor K i using the following equation:
- Equation (31) is derived from equation (25) by solving for the mass M.
- the temperature difference dT i at index i is calculated according to the following equation:
- step 625 an estimate of the thermal resistance scale factor K i is calculated based on the previously calculated mass M i and the temperature difference dT i using the following equation:
- K i - ln ⁇ ( 2 ⁇ ⁇ C p ⁇ M i ⁇ dT i - P P ) 2 ⁇ ⁇ t , ( 33 ) which is derived from equation (32) by solving for thermal resistance scale factor K i .
- step 630 the temperature difference dT i is recalculated based on the estimates of the mass M i and the thermal resistance scale factor K i .
- step 635 the index i is compared to a predetermined number N, which is the length of the array of samples of the tissue temperature T i . If it is determined that the index i is less the predetermined number N, steps 610 through 630 are repeated. Otherwise, in step 640 , an estimated starting mass M and starting thermal resistance scale factor K are set for the gradient descent algorithm based on the masses M i and the thermal resistance scale factors K i . For example, the maximum of the array of masses M i and the maximum of the array of thermal resistance scale factors K i may be set as the estimated starting mass M and the estimated starting thermal resistance scale factor estimate K, respectively.
- the minimum of the array of masses M i and the maximum of the array of thermal resistance scale factors K i may be set as the estimated starting mass M and the estimated starting thermal resistance scale factor K, respectively.
- the average of the array of masses M i and the average of the array of thermal resistance scale factor K i may be set as the estimated starting mass M and the estimated starting thermal resistance scale factor K for the gradient descent algorithm.
- FIGS. 6B-6D are flow diagrams illustrating the gradient descent method that estimates the mass M and the thermal resistance scale factor K according to embodiments of the present disclosure.
- an index i is initialized to zero
- a derivative step for the estimated mass is initialized to a non-zero value, e.g., 1 ⁇ 10 ⁇ 7
- a derivative step for the estimated thermal resistance scale factor is initialized to a non-zero value, e.g., 1.0.
- the derivative step for the mass estimate is used to increase or decrease the mass estimate so that the mass estimate reaches a value close to the actual value
- the derivative step for the estimated thermal resistance scale factor is used to increase or decrease the estimated thermal resistance scale factor so that the estimated thermal resistance scale factor reaches a value close to the actual value.
- the index i is incremented until the index reaches a predetermined number N.
- a second mass estimate M s is calculated by summing the starting or first mass estimate M and the derivative step for the mass and a second thermal resistance scale factor K s is calculated by summing the starting or first thermal resistance scale factor estimate K and the derivative step for the thermal resistance scale factor.
- FIG. 6C shows a flow diagram that continues from the flow diagram of FIG. 6B for determining the mass estimate according to the gradient descent method.
- step 660 first estimates for the temperature and the temperature difference are calculated according to the following forward difference equations:
- a second estimate of the temperature and the temperature difference, ⁇ circumflex over (T) ⁇ s i and d ⁇ circumflex over (T) ⁇ s i are calculated based on the second mass estimate M s using equations (34) and (35).
- step 664 a first temperature error between the sensed temperature T i and the first estimated temperature ⁇ circumflex over (T) ⁇ i is calculated, and a second temperature error between the sensed temperature T i and the second estimated temperature ⁇ circumflex over (T) ⁇ s i is calculated.
- step 666 a first temperature difference error between the sensed temperature difference dT i and the first estimated temperature difference d ⁇ circumflex over (T) ⁇ i is calculated, and a second temperature difference error between the sensed temperature difference dT i and the second estimated temperature difference d ⁇ circumflex over (T) ⁇ s i is calculated.
- a derivative of the error is calculated.
- the derivative of the error may be calculated by finding the difference between the sum of the first errors and the sum of the second errors and dividing the resulting difference by the sum of the first errors.
- step 670 simulated annealing is performed by first determining whether the sign of the derivative of the error has changed. If the sign of the derivative of the error has changed, the derivative step size is reduced in step 672 and the first estimated mass is set equal to the second estimated mass. If the sign of the derivative of the error has not changed, the first estimated mass is set equal to the second estimated mass.
- the simulated annealing process reduces the derivative step size as the error approaches a predetermined value to prevent the iterative method from oscillating when the derivative step size is too large.
- FIG. 6D shows a flow diagram that continues from the flow diagram of FIG. 6B for determining the thermal resistance scale factor estimate according to the gradient descent method.
- step 680 third estimates for the temperature and the temperature difference are calculated according to equations (34) and (35) where K is the first thermal resistance scale factor estimate.
- step 682 a fourth estimate of the temperature and the temperature difference, ⁇ circumflex over (T) ⁇ s i and d ⁇ circumflex over (T) ⁇ s i , are calculated based on the second thermal resistance scale factor estimate K s using equations (34) and (35).
- step 684 a third temperature error between the sensed temperature T i and the third estimated temperature ⁇ circumflex over (T) ⁇ i is calculated, and a fourth temperature error between the sensed temperature T i and the fourth estimated temperature ⁇ circumflex over (T) ⁇ s i is calculated.
- step 686 a third temperature difference error between the sensed temperature difference dT i and the third estimated temperature difference d ⁇ circumflex over (T) ⁇ i is calculated, and a fourth temperature difference error between the sensed temperature difference dT i and the fourth estimated temperature difference d ⁇ circumflex over (T) ⁇ s i is calculated.
- a derivative of the error is calculated.
- the derivative of the error may be calculated by finding the difference between the sum of the third errors and the sum of the fourth errors and dividing the resulting difference by the sum of the third errors.
- step 690 simulated annealing is performed by first determining whether the sign of the derivative of the error has changed. If the sign of the derivative of the error has changed, the derivative step size is reduced in step 692 and the first estimated thermal resistance scale factor K is set equal to the second estimated thermal resistance scale factor K s . If the sign of the derivative of the error has not changed, the first estimated thermal resistance scale factor K is set equal to the second estimated thermal resistance scale factor K s in step 694 .
- step 674 and 694 of FIGS. 6C and 6D respectively, it is determined whether the derivative error for the mass estimate M is less than a first threshold value and the derivative error for the thermal resistance scale factor estimate K is less than a second threshold value in step 696 . If it is determined that the derivative errors for M and K are less than respective first and second threshold values, the gradient descent method is ended because the estimates of the mass and thermal resistance scale factor are deemed to be sufficiently close to the actual mass and thermal resistance scale factor. Otherwise, the index i is compared with the predetermined number N in step 698 . If the index i is less than the predetermined number N, the gradient descent method returns to step 650 and all steps from 650 to 698 in FIGS. 6B-6D are repeated until the index i reaches the predetermined number N or until the conditions described in step 696 are met.
- the gradient descent method described in FIGS. 6A-6D is an accurate and robust method for estimating the mass and thermal resistance scale factor of tissue and/or an energy-based medical instrument. In other embodiments, simpler methods, such as the non-iterative method illustrated in FIG. 7 , may be employed for estimating the mass and the thermal resistance scale factor.
- tissue temperatures T i are sensed and temperature differences dT i are calculated as described above with respect to FIG. 5 .
- the non-iterative method illustrated in FIG. 7 makes an assumption closely related to the exponentially decreasing characteristics of an exponential term in the temperature and the temperature difference equations (25) and (27).
- the equation for the mass of tissue M t is given by:
- M t P + 2 ⁇ ⁇ P ⁇ k ⁇ t - P ⁇ e - 2 ⁇ k ⁇ t 4 ⁇ ⁇ C p t ⁇ kT t , ( 36 ) which is derived from equation (25) by solving for the mass of tissue M t .
- Equation (36) can be simplified by removing the exponential term as follows:
- t 63 1 2 ⁇ ⁇ t 63 , ( 39 ) where t 63 is the time at which the maximum rate of change in tissue temperature is reduced by about 63% toward the minimum rate of change.
- the mass can be calculated using time t 63 and equations (37) and (39).
- the thermal resistance scale factor k first involves determining the maximum and the minimum tissue temperature differences for a predetermined period during which energy is applied to the tissue in step 735 .
- the 63% reduction point between the maximum and the minimum temperature differences is calculated according to the following equation: max( dT i ) ⁇ (max( dT i ) ⁇ min( dT i )) ⁇ 0.63, (40) where dT i is an array of tissue temperature differences for the predetermined period during which energy is applied to the tissue.
- step 745 it is determined the time t 63 at which the 63% reduction occurs.
- the time t 63 may be determined by using a linear interpolation algorithm where dT i is the x-axis and the time index is the y-axis.
- the thermal resistance scale factor k is then calculated by using the time t 63 and equation (39).
- the mass may be estimated using equation (37) at a time 5*t 63 when the temperature difference dT i is theoretically decreased by about 99%.
- a time other than 5*t 63 e.g., 4*t 63 , may be used to estimate the mass depending on the system requirements.
- the last elements of the sensed temperature array and the corresponding time index array are used to calculate the mass estimate.
- the controller 260 uses the estimated mass and the estimated thermal resistance scale factor in controlling the generator.
- a heat transfer coefficient h is estimated to take into consideration the heat transfer characteristics of the jaw members.
- the thermal resistance scale factor of equation (17) is defined by the heat transfer characteristics of the jaw members as follows:
- equation (16) By employing the specific heat and the mass of the jaw members, equation (16) becomes:
- T j T t ⁇ ( t ) + C p t ⁇ M t ⁇ d d t ⁇ T t ⁇ ( t ) hA - d d t ⁇ Q add ⁇ ( t ) hA ( 44 )
- Equation (17) may be applied to equation (43) to eliminate the term T t and the resulting equation can be expressed in the form of a second order differential equation as follows:
- Equations (46) and (47) may be used to predict temperatures of the jaw members and the tissue, respectively. Since the rate of heat change is a form of power, i.e.,
- equations (46) and (47) can also be written as:
- Second-order differential equations (48) and (49) can be used to predict the temperatures of the tissue and the jaw members based upon a known heat transfer coefficient and a known mass. Conversely, the equations (48) and (49) can be used to estimate the heat transfer coefficient and the mass based upon measured temperatures of the tissue and jaw members.
- T t ⁇ ( t ) Pwr ⁇ t C p j ⁇ M j + C p t ⁇ M t + C p j 2 ⁇ M j 2 ⁇ Pwr hA ⁇ ( C p j ⁇ M j + C p t ⁇ M t ) 2 ⁇ ( 1 - e - h ⁇ A ⁇ t C p j ⁇ M j ⁇ e - h ⁇ A ⁇ t C p t ⁇ M t ) ⁇ ⁇ and ( 50 )
- T j ⁇ ( t ) Pwr ⁇ t C p j ⁇ M j + C p t ⁇ M t - C p j ⁇ M j ⁇ C p t ⁇ M t ⁇ Pwr hA ⁇ ( C p j ⁇ M j + C p t ⁇ M t ) 2 ⁇ ( 1
- equations (50) and (52) are equal to one when the time is zero and become negligible as time increases.
- equation (52) becomes the following equation:
- Equation (53) implies that the mass of the tissue may be estimated with the first estimation of the change in temperature when the estimation time is close to zero.
- the heat transfer coefficient h may be estimated when time is large while the mass may be estimated when time is very small.
- equation (50) simplifies to the following equation:
- Equation (54) can be solved for h to obtain the following equation:
- a method of estimating tissue mass is illustrated in the flow diagram of FIG. 8 .
- a test signal is applied to the tissue to cause a measurable amount of tissue heating.
- the test signal is provided to cause a measurable change in tissue impedance so that a measurable change in temperature can be obtained.
- the test signal may include a step, an exponential signal, a sinusoid, a single pulse, multiple pulses, or any other signal suitable for causing a measurable amount of tissue heating.
- a change in tissue temperature is measured as soon as possible after providing the test signal to the tissue.
- step 815 the controller 260 determines a time value that is large enough so that the exponential term of the tissue temperature equation (51) becomes negligibly small.
- step 820 tissue temperature is measured at the time value.
- step 825 by using equation (54), the tissue mass is estimated based on the power supplied by the power output stage of the generator, the rate of temperature change, and the specific heat of the tissue.
- a closed form solution for estimating the tissue mass is given by the equation:
- the heat transfer coefficient is estimated by using equation (55), which is based on tissue temperature, specific heat of the tissue and the jaw members, power, masses of the tissue and the jaw members, and the determined time. In this way, the mass and the heat transfer coefficient of the tissue may be estimated.
- the time for estimating the heat transfer coefficient may be shortened by using equation (53) for estimating the heat transfer coefficient.
- the controller 260 measures the rate of temperature change at two times, namely, t 1 and t 2 , and uses the ratio between the two rates.
- the ratio may be simplified and expressed as follows:
- FIG. 9 shows a flow diagram illustrating a method of estimating the heat transfer coefficient.
- a test signal is provided to the tissue being treated.
- the controller 260 estimates the temperature change dT 1 of the tissue at the beginning of a tissue treatment procedure.
- the temperature change dT 1 of the tissue can be measured directly by temperature sensors or can be estimated by using the equation (9) after estimating the change in tissue impedance. The earlier dT 1 is measured, the more accurate the estimate of the mass.
- step 915 the controller 260 determines a time t 2 for measuring temperature change and, in step 920 , the controller 260 estimates the temperature change dT 2 at time t 2 .
- step 925 the tissue mass is measured by using equation (54) and, in step 930 , the heat transfer coefficient h is estimated by using equation (58). In this way, the time for estimation can be shortened
- the methods of the present disclosure may further consider the heat transfer between the jaw members and the environment. This is represented by heat transfer equation (17), which may be expressed as:
- T j d t k ⁇ ( T t ⁇ ( t ) - T j ⁇ ( t ) ) + k e ⁇ ( T e - T j ⁇ ( t ) ) ( 59 )
- T e represents the constant temperature of the environment
- k e represents a thermal resistance scale factor from the jaw members to the environment.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Engineering & Computer Science (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Veterinary Medicine (AREA)
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Plasma & Fusion (AREA)
- Otolaryngology (AREA)
- Radiology & Medical Imaging (AREA)
- Surgical Instruments (AREA)
Abstract
Description
where
represents the change in tissue temperature with respect to time,
represents the heat added to the tissue in joules with respect to time, Cp is the specific heat in joules/kg, and M is the mass of the tissue in kg. Equation (1) may be rewritten as:
where dT represents the change in temperature and dQ represents the heat added to the tissue. In other words, the change in temperature dT is the ratio between the heat added to the tissue dQ and the product of the specific heat Cp and the mass M of the tissue.
where σ is the current electrical conductivity in Siemens per meter (S/m), σ0 is the initial conductivity of the tissue in S/m, W is the current water content of the tissue in kg or kg/m3, W0 is the initial water content of the tissue in kg or kg/m3, a is a unitless temperature coefficient constant of ion mobility, T is the current temperature in Kelvin, and T0 is the initial temperature in Kelvin which corresponds to σ0 and W0. Equation (3) can be solved for the temperature change, i.e., dT=T−T0, yielding the following equation:
where Z is the current impedance in ohms, σ is the current conductivity of the tissue in S/m, L is the length of the tissue grasped by the jaw members in meters (m), A is the area of the tissue grasped by the jaw members in square meters (m2). The starting impedance may similarly be expressed by the following equation:
where Z0 is the starting impedance in ohms and σ0 is the starting conductivity of the tissue in S/m. Combining equations (3)-(5) results in the following equation:
Equation (9) shows that the change in tissue temperature is dependent upon change in impedance assuming that there is negligible water loss. Thus, equation (9) may be used to determine changes in tissue temperature based upon measurements of the tissue impedance (i.e., measurements of Z0 and Z) due to a pulse of RF energy applied to the tissue. The current impedance can be obtained by solving equation (9) for Z, which results in the following equation:
Again, equation (11) assumes that water content of the tissue to be treated is very small and that the loss of water, i.e., the vaporization of water, is also negligible. Equation (11) does not contemplate energy loss between the tissue and the jaw members of the energy-based medical device and, thus, is not sufficient to model the temperature change between the tissue and the jaw members of the energy-based medical device during a sealing or ablation procedure.
where Tt(t) is the tissue temperature (the subscript t refers to tissue), Tj(t) is the temperature of the jaw members (the subscript j refers to jaw members), and k is a thermal resistance scale factor which is
between the tissue and the jaw members, where h is a heat transfer coefficient, A is the surface area of the jaw member which is in contact with tissue, Cp is specific heat, and M is the mass of the tissue grasped by the jaw members. Additionally, the change in the tissue temperature depends on the change of heat added and lost to the jaw members, which is represented by the following equation:
Equation (13) is another way to represent equation (2). In some embodiments, the energy-based medical device may be configured to minimize heat loss from the tissue to the jaw members using equation (13). Thus, assuming that heat loss is minimized and further assuming that heat loss to the environment is considered negligible, equation (13) becomes:
A simplified version of equation (18) may be expressed in the form of a second-order differential equation, which is given by:
Equations (19) and (20) may be used to predict temperatures of the jaw members and the tissue, respectively. Since the rate of heat change is a form of power, i.e.,
equations (19) and (20) can also be written as:
and
where Pwr(t) is the power that may be any forcing function, such as a step response, exponential, sinusoid, single pulse, two pulses, or any other suitable signal for sealing and ablation procedures. The power is controlled by the
where Tt
The rate of change in tissue temperature is determined by taking the derivative of equation (25) with respect to time, which results in the equation:
for each iteration.
where P is the power level, Ki is the thermal resistance scale factor at index i, ti is time in seconds at index i, Cp is the specific heat constant for tissue, and Ti is the sensed temperature at index i. Equation (31) is derived from equation (25) by solving for the mass M. In
which is the discretized version of equation (27).
which is derived from equation (32) by solving for thermal resistance scale factor Ki. Next, in
where M is the first mass estimate. In
which is derived from equation (25) by solving for the mass of tissue Mt.
2·k·t=1. (38)
Solving equation (38) for the thermal resistance scale factor Ki results in the following equation:
where t63 is the time at which the maximum rate of change in tissue temperature is reduced by about 63% toward the minimum rate of change. Thus, the mass can be calculated using time t63 and equations (37) and (39).
max(dT i)−(max(dT i)−min(dT i))·0.63, (40)
where dTi is an array of tissue temperature differences for the predetermined period during which energy is applied to the tissue.
dT i(t 63)=max(dT i)−(max(dT i)−min(dT i))·0.63. (41)
The thermal resistance scale factor k is then calculated by using the time t63 and equation (39).
