[go: up one dir, main page]

US9631046B2 - Fast curing agents for epdxy resins - Google Patents

Fast curing agents for epdxy resins Download PDF

Info

Publication number
US9631046B2
US9631046B2 US14/408,077 US201314408077A US9631046B2 US 9631046 B2 US9631046 B2 US 9631046B2 US 201314408077 A US201314408077 A US 201314408077A US 9631046 B2 US9631046 B2 US 9631046B2
Authority
US
United States
Prior art keywords
amine
modifier
weight percent
accordance
bisphenol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US14/408,077
Other versions
US20150175739A1 (en
Inventor
Markus Schroetz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Blue Cube IP LLC
Original Assignee
Blue Cube IP LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Blue Cube IP LLC filed Critical Blue Cube IP LLC
Priority to US14/408,077 priority Critical patent/US9631046B2/en
Publication of US20150175739A1 publication Critical patent/US20150175739A1/en
Assigned to UPPC GMBH reassignment UPPC GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SCHROETZ, MARKUS
Assigned to THE DOW CHEMICAL COMPANY reassignment THE DOW CHEMICAL COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: UPPC GMBH
Assigned to DOW GLOBAL TECHNOLOGIES LLC reassignment DOW GLOBAL TECHNOLOGIES LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: THE DOW CHEMICAL COMPANY
Assigned to BLUE CUBE IP LLC reassignment BLUE CUBE IP LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DOW GLOBAL TECHNOLOGIES LLC
Application granted granted Critical
Publication of US9631046B2 publication Critical patent/US9631046B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment
    • C08G59/1433Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds
    • C08G59/1477Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/182Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing using pre-adducts of epoxy compounds with curing agents
    • C08G59/184Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing using pre-adducts of epoxy compounds with curing agents with amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/681Metal alcoholates, phenolates or carboxylates
    • C08G59/685Carboxylates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/002Priming paints