Substituting equation (42) for the thermal resistance scale factor in equation (17) results in the following equation:
where Cp
A simplified version of equation (45) can be expressed in the form of a second-order differential equation, which is given by:
Equations (46) and (47) may be used to predict temperatures of the jaw members and the tissue, respectively. Since the rate of heat change is a form of power, i.e.,
equations (46) and (47) can also be written as:
where Pwr is the power that may be any forcing function, such as a step response, exponential, sinusoid, single pulse, two pulses, or any other suitable signal for sealing and ablation procedures. The power is controlled by the
The rate of change of tissue temperature is determined by taking the derivative of equation (50) with respect to time, which results in the following equation:
in equations (50) and (52) are equal to one when the time is zero and become negligible as time increases. Thus, when t=0, equation (52) becomes the following equation:
Equation (53) implies that the mass of the tissue may be estimated with the first estimation of the change in temperature when the estimation time is close to zero. The heat transfer coefficient h may be estimated when time is large while the mass may be estimated when time is very small. When t is large enough to make the exponential terms negligibly small, equation (50) simplifies to the following equation:
Equation (54) can be solved for h to obtain the following equation:
In this way, the mass and the heat transfer coefficient of the tissue can be determined and used to estimate the temperature of the tissue.
In
Equation (57) can be solved for h as follows:
The benefit of this approach is that the
where Te represents the constant temperature of the environment and ke represents a thermal resistance scale factor from the jaw members to the environment. Even assuming that the initial conditions of the temperature of the tissue and the jaw members are zero and making other simplifications, the closed form solutions to the system of differential equations is very complex. However, general approximation methods can be utilized to estimate the tissue mass and the heat transfer coefficient.
Claims (21)
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US14/297,890 US10058374B2 (en) | 2013-09-26 | 2014-06-06 | Systems and methods for estimating tissue parameters using surgical devices |
| US14/297,812 US9867651B2 (en) | 2013-09-26 | 2014-06-06 | Systems and methods for estimating tissue parameters using surgical devices |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201361882675P | 2013-09-26 | 2013-09-26 | |
| US201361882678P | 2013-09-26 | 2013-09-26 | |
| US201361882680P | 2013-09-26 | 2013-09-26 | |
| US14/297,812 US9867651B2 (en) | 2013-09-26 | 2014-06-06 | Systems and methods for estimating tissue parameters using surgical devices |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20150088116A1 US20150088116A1 (en) | 2015-03-26 |
| US9867651B2 true US9867651B2 (en) | 2018-01-16 |
Family
ID=52691583
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/297,812 Active 2036-10-22 US9867651B2 (en) | 2013-09-26 | 2014-06-06 | Systems and methods for estimating tissue parameters using surgical devices |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US9867651B2 (en) |
Cited By (217)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10179022B2 (en) | 2015-12-30 | 2019-01-15 | Ethicon Llc | Jaw position impedance limiter for electrosurgical instrument |
| US10194973B2 (en) | 2015-09-30 | 2019-02-05 | Ethicon Llc | Generator for digitally generating electrical signal waveforms for electrosurgical and ultrasonic surgical instruments |
| US10201382B2 (en) | 2009-10-09 | 2019-02-12 | Ethicon Llc | Surgical generator for ultrasonic and electrosurgical devices |
| US10251664B2 (en) | 2016-01-15 | 2019-04-09 | Ethicon Llc | Modular battery powered handheld surgical instrument with multi-function motor via shifting gear assembly |
| US10278721B2 (en) | 2010-07-22 | 2019-05-07 | Ethicon Llc | Electrosurgical instrument with separate closure and cutting members |
| US10285724B2 (en) | 2014-07-31 | 2019-05-14 | Ethicon Llc | Actuation mechanisms and load adjustment assemblies for surgical instruments |
| US10299810B2 (en) | 2010-02-11 | 2019-05-28 | Ethicon Llc | Rotatable cutting implements with friction reducing material for ultrasonic surgical instruments |
| US10321950B2 (en) | 2015-03-17 | 2019-06-18 | Ethicon Llc | Managing tissue treatment |
| US10335183B2 (en) | 2012-06-29 | 2019-07-02 | Ethicon Llc | Feedback devices for surgical control systems |
| US10335614B2 (en) | 2008-08-06 | 2019-07-02 | Ethicon Llc | Devices and techniques for cutting and coagulating tissue |
| US10335182B2 (en) | 2012-06-29 | 2019-07-02 | Ethicon Llc | Surgical instruments with articulating shafts |
| US10342602B2 (en) | 2015-03-17 | 2019-07-09 | Ethicon Llc | Managing tissue treatment |
| US10349999B2 (en) | 2014-03-31 | 2019-07-16 | Ethicon Llc | Controlling impedance rise in electrosurgical medical devices |
| US10376305B2 (en) | 2016-08-05 | 2019-08-13 | Ethicon Llc | Methods and systems for advanced harmonic energy |
| US10433900B2 (en) | 2011-07-22 | 2019-10-08 | Ethicon Llc | Surgical instruments for tensioning tissue |
| US10441345B2 (en) | 2009-10-09 | 2019-10-15 | Ethicon Llc | Surgical generator for ultrasonic and electrosurgical devices |
| US10441310B2 (en) | 2012-06-29 | 2019-10-15 | Ethicon Llc | Surgical instruments with curved section |
| US10456193B2 (en) | 2016-05-03 | 2019-10-29 | Ethicon Llc | Medical device with a bilateral jaw configuration for nerve stimulation |
| US10463421B2 (en) | 2014-03-27 | 2019-11-05 | Ethicon Llc | Two stage trigger, clamp and cut bipolar vessel sealer |
| US10485607B2 (en) | 2016-04-29 | 2019-11-26 | Ethicon Llc | Jaw structure with distal closure for electrosurgical instruments |
| US10517627B2 (en) | 2012-04-09 | 2019-12-31 | Ethicon Llc | Switch arrangements for ultrasonic surgical instruments |
| US10524872B2 (en) | 2012-06-29 | 2020-01-07 | Ethicon Llc | Closed feedback control for electrosurgical device |
| US10524854B2 (en) | 2010-07-23 | 2020-01-07 | Ethicon Llc | Surgical instrument |
| US10543008B2 (en) | 2012-06-29 | 2020-01-28 | Ethicon Llc | Ultrasonic surgical instruments with distally positioned jaw assemblies |
| US10555769B2 (en) | 2016-02-22 | 2020-02-11 | Ethicon Llc | Flexible circuits for electrosurgical instrument |
| US10575892B2 (en) | 2015-12-31 | 2020-03-03 | Ethicon Llc | Adapter for electrical surgical instruments |
| US10595929B2 (en) | 2015-03-24 | 2020-03-24 | Ethicon Llc | Surgical instruments with firing system overload protection mechanisms |
| US10595887B2 (en) | 2017-12-28 | 2020-03-24 | Ethicon Llc | Systems for adjusting end effector parameters based on perioperative information |
| US10595930B2 (en) | 2015-10-16 | 2020-03-24 | Ethicon Llc | Electrode wiping surgical device |
| US10639092B2 (en) | 2014-12-08 | 2020-05-05 | Ethicon Llc | Electrode configurations for surgical instruments |
| US10646269B2 (en) | 2016-04-29 | 2020-05-12 | Ethicon Llc | Non-linear jaw gap for electrosurgical instruments |
| US10688321B2 (en) | 2009-07-15 | 2020-06-23 | Ethicon Llc | Ultrasonic surgical instruments |
| US10695081B2 (en) | 2017-12-28 | 2020-06-30 | Ethicon Llc | Controlling a surgical instrument according to sensed closure parameters |
| US10702329B2 (en) | 2016-04-29 | 2020-07-07 | Ethicon Llc | Jaw structure with distal post for electrosurgical instruments |
| US10716615B2 (en) | 2016-01-15 | 2020-07-21 | Ethicon Llc | Modular battery powered handheld surgical instrument with curved end effectors having asymmetric engagement between jaw and blade |
| US10729494B2 (en) | 2012-02-10 | 2020-08-04 | Ethicon Llc | Robotically controlled surgical instrument |
| US10755813B2 (en) | 2017-12-28 | 2020-08-25 | Ethicon Llc | Communication of smoke evacuation system parameters to hub or cloud in smoke evacuation module for interactive surgical platform |
| US10758310B2 (en) | 2017-12-28 | 2020-09-01 | Ethicon Llc | Wireless pairing of a surgical device with another device within a sterile surgical field based on the usage and situational awareness of devices |
| US10765470B2 (en) | 2015-06-30 | 2020-09-08 | Ethicon Llc | Surgical system with user adaptable techniques employing simultaneous energy modalities based on tissue parameters |
| US10772651B2 (en) | 2017-10-30 | 2020-09-15 | Ethicon Llc | Surgical instruments comprising a system for articulation and rotation compensation |
| US10779845B2 (en) | 2012-06-29 | 2020-09-22 | Ethicon Llc | Ultrasonic surgical instruments with distally positioned transducers |
| US10779879B2 (en) | 2014-03-18 | 2020-09-22 | Ethicon Llc | Detecting short circuits in electrosurgical medical devices |
| US10835307B2 (en) | 2001-06-12 | 2020-11-17 | Ethicon Llc | Modular battery powered handheld surgical instrument containing elongated multi-layered shaft |
| US10849697B2 (en) | 2017-12-28 | 2020-12-01 | Ethicon Llc | Cloud interface for coupled surgical devices |
| US10856929B2 (en) | 2014-01-07 | 2020-12-08 | Ethicon Llc | Harvesting energy from a surgical generator |
| US10881449B2 (en) | 2012-09-28 | 2021-01-05 | Ethicon Llc | Multi-function bi-polar forceps |
| US10892995B2 (en) | 2017-12-28 | 2021-01-12 | Ethicon Llc | Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs |
| US10892899B2 (en) | 2017-12-28 | 2021-01-12 | Ethicon Llc | Self describing data packets generated at an issuing instrument |
| US10898622B2 (en) | 2017-12-28 | 2021-01-26 | Ethicon Llc | Surgical evacuation system with a communication circuit for communication between a filter and a smoke evacuation device |
| US10898256B2 (en) | 2015-06-30 | 2021-01-26 | Ethicon Llc | Surgical system with user adaptable techniques based on tissue impedance |
| US10912603B2 (en) | 2013-11-08 | 2021-02-09 | Ethicon Llc | Electrosurgical devices |
| US10912580B2 (en) | 2013-12-16 | 2021-02-09 | Ethicon Llc | Medical device |
| US10925659B2 (en) | 2013-09-13 | 2021-02-23 | Ethicon Llc | Electrosurgical (RF) medical instruments for cutting and coagulating tissue |
| US10932872B2 (en) | 2017-12-28 | 2021-03-02 | Ethicon Llc | Cloud-based medical analytics for linking of local usage trends with the resource acquisition behaviors of larger data set |
| US10944728B2 (en) | 2017-12-28 | 2021-03-09 | Ethicon Llc | Interactive surgical systems with encrypted communication capabilities |
| US10943454B2 (en) | 2017-12-28 | 2021-03-09 | Ethicon Llc | Detection and escalation of security responses of surgical instruments to increasing severity threats |
| US10952788B2 (en) | 2015-06-30 | 2021-03-23 | Ethicon Llc | Surgical instrument with user adaptable algorithms |
| US10966791B2 (en) | 2017-12-28 | 2021-04-06 | Ethicon Llc | Cloud-based medical analytics for medical facility segmented individualization of instrument function |
| US10973520B2 (en) | 2018-03-28 | 2021-04-13 | Ethicon Llc | Surgical staple cartridge with firing member driven camming assembly that has an onboard tissue cutting feature |
| US10980595B2 (en) * | 2013-09-26 | 2021-04-20 | Covidien Lp | Systems and methods for estimating tissue parameters using surgical devices |
| US10987123B2 (en) | 2012-06-28 | 2021-04-27 | Ethicon Llc | Surgical instruments with articulating shafts |
| US10987178B2 (en) | 2017-12-28 | 2021-04-27 | Ethicon Llc | Surgical hub control arrangements |
| US10993763B2 (en) | 2012-06-29 | 2021-05-04 | Ethicon Llc | Lockout mechanism for use with robotic electrosurgical device |
| US11013563B2 (en) | 2017-12-28 | 2021-05-25 | Ethicon Llc | Drive arrangements for robot-assisted surgical platforms |
| US11026687B2 (en) | 2017-10-30 | 2021-06-08 | Cilag Gmbh International | Clip applier comprising clip advancing systems |
| US11026751B2 (en) | 2017-12-28 | 2021-06-08 | Cilag Gmbh International | Display of alignment of staple cartridge to prior linear staple line |
| US11051873B2 (en) | 2015-06-30 | 2021-07-06 | Cilag Gmbh International | Surgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters |
| US11056244B2 (en) | 2017-12-28 | 2021-07-06 | Cilag Gmbh International | Automated data scaling, alignment, and organizing based on predefined parameters within surgical networks |
| US11051876B2 (en) | 2017-12-28 | 2021-07-06 | Cilag Gmbh International | Surgical evacuation flow paths |
| US11058498B2 (en) | 2017-12-28 | 2021-07-13 | Cilag Gmbh International | Cooperative surgical actions for robot-assisted surgical platforms |
| US11069012B2 (en) | 2017-12-28 | 2021-07-20 | Cilag Gmbh International | Interactive surgical systems with condition handling of devices and data capabilities |
| US11076921B2 (en) | 2017-12-28 | 2021-08-03 | Cilag Gmbh International | Adaptive control program updates for surgical hubs |
| US11090104B2 (en) | 2009-10-09 | 2021-08-17 | Cilag Gmbh International | Surgical generator for ultrasonic and electrosurgical devices |
| US11090047B2 (en) | 2018-03-28 | 2021-08-17 | Cilag Gmbh International | Surgical instrument comprising an adaptive control system |
| US11096688B2 (en) | 2018-03-28 | 2021-08-24 | Cilag Gmbh International | Rotary driven firing members with different anvil and channel engagement features |
| US11096693B2 (en) | 2017-12-28 | 2021-08-24 | Cilag Gmbh International | Adjustment of staple height of at least one row of staples based on the sensed tissue thickness or force in closing |
| US11100631B2 (en) | 2017-12-28 | 2021-08-24 | Cilag Gmbh International | Use of laser light and red-green-blue coloration to determine properties of back scattered light |
| US11114195B2 (en) | 2017-12-28 | 2021-09-07 | Cilag Gmbh International | Surgical instrument with a tissue marking assembly |
| US11109866B2 (en) | 2017-12-28 | 2021-09-07 | Cilag Gmbh International | Method for circular stapler control algorithm adjustment based on situational awareness |
| US11129669B2 (en) | 2015-06-30 | 2021-09-28 | Cilag Gmbh International | Surgical system with user adaptable techniques based on tissue type |
| US11129670B2 (en) | 2016-01-15 | 2021-09-28 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization |
| US11132462B2 (en) | 2017-12-28 | 2021-09-28 | Cilag Gmbh International | Data stripping method to interrogate patient records and create anonymized record |
| US11129611B2 (en) | 2018-03-28 | 2021-09-28 | Cilag Gmbh International | Surgical staplers with arrangements for maintaining a firing member thereof in a locked configuration unless a compatible cartridge has been installed therein |
| US11147607B2 (en) | 2017-12-28 | 2021-10-19 | Cilag Gmbh International | Bipolar combination device that automatically adjusts pressure based on energy modality |
| US11160605B2 (en) | 2017-12-28 | 2021-11-02 | Cilag Gmbh International | Surgical evacuation sensing and motor control |
| US11166772B2 (en) | 2017-12-28 | 2021-11-09 | Cilag Gmbh International | Surgical hub coordination of control and communication of operating room devices |
| US11179173B2 (en) | 2012-10-22 | 2021-11-23 | Cilag Gmbh International | Surgical instrument |
| US11179208B2 (en) | 2017-12-28 | 2021-11-23 | Cilag Gmbh International | Cloud-based medical analytics for security and authentication trends and reactive measures |
| US11179175B2 (en) | 2017-12-28 | 2021-11-23 | Cilag Gmbh International | Controlling an ultrasonic surgical instrument according to tissue location |
| US11202570B2 (en) | 2017-12-28 | 2021-12-21 | Cilag Gmbh International | Communication hub and storage device for storing parameters and status of a surgical device to be shared with cloud based analytics systems |
| US11207067B2 (en) | 2018-03-28 | 2021-12-28 | Cilag Gmbh International | Surgical stapling device with separate rotary driven closure and firing systems and firing member that engages both jaws while firing |
| US11219453B2 (en) | 2018-03-28 | 2022-01-11 | Cilag Gmbh International | Surgical stapling devices with cartridge compatible closure and firing lockout arrangements |
| US11229471B2 (en) | 2016-01-15 | 2022-01-25 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization |
| US11229436B2 (en) | 2017-10-30 | 2022-01-25 | Cilag Gmbh International | Surgical system comprising a surgical tool and a surgical hub |
| US11234756B2 (en) | 2017-12-28 | 2022-02-01 | Cilag Gmbh International | Powered surgical tool with predefined adjustable control algorithm for controlling end effector parameter |
| US11257589B2 (en) | 2017-12-28 | 2022-02-22 | Cilag Gmbh International | Real-time analysis of comprehensive cost of all instrumentation used in surgery utilizing data fluidity to track instruments through stocking and in-house processes |
| US11253315B2 (en) | 2017-12-28 | 2022-02-22 | Cilag Gmbh International | Increasing radio frequency to create pad-less monopolar loop |
| US11259807B2 (en) | 2019-02-19 | 2022-03-01 | Cilag Gmbh International | Staple cartridges with cam surfaces configured to engage primary and secondary portions of a lockout of a surgical stapling device |
| US11259806B2 (en) | 2018-03-28 | 2022-03-01 | Cilag Gmbh International | Surgical stapling devices with features for blocking advancement of a camming assembly of an incompatible cartridge installed therein |
| US11259830B2 (en) | 2018-03-08 | 2022-03-01 | Cilag Gmbh International | Methods for controlling temperature in ultrasonic device |
| US11266468B2 (en) | 2017-12-28 | 2022-03-08 | Cilag Gmbh International | Cooperative utilization of data derived from secondary sources by intelligent surgical hubs |
| US11266430B2 (en) | 2016-11-29 | 2022-03-08 | Cilag Gmbh International | End effector control and calibration |
| US11273001B2 (en) | 2017-12-28 | 2022-03-15 | Cilag Gmbh International | Surgical hub and modular device response adjustment based on situational awareness |
| US11278280B2 (en) | 2018-03-28 | 2022-03-22 | Cilag Gmbh International | Surgical instrument comprising a jaw closure lockout |
| US11278281B2 (en) | 2017-12-28 | 2022-03-22 | Cilag Gmbh International | Interactive surgical system |
| US11284936B2 (en) | 2017-12-28 | 2022-03-29 | Cilag Gmbh International | Surgical instrument having a flexible electrode |
| US11291510B2 (en) | 2017-10-30 | 2022-04-05 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
| US11291495B2 (en) | 2017-12-28 | 2022-04-05 | Cilag Gmbh International | Interruption of energy due to inadvertent capacitive coupling |
| US11298148B2 (en) | 2018-03-08 | 2022-04-12 | Cilag Gmbh International | Live time tissue classification using electrical parameters |
| US11308075B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Surgical network, instrument, and cloud responses based on validation of received dataset and authentication of its source and integrity |
| US11304699B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Method for adaptive control schemes for surgical network control and interaction |
| US11304745B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Surgical evacuation sensing and display |
| US11304720B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Activation of energy devices |
| US11304763B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Image capturing of the areas outside the abdomen to improve placement and control of a surgical device in use |
| US11311306B2 (en) | 2017-12-28 | 2022-04-26 | Cilag Gmbh International | Surgical systems for detecting end effector tissue distribution irregularities |
| US11311326B2 (en) | 2015-02-06 | 2022-04-26 | Cilag Gmbh International | Electrosurgical instrument with rotation and articulation mechanisms |
| US11311342B2 (en) | 2017-10-30 | 2022-04-26 | Cilag Gmbh International | Method for communicating with surgical instrument systems |
| US11317915B2 (en) | 2019-02-19 | 2022-05-03 | Cilag Gmbh International | Universal cartridge based key feature that unlocks multiple lockout arrangements in different surgical staplers |
| USD950728S1 (en) | 2019-06-25 | 2022-05-03 | Cilag Gmbh International | Surgical staple cartridge |
| US11317919B2 (en) | 2017-10-30 | 2022-05-03 | Cilag Gmbh International | Clip applier comprising a clip crimping system |
| US11317937B2 (en) | 2018-03-08 | 2022-05-03 | Cilag Gmbh International | Determining the state of an ultrasonic end effector |
| US11324527B2 (en) | 2012-11-15 | 2022-05-10 | Cilag Gmbh International | Ultrasonic and electrosurgical devices |
| US11324557B2 (en) | 2017-12-28 | 2022-05-10 | Cilag Gmbh International | Surgical instrument with a sensing array |
| USD952144S1 (en) | 2019-06-25 | 2022-05-17 | Cilag Gmbh International | Surgical staple cartridge retainer with firing system authentication key |
| US11337746B2 (en) | 2018-03-08 | 2022-05-24 | Cilag Gmbh International | Smart blade and power pulsing |
| US11337747B2 (en) | 2014-04-15 | 2022-05-24 | Cilag Gmbh International | Software algorithms for electrosurgical instruments |
| US11357503B2 (en) | 2019-02-19 | 2022-06-14 | Cilag Gmbh International | Staple cartridge retainers with frangible retention features and methods of using same |
| US11364075B2 (en) | 2017-12-28 | 2022-06-21 | Cilag Gmbh International | Radio frequency energy device for delivering combined electrical signals |
| US11369377B2 (en) | 2019-02-19 | 2022-06-28 | Cilag Gmbh International | Surgical stapling assembly with cartridge based retainer configured to unlock a firing lockout |
| US11376002B2 (en) | 2017-12-28 | 2022-07-05 | Cilag Gmbh International | Surgical instrument cartridge sensor assemblies |
| US11389164B2 (en) | 2017-12-28 | 2022-07-19 | Cilag Gmbh International | Method of using reinforced flexible circuits with multiple sensors to optimize performance of radio frequency devices |
| US11399855B2 (en) | 2014-03-27 | 2022-08-02 | Cilag Gmbh International | Electrosurgical devices |
| US11410259B2 (en) | 2017-12-28 | 2022-08-09 | Cilag Gmbh International | Adaptive control program updates for surgical devices |
| US11419630B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Surgical system distributed processing |
| US11424027B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Method for operating surgical instrument systems |
| US11423007B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Adjustment of device control programs based on stratified contextual data in addition to the data |
| US11419667B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Ultrasonic energy device which varies pressure applied by clamp arm to provide threshold control pressure at a cut progression location |
| US11432885B2 (en) | 2017-12-28 | 2022-09-06 | Cilag Gmbh International | Sensing arrangements for robot-assisted surgical platforms |
| US11446052B2 (en) | 2017-12-28 | 2022-09-20 | Cilag Gmbh International | Variation of radio frequency and ultrasonic power level in cooperation with varying clamp arm pressure to achieve predefined heat flux or power applied to tissue |
| USD964564S1 (en) | 2019-06-25 | 2022-09-20 | Cilag Gmbh International | Surgical staple cartridge retainer with a closure system authentication key |
| US11452525B2 (en) | 2019-12-30 | 2022-09-27 | Cilag Gmbh International | Surgical instrument comprising an adjustment system |
| US11464535B2 (en) | 2017-12-28 | 2022-10-11 | Cilag Gmbh International | Detection of end effector emersion in liquid |
| US11464559B2 (en) | 2017-12-28 | 2022-10-11 | Cilag Gmbh International | Estimating state of ultrasonic end effector and control system therefor |
| US11464511B2 (en) | 2019-02-19 | 2022-10-11 | Cilag Gmbh International | Surgical staple cartridges with movable authentication key arrangements |
| US11471156B2 (en) | 2018-03-28 | 2022-10-18 | Cilag Gmbh International | Surgical stapling devices with improved rotary driven closure systems |
| US11504192B2 (en) | 2014-10-30 | 2022-11-22 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
| US11510741B2 (en) | 2017-10-30 | 2022-11-29 | Cilag Gmbh International | Method for producing a surgical instrument comprising a smart electrical system |
| US11529187B2 (en) | 2017-12-28 | 2022-12-20 | Cilag Gmbh International | Surgical evacuation sensor arrangements |
| US11540855B2 (en) | 2017-12-28 | 2023-01-03 | Cilag Gmbh International | Controlling activation of an ultrasonic surgical instrument according to the presence of tissue |
| US11559308B2 (en) | 2017-12-28 | 2023-01-24 | Cilag Gmbh International | Method for smart energy device infrastructure |
| US11559307B2 (en) | 2017-12-28 | 2023-01-24 | Cilag Gmbh International | Method of robotic hub communication, detection, and control |
| US11564756B2 (en) | 2017-10-30 | 2023-01-31 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
| US11571234B2 (en) | 2017-12-28 | 2023-02-07 | Cilag Gmbh International | Temperature control of ultrasonic end effector and control system therefor |
| US11576677B2 (en) | 2017-12-28 | 2023-02-14 | Cilag Gmbh International | Method of hub communication, processing, display, and cloud analytics |
| US11589932B2 (en) | 2017-12-28 | 2023-02-28 | Cilag Gmbh International | Usage and technique analysis of surgeon / staff performance against a baseline to optimize device utilization and performance for both current and future procedures |
| US11589888B2 (en) | 2017-12-28 | 2023-02-28 | Cilag Gmbh International | Method for controlling smart energy devices |
| US11589916B2 (en) | 2019-12-30 | 2023-02-28 | Cilag Gmbh International | Electrosurgical instruments with electrodes having variable energy densities |
| US11596291B2 (en) | 2017-12-28 | 2023-03-07 | Cilag Gmbh International | Method of compressing tissue within a stapling device and simultaneously displaying of the location of the tissue within the jaws |
| US11602393B2 (en) | 2017-12-28 | 2023-03-14 | Cilag Gmbh International | Surgical evacuation sensing and generator control |
| US11607264B2 (en) | 2014-04-04 | 2023-03-21 | Covidien Lp | Systems and methods for calculating tissue impedance in electrosurgery |
| US11612444B2 (en) | 2017-12-28 | 2023-03-28 | Cilag Gmbh International | Adjustment of a surgical device function based on situational awareness |
| US11659023B2 (en) | 2017-12-28 | 2023-05-23 | Cilag Gmbh International | Method of hub communication |
| US11660089B2 (en) | 2019-12-30 | 2023-05-30 | Cilag Gmbh International | Surgical instrument comprising a sensing system |
| US11666331B2 (en) | 2017-12-28 | 2023-06-06 | Cilag Gmbh International | Systems for detecting proximity of surgical end effector to cancerous tissue |
| US11684412B2 (en) | 2019-12-30 | 2023-06-27 | Cilag Gmbh International | Surgical instrument with rotatable and articulatable surgical end effector |
| US11696776B2 (en) | 2019-12-30 | 2023-07-11 | Cilag Gmbh International | Articulatable surgical instrument |
| US11723716B2 (en) | 2019-12-30 | 2023-08-15 | Cilag Gmbh International | Electrosurgical instrument with variable control mechanisms |
| US11744604B2 (en) | 2017-12-28 | 2023-09-05 | Cilag Gmbh International | Surgical instrument with a hardware-only control circuit |
| US11759251B2 (en) | 2019-12-30 | 2023-09-19 | Cilag Gmbh International | Control program adaptation based on device status and user input |
| US11771487B2 (en) | 2017-12-28 | 2023-10-03 | Cilag Gmbh International | Mechanisms for controlling different electromechanical systems of an electrosurgical instrument |
| US11779387B2 (en) | 2019-12-30 | 2023-10-10 | Cilag Gmbh International | Clamp arm jaw to minimize tissue sticking and improve tissue control |
| US11779329B2 (en) | 2019-12-30 | 2023-10-10 | Cilag Gmbh International | Surgical instrument comprising a flex circuit including a sensor system |
| US11786291B2 (en) | 2019-12-30 | 2023-10-17 | Cilag Gmbh International | Deflectable support of RF energy electrode with respect to opposing ultrasonic blade |
| US11786251B2 (en) | 2017-12-28 | 2023-10-17 | Cilag Gmbh International | Method for adaptive control schemes for surgical network control and interaction |
| US11786245B2 (en) | 2017-12-28 | 2023-10-17 | Cilag Gmbh International | Surgical systems with prioritized data transmission capabilities |
| US11801098B2 (en) | 2017-10-30 | 2023-10-31 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
| US11818052B2 (en) | 2017-12-28 | 2023-11-14 | Cilag Gmbh International | Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs |
| US11812957B2 (en) | 2019-12-30 | 2023-11-14 | Cilag Gmbh International | Surgical instrument comprising a signal interference resolution system |
| US11832840B2 (en) | 2017-12-28 | 2023-12-05 | Cilag Gmbh International | Surgical instrument having a flexible circuit |
| US11832899B2 (en) | 2017-12-28 | 2023-12-05 | Cilag Gmbh International | Surgical systems with autonomously adjustable control programs |
| US11857152B2 (en) | 2017-12-28 | 2024-01-02 | Cilag Gmbh International | Surgical hub spatial awareness to determine devices in operating theater |
| US11864728B2 (en) | 2017-12-28 | 2024-01-09 | Cilag Gmbh International | Characterization of tissue irregularities through the use of mono-chromatic light refractivity |
| US11871901B2 (en) | 2012-05-20 | 2024-01-16 | Cilag Gmbh International | Method for situational awareness for surgical network or surgical network connected device capable of adjusting function based on a sensed situation or usage |
| US11896322B2 (en) | 2017-12-28 | 2024-02-13 | Cilag Gmbh International | Sensing the patient position and contact utilizing the mono-polar return pad electrode to provide situational awareness to the hub |
| US11896443B2 (en) | 2017-12-28 | 2024-02-13 | Cilag Gmbh International | Control of a surgical system through a surgical barrier |
| US11903601B2 (en) | 2017-12-28 | 2024-02-20 | Cilag Gmbh International | Surgical instrument comprising a plurality of drive systems |
| US11911045B2 (en) | 2017-10-30 | 2024-02-27 | Cllag GmbH International | Method for operating a powered articulating multi-clip applier |
| US11911063B2 (en) | 2019-12-30 | 2024-02-27 | Cilag Gmbh International | Techniques for detecting ultrasonic blade to electrode contact and reducing power to ultrasonic blade |
| US11937769B2 (en) | 2017-12-28 | 2024-03-26 | Cilag Gmbh International | Method of hub communication, processing, storage and display |
| US11937863B2 (en) | 2019-12-30 | 2024-03-26 | Cilag Gmbh International | Deflectable electrode with variable compression bias along the length of the deflectable electrode |
| US11937866B2 (en) | 2019-12-30 | 2024-03-26 | Cilag Gmbh International | Method for an electrosurgical procedure |
| US11944366B2 (en) | 2019-12-30 | 2024-04-02 | Cilag Gmbh International | Asymmetric segmented ultrasonic support pad for cooperative engagement with a movable RF electrode |
| US11950797B2 (en) | 2019-12-30 | 2024-04-09 | Cilag Gmbh International | Deflectable electrode with higher distal bias relative to proximal bias |
| US11969216B2 (en) | 2017-12-28 | 2024-04-30 | Cilag Gmbh International | Surgical network recommendations from real time analysis of procedure variables against a baseline highlighting differences from the optimal solution |
| US11986201B2 (en) | 2019-12-30 | 2024-05-21 | Cilag Gmbh International | Method for operating a surgical instrument |
| US11998193B2 (en) | 2017-12-28 | 2024-06-04 | Cilag Gmbh International | Method for usage of the shroud as an aspect of sensing or controlling a powered surgical device, and a control algorithm to adjust its default operation |
| US12023086B2 (en) | 2019-12-30 | 2024-07-02 | Cilag Gmbh International | Electrosurgical instrument for delivering blended energy modalities to tissue |
| US12029506B2 (en) | 2017-12-28 | 2024-07-09 | Cilag Gmbh International | Method of cloud based data analytics for use with the hub |
| US12035890B2 (en) | 2017-12-28 | 2024-07-16 | Cilag Gmbh International | Method of sensing particulate from smoke evacuated from a patient, adjusting the pump speed based on the sensed information, and communicating the functional parameters of the system to the hub |
| US12053224B2 (en) | 2019-12-30 | 2024-08-06 | Cilag Gmbh International | Variation in electrode parameters and deflectable electrode to modify energy density and tissue interaction |
| US12062442B2 (en) | 2017-12-28 | 2024-08-13 | Cilag Gmbh International | Method for operating surgical instrument systems |
| US12064109B2 (en) | 2019-12-30 | 2024-08-20 | Cilag Gmbh International | Surgical instrument comprising a feedback control circuit |
| US12076006B2 (en) | 2019-12-30 | 2024-09-03 | Cilag Gmbh International | Surgical instrument comprising an orientation detection system |
| US12082808B2 (en) | 2019-12-30 | 2024-09-10 | Cilag Gmbh International | Surgical instrument comprising a control system responsive to software configurations |
| US12114912B2 (en) | 2019-12-30 | 2024-10-15 | Cilag Gmbh International | Non-biased deflectable electrode to minimize contact between ultrasonic blade and electrode |
| US12127729B2 (en) | 2017-12-28 | 2024-10-29 | Cilag Gmbh International | Method for smoke evacuation for surgical hub |
| US12133773B2 (en) | 2017-12-28 | 2024-11-05 | Cilag Gmbh International | Surgical hub and modular device response adjustment based on situational awareness |
| US12193698B2 (en) | 2016-01-15 | 2025-01-14 | Cilag Gmbh International | Method for self-diagnosing operation of a control switch in a surgical instrument system |
| US12226151B2 (en) | 2017-12-28 | 2025-02-18 | Cilag Gmbh International | Capacitive coupled return path pad with separable array elements |
| US12262937B2 (en) | 2019-12-30 | 2025-04-01 | Cilag Gmbh International | User interface for surgical instrument with combination energy modality end-effector |
| US12303159B2 (en) | 2018-03-08 | 2025-05-20 | Cilag Gmbh International | Methods for estimating and controlling state of ultrasonic end effector |
| US12318152B2 (en) | 2017-12-28 | 2025-06-03 | Cilag Gmbh International | Computer implemented interactive surgical systems |
| US12336747B2 (en) | 2019-12-30 | 2025-06-24 | Cilag Gmbh International | Method of operating a combination ultrasonic / bipolar RF surgical device with a combination energy modality end-effector |
| US12343063B2 (en) | 2019-12-30 | 2025-07-01 | Cilag Gmbh International | Multi-layer clamp arm pad for enhanced versatility and performance of a surgical device |
| US12376855B2 (en) | 2017-12-28 | 2025-08-05 | Cilag Gmbh International | Safety systems for smart powered surgical stapling |
| US12396806B2 (en) | 2017-12-28 | 2025-08-26 | Cilag Gmbh International | Adjustment of a surgical device function based on situational awareness |
| US12433508B2 (en) | 2017-12-28 | 2025-10-07 | Cilag Gmbh International | Surgical system having a surgical instrument controlled based on comparison of sensor and database data |