Definitions

  • the present invention is related to fast curing agents for epoxy resins. Specifically, the present invention is related to VOC and (alkyl) phenol-free curing agents for epoxy resins.
  • Cold curing epoxy systems are suitable for a wide range of industrial applications, such as floorings, mortars, adhesives, coatings, lacquers, and paints. Most of the cold curing amine hardeners contain benzyl alcohol as a modifier, which is a volatile organic compound (VOC) and causes emissions, even after curing the epoxy system.
  • VOC volatile organic compound
  • Mannich bases are normally used. Mannich bases can be formulated VOC-free, but are based on (alkyl) phenols, and are classified by the European Union's regulations as R 62 substances, bearing a “risk of impaired fertility”.
  • Mannich bases are used to achieve fast curing times and to produce chemical resistant coatings. Additionally, their surface appearance must be at least “fair,” because although these coatings are not normally used as decorative coatings, they would lack interlayer adhesion otherwise.
  • a hardener composition comprising, consisting of, or consisting essentially of: a) an accelerator comprising a first amine at least partially neutralized by salicylic acid and a first modifier; b) a non-isolated adduct of i) a difunctional epoxy; and ii) a second amine; and c) a second modifier.
  • a process comprising, consisting of, or consisting essentially of: a) contacting a first modifier with salicylic acid to form a slurry; b) contacting a molar excess of a first amine with the slurry under reaction conditions to form an accelerator; c) admixing the accelerator with i) a non-isolated adduct of a difunctional epoxy and a second amine; and ii) a second modifier to form a hardener composition.
  • FIG. 1 is a visualization of values over a 7 day time period for the chemical resistance testing, the “umbrella size” is proportional to the chemical resistance, for the inventive formulation.
  • FIG. 2 is a visualization of values over a 7 day time period for the chemical resistance testing, the “umbrella size” is proportional to the chemical resistance, for the comparative formulation.
  • a hardener composition comprising, consisting of or consisting essentially of: a) an accelerator comprising a first amine at least partially neutralized by salicylic acid and a first modifier; b) a non-isolated adduct of i) a difunctional epoxy; and ii) a second amine; and d) a second modifier.
  • the accelerator comprises, consists of, or consists essentially of a first amine at least partially neutralized by salicylic acid and a first modifier.
  • the accelerator is generally present in the composition in the range of from 30 weight percent to 90 weight percent, based on the total weight of the composition.
  • the accelerator is present in the composition in the range of from 40 weight percent to 80 weight percent in another embodiment, and is present in the range of from 50 weight percent to 70 weight percent in yet another embodiment.
  • the first amine is cycloaliphatic.
  • the first amine include, but are not limited to aromatic or araliphatic amines such as Methylendianiline (MDA), m-Xylylenediamine (MXDA) and their hydrogenated versions, 4-[(4-aminocyclohexyl)methyl]cyclohexan-1-amine (PACM) and 1,3-BAC.
  • MDA Methylendianiline
  • MXDA m-Xylylenediamine
  • PAM 4-[(4-aminocyclohexyl)methyl]cyclohexan-1-amine
  • 1,3-BAC 1,3-BAC.
  • the first amine is generally present in the accelerator in an amount in the range of from 20 weight percent to 80 weight percent, based on the total weight of the accelerator.
  • the first amine is present in the accelerator in an amount in the range of from 30 weight percent to 70 weight percent in another embodiment, and in an amount in the range of from about 40 weight percent to 50 weight percent in yet another embodiment.
  • Concentrations above 80 weight percent can make the coating sensitive to blushing or whitening.
  • Concentrations below 20 weight percent can lead to unfavorably high viscosities and unfavorably high HEW (hydrogen equivalent weight).
  • the first amine is at least partially neutralized by salicylic acid.
  • the neutralization process is carried out as follows: at slightly elevated temperatures (30-50° C.), the salicylic acid is added to the first modifier to form a slurry. A molar excess of a first amine is added, completely neutralizing the salicylic acid. The reaction temperature is maintained below 100° C.
  • Salicylic acid is generally present in the accelerator in an amount in the range of from 2 weight percent to 35 weight percent, based on the total weight of the accelerator. Salicylic acid is present in the accelerator in an amount in the range of from 10 weight percent to 30 weight percent in another embodiment, and is present in an amount in the range of from 15 weight percent to 25 weight percent in yet another embodiment.
  • Concentrations of salicylic acid above 35 weight percent can decrease the chemical resistance of the cured material. Concentrations below 2 weight percent can result in poor acceleration.
  • the first modifier is a high-boiling solvent that does not contain any volatile organic compounds.
  • the first modifier include, but are not limited to araliphatic phenols, (such as styrenated phenol), and Diisopropyl naphthalene (DI), branched or unbranched mid chain fatty alcohols having from 12 to 20 carbon atoms per molecule and mixtures thereof.
  • the first modifier is generally present in the accelerator in an amount in the range of from 10 weight percent to 50 weight percent, based on the total weight of the accelerator.
  • the first modifier is present in the accelerator in an amount in the range of from about 20 weight percent to 40 weight percent in another embodiment, and in the range of from 25 weight percent to 35 weight percent in yet another embodiment.
  • Concentrations of the first modifier in amounts higher than 50 weight percent can weaken the network density and thus the mechanical strength. Concentrations of the first modifier less than 10 weight percent can lead to an unfavorably high viscosity.
  • one component of the composition is a non-isolated adduct of a difunctional epoxy i) and a second amine ii).
  • difunctional epoxies i) include but are not limited to bisphenol A or F diglycidylether, 1,4 butandiol diglycidylether, neopentyldiglycidylether, and 1,6-hexandiol diglycidylether.
  • Examples of the second amine ii) include but are not limited to aliphatic polyamines, arylaliphatic polyamines, cycloaliphatic polyamines, aromatic polyamines, heterocyclic polyamines, polyalkoxypolyamines, and combinations thereof.
  • the alkoxy group of the polyalkoxypolyamines is an oxyethylene, oxypropylene, oxy-1,2-butylene, oxy-1,4-butylene or a co-polymer thereof.
  • aliphatic polyamines include, but are not limited to ethylenediamine (EDA), diethylenetriamine (DETA), triethylenetetramine (TETA), trimethyl hexane diamine (TMDA), hexamethylenediamine (HMDA), N-(2-aminoethyl)-1,3-propanediamine (N3-Amine), N,N′-1,2-ethanediylbis-1,3-propanediamine (N4-amine), and dipropylenetriamine.
  • EDA ethylenediamine
  • DETA diethylenetriamine
  • TETA triethylenetetramine
  • TMDA trimethyl hexane diamine
  • HMDA hexamethylenediamine
  • N3-Amine N,N′-1,2-ethanediylbis-1,3-propanediamine
  • N4-amine N4-amine
  • arylaliphatic polyamines include, but are not limited to m-xylylenediamine (MXDA), and p-xylylenediamine
  • cycloaliphatic polyamines include, but are not limited to 1,3-bisaminocyclohexylamine (1,3-BAC), isophorone diamine (IPD), and 4,4′-methylenebiscyclohexanamine.
  • aromatic polyamines include, but are not limited to m-phenylenediamine, diaminodiphenylmethane (DDM), and diaminodiphenylsulfone (DDS).
  • heterocyclic polyamines include, but are not limited to N-aminoethylpiperazine (NAEP), and 3,9-bis(3-aminopropyl) 2,4,8,10-tetraoxaspiro(5,5)undecane.
  • polyalkoxypolyamines where the alkoxy group is an oxyethylene, oxypropylene, oxy-1,2-butylene, oxy-1,4-butylene or a co-polymer thereof include, but are not limited to 4,7-dioxadecane-1,10-diamine, 1-propanamine,2,1-ethanediyloxy))bis(diaminopropylated diethylene glycol) (ANCAMINE® 1922A); poly(oxy(methyl-1,2-ethanediyl)), alpha-(2-aminomethylethyl)omega-(2-aminomethylethoxy) (JEFFAMINE® D-230, D-400); triethyleneglycoldiamine and oligomers (JEFFAMINE® XTJ-504, JEFFAMINE® XTJ-512), poly(oxy(methyl-1,2-ethanediyl)),alpha,alpha′-(oxydi-2,1-ethan
  • the difunctional epoxy component i) is generally used in molar under-stochiometric amount compared to the second amine component ii) or up to a maximum molar ratio of 1:1, to ensure that component b) is an aminofunctional molecule with an unreacted amine.
  • adduct b) is highly viscous, then less can be used in the hardener formulation. If adduct b) has a lower viscosity, then more of the adduct can be used in the overall formulation.
  • the non-isolated adduct is present in the composition in the range of from 1 weight percent to 75 weight percent, based on the total weight of the composition.
  • the adduct is present in the composition in the range of from 5 weight percent to 75 weight percent in another embodiment, and from 1 weight percent to 25 weight percent in yet another embodiment.
  • the composition can also include a second modifier.
  • the second modifier is useful for dilution and may accelerate the curing speed in combination with epoxy resins.
  • the second modifier can also enhance surface appearance.
  • Examples of the second modifier include, but are not limited to branched or linear, mid to long chain branched or unbranched fatty alcohols containing from 12 to 20 carbon atoms per molecule and mixtures thereof. Additional examples include polyethylene, propylene or butylene glycols, or mixtures thereof from 2 to 15 monomer units and their mono- and di-alkyl or aryl ethers.
  • the second modifier is generally present in a range of from 5 weight percent to 25 weight percent, based on the total weight of the composition.
  • the composition can