Families Citing this family (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10194972B2 (en) * | 2014-08-26 | 2019-02-05 | Ethicon Llc | Managing tissue treatment |
| US10188448B2 (en) | 2014-11-21 | 2019-01-29 | Covidien Lp | Electrosurgical system for multi-frequency interrogation of parasitic parameters of an electrosurgical instrument |
| US11090106B2 (en) | 2015-04-23 | 2021-08-17 | Covidien Lp | Control systems for electrosurgical generator |
| US10617463B2 (en) | 2015-04-23 | 2020-04-14 | Covidien Lp | Systems and methods for controlling power in an electrosurgical generator |
| US11446078B2 (en) | 2015-07-20 | 2022-09-20 | Megadyne Medical Products, Inc. | Electrosurgical wave generator |
| US10869712B2 (en) | 2016-05-02 | 2020-12-22 | Covidien Lp | System and method for high frequency leakage reduction through selective harmonic elimination in electrosurgical generators |
| US10772673B2 (en) | 2016-05-02 | 2020-09-15 | Covidien Lp | Surgical energy system with universal connection features |
| US10610287B2 (en) | 2016-05-05 | 2020-04-07 | Covidien Lp | Advanced simultaneous activation algorithm |
| US11185366B2 (en) * | 2017-03-14 | 2021-11-30 | Biosense Webster (Israel) Ltd. | Estimation of tissue thickness from rate of change of catheter temperature |
| US11534226B2 (en) | 2017-09-22 | 2022-12-27 | Covidien Lp | Systems and methods for minimizing arcing of bipolar forceps |
| US11272975B2 (en) | 2017-09-22 | 2022-03-15 | Covidien Lp | Systems and methods for controlled electrosurgical dissection |
| US11744631B2 (en) | 2017-09-22 | 2023-09-05 | Covidien Lp | Systems and methods for controlled electrosurgical coagulation |
| JP7263367B2 (en) * | 2017-12-28 | 2023-04-24 | エシコン エルエルシー | surgical instrument cartridge sensor assembly |
| US12333423B2 (en) | 2019-02-14 | 2025-06-17 | Covidien Lp | Systems and methods for estimating tissue parameters using surgical devices |
Citations (68)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| SU166452A1 (en) | В. А. Костров , Л. В. Смирнов | STOMATOLOGICAL DIATHERMOKOAGULATOR | ||
| DE179607C (en) | 1906-11-12 | |||
| DE390937C (en) | 1922-10-13 | 1924-03-03 | Adolf Erb | Device for internal heating of furnace furnaces for hardening, tempering, annealing, quenching and melting |
| DE1099658B (en) | 1959-04-29 | 1961-02-16 | Siemens Reiniger Werke Ag | Automatic switch-on device for high-frequency surgical devices |
| FR1275415A (en) | 1960-09-26 | 1961-11-10 | Device for detecting disturbances for electrical installations, in particular electrosurgery | |
| DE1139927B (en) | 1961-01-03 | 1962-11-22 | Friedrich Laber | High-frequency surgical device |
| DE1149832B (en) | 1961-02-25 | 1963-06-06 | Siemens Reiniger Werke Ag | High frequency surgical apparatus |
| FR1347865A (en) | 1962-11-22 | 1964-01-04 | Improvements to diathermo-coagulation devices | |
| DE1439302A1 (en) | 1963-10-26 | 1969-01-23 | Siemens Ag | High-frequency surgical device |
| DE2439587A1 (en) | 1973-08-23 | 1975-02-27 | Matburn Holdings Ltd | ELECTROSURGICAL DEVICE |
| DE2455174A1 (en) | 1973-11-21 | 1975-05-22 | Termiflex Corp | INPUT / OUTPUT DEVICE FOR DATA EXCHANGE WITH DATA PROCESSING DEVICES |
| DE2407559A1 (en) | 1974-02-16 | 1975-08-28 | Dornier System Gmbh | Tissue heat treatment probe - has water cooling system which ensures heat development only in treated tissues |
| DE2602517A1 (en) | 1975-01-23 | 1976-07-29 | Dentsply Int Inc | ELECTROSURGICAL DEVICE |
| DE2504280A1 (en) | 1975-02-01 | 1976-08-05 | Hans Heinrich Prof Dr Meinke | DEVICE FOR ELECTRIC TISSUE CUTTING IN SURGERY |
| FR2313708A1 (en) | 1975-06-02 | 1976-12-31 | Sybron Corp | Electro surgical instrument impulse control circuit - has potentiometer between patient electrodes and threshold switch for excessive voltage |
| DE2540968A1 (en) | 1975-09-13 | 1977-03-17 | Erbe Elektromedizin | Circuit for bipolar coagulation tweezers - permits preparation of tissues prior to coagulation |
| FR2364461A1 (en) | 1976-09-09 | 1978-04-07 | Valleylab Inc | ELECTROSURGICAL EQUIPMENT SAFETY CIRCUIT AND ITS PROCESS FOR USE |
| DE2820908A1 (en) | 1977-05-16 | 1978-11-23 | Joseph Skovajsa | DEVICE FOR THE LOCAL TREATMENT OF A PATIENT IN PARTICULAR FOR ACUPUNCTURE OR AURICULAR THERAPY |
| DE2803275A1 (en) | 1978-01-26 | 1979-08-02 | Aesculap Werke Ag | HF surgical appts. with active treatment and patient electrodes - has sensor switching generator to small voltage when hand-operated switch is closed |
| DE2823291A1 (en) | 1978-05-27 | 1979-11-29 | Rainer Ing Grad Koch | Coagulation instrument automatic HF switching circuit - has first lead to potentiometer and second to transistor base |
| SU727201A2 (en) | 1977-11-02 | 1980-04-15 | Киевский Научно-Исследовательский Институт Нейрохирургии | Electric surgical apparatus |
| DE2946728A1 (en) | 1979-11-20 | 1981-05-27 | Erbe Elektromedizin GmbH & Co KG, 7400 Tübingen | HF surgical appts. for use with endoscope - provides cutting or coagulation current at preset intervals and of selected duration |
| DE3143421A1 (en) | 1980-11-04 | 1982-05-27 | The Agency of Industrial Science and Technology, Tokyo | Laser scalpel |
| DE3045996A1 (en) | 1980-12-05 | 1982-07-08 | Medic Eschmann Handelsgesellschaft für medizinische Instrumente mbH, 2000 Hamburg | Electro-surgical scalpel instrument - has power supply remotely controlled by surgeon |
| FR2502935A1 (en) | 1981-03-31 | 1982-10-08 | Dolley Roger | Diathermic knife for coagulating tissues - has monitoring current added to HF coagulating current in order to control end of operation as function or resistance of coagulating tissues |
| DE3120102A1 (en) | 1981-05-20 | 1982-12-09 | F.L. Fischer GmbH & Co, 7800 Freiburg | ARRANGEMENT FOR HIGH-FREQUENCY COAGULATION OF EGG WHITE FOR SURGICAL PURPOSES |
| FR2517953A1 (en) | 1981-12-10 | 1983-06-17 | Alvar Electronic | Diaphanometer for optical examination of breast tissue structure - measures tissue transparency using two plates and optical fibre bundle cooperating with photoelectric cells |
| FR2573301A1 (en) | 1984-11-16 | 1986-05-23 | Lamidey Gilles | Surgical forceps and its control and monitoring apparatus |
| DE3510586A1 (en) | 1985-03-23 | 1986-10-02 | Erbe Elektromedizin GmbH, 7400 Tübingen | Control device for a high-frequency surgical instrument |
| DE3604823A1 (en) | 1986-02-15 | 1987-08-27 | Flachenecker Gerhard | HIGH FREQUENCY GENERATOR WITH AUTOMATIC PERFORMANCE CONTROL FOR HIGH FREQUENCY SURGERY |
| EP0246350A1 (en) | 1986-05-23 | 1987-11-25 | Erbe Elektromedizin GmbH. | Coagulation electrode |
| JPS635876A (en) | 1986-06-27 | 1988-01-11 | Hitachi Seiko Ltd | Arc welding machine |
| EP0267403A2 (en) | 1986-11-13 | 1988-05-18 | Richard Hirschmann GmbH & Co. | Capacitive separating circuit |
| EP0296777A2 (en) | 1987-06-26 | 1988-12-28 | Microwave Medical Systems, Inc. | In-line microwave warming apparatus |
| EP0310431A2 (en) | 1987-09-30 | 1989-04-05 | Valleylab, Inc. | Apparatus for providing enhanced tissue fragmentation and/or hemostasis |
| EP0325456A2 (en) | 1988-01-20 | 1989-07-26 | G2 Design Limited | Diathermy unit |
| EP0336742A2 (en) | 1988-04-08 | 1989-10-11 | Bristol-Myers Company | Method and apparatus for the calibration of electrosurgical apparatus |
| DE3904558A1 (en) | 1989-02-15 | 1990-08-23 | Flachenecker Gerhard | Radio-frequency generator with automatic power control for radio-frequency surgery |
| EP0390937A1 (en) | 1989-04-01 | 1990-10-10 | Erbe Elektromedizin GmbH | Device for the surveillance of the adherence of neutral electrodes in high-frequency surgery |
| DE3942998A1 (en) | 1989-12-27 | 1991-07-04 | Delma Elektro Med App | Electro-surgical HF instrument for contact coagulation - has monitoring circuit evaluating HF voltage at electrodes and delivering switch=off signal |
| EP0556705A1 (en) | 1992-02-20 | 1993-08-25 | DELMA ELEKTRO-UND MEDIZINISCHE APPARATEBAU GESELLSCHAFT mbH | High frequency surgery device |
| DE4206433A1 (en) | 1992-02-29 | 1993-09-02 | Bosch Gmbh Robert | Capacity separator for inner and outer leads of HF coaxial cable to be coupled together - has electrically conductive casing in two coaxial parts, each coupled to outer conductor and leaving meandering air gap in-between |
| EP0608609A2 (en) | 1992-12-01 | 1994-08-03 | Cardiac Pathways Corporation | Catheter for RF ablation with cooled electrode and method |
| DE4339049A1 (en) | 1993-11-16 | 1995-05-18 | Erbe Elektromedizin | Surgical system and instruments configuration device |
| DE19506363A1 (en) | 1995-02-24 | 1996-08-29 | Frost Lore Geb Haupt | Non-invasive thermometry in organs under hyperthermia and coagulation conditions |
| EP0836868A2 (en) | 1996-10-18 | 1998-04-22 | Gebr. Berchtold GmbH & Co. | High frequency surgical apparatus and method for operating same |
| DE19717411A1 (en) | 1997-04-25 | 1998-11-05 | Aesculap Ag & Co Kg | Monitoring of thermal loading of patient tissue in contact region of neutral electrode of HF treatment unit |
| EP0880220A2 (en) | 1997-05-19 | 1998-11-25 | TRW Inc. | A phase staggered full-bridge converter with soft-PWM switching |
| EP0882955A1 (en) | 1997-06-06 | 1998-12-09 | Endress + Hauser GmbH + Co. | Level measuring apparatus using microwaves |
| DE19848540A1 (en) | 1998-10-21 | 2000-05-25 | Reinhard Kalfhaus | Circuit layout and method for operating a single- or multiphase current inverter connects an AC voltage output to a primary winding and current and a working resistance to a transformer's secondary winding and current. |
| EP1051948A2 (en) | 1999-04-23 | 2000-11-15 | Sherwood Services AG | Automatic activation of electrosurgical generator bipolar output |
| WO2002011634A1 (en) | 2000-08-08 | 2002-02-14 | Erbe Elektromedizin Gmbh | High-frequency generator for performing high-frequency surgery having adjustable power limitation, and method for controlling the power limitation |
| JP2002065690A (en) | 2000-08-23 | 2002-03-05 | Olympus Optical Co Ltd | Electrosurgical device |
| WO2002045589A2 (en) | 2000-12-08 | 2002-06-13 | Gfd Gesellschaft Für Diamantprodukte Mbh | Instrument, which is provided for surgical applications and which comprises contact areas made of doped diamond, and method for cleaning the instrument |
| WO2003090635A1 (en) | 2002-04-26 | 2003-11-06 | Storz Endoskop Produktions Gmbh | High-frequency surgical generator |
| EP1366724A1 (en) | 1995-12-08 | 2003-12-03 | C.R. Bard Inc. | Radio frequency energy delivery system for multipolar electrode catheters |
| JP2005185657A (en) | 2003-12-26 | 2005-07-14 | Olympus Corp | Surgical treatment instrument |
| WO2006050888A1 (en) | 2004-11-11 | 2006-05-18 | Erbe Elektromedizin Gmbh | Hf surgical instrument |
| EP1776929A1 (en) | 2005-10-21 | 2007-04-25 | Sherwood Services AG | Circuit for reducing stored energy in an electrosurgical generator |
| WO2008053532A1 (en) | 2006-10-31 | 2008-05-08 | Olympus Medical Systems Corp. | High frequency cautery electric power source device |
| USD574323S1 (en) | 2007-02-12 | 2008-08-05 | Tyco Healthcare Group Lp | Generator |
| DE102008058737A1 (en) | 2008-09-08 | 2010-04-15 | Erbe Elektromedizin Gmbh | Electrosurgical generator |
| US20100137854A1 (en) | 2008-05-23 | 2010-06-03 | Gyrus Medical Limited | Electrosurgical generator and system |
| EP2409661A1 (en) | 2010-07-19 | 2012-01-25 | Tyco Healthcare Group, LP | Hydraulic conductive monitoring to initiate tissue division |
| EP2457532A1 (en) | 2010-11-29 | 2012-05-30 | Tyco Healthcare Group, LP | System for tissue sealing |
| US20130103023A1 (en) | 2011-10-24 | 2013-04-25 | Ethicon Endo-Surgery, Inc. | Litz wire battery powered device |
| EP2620115A1 (en) | 2012-01-30 | 2013-07-31 | Covidien LP | Electrosurgical apparatus with integrated energy sensing at tissue site |
| US20130215216A1 (en) | 2010-09-26 | 2013-08-22 | Tencent Technology (Shenzhen) Company Limited | Method and apparatus for displaying information by animation |
-
2014
- 2014-06-06 US US14/297,812 patent/US9867651B2/en active Active
Patent Citations (69)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| SU166452A1 (en) | В. А. Костров , Л. В. Смирнов | STOMATOLOGICAL DIATHERMOKOAGULATOR | ||
| DE179607C (en) | 1906-11-12 | |||
| DE390937C (en) | 1922-10-13 | 1924-03-03 | Adolf Erb | Device for internal heating of furnace furnaces for hardening, tempering, annealing, quenching and melting |
| DE1099658B (en) | 1959-04-29 | 1961-02-16 | Siemens Reiniger Werke Ag | Automatic switch-on device for high-frequency surgical devices |
| FR1275415A (en) | 1960-09-26 | 1961-11-10 | Device for detecting disturbances for electrical installations, in particular electrosurgery | |
| DE1139927B (en) | 1961-01-03 | 1962-11-22 | Friedrich Laber | High-frequency surgical device |
| DE1149832B (en) | 1961-02-25 | 1963-06-06 | Siemens Reiniger Werke Ag | High frequency surgical apparatus |
| FR1347865A (en) | 1962-11-22 | 1964-01-04 | Improvements to diathermo-coagulation devices | |
| DE1439302A1 (en) | 1963-10-26 | 1969-01-23 | Siemens Ag | High-frequency surgical device |
| DE2439587A1 (en) | 1973-08-23 | 1975-02-27 | Matburn Holdings Ltd | ELECTROSURGICAL DEVICE |
| DE2455174A1 (en) | 1973-11-21 | 1975-05-22 | Termiflex Corp | INPUT / OUTPUT DEVICE FOR DATA EXCHANGE WITH DATA PROCESSING DEVICES |
| DE2407559A1 (en) | 1974-02-16 | 1975-08-28 | Dornier System Gmbh | Tissue heat treatment probe - has water cooling system which ensures heat development only in treated tissues |
| DE2602517A1 (en) | 1975-01-23 | 1976-07-29 | Dentsply Int Inc | ELECTROSURGICAL DEVICE |
| DE2504280A1 (en) | 1975-02-01 | 1976-08-05 | Hans Heinrich Prof Dr Meinke | DEVICE FOR ELECTRIC TISSUE CUTTING IN SURGERY |
| FR2313708A1 (en) | 1975-06-02 | 1976-12-31 | Sybron Corp | Electro surgical instrument impulse control circuit - has potentiometer between patient electrodes and threshold switch for excessive voltage |
| DE2540968A1 (en) | 1975-09-13 | 1977-03-17 | Erbe Elektromedizin | Circuit for bipolar coagulation tweezers - permits preparation of tissues prior to coagulation |
| FR2364461A1 (en) | 1976-09-09 | 1978-04-07 | Valleylab Inc | ELECTROSURGICAL EQUIPMENT SAFETY CIRCUIT AND ITS PROCESS FOR USE |
| DE2820908A1 (en) | 1977-05-16 | 1978-11-23 | Joseph Skovajsa | DEVICE FOR THE LOCAL TREATMENT OF A PATIENT IN PARTICULAR FOR ACUPUNCTURE OR AURICULAR THERAPY |
| SU727201A2 (en) | 1977-11-02 | 1980-04-15 | Киевский Научно-Исследовательский Институт Нейрохирургии | Electric surgical apparatus |
| DE2803275A1 (en) | 1978-01-26 | 1979-08-02 | Aesculap Werke Ag | HF surgical appts. with active treatment and patient electrodes - has sensor switching generator to small voltage when hand-operated switch is closed |
| DE2823291A1 (en) | 1978-05-27 | 1979-11-29 | Rainer Ing Grad Koch | Coagulation instrument automatic HF switching circuit - has first lead to potentiometer and second to transistor base |
| DE2946728A1 (en) | 1979-11-20 | 1981-05-27 | Erbe Elektromedizin GmbH & Co KG, 7400 Tübingen | HF surgical appts. for use with endoscope - provides cutting or coagulation current at preset intervals and of selected duration |
| DE3143421A1 (en) | 1980-11-04 | 1982-05-27 | The Agency of Industrial Science and Technology, Tokyo | Laser scalpel |
| DE3045996A1 (en) | 1980-12-05 | 1982-07-08 | Medic Eschmann Handelsgesellschaft für medizinische Instrumente mbH, 2000 Hamburg | Electro-surgical scalpel instrument - has power supply remotely controlled by surgeon |
| FR2502935A1 (en) | 1981-03-31 | 1982-10-08 | Dolley Roger | Diathermic knife for coagulating tissues - has monitoring current added to HF coagulating current in order to control end of operation as function or resistance of coagulating tissues |
| DE3120102A1 (en) | 1981-05-20 | 1982-12-09 | F.L. Fischer GmbH & Co, 7800 Freiburg | ARRANGEMENT FOR HIGH-FREQUENCY COAGULATION OF EGG WHITE FOR SURGICAL PURPOSES |
| FR2517953A1 (en) | 1981-12-10 | 1983-06-17 | Alvar Electronic | Diaphanometer for optical examination of breast tissue structure - measures tissue transparency using two plates and optical fibre bundle cooperating with photoelectric cells |
| FR2573301A1 (en) | 1984-11-16 | 1986-05-23 | Lamidey Gilles | Surgical forceps and its control and monitoring apparatus |
| DE3510586A1 (en) | 1985-03-23 | 1986-10-02 | Erbe Elektromedizin GmbH, 7400 Tübingen | Control device for a high-frequency surgical instrument |
| DE3604823A1 (en) | 1986-02-15 | 1987-08-27 | Flachenecker Gerhard | HIGH FREQUENCY GENERATOR WITH AUTOMATIC PERFORMANCE CONTROL FOR HIGH FREQUENCY SURGERY |
| EP0246350A1 (en) | 1986-05-23 | 1987-11-25 | Erbe Elektromedizin GmbH. | Coagulation electrode |
| JPS635876A (en) | 1986-06-27 | 1988-01-11 | Hitachi Seiko Ltd | Arc welding machine |
| EP0267403A2 (en) | 1986-11-13 | 1988-05-18 | Richard Hirschmann GmbH & Co. | Capacitive separating circuit |
| EP0296777A2 (en) | 1987-06-26 | 1988-12-28 | Microwave Medical Systems, Inc. | In-line microwave warming apparatus |
| EP0310431A2 (en) | 1987-09-30 | 1989-04-05 | Valleylab, Inc. | Apparatus for providing enhanced tissue fragmentation and/or hemostasis |
| EP0325456A2 (en) | 1988-01-20 | 1989-07-26 | G2 Design Limited | Diathermy unit |
| EP0336742A2 (en) | 1988-04-08 | 1989-10-11 | Bristol-Myers Company | Method and apparatus for the calibration of electrosurgical apparatus |
| DE3904558A1 (en) | 1989-02-15 | 1990-08-23 | Flachenecker Gerhard | Radio-frequency generator with automatic power control for radio-frequency surgery |
| EP0390937A1 (en) | 1989-04-01 | 1990-10-10 | Erbe Elektromedizin GmbH | Device for the surveillance of the adherence of neutral electrodes in high-frequency surgery |
| DE3942998A1 (en) | 1989-12-27 | 1991-07-04 | Delma Elektro Med App | Electro-surgical HF instrument for contact coagulation - has monitoring circuit evaluating HF voltage at electrodes and delivering switch=off signal |
| EP0556705A1 (en) | 1992-02-20 | 1993-08-25 | DELMA ELEKTRO-UND MEDIZINISCHE APPARATEBAU GESELLSCHAFT mbH | High frequency surgery device |
| DE4206433A1 (en) | 1992-02-29 | 1993-09-02 | Bosch Gmbh Robert | Capacity separator for inner and outer leads of HF coaxial cable to be coupled together - has electrically conductive casing in two coaxial parts, each coupled to outer conductor and leaving meandering air gap in-between |
| EP0608609A2 (en) | 1992-12-01 | 1994-08-03 | Cardiac Pathways Corporation | Catheter for RF ablation with cooled electrode and method |
| DE4339049A1 (en) | 1993-11-16 | 1995-05-18 | Erbe Elektromedizin | Surgical system and instruments configuration device |
| DE19506363A1 (en) | 1995-02-24 | 1996-08-29 | Frost Lore Geb Haupt | Non-invasive thermometry in organs under hyperthermia and coagulation conditions |
| EP1366724A1 (en) | 1995-12-08 | 2003-12-03 | C.R. Bard Inc. | Radio frequency energy delivery system for multipolar electrode catheters |
| EP0836868A2 (en) | 1996-10-18 | 1998-04-22 | Gebr. Berchtold GmbH & Co. | High frequency surgical apparatus and method for operating same |
| DE19717411A1 (en) | 1997-04-25 | 1998-11-05 | Aesculap Ag & Co Kg | Monitoring of thermal loading of patient tissue in contact region of neutral electrode of HF treatment unit |
| EP0880220A2 (en) | 1997-05-19 | 1998-11-25 | TRW Inc. | A phase staggered full-bridge converter with soft-PWM switching |
| EP0882955A1 (en) | 1997-06-06 | 1998-12-09 | Endress + Hauser GmbH + Co. | Level measuring apparatus using microwaves |
| DE19848540A1 (en) | 1998-10-21 | 2000-05-25 | Reinhard Kalfhaus | Circuit layout and method for operating a single- or multiphase current inverter connects an AC voltage output to a primary winding and current and a working resistance to a transformer's secondary winding and current. |
| EP1051948A2 (en) | 1999-04-23 | 2000-11-15 | Sherwood Services AG | Automatic activation of electrosurgical generator bipolar output |
| WO2002011634A1 (en) | 2000-08-08 | 2002-02-14 | Erbe Elektromedizin Gmbh | High-frequency generator for performing high-frequency surgery having adjustable power limitation, and method for controlling the power limitation |
| JP2002065690A (en) | 2000-08-23 | 2002-03-05 | Olympus Optical Co Ltd | Electrosurgical device |
| WO2002045589A2 (en) | 2000-12-08 | 2002-06-13 | Gfd Gesellschaft Für Diamantprodukte Mbh | Instrument, which is provided for surgical applications and which comprises contact areas made of doped diamond, and method for cleaning the instrument |
| WO2003090635A1 (en) | 2002-04-26 | 2003-11-06 | Storz Endoskop Produktions Gmbh | High-frequency surgical generator |
| JP2005185657A (en) | 2003-12-26 | 2005-07-14 | Olympus Corp | Surgical treatment instrument |
| WO2006050888A1 (en) | 2004-11-11 | 2006-05-18 | Erbe Elektromedizin Gmbh | Hf surgical instrument |
| EP1776929A1 (en) | 2005-10-21 | 2007-04-25 | Sherwood Services AG | Circuit for reducing stored energy in an electrosurgical generator |
| WO2008053532A1 (en) | 2006-10-31 | 2008-05-08 | Olympus Medical Systems Corp. | High frequency cautery electric power source device |
| USD574323S1 (en) | 2007-02-12 | 2008-08-05 | Tyco Healthcare Group Lp | Generator |
| US20100137854A1 (en) | 2008-05-23 | 2010-06-03 | Gyrus Medical Limited | Electrosurgical generator and system |
| DE102008058737A1 (en) | 2008-09-08 | 2010-04-15 | Erbe Elektromedizin Gmbh | Electrosurgical generator |
| EP2409661A1 (en) | 2010-07-19 | 2012-01-25 | Tyco Healthcare Group, LP | Hydraulic conductive monitoring to initiate tissue division |
| US20130215216A1 (en) | 2010-09-26 | 2013-08-22 | Tencent Technology (Shenzhen) Company Limited | Method and apparatus for displaying information by animation |
| EP2457532A1 (en) | 2010-11-29 | 2012-05-30 | Tyco Healthcare Group, LP | System for tissue sealing |
| US20120136354A1 (en) * | 2010-11-29 | 2012-05-31 | Tyco Healthcare Group Lp | System and Method for Tissue Sealing |
| US20130103023A1 (en) | 2011-10-24 | 2013-04-25 | Ethicon Endo-Surgery, Inc. | Litz wire battery powered device |
| EP2620115A1 (en) | 2012-01-30 | 2013-07-31 | Covidien LP | Electrosurgical apparatus with integrated energy sensing at tissue site |
Non-Patent Citations (56)
| Title |
|---|
| "Electrosurgical Unit Analyzer ESU-2400 Series User Manual" Apr. 1, 2002; Retrieved from Internet: <URL:http://www.bcgroupintl.com/ESU—2400/Updates/ESU-2400—UM—Rev04.pdf>, pp. 6, 11, 73. |
| Alexander et al., "Magnetic Resonance Image-Directed Stereotactic Neurosurgery: Use of Image Fusion with Computerized Tomography to Enhance Spatial Accuracy", Journal Neurosurgery, 83; (1995) pp. 271-276. |
| Anderson et al., "A Numerical Study of Rapid Heating for High Temperature Radio Frequency Hyperthermia" International Journal of Bio-Medical Computing, 35 (1994) pp. 297-307. |
| Astrahan, "A Localized Current Field Hyperthermia System for Use with 192-Iridium Interstitial Implants" Medical Physics, 9 (3), May/Jun. 1982. |
| Benaron et al., "Optical Time-Of-Flight and Absorbance Imaging of Biologic Media", Science, American Association for the Advancement of Science, Washington, DC, vol. 259, Mar. 5, 1993, pp. 1463-1466. |
| Bergdahl et al., "Studies on Coagulation and the Development of an Automatic Computerized Bipolar Coagulator" Journal of Neurosurgery 75:1, (Jul. 1991) pp. 148-151. |
| Burdette et al. "In Vivo Probe Measurement Technique for Determining Dielectric Properties At VHF Through Microwave Frequencies", IEEE Transactions on Microwave Theory and Techniques, vol. MTT-28, No. 4, Apr. 1980 pp. 414-427. |
| Chicharo et al. "A Sliding Goertzel Algorith" Aug. 1996, pp. 283-297, Signal Processing, Elsevier Science Publishers B.V. Amsterdam, NL vol. 52 No. 3. |
| Cosman et al., "Methods of Making Nervous System Lesions", In William RH, Rengachary SS (eds): Neurosurgery, New York: McGraw-Hill, vol. 111, (1984), pp. 2490-2499. |
| Cosman et al., "Radiofrequency Lesion Generation and Its Effect on Tissue Impedance", Applied Neurophysiology 51: (1988) pp. 230-242. |
| Cosman et al., "Theoretical Aspects of Radiofrequency Lesions in the Dorsal Root Entry Zone", Neurosurgery 15: (1984) pp. 945-950. |
| European Search Report issued in corresponding EP Application No. 14186605.3 dated Feb. 3, 2015. |
| Extended European Search Report for EP 14 18 4738 dated Apr. 10, 2015. |
| Geddes et al., "The Measurement of Physiologic Events by Electrical Impedence", Am. J. MI, Jan. Mar. 1964, pp. 16-27. |
| Goldberg et al., "Tissue Ablation with Radiofrequency: Effect of Probe Size, Gauge, Duration, and Temperature on Lesion Volume" Acad Radio (1995) vol. 2, No. 5, pp. 399-404. |
| Hadley I C D et al., "Inexpensive Digital Thermometer for Measurements on Semiconductors", International Journal of Electronics; Taylor and Francis. Ltd.; London, GB; vol. 70, No. 6 Jun. 1, 1991; pp. 1155-1162. |
| Medtrex Brochure—Total Control at Full Speed, "The O.R. Pro 300", 1 p. Sep. 1998. |
| Momozaki et al. "Electrical Breakdown Experiments with Application to Alkali Metal Thermal-to-Electric Converters", Energy conversion and Management; Elsevier Science Publishers, Oxford, GB; vol. 44, No. 6, Apr. 1, 2003 pp. 819-843. |
| Muller et al. "Extended Left Hemicolectomy Using the LigaSure Vessel Sealing System", Innovations That Work; Company Newsletter; Sep. 1999. |
| Ni W. et al. "A Signal Processing Method for the Coriolis Mass Flowmeter Based on a Normalized . . . ", Journal of Applied Sciences-Yingyong Kexue Xuebao, Shangha CN, vol. 23 No. 2;(Mar. 2005); pp. 160-164. |
| Ogden Goertzel Alternative to the Fourier Transform: Jun. 1993 pp. 485-487, Electronics World; Reed Business Publishing, Sutton, Surrey, BG vol. 99, No. 9. 1687. |
| Prutchi et al. "Design and Development of Medical Electronic Instrumentation", John Wiley & Sons, Inc. 2005. |
| Richard Wolf Medical Instruments Corp. Brochure, "Kleppinger Bipolar Forceps & Bipolar Generator", 3 pp. Jan. 1989. |
| Sugita et al., "Bipolar Coagulator with Automatic Thermocontrol", J. Neurosurg., vol. 41, Dec. 1944, pp. 777-779. |
| U.S. Appl. No. 10/406,690, filed Apr. 3, 2003 inventor: Behnke. |
| U.S. Appl. No. 10/573,713, filed Mar. 28, 2006 inventor: Wham. |
| U.S. Appl. No. 10/761,524, filed Jan. 21, 2004 inventor: Wham. |
| U.S. Appl. No. 11/242,458, filed Oct. 3, 2005 inventor: Becker. |
| U.S. Appl. No. 14/096,341, filed Dec. 4, 2013 inventor: Johnson. |
| U.S. Appl. No. 14/098,859, filed Dec. 6, 2013 inventor: Johnson. |
| U.S. Appl. No. 14/100,113, filed Dec. 9, 2013 inventor: Gilbert. |
| U.S. Appl. No. 14/147,294, filed Jan. 3, 2014 inventor: Gilbert. |
| U.S. Appl. No. 14/147,312, filed Jan. 3, 2014 inventor: Gilbert. |
| U.S. Appl. No. 14/168,296, filed Jan. 30, 2014, inventor: Mattmiller. |
| U.S. Appl. No. 14/174,551, filed Feb. 6, 2014 inventor: Johnson. |
| U.S. Appl. No. 14/174,607, filed Feb. 6, 2014 inventor: Friedrichs. |
| U.S. Appl. No. 14/179,724, filed Feb. 13, 2014 inventor: Johnson. |
| U.S. Appl. No. 14/180,965, filed Feb. 14, 2014 inventor: Larson. |
| U.S. Appl. No. 14/181,114, filed Feb. 14, 2014 inventor: Larson. |
| U.S. Appl. No. 14/182,797, filed Feb. 18, 2014 inventor: Wham. |
| U.S. Appl. No. 14/190,830, filed Feb. 26, 2014 inventor: Johnson. |
| U.S. Appl. No. 14/190,895, filed Feb. 26, 2014 inventor: Gilbert. |
| U.S. Appl. No. 14/255,051, filed Apr. 17, 2014 inventor: Coulson. |
| U.S. Appl. No. 14/262,219, filed Apr. 25, 2014, inventor: Gilbert. |
| U.S. Appl. No. 14/267,066, filed May 1, 2014, inventor: Friedrichs. |
| U.S. Appl. No. 14/268,187, filed May 2, 2014, inventor: Kerr. |
| U.S. Appl. No. 14/283,604, filed May 21, 2014, inventor: Behnke. |
| U.S. Appl. No. 14/297,771, filed Jun. 6, 2014, inventor: Wham. |
| U.S. Appl. No. 14/297,812, filed Jun. 6, 2014, inventor: Wham. |
| U.S. Appl. No. 14/297,890, filed Jun. 6, 2014, inventor: Wham. |
| U.S. Appl. No. 14/320,762, filed Jul. 1, 2014, inventor: Gilbert. |
| U.S. Appl. No. 14/320,804, filedd Jul. 1, 2014, inventor: Gilbert. |
| Valleylab Brochure "Valleylab Electroshield Monitoring System", 2 pp. Nov. 1995. |
| Vallfors et al., "Automatically Controlled Bipolar Electrosoagulation-‘COA-COMP’", Neurosurgical Review 7:2-3 (1984) pp. 187-190. |
| Wald et al., "Accidental Burns", JAMA, Aug. 16, 1971, vol. 217, No. 7, pp. 916-921. |
| Zlatanovic M., "Sensors in Diffusion Plasma Processing" Microelectronics 1995; Proceedings 1995; 20th International Conference CE on Nis, Serbia Sep. 12-14, 1995; New York, NY vol. 2 pp. 565-570. |
Cited By (387)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11229472B2 (en) | 2001-06-12 | 2022-01-25 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with multiple magnetic position sensors |
| US10835307B2 (en) | 2001-06-12 | 2020-11-17 | Ethicon Llc | Modular battery powered handheld surgical instrument containing elongated multi-layered shaft |
| US11890491B2 (en) | 2008-08-06 | 2024-02-06 | Cilag Gmbh International | Devices and techniques for cutting and coagulating tissue |
| US10335614B2 (en) | 2008-08-06 | 2019-07-02 | Ethicon Llc | Devices and techniques for cutting and coagulating tissue |
| US10688321B2 (en) | 2009-07-15 | 2020-06-23 | Ethicon Llc | Ultrasonic surgical instruments |
| US11717706B2 (en) | 2009-07-15 | 2023-08-08 | Cilag Gmbh International | Ultrasonic surgical instruments |
| US11871982B2 (en) | 2009-10-09 | 2024-01-16 | Cilag Gmbh International | Surgical generator for ultrasonic and electrosurgical devices |
| US10265117B2 (en) | 2009-10-09 | 2019-04-23 | Ethicon Llc | Surgical generator method for controlling and ultrasonic transducer waveform for ultrasonic and electrosurgical devices |
| US12408967B2 (en) | 2009-10-09 | 2025-09-09 | Cilag Gmbh International | Surgical generator for ultrasonic and electrosurgical devices |
| US10201382B2 (en) | 2009-10-09 | 2019-02-12 | Ethicon Llc | Surgical generator for ultrasonic and electrosurgical devices |
| US10441345B2 (en) | 2009-10-09 | 2019-10-15 | Ethicon Llc | Surgical generator for ultrasonic and electrosurgical devices |
| US11090104B2 (en) | 2009-10-09 | 2021-08-17 | Cilag Gmbh International | Surgical generator for ultrasonic and electrosurgical devices |
| US11382642B2 (en) | 2010-02-11 | 2022-07-12 | Cilag Gmbh International | Rotatable cutting implements with friction reducing material for ultrasonic surgical instruments |
| US10299810B2 (en) | 2010-02-11 | 2019-05-28 | Ethicon Llc | Rotatable cutting implements with friction reducing material for ultrasonic surgical instruments |
| US10278721B2 (en) | 2010-07-22 | 2019-05-07 | Ethicon Llc | Electrosurgical instrument with separate closure and cutting members |
| US10524854B2 (en) | 2010-07-23 | 2020-01-07 | Ethicon Llc | Surgical instrument |
| US10433900B2 (en) | 2011-07-22 | 2019-10-08 | Ethicon Llc | Surgical instruments for tensioning tissue |
| US10729494B2 (en) | 2012-02-10 | 2020-08-04 | Ethicon Llc | Robotically controlled surgical instrument |
| US12167866B2 (en) | 2012-04-09 | 2024-12-17 | Cilag Gmbh International | Switch arrangements for ultrasonic surgical instruments |
| US11419626B2 (en) | 2012-04-09 | 2022-08-23 | Cilag Gmbh International | Switch arrangements for ultrasonic surgical instruments |
| US10517627B2 (en) | 2012-04-09 | 2019-12-31 | Ethicon Llc | Switch arrangements for ultrasonic surgical instruments |
| US11871901B2 (en) | 2012-05-20 | 2024-01-16 | Cilag Gmbh International | Method for situational awareness for surgical network or surgical network connected device capable of adjusting function based on a sensed situation or usage |
| US10987123B2 (en) | 2012-06-28 | 2021-04-27 | Ethicon Llc | Surgical instruments with articulating shafts |
| US11871955B2 (en) | 2012-06-29 | 2024-01-16 | Cilag Gmbh International | Surgical instruments with articulating shafts |
| US10993763B2 (en) | 2012-06-29 | 2021-05-04 | Ethicon Llc | Lockout mechanism for use with robotic electrosurgical device |
| US11426191B2 (en) | 2012-06-29 | 2022-08-30 | Cilag Gmbh International | Ultrasonic surgical instruments with distally positioned jaw assemblies |
| US10543008B2 (en) | 2012-06-29 | 2020-01-28 | Ethicon Llc | Ultrasonic surgical instruments with distally positioned jaw assemblies |
| US10779845B2 (en) | 2012-06-29 | 2020-09-22 | Ethicon Llc | Ultrasonic surgical instruments with distally positioned transducers |
| US11717311B2 (en) | 2012-06-29 | 2023-08-08 | Cilag Gmbh International | Surgical instruments with articulating shafts |
| US10966747B2 (en) | 2012-06-29 | 2021-04-06 | Ethicon Llc | Haptic feedback devices for surgical robot |
| US10335183B2 (en) | 2012-06-29 | 2019-07-02 | Ethicon Llc | Feedback devices for surgical control systems |
| US12268408B2 (en) | 2012-06-29 | 2025-04-08 | Cilag Gmbh International | Haptic feedback devices for surgical robot |
| US11583306B2 (en) | 2012-06-29 | 2023-02-21 | Cilag Gmbh International | Surgical instruments with articulating shafts |
| US10524872B2 (en) | 2012-06-29 | 2020-01-07 | Ethicon Llc | Closed feedback control for electrosurgical device |
| US10335182B2 (en) | 2012-06-29 | 2019-07-02 | Ethicon Llc | Surgical instruments with articulating shafts |
| US10441310B2 (en) | 2012-06-29 | 2019-10-15 | Ethicon Llc | Surgical instruments with curved section |
| US11096752B2 (en) | 2012-06-29 | 2021-08-24 | Cilag Gmbh International | Closed feedback control for electrosurgical device |
| US10881449B2 (en) | 2012-09-28 | 2021-01-05 | Ethicon Llc | Multi-function bi-polar forceps |
| US11179173B2 (en) | 2012-10-22 | 2021-11-23 | Cilag Gmbh International | Surgical instrument |
| US11324527B2 (en) | 2012-11-15 | 2022-05-10 | Cilag Gmbh International | Ultrasonic and electrosurgical devices |
| US10925659B2 (en) | 2013-09-13 | 2021-02-23 | Ethicon Llc | Electrosurgical (RF) medical instruments for cutting and coagulating tissue |
| US11717339B2 (en) | 2013-09-26 | 2023-08-08 | Covidien Lp | Systems and methods for estimating tissue parameters using surgical devices |
| US10980595B2 (en) * | 2013-09-26 | 2021-04-20 | Covidien Lp | Systems and methods for estimating tissue parameters using surgical devices |
| US10912603B2 (en) | 2013-11-08 | 2021-02-09 | Ethicon Llc | Electrosurgical devices |
| US10912580B2 (en) | 2013-12-16 | 2021-02-09 | Ethicon Llc | Medical device |
| US10856929B2 (en) | 2014-01-07 | 2020-12-08 | Ethicon Llc | Harvesting energy from a surgical generator |
| US10932847B2 (en) | 2014-03-18 | 2021-03-02 | Ethicon Llc | Detecting short circuits in electrosurgical medical devices |
| US10779879B2 (en) | 2014-03-18 | 2020-09-22 | Ethicon Llc | Detecting short circuits in electrosurgical medical devices |
| US11399855B2 (en) | 2014-03-27 | 2022-08-02 | Cilag Gmbh International | Electrosurgical devices |
| US10463421B2 (en) | 2014-03-27 | 2019-11-05 | Ethicon Llc | Two stage trigger, clamp and cut bipolar vessel sealer |
| US10349999B2 (en) | 2014-03-31 | 2019-07-16 | Ethicon Llc | Controlling impedance rise in electrosurgical medical devices |
| US11471209B2 (en) | 2014-03-31 | 2022-10-18 | Cilag Gmbh International | Controlling impedance rise in electrosurgical medical devices |
| US11607264B2 (en) | 2014-04-04 | 2023-03-21 | Covidien Lp | Systems and methods for calculating tissue impedance in electrosurgery |
| US11337747B2 (en) | 2014-04-15 | 2022-05-24 | Cilag Gmbh International | Software algorithms for electrosurgical instruments |
| US10285724B2 (en) | 2014-07-31 | 2019-05-14 | Ethicon Llc | Actuation mechanisms and load adjustment assemblies for surgical instruments |
| US11413060B2 (en) | 2014-07-31 | 2022-08-16 | Cilag Gmbh International | Actuation mechanisms and load adjustment assemblies for surgical instruments |
| US11504192B2 (en) | 2014-10-30 | 2022-11-22 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
| US10639092B2 (en) | 2014-12-08 | 2020-05-05 | Ethicon Llc | Electrode configurations for surgical instruments |
| US11311326B2 (en) | 2015-02-06 | 2022-04-26 | Cilag Gmbh International | Electrosurgical instrument with rotation and articulation mechanisms |
| US10321950B2 (en) | 2015-03-17 | 2019-06-18 | Ethicon Llc | Managing tissue treatment |
| US10342602B2 (en) | 2015-03-17 | 2019-07-09 | Ethicon Llc | Managing tissue treatment |
| US10595929B2 (en) | 2015-03-24 | 2020-03-24 | Ethicon Llc | Surgical instruments with firing system overload protection mechanisms |
| US11141213B2 (en) | 2015-06-30 | 2021-10-12 | Cilag Gmbh International | Surgical instrument with user adaptable techniques |
| US10952788B2 (en) | 2015-06-30 | 2021-03-23 | Ethicon Llc | Surgical instrument with user adaptable algorithms |
| US11129669B2 (en) | 2015-06-30 | 2021-09-28 | Cilag Gmbh International | Surgical system with user adaptable techniques based on tissue type |
| US11903634B2 (en) | 2015-06-30 | 2024-02-20 | Cilag Gmbh International | Surgical instrument with user adaptable techniques |
| US11051873B2 (en) | 2015-06-30 | 2021-07-06 | Cilag Gmbh International | Surgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters |
| US10898256B2 (en) | 2015-06-30 | 2021-01-26 | Ethicon Llc | Surgical system with user adaptable techniques based on tissue impedance |
| US10765470B2 (en) | 2015-06-30 | 2020-09-08 | Ethicon Llc | Surgical system with user adaptable techniques employing simultaneous energy modalities based on tissue parameters |
| US10610286B2 (en) | 2015-09-30 | 2020-04-07 | Ethicon Llc | Techniques for circuit topologies for combined generator |
| US10624691B2 (en) | 2015-09-30 | 2020-04-21 | Ethicon Llc | Techniques for operating generator for digitally generating electrical signal waveforms and surgical instruments |
| US11033322B2 (en) | 2015-09-30 | 2021-06-15 | Ethicon Llc | Circuit topologies for combined generator |
| US10736685B2 (en) | 2015-09-30 | 2020-08-11 | Ethicon Llc | Generator for digitally generating combined electrical signal waveforms for ultrasonic surgical instruments |
| US11559347B2 (en) | 2015-09-30 | 2023-01-24 | Cilag Gmbh International | Techniques for circuit topologies for combined generator |
| US10751108B2 (en) | 2015-09-30 | 2020-08-25 | Ethicon Llc | Protection techniques for generator for digitally generating electrosurgical and ultrasonic electrical signal waveforms |
| US11058475B2 (en) | 2015-09-30 | 2021-07-13 | Cilag Gmbh International | Method and apparatus for selecting operations of a surgical instrument based on user intention |
| US11766287B2 (en) | 2015-09-30 | 2023-09-26 | Cilag Gmbh International | Methods for operating generator for digitally generating electrical signal waveforms and surgical instruments |
| US10194973B2 (en) | 2015-09-30 | 2019-02-05 | Ethicon Llc | Generator for digitally generating electrical signal waveforms for electrosurgical and ultrasonic surgical instruments |
| US10687884B2 (en) | 2015-09-30 | 2020-06-23 | Ethicon Llc | Circuits for supplying isolated direct current (DC) voltage to surgical instruments |
| US10595930B2 (en) | 2015-10-16 | 2020-03-24 | Ethicon Llc | Electrode wiping surgical device |
| US11666375B2 (en) | 2015-10-16 | 2023-06-06 | Cilag Gmbh International | Electrode wiping surgical device |
| US10179022B2 (en) | 2015-12-30 | 2019-01-15 | Ethicon Llc | Jaw position impedance limiter for electrosurgical instrument |
| US10575892B2 (en) | 2015-12-31 | 2020-03-03 | Ethicon Llc | Adapter for electrical surgical instruments |
| US11051840B2 (en) | 2016-01-15 | 2021-07-06 | Ethicon Llc | Modular battery powered handheld surgical instrument with reusable asymmetric handle housing |
| US10842523B2 (en) | 2016-01-15 | 2020-11-24 | Ethicon Llc | Modular battery powered handheld surgical instrument and methods therefor |
| US10779849B2 (en) | 2016-01-15 | 2020-09-22 | Ethicon Llc | Modular battery powered handheld surgical instrument with voltage sag resistant battery pack |
| US10537351B2 (en) | 2016-01-15 | 2020-01-21 | Ethicon Llc | Modular battery powered handheld surgical instrument with variable motor control limits |
| US11974772B2 (en) | 2016-01-15 | 2024-05-07 | Cilag GmbH Intemational | Modular battery powered handheld surgical instrument with variable motor control limits |
| US10828058B2 (en) | 2016-01-15 | 2020-11-10 | Ethicon Llc | Modular battery powered handheld surgical instrument with motor control limits based on tissue characterization |
| US11896280B2 (en) | 2016-01-15 | 2024-02-13 | Cilag Gmbh International | Clamp arm comprising a circuit |
| US10709469B2 (en) | 2016-01-15 | 2020-07-14 | Ethicon Llc | Modular battery powered handheld surgical instrument with energy conservation techniques |
| US11229450B2 (en) | 2016-01-15 | 2022-01-25 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with motor drive |
| US11134978B2 (en) | 2016-01-15 | 2021-10-05 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with self-diagnosing control switches for reusable handle assembly |
| US11058448B2 (en) | 2016-01-15 | 2021-07-13 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with multistage generator circuits |
| US11684402B2 (en) | 2016-01-15 | 2023-06-27 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization |
| US11751929B2 (en) | 2016-01-15 | 2023-09-12 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization |
| US11129670B2 (en) | 2016-01-15 | 2021-09-28 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization |
| US11229471B2 (en) | 2016-01-15 | 2022-01-25 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization |
| US12193698B2 (en) | 2016-01-15 | 2025-01-14 | Cilag Gmbh International | Method for self-diagnosing operation of a control switch in a surgical instrument system |
| US12239360B2 (en) | 2016-01-15 | 2025-03-04 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization |
| US12201339B2 (en) | 2016-01-15 | 2025-01-21 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization |
| US10299821B2 (en) | 2016-01-15 | 2019-05-28 | Ethicon Llc | Modular battery powered handheld surgical instrument with motor control limit profile |
| US12402906B2 (en) | 2016-01-15 | 2025-09-02 | Cilag Gmbh International | Modular battery powered handheld surgical instrument and methods therefor |
| US10251664B2 (en) | 2016-01-15 | 2019-04-09 | Ethicon Llc | Modular battery powered handheld surgical instrument with multi-function motor via shifting gear assembly |
| US10716615B2 (en) | 2016-01-15 | 2020-07-21 | Ethicon Llc | Modular battery powered handheld surgical instrument with curved end effectors having asymmetric engagement between jaw and blade |
| US11202670B2 (en) | 2016-02-22 | 2021-12-21 | Cilag Gmbh International | Method of manufacturing a flexible circuit electrode for electrosurgical instrument |
| US10555769B2 (en) | 2016-02-22 | 2020-02-11 | Ethicon Llc | Flexible circuits for electrosurgical instrument |
| US10646269B2 (en) | 2016-04-29 | 2020-05-12 | Ethicon Llc | Non-linear jaw gap for electrosurgical instruments |
| US10702329B2 (en) | 2016-04-29 | 2020-07-07 | Ethicon Llc | Jaw structure with distal post for electrosurgical instruments |
| US10485607B2 (en) | 2016-04-29 | 2019-11-26 | Ethicon Llc | Jaw structure with distal closure for electrosurgical instruments |
| US11864820B2 (en) | 2016-05-03 | 2024-01-09 | Cilag Gmbh International | Medical device with a bilateral jaw configuration for nerve stimulation |
| US10456193B2 (en) | 2016-05-03 | 2019-10-29 | Ethicon Llc | Medical device with a bilateral jaw configuration for nerve stimulation |
| US12114914B2 (en) | 2016-08-05 | 2024-10-15 | Cilag Gmbh International | Methods and systems for advanced harmonic energy |
| US11344362B2 (en) | 2016-08-05 | 2022-05-31 | Cilag Gmbh International | Methods and systems for advanced harmonic energy |
| US10376305B2 (en) | 2016-08-05 | 2019-08-13 | Ethicon Llc | Methods and systems for advanced harmonic energy |
| US11998230B2 (en) | 2016-11-29 | 2024-06-04 | Cilag Gmbh International | End effector control and calibration |
| US11266430B2 (en) | 2016-11-29 | 2022-03-08 | Cilag Gmbh International | End effector control and calibration |
| US11123070B2 (en) | 2017-10-30 | 2021-09-21 | Cilag Gmbh International | Clip applier comprising a rotatable clip magazine |
| US11141160B2 (en) | 2017-10-30 | 2021-10-12 | Cilag Gmbh International | Clip applier comprising a motor controller |
| US11129636B2 (en) | 2017-10-30 | 2021-09-28 | Cilag Gmbh International | Surgical instruments comprising an articulation drive that provides for high articulation angles |
| US11696778B2 (en) | 2017-10-30 | 2023-07-11 | Cilag Gmbh International | Surgical dissectors configured to apply mechanical and electrical energy |
| US11109878B2 (en) | 2017-10-30 | 2021-09-07 | Cilag Gmbh International | Surgical clip applier comprising an automatic clip feeding system |
| US11759224B2 (en) | 2017-10-30 | 2023-09-19 | Cilag Gmbh International | Surgical instrument systems comprising handle arrangements |
| US11103268B2 (en) | 2017-10-30 | 2021-08-31 | Cilag Gmbh International | Surgical clip applier comprising adaptive firing control |
| US11648022B2 (en) | 2017-10-30 | 2023-05-16 | Cilag Gmbh International | Surgical instrument systems comprising battery arrangements |
| US11793537B2 (en) | 2017-10-30 | 2023-10-24 | Cilag Gmbh International | Surgical instrument comprising an adaptive electrical system |
| US11602366B2 (en) | 2017-10-30 | 2023-03-14 | Cilag Gmbh International | Surgical suturing instrument configured to manipulate tissue using mechanical and electrical power |
| US11801098B2 (en) | 2017-10-30 | 2023-10-31 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
| US11819231B2 (en) | 2017-10-30 | 2023-11-21 | Cilag Gmbh International | Adaptive control programs for a surgical system comprising more than one type of cartridge |
| US11207090B2 (en) | 2017-10-30 | 2021-12-28 | Cilag Gmbh International | Surgical instruments comprising a biased shifting mechanism |
| US11564756B2 (en) | 2017-10-30 | 2023-01-31 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
| US11564703B2 (en) | 2017-10-30 | 2023-01-31 | Cilag Gmbh International | Surgical suturing instrument comprising a capture width which is larger than trocar diameter |
| US12329467B2 (en) | 2017-10-30 | 2025-06-17 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
| US11510741B2 (en) | 2017-10-30 | 2022-11-29 | Cilag Gmbh International | Method for producing a surgical instrument comprising a smart electrical system |
| US11071560B2 (en) | 2017-10-30 | 2021-07-27 | Cilag Gmbh International | Surgical clip applier comprising adaptive control in response to a strain gauge circuit |
| US11229436B2 (en) | 2017-10-30 | 2022-01-25 | Cilag Gmbh International | Surgical system comprising a surgical tool and a surgical hub |
| US11051836B2 (en) | 2017-10-30 | 2021-07-06 | Cilag Gmbh International | Surgical clip applier comprising an empty clip cartridge lockout |
| US10772651B2 (en) | 2017-10-30 | 2020-09-15 | Ethicon Llc | Surgical instruments comprising a system for articulation and rotation compensation |
| US11045197B2 (en) | 2017-10-30 | 2021-06-29 | Cilag Gmbh International | Clip applier comprising a movable clip magazine |
| US11026713B2 (en) | 2017-10-30 | 2021-06-08 | Cilag Gmbh International | Surgical clip applier configured to store clips in a stored state |
| US11026712B2 (en) | 2017-10-30 | 2021-06-08 | Cilag Gmbh International | Surgical instruments comprising a shifting mechanism |
| US11911045B2 (en) | 2017-10-30 | 2024-02-27 | Cllag GmbH International | Method for operating a powered articulating multi-clip applier |
| US11413042B2 (en) | 2017-10-30 | 2022-08-16 | Cilag Gmbh International | Clip applier comprising a reciprocating clip advancing member |
| US11026687B2 (en) | 2017-10-30 | 2021-06-08 | Cilag Gmbh International | Clip applier comprising clip advancing systems |
| US11925373B2 (en) | 2017-10-30 | 2024-03-12 | Cilag Gmbh International | Surgical suturing instrument comprising a non-circular needle |
| US10980560B2 (en) | 2017-10-30 | 2021-04-20 | Ethicon Llc | Surgical instrument systems comprising feedback mechanisms |
| US11406390B2 (en) | 2017-10-30 | 2022-08-09 | Cilag Gmbh International | Clip applier comprising interchangeable clip reloads |
| US12035983B2 (en) | 2017-10-30 | 2024-07-16 | Cilag Gmbh International | Method for producing a surgical instrument comprising a smart electrical system |
| US10959744B2 (en) | 2017-10-30 | 2021-03-30 | Ethicon Llc | Surgical dissectors and manufacturing techniques |
| US12059218B2 (en) | 2017-10-30 | 2024-08-13 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
| US12121255B2 (en) | 2017-10-30 | 2024-10-22 | Cilag Gmbh International | Electrical power output control based on mechanical forces |
| US11291510B2 (en) | 2017-10-30 | 2022-04-05 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
| US10932806B2 (en) | 2017-10-30 | 2021-03-02 | Ethicon Llc | Reactive algorithm for surgical system |
| US11291465B2 (en) | 2017-10-30 | 2022-04-05 | Cilag Gmbh International | Surgical instruments comprising a lockable end effector socket |
| US11317919B2 (en) | 2017-10-30 | 2022-05-03 | Cilag Gmbh International | Clip applier comprising a clip crimping system |
| US11311342B2 (en) | 2017-10-30 | 2022-04-26 | Cilag Gmbh International | Method for communicating with surgical instrument systems |
| US11410259B2 (en) | 2017-12-28 | 2022-08-09 | Cilag Gmbh International | Adaptive control program updates for surgical devices |
| US11612408B2 (en) | 2017-12-28 | 2023-03-28 | Cilag Gmbh International | Determining tissue composition via an ultrasonic system |
| US11969216B2 (en) | 2017-12-28 | 2024-04-30 | Cilag Gmbh International | Surgical network recommendations from real time analysis of procedure variables against a baseline highlighting differences from the optimal solution |
| US11308075B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Surgical network, instrument, and cloud responses based on validation of received dataset and authentication of its source and integrity |
| US11304699B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Method for adaptive control schemes for surgical network control and interaction |
| US11304745B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Surgical evacuation sensing and display |
| US11304720B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Activation of energy devices |
| US11304763B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Image capturing of the areas outside the abdomen to improve placement and control of a surgical device in use |
| US11311306B2 (en) | 2017-12-28 | 2022-04-26 | Cilag Gmbh International | Surgical systems for detecting end effector tissue distribution irregularities |
| US12433508B2 (en) | 2017-12-28 | 2025-10-07 | Cilag Gmbh International | Surgical system having a surgical instrument controlled based on comparison of sensor and database data |
| US10595887B2 (en) | 2017-12-28 | 2020-03-24 | Ethicon Llc | Systems for adjusting end effector parameters based on perioperative information |
| US10695081B2 (en) | 2017-12-28 | 2020-06-30 | Ethicon Llc | Controlling a surgical instrument according to sensed closure parameters |
| US12396806B2 (en) | 2017-12-28 | 2025-08-26 | Cilag Gmbh International | Adjustment of a surgical device function based on situational awareness |
| US11291495B2 (en) | 2017-12-28 | 2022-04-05 | Cilag Gmbh International | Interruption of energy due to inadvertent capacitive coupling |
| US10987178B2 (en) | 2017-12-28 | 2021-04-27 | Ethicon Llc | Surgical hub control arrangements |
| US12383115B2 (en) | 2017-12-28 | 2025-08-12 | Cilag Gmbh International | Method for smart energy device infrastructure |
| US11324557B2 (en) | 2017-12-28 | 2022-05-10 | Cilag Gmbh International | Surgical instrument with a sensing array |
| US12376855B2 (en) | 2017-12-28 | 2025-08-05 | Cilag Gmbh International | Safety systems for smart powered surgical stapling |
| US10755813B2 (en) | 2017-12-28 | 2020-08-25 | Ethicon Llc | Communication of smoke evacuation system parameters to hub or cloud in smoke evacuation module for interactive surgical platform |
| US12318152B2 (en) | 2017-12-28 | 2025-06-03 | Cilag Gmbh International | Computer implemented interactive surgical systems |
| US11998193B2 (en) | 2017-12-28 | 2024-06-04 | Cilag Gmbh International | Method for usage of the shroud as an aspect of sensing or controlling a powered surgical device, and a control algorithm to adjust its default operation |
| US11284936B2 (en) | 2017-12-28 | 2022-03-29 | Cilag Gmbh International | Surgical instrument having a flexible electrode |
| US11937769B2 (en) | 2017-12-28 | 2024-03-26 | Cilag Gmbh International | Method of hub communication, processing, storage and display |
| US11278281B2 (en) | 2017-12-28 | 2022-03-22 | Cilag Gmbh International | Interactive surgical system |
| US12310586B2 (en) | 2017-12-28 | 2025-05-27 | Cilag Gmbh International | Method for adaptive control schemes for surgical network control and interaction |
| US11364075B2 (en) | 2017-12-28 | 2022-06-21 | Cilag Gmbh International | Radio frequency energy device for delivering combined electrical signals |
| US12009095B2 (en) | 2017-12-28 | 2024-06-11 | Cilag Gmbh International | Real-time analysis of comprehensive cost of all instrumentation used in surgery utilizing data fluidity to track instruments through stocking and in-house processes |
| US11376002B2 (en) | 2017-12-28 | 2022-07-05 | Cilag Gmbh International | Surgical instrument cartridge sensor assemblies |
| US12295674B2 (en) | 2017-12-28 | 2025-05-13 | Cilag Gmbh International | Usage and technique analysis of surgeon / staff performance against a baseline to optimize device utilization and performance for both current and future procedures |
| US11382697B2 (en) | 2017-12-28 | 2022-07-12 | Cilag Gmbh International | Surgical instruments comprising button circuits |
| US11389164B2 (en) | 2017-12-28 | 2022-07-19 | Cilag Gmbh International | Method of using reinforced flexible circuits with multiple sensors to optimize performance of radio frequency devices |
| US11931110B2 (en) | 2017-12-28 | 2024-03-19 | Cilag Gmbh International | Surgical instrument comprising a control system that uses input from a strain gage circuit |
| US12029506B2 (en) | 2017-12-28 | 2024-07-09 | Cilag Gmbh International | Method of cloud based data analytics for use with the hub |
| US11273001B2 (en) | 2017-12-28 | 2022-03-15 | Cilag Gmbh International | Surgical hub and modular device response adjustment based on situational awareness |
| US10758310B2 (en) | 2017-12-28 | 2020-09-01 | Ethicon Llc | Wireless pairing of a surgical device with another device within a sterile surgical field based on the usage and situational awareness of devices |
| US12256995B2 (en) | 2017-12-28 | 2025-03-25 | Cilag Gmbh International | Surgical network recommendations from real time analysis of procedure variables against a baseline highlighting differences from the optimal solution |
| US11266468B2 (en) | 2017-12-28 | 2022-03-08 | Cilag Gmbh International | Cooperative utilization of data derived from secondary sources by intelligent surgical hubs |
| US12035890B2 (en) | 2017-12-28 | 2024-07-16 | Cilag Gmbh International | Method of sensing particulate from smoke evacuated from a patient, adjusting the pump speed based on the sensed information, and communicating the functional parameters of the system to the hub |
| US10849697B2 (en) | 2017-12-28 | 2020-12-01 | Ethicon Llc | Cloud interface for coupled surgical devices |
| US12239320B2 (en) | 2017-12-28 | 2025-03-04 | Cilag Gmbh International | Method of using reinforced flexible circuits with multiple sensors to optimize performance of radio frequency devices |
| US11419630B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Surgical system distributed processing |
| US11424027B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Method for operating surgical instrument systems |
| US11423007B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Adjustment of device control programs based on stratified contextual data in addition to the data |
| US11419667B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Ultrasonic energy device which varies pressure applied by clamp arm to provide threshold control pressure at a cut progression location |
| US11253315B2 (en) | 2017-12-28 | 2022-02-22 | Cilag Gmbh International | Increasing radio frequency to create pad-less monopolar loop |
| US11432885B2 (en) | 2017-12-28 | 2022-09-06 | Cilag Gmbh International | Sensing arrangements for robot-assisted surgical platforms |
| US11446052B2 (en) | 2017-12-28 | 2022-09-20 | Cilag Gmbh International | Variation of radio frequency and ultrasonic power level in cooperation with varying clamp arm pressure to achieve predefined heat flux or power applied to tissue |
| US12232729B2 (en) | 2017-12-28 | 2025-02-25 | Cilag Gmbh International | Systems for detecting proximity of surgical end effector to cancerous tissue |
| US12226151B2 (en) | 2017-12-28 | 2025-02-18 | Cilag Gmbh International | Capacitive coupled return path pad with separable array elements |
| US11013563B2 (en) | 2017-12-28 | 2021-05-25 | Ethicon Llc | Drive arrangements for robot-assisted surgical platforms |
| US11464535B2 (en) | 2017-12-28 | 2022-10-11 | Cilag Gmbh International | Detection of end effector emersion in liquid |
| US11464559B2 (en) | 2017-12-28 | 2022-10-11 | Cilag Gmbh International | Estimating state of ultrasonic end effector and control system therefor |
| US11918302B2 (en) | 2017-12-28 | 2024-03-05 | Cilag Gmbh International | Sterile field interactive control displays |
| US12226166B2 (en) | 2017-12-28 | 2025-02-18 | Cilag Gmbh International | Surgical instrument with a sensing array |
| US12207817B2 (en) | 2017-12-28 | 2025-01-28 | Cilag Gmbh International | Safety systems for smart powered surgical stapling |
| US11257589B2 (en) | 2017-12-28 | 2022-02-22 | Cilag Gmbh International | Real-time analysis of comprehensive cost of all instrumentation used in surgery utilizing data fluidity to track instruments through stocking and in-house processes |
| US11234756B2 (en) | 2017-12-28 | 2022-02-01 | Cilag Gmbh International | Powered surgical tool with predefined adjustable control algorithm for controlling end effector parameter |
| US10892995B2 (en) | 2017-12-28 | 2021-01-12 | Ethicon Llc | Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs |
| US12193766B2 (en) | 2017-12-28 | 2025-01-14 | Cilag Gmbh International | Situationally aware surgical system configured for use during a surgical procedure |
| US11529187B2 (en) | 2017-12-28 | 2022-12-20 | Cilag Gmbh International | Surgical evacuation sensor arrangements |
| US10966791B2 (en) | 2017-12-28 | 2021-04-06 | Ethicon Llc | Cloud-based medical analytics for medical facility segmented individualization of instrument function |
| US11540855B2 (en) | 2017-12-28 | 2023-01-03 | Cilag Gmbh International | Controlling activation of an ultrasonic surgical instrument according to the presence of tissue |
| US11213359B2 (en) | 2017-12-28 | 2022-01-04 | Cilag Gmbh International | Controllers for robot-assisted surgical platforms |
| US11559308B2 (en) | 2017-12-28 | 2023-01-24 | Cilag Gmbh International | Method for smart energy device infrastructure |
| US11559307B2 (en) | 2017-12-28 | 2023-01-24 | Cilag Gmbh International | Method of robotic hub communication, detection, and control |
| US10892899B2 (en) | 2017-12-28 | 2021-01-12 | Ethicon Llc | Self describing data packets generated at an issuing instrument |
| US12193636B2 (en) | 2017-12-28 | 2025-01-14 | Cilag Gmbh International | Characterization of tissue irregularities through the use of mono-chromatic light refractivity |
| US11571234B2 (en) | 2017-12-28 | 2023-02-07 | Cilag Gmbh International | Temperature control of ultrasonic end effector and control system therefor |
| US11576677B2 (en) | 2017-12-28 | 2023-02-14 | Cilag Gmbh International | Method of hub communication, processing, display, and cloud analytics |
| US11202570B2 (en) | 2017-12-28 | 2021-12-21 | Cilag Gmbh International | Communication hub and storage device for storing parameters and status of a surgical device to be shared with cloud based analytics systems |
| US11026751B2 (en) | 2017-12-28 | 2021-06-08 | Cilag Gmbh International | Display of alignment of staple cartridge to prior linear staple line |
| US10898622B2 (en) | 2017-12-28 | 2021-01-26 | Ethicon Llc | Surgical evacuation system with a communication circuit for communication between a filter and a smoke evacuation device |
| US11589932B2 (en) | 2017-12-28 | 2023-02-28 | Cilag Gmbh International | Usage and technique analysis of surgeon / staff performance against a baseline to optimize device utilization and performance for both current and future procedures |
| US11589888B2 (en) | 2017-12-28 | 2023-02-28 | Cilag Gmbh International | Method for controlling smart energy devices |
| US12144518B2 (en) | 2017-12-28 | 2024-11-19 | Cilag Gmbh International | Surgical systems for detecting end effector tissue distribution irregularities |
| US11601371B2 (en) | 2017-12-28 | 2023-03-07 | Cilag Gmbh International | Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs |
| US11596291B2 (en) | 2017-12-28 | 2023-03-07 | Cilag Gmbh International | Method of compressing tissue within a stapling device and simultaneously displaying of the location of the tissue within the jaws |
| US11602393B2 (en) | 2017-12-28 | 2023-03-14 | Cilag Gmbh International | Surgical evacuation sensing and generator control |
| US12137991B2 (en) | 2017-12-28 | 2024-11-12 | Cilag Gmbh International | Display arrangements for robot-assisted surgical platforms |
| US11179175B2 (en) | 2017-12-28 | 2021-11-23 | Cilag Gmbh International | Controlling an ultrasonic surgical instrument according to tissue location |
| US11612444B2 (en) | 2017-12-28 | 2023-03-28 | Cilag Gmbh International | Adjustment of a surgical device function based on situational awareness |
| US11969142B2 (en) | 2017-12-28 | 2024-04-30 | Cilag Gmbh International | Method of compressing tissue within a stapling device and simultaneously displaying the location of the tissue within the jaws |
| US11903587B2 (en) | 2017-12-28 | 2024-02-20 | Cilag Gmbh International | Adjustment to the surgical stapling control based on situational awareness |
| US11633237B2 (en) | 2017-12-28 | 2023-04-25 | Cilag Gmbh International | Usage and technique analysis of surgeon / staff performance against a baseline to optimize device utilization and performance for both current and future procedures |
| US11179208B2 (en) | 2017-12-28 | 2021-11-23 | Cilag Gmbh International | Cloud-based medical analytics for security and authentication trends and reactive measures |
| US11659023B2 (en) | 2017-12-28 | 2023-05-23 | Cilag Gmbh International | Method of hub communication |
| US12133660B2 (en) | 2017-12-28 | 2024-11-05 | Cilag Gmbh International | Controlling a temperature of an ultrasonic electromechanical blade according to frequency |
| US11179204B2 (en) | 2017-12-28 | 2021-11-23 | Cilag Gmbh International | Wireless pairing of a surgical device with another device within a sterile surgical field based on the usage and situational awareness of devices |
| US11666331B2 (en) | 2017-12-28 | 2023-06-06 | Cilag Gmbh International | Systems for detecting proximity of surgical end effector to cancerous tissue |
| US11672605B2 (en) | 2017-12-28 | 2023-06-13 | Cilag Gmbh International | Sterile field interactive control displays |
| US11678881B2 (en) | 2017-12-28 | 2023-06-20 | Cilag Gmbh International | Spatial awareness of surgical hubs in operating rooms |
| US11045591B2 (en) | 2017-12-28 | 2021-06-29 | Cilag Gmbh International | Dual in-series large and small droplet filters |
| US11903601B2 (en) | 2017-12-28 | 2024-02-20 | Cilag Gmbh International | Surgical instrument comprising a plurality of drive systems |
| US12133709B2 (en) | 2017-12-28 | 2024-11-05 | Cilag Gmbh International | Communication hub and storage device for storing parameters and status of a surgical device to be shared with cloud based analytics systems |
| US12133773B2 (en) | 2017-12-28 | 2024-11-05 | Cilag Gmbh International | Surgical hub and modular device response adjustment based on situational awareness |
| US11696760B2 (en) | 2017-12-28 | 2023-07-11 | Cilag Gmbh International | Safety systems for smart powered surgical stapling |
| US11166772B2 (en) | 2017-12-28 | 2021-11-09 | Cilag Gmbh International | Surgical hub coordination of control and communication of operating room devices |
| US12127729B2 (en) | 2017-12-28 | 2024-10-29 | Cilag Gmbh International | Method for smoke evacuation for surgical hub |
| US11701185B2 (en) | 2017-12-28 | 2023-07-18 | Cilag Gmbh International | Wireless pairing of a surgical device with another device within a sterile surgical field based on the usage and situational awareness of devices |
| US11896443B2 (en) | 2017-12-28 | 2024-02-13 | Cilag Gmbh International | Control of a surgical system through a surgical barrier |
| US11056244B2 (en) | 2017-12-28 | 2021-07-06 | Cilag Gmbh International | Automated data scaling, alignment, and organizing based on predefined parameters within surgical networks |
| US11896322B2 (en) | 2017-12-28 | 2024-02-13 | Cilag Gmbh International | Sensing the patient position and contact utilizing the mono-polar return pad electrode to provide situational awareness to the hub |
| US10932872B2 (en) | 2017-12-28 | 2021-03-02 | Ethicon Llc | Cloud-based medical analytics for linking of local usage trends with the resource acquisition behaviors of larger data set |
| US11712303B2 (en) | 2017-12-28 | 2023-08-01 | Cilag Gmbh International | Surgical instrument comprising a control circuit |
| US11160605B2 (en) | 2017-12-28 | 2021-11-02 | Cilag Gmbh International | Surgical evacuation sensing and motor control |
| US11147607B2 (en) | 2017-12-28 | 2021-10-19 | Cilag Gmbh International | Bipolar combination device that automatically adjusts pressure based on energy modality |
| US11890065B2 (en) | 2017-12-28 | 2024-02-06 | Cilag Gmbh International | Surgical system to limit displacement |
| US10944728B2 (en) | 2017-12-28 | 2021-03-09 | Ethicon Llc | Interactive surgical systems with encrypted communication capabilities |
| US11737668B2 (en) | 2017-12-28 | 2023-08-29 | Cilag Gmbh International | Communication hub and storage device for storing parameters and status of a surgical device to be shared with cloud based analytics systems |
| US11744604B2 (en) | 2017-12-28 | 2023-09-05 | Cilag Gmbh International | Surgical instrument with a hardware-only control circuit |
| US12096985B2 (en) | 2017-12-28 | 2024-09-24 | Cilag Gmbh International | Surgical network recommendations from real time analysis of procedure variables against a baseline highlighting differences from the optimal solution |
| US12096916B2 (en) | 2017-12-28 | 2024-09-24 | Cilag Gmbh International | Method of sensing particulate from smoke evacuated from a patient, adjusting the pump speed based on the sensed information, and communicating the functional parameters of the system to the hub |
| US11132462B2 (en) | 2017-12-28 | 2021-09-28 | Cilag Gmbh International | Data stripping method to interrogate patient records and create anonymized record |
| US11751958B2 (en) | 2017-12-28 | 2023-09-12 | Cilag Gmbh International | Surgical hub coordination of control and communication of operating room devices |
| US11109866B2 (en) | 2017-12-28 | 2021-09-07 | Cilag Gmbh International | Method for circular stapler control algorithm adjustment based on situational awareness |
| US12076010B2 (en) | 2017-12-28 | 2024-09-03 | Cilag Gmbh International | Surgical instrument cartridge sensor assemblies |
| US11114195B2 (en) | 2017-12-28 | 2021-09-07 | Cilag Gmbh International | Surgical instrument with a tissue marking assembly |
| US11775682B2 (en) | 2017-12-28 | 2023-10-03 | Cilag Gmbh International | Data stripping method to interrogate patient records and create anonymized record |
| US11771487B2 (en) | 2017-12-28 | 2023-10-03 | Cilag Gmbh International | Mechanisms for controlling different electromechanical systems of an electrosurgical instrument |
| US12059169B2 (en) | 2017-12-28 | 2024-08-13 | Cilag Gmbh International | Controlling an ultrasonic surgical instrument according to tissue location |
| US12062442B2 (en) | 2017-12-28 | 2024-08-13 | Cilag Gmbh International | Method for operating surgical instrument systems |
| US11779337B2 (en) | 2017-12-28 | 2023-10-10 | Cilag Gmbh International | Method of using reinforced flexible circuits with multiple sensors to optimize performance of radio frequency devices |
| US12059124B2 (en) | 2017-12-28 | 2024-08-13 | Cilag Gmbh International | Surgical hub spatial awareness to determine devices in operating theater |
| US11786251B2 (en) | 2017-12-28 | 2023-10-17 | Cilag Gmbh International | Method for adaptive control schemes for surgical network control and interaction |
| US10943454B2 (en) | 2017-12-28 | 2021-03-09 | Ethicon Llc | Detection and escalation of security responses of surgical instruments to increasing severity threats |
| US11786245B2 (en) | 2017-12-28 | 2023-10-17 | Cilag Gmbh International | Surgical systems with prioritized data transmission capabilities |
| US11100631B2 (en) | 2017-12-28 | 2021-08-24 | Cilag Gmbh International | Use of laser light and red-green-blue coloration to determine properties of back scattered light |
| US11096693B2 (en) | 2017-12-28 | 2021-08-24 | Cilag Gmbh International | Adjustment of staple height of at least one row of staples based on the sensed tissue thickness or force in closing |
| US11818052B2 (en) | 2017-12-28 | 2023-11-14 | Cilag Gmbh International | Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs |
| US12053159B2 (en) | 2017-12-28 | 2024-08-06 | Cilag Gmbh International | Method of sensing particulate from smoke evacuated from a patient, adjusting the pump speed based on the sensed information, and communicating the functional parameters of the system to the hub |
| US12048496B2 (en) | 2017-12-28 | 2024-07-30 | Cilag Gmbh International | Adaptive control program updates for surgical hubs |
| US11832840B2 (en) | 2017-12-28 | 2023-12-05 | Cilag Gmbh International | Surgical instrument having a flexible circuit |
| US11832899B2 (en) | 2017-12-28 | 2023-12-05 | Cilag Gmbh International | Surgical systems with autonomously adjustable control programs |
| US11051876B2 (en) | 2017-12-28 | 2021-07-06 | Cilag Gmbh International | Surgical evacuation flow paths |
| US11844579B2 (en) | 2017-12-28 | 2023-12-19 | Cilag Gmbh International | Adjustments based on airborne particle properties |
| US11058498B2 (en) | 2017-12-28 | 2021-07-13 | Cilag Gmbh International | Cooperative surgical actions for robot-assisted surgical platforms |
| US11857152B2 (en) | 2017-12-28 | 2024-01-02 | Cilag Gmbh International | Surgical hub spatial awareness to determine devices in operating theater |
| US11864728B2 (en) | 2017-12-28 | 2024-01-09 | Cilag Gmbh International | Characterization of tissue irregularities through the use of mono-chromatic light refractivity |
| US11864845B2 (en) | 2017-12-28 | 2024-01-09 | Cilag Gmbh International | Sterile field interactive control displays |
| US12042207B2 (en) | 2017-12-28 | 2024-07-23 | Cilag Gmbh International | Estimating state of ultrasonic end effector and control system therefor |
| US11076921B2 (en) | 2017-12-28 | 2021-08-03 | Cilag Gmbh International | Adaptive control program updates for surgical hubs |
| US11069012B2 (en) | 2017-12-28 | 2021-07-20 | Cilag Gmbh International | Interactive surgical systems with condition handling of devices and data capabilities |
| US11534196B2 (en) | 2018-03-08 | 2022-12-27 | Cilag Gmbh International | Using spectroscopy to determine device use state in combo instrument |
| US11464532B2 (en) | 2018-03-08 | 2022-10-11 | Cilag Gmbh International | Methods for estimating and controlling state of ultrasonic end effector |
| US12121256B2 (en) | 2018-03-08 | 2024-10-22 | Cilag Gmbh International | Methods for controlling temperature in ultrasonic device |
| US11707293B2 (en) | 2018-03-08 | 2023-07-25 | Cilag Gmbh International | Ultrasonic sealing algorithm with temperature control |
| US11701139B2 (en) | 2018-03-08 | 2023-07-18 | Cilag Gmbh International | Methods for controlling temperature in ultrasonic device |
| US11701162B2 (en) | 2018-03-08 | 2023-07-18 | Cilag Gmbh International | Smart blade application for reusable and disposable devices |
| US11678901B2 (en) | 2018-03-08 | 2023-06-20 | Cilag Gmbh International | Vessel sensing for adaptive advanced hemostasis |
| US11678927B2 (en) | 2018-03-08 | 2023-06-20 | Cilag Gmbh International | Detection of large vessels during parenchymal dissection using a smart blade |
| US11617597B2 (en) | 2018-03-08 | 2023-04-04 | Cilag Gmbh International | Application of smart ultrasonic blade technology |
| US11457944B2 (en) | 2018-03-08 | 2022-10-04 | Cilag Gmbh International | Adaptive advanced tissue treatment pad saver mode |
| US11839396B2 (en) | 2018-03-08 | 2023-12-12 | Cilag Gmbh International | Fine dissection mode for tissue classification |
| US11844545B2 (en) | 2018-03-08 | 2023-12-19 | Cilag Gmbh International | Calcified vessel identification |
| US11589915B2 (en) | 2018-03-08 | 2023-02-28 | Cilag Gmbh International | In-the-jaw classifier based on a model |
| US11259830B2 (en) | 2018-03-08 | 2022-03-01 | Cilag Gmbh International | Methods for controlling temperature in ultrasonic device |
| US11399858B2 (en) | 2018-03-08 | 2022-08-02 | Cilag Gmbh International | Application of smart blade technology |
| US11389188B2 (en) | 2018-03-08 | 2022-07-19 | Cilag Gmbh International | Start temperature of blade |
| US12303159B2 (en) | 2018-03-08 | 2025-05-20 | Cilag Gmbh International | Methods for estimating and controlling state of ultrasonic end effector |
| US11344326B2 (en) | 2018-03-08 | 2022-05-31 | Cilag Gmbh International | Smart blade technology to control blade instability |
| US11337746B2 (en) | 2018-03-08 | 2022-05-24 | Cilag Gmbh International | Smart blade and power pulsing |
| US11986233B2 (en) | 2018-03-08 | 2024-05-21 | Cilag Gmbh International | Adjustment of complex impedance to compensate for lost power in an articulating ultrasonic device |
| US11317937B2 (en) | 2018-03-08 | 2022-05-03 | Cilag Gmbh International | Determining the state of an ultrasonic end effector |
| US11298148B2 (en) | 2018-03-08 | 2022-04-12 | Cilag Gmbh International | Live time tissue classification using electrical parameters |
| US11219453B2 (en) | 2018-03-28 | 2022-01-11 | Cilag Gmbh International | Surgical stapling devices with cartridge compatible closure and firing lockout arrangements |
| US11166716B2 (en) | 2018-03-28 | 2021-11-09 | Cilag Gmbh International | Stapling instrument comprising a deactivatable lockout |
| US11197668B2 (en) | 2018-03-28 | 2021-12-14 | Cilag Gmbh International | Surgical stapling assembly comprising a lockout and an exterior access orifice to permit artificial unlocking of the lockout |
| US11589865B2 (en) | 2018-03-28 | 2023-02-28 | Cilag Gmbh International | Methods for controlling a powered surgical stapler that has separate rotary closure and firing systems |
| US11986185B2 (en) | 2018-03-28 | 2024-05-21 | Cilag Gmbh International | Methods for controlling a surgical stapler |
| US11207067B2 (en) | 2018-03-28 | 2021-12-28 | Cilag Gmbh International | Surgical stapling device with separate rotary driven closure and firing systems and firing member that engages both jaws while firing |
| US11129611B2 (en) | 2018-03-28 | 2021-09-28 | Cilag Gmbh International | Surgical staplers with arrangements for maintaining a firing member thereof in a locked configuration unless a compatible cartridge has been installed therein |
| US11213294B2 (en) | 2018-03-28 | 2022-01-04 | Cilag Gmbh International | Surgical instrument comprising co-operating lockout features |
| US10973520B2 (en) | 2018-03-28 | 2021-04-13 | Ethicon Llc | Surgical staple cartridge with firing member driven camming assembly that has an onboard tissue cutting feature |
| US11471156B2 (en) | 2018-03-28 | 2022-10-18 | Cilag Gmbh International | Surgical stapling devices with improved rotary driven closure systems |
| US11937817B2 (en) | 2018-03-28 | 2024-03-26 | Cilag Gmbh International | Surgical instruments with asymmetric jaw arrangements and separate closure and firing systems |
| US11259806B2 (en) | 2018-03-28 | 2022-03-01 | Cilag Gmbh International | Surgical stapling devices with features for blocking advancement of a camming assembly of an incompatible cartridge installed therein |
| US11931027B2 (en) | 2018-03-28 | 2024-03-19 | Cilag Gmbh Interntional | Surgical instrument comprising an adaptive control system |
| US11406382B2 (en) | 2018-03-28 | 2022-08-09 | Cilag Gmbh International | Staple cartridge comprising a lockout key configured to lift a firing member |
| US11278280B2 (en) | 2018-03-28 | 2022-03-22 | Cilag Gmbh International | Surgical instrument comprising a jaw closure lockout |
| US11090047B2 (en) | 2018-03-28 | 2021-08-17 | Cilag Gmbh International | Surgical instrument comprising an adaptive control system |
| US11096688B2 (en) | 2018-03-28 | 2021-08-24 | Cilag Gmbh International | Rotary driven firing members with different anvil and channel engagement features |
| US11357503B2 (en) | 2019-02-19 | 2022-06-14 | Cilag Gmbh International | Staple cartridge retainers with frangible retention features and methods of using same |
| US11291444B2 (en) | 2019-02-19 | 2022-04-05 | Cilag Gmbh International | Surgical stapling assembly with cartridge based retainer configured to unlock a closure lockout |
| US11331101B2 (en) | 2019-02-19 | 2022-05-17 | Cilag Gmbh International | Deactivator element for defeating surgical stapling device lockouts |
| US11272931B2 (en) | 2019-02-19 | 2022-03-15 | Cilag Gmbh International | Dual cam cartridge based feature for unlocking a surgical stapler lockout |
| US11925350B2 (en) | 2019-02-19 | 2024-03-12 | Cilag Gmbh International | Method for providing an authentication lockout in a surgical stapler with a replaceable cartridge |
| US11298129B2 (en) | 2019-02-19 | 2022-04-12 | Cilag Gmbh International | Method for providing an authentication lockout in a surgical stapler with a replaceable cartridge |
| US11259807B2 (en) | 2019-02-19 | 2022-03-01 | Cilag Gmbh International | Staple cartridges with cam surfaces configured to engage primary and secondary portions of a lockout of a surgical stapling device |
| US11291445B2 (en) | 2019-02-19 | 2022-04-05 | Cilag Gmbh International | Surgical staple cartridges with integral authentication keys |
| US11464511B2 (en) | 2019-02-19 | 2022-10-11 | Cilag Gmbh International | Surgical staple cartridges with movable authentication key arrangements |
| US11331100B2 (en) | 2019-02-19 | 2022-05-17 | Cilag Gmbh International | Staple cartridge retainer system with authentication keys |
| US11751872B2 (en) | 2019-02-19 | 2023-09-12 | Cilag Gmbh International | Insertable deactivator element for surgical stapler lockouts |
| US11298130B2 (en) | 2019-02-19 | 2022-04-12 | Cilag Gmbh International | Staple cartridge retainer with frangible authentication key |
| US11517309B2 (en) | 2019-02-19 | 2022-12-06 | Cilag Gmbh International | Staple cartridge retainer with retractable authentication key |
| US11369377B2 (en) | 2019-02-19 | 2022-06-28 | Cilag Gmbh International | Surgical stapling assembly with cartridge based retainer configured to unlock a firing lockout |
| US11317915B2 (en) | 2019-02-19 | 2022-05-03 | Cilag Gmbh International | Universal cartridge based key feature that unlocks multiple lockout arrangements in different surgical staplers |
| USD950728S1 (en) | 2019-06-25 | 2022-05-03 | Cilag Gmbh International | Surgical staple cartridge |
| USD964564S1 (en) | 2019-06-25 | 2022-09-20 | Cilag Gmbh International | Surgical staple cartridge retainer with a closure system authentication key |
| USD952144S1 (en) | 2019-06-25 | 2022-05-17 | Cilag Gmbh International | Surgical staple cartridge retainer with firing system authentication key |
| US12053224B2 (en) | 2019-12-30 | 2024-08-06 | Cilag Gmbh International | Variation in electrode parameters and deflectable electrode to modify energy density and tissue interaction |
| US11660089B2 (en) | 2019-12-30 | 2023-05-30 | Cilag Gmbh International | Surgical instrument comprising a sensing system |
| US11684412B2 (en) | 2019-12-30 | 2023-06-27 | Cilag Gmbh International | Surgical instrument with rotatable and articulatable surgical end effector |
| US11589916B2 (en) | 2019-12-30 | 2023-02-28 | Cilag Gmbh International | Electrosurgical instruments with electrodes having variable energy densities |
| US11696776B2 (en) | 2019-12-30 | 2023-07-11 | Cilag Gmbh International | Articulatable surgical instrument |
| US11707318B2 (en) | 2019-12-30 | 2023-07-25 | Cilag Gmbh International | Surgical instrument with jaw alignment features |
| US11723716B2 (en) | 2019-12-30 | 2023-08-15 | Cilag Gmbh International | Electrosurgical instrument with variable control mechanisms |
| US12114912B2 (en) | 2019-12-30 | 2024-10-15 | Cilag Gmbh International | Non-biased deflectable electrode to minimize contact between ultrasonic blade and electrode |
| US11744636B2 (en) | 2019-12-30 | 2023-09-05 | Cilag Gmbh International | Electrosurgical systems with integrated and external power sources |
| US12082808B2 (en) | 2019-12-30 | 2024-09-10 | Cilag Gmbh International | Surgical instrument comprising a control system responsive to software configurations |
| US11759251B2 (en) | 2019-12-30 | 2023-09-19 | Cilag Gmbh International | Control program adaptation based on device status and user input |
| US11452525B2 (en) | 2019-12-30 | 2022-09-27 | Cilag Gmbh International | Surgical instrument comprising an adjustment system |
| US12076006B2 (en) | 2019-12-30 | 2024-09-03 | Cilag Gmbh International | Surgical instrument comprising an orientation detection system |
| US12064109B2 (en) | 2019-12-30 | 2024-08-20 | Cilag Gmbh International | Surgical instrument comprising a feedback control circuit |
| US11779387B2 (en) | 2019-12-30 | 2023-10-10 | Cilag Gmbh International | Clamp arm jaw to minimize tissue sticking and improve tissue control |
| US11779329B2 (en) | 2019-12-30 | 2023-10-10 | Cilag Gmbh International | Surgical instrument comprising a flex circuit including a sensor system |
| US12262937B2 (en) | 2019-12-30 | 2025-04-01 | Cilag Gmbh International | User interface for surgical instrument with combination energy modality end-effector |
| US11786291B2 (en) | 2019-12-30 | 2023-10-17 | Cilag Gmbh International | Deflectable support of RF energy electrode with respect to opposing ultrasonic blade |
| US11786294B2 (en) | 2019-12-30 | 2023-10-17 | Cilag Gmbh International | Control program for modular combination energy device |
| US11812957B2 (en) | 2019-12-30 | 2023-11-14 | Cilag Gmbh International | Surgical instrument comprising a signal interference resolution system |
| US11950797B2 (en) | 2019-12-30 | 2024-04-09 | Cilag Gmbh International | Deflectable electrode with higher distal bias relative to proximal bias |
| US11911063B2 (en) | 2019-12-30 | 2024-02-27 | Cilag Gmbh International | Techniques for detecting ultrasonic blade to electrode contact and reducing power to ultrasonic blade |
| US12023086B2 (en) | 2019-12-30 | 2024-07-02 | Cilag Gmbh International | Electrosurgical instrument for delivering blended energy modalities to tissue |
| US12336747B2 (en) | 2019-12-30 | 2025-06-24 | Cilag Gmbh International | Method of operating a combination ultrasonic / bipolar RF surgical device with a combination energy modality end-effector |
| US12343063B2 (en) | 2019-12-30 | 2025-07-01 | Cilag Gmbh International | Multi-layer clamp arm pad for enhanced versatility and performance of a surgical device |
| US12349961B2 (en) | 2019-12-30 | 2025-07-08 | Cilag Gmbh International | Electrosurgical instrument with electrodes operable in bipolar and monopolar modes |
| US11937863B2 (en) | 2019-12-30 | 2024-03-26 | Cilag Gmbh International | Deflectable electrode with variable compression bias along the length of the deflectable electrode |
| US11986201B2 (en) | 2019-12-30 | 2024-05-21 | Cilag Gmbh International | Method for operating a surgical instrument |
| US11937866B2 (en) | 2019-12-30 | 2024-03-26 | Cilag Gmbh International | Method for an electrosurgical procedure |
| US11986234B2 (en) | 2019-12-30 | 2024-05-21 | Cilag Gmbh International | Surgical system communication pathways |
| US11974801B2 (en) | 2019-12-30 | 2024-05-07 | Cilag Gmbh International | Electrosurgical instrument with flexible wiring assemblies |
| US11944366B2 (en) | 2019-12-30 | 2024-04-02 | Cilag Gmbh International | Asymmetric segmented ultrasonic support pad for cooperative engagement with a movable RF electrode |
Also Published As
| Publication number | Publication date |
|---|---|
| US20150088116A1 (en) | 2015-03-26 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11717339B2 (en) | Systems and methods for estimating tissue parameters using surgical devices | |
| US9867651B2 (en) | Systems and methods for estimating tissue parameters using surgical devices | |
| US10058374B2 (en) | Systems and methods for estimating tissue parameters using surgical devices | |
| EP2620114B1 (en) | Systems for phase predictive impedance loss model calibration and compensation | |
| JP5524956B2 (en) | System and method for output control of an electrosurgical generator | |
| US10194972B2 (en) | Managing tissue treatment | |
| JP6410505B2 (en) | System and method for measuring tissue impedance through an electrosurgical cable | |
| CA2498452C (en) | Vessel sealing system using capacitive rf dielectric heating | |
| CN111227927A (en) | Irreversible electroporation (IRE) based on field, contact force and time | |
| EP1401346B1 (en) | Ablation system | |
| EP2851029B1 (en) | Methods for phase predictive impedance loss model calibration | |
| EP3042623B1 (en) | Electrosurgical system with means for calculating a parasitic parameter and a method for its use | |
| JP2023504192A (en) | Apparatus, system and method for calculating the amount of energy delivered to tissue during electrosurgical treatment | |
| US12023085B2 (en) | Ultrasonic systems and methods with tissue resistance sensing | |
| JP3895531B2 (en) | Electrosurgical equipment | |
| JPWO2016093086A1 (en) | Treatment device | |
| JP3780140B2 (en) | Electrosurgical equipment |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: COVIDIEN LP, MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WHAM, ROBERT H.;REEL/FRAME:033046/0250 Effective date: 20140604 |
|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
| MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
| FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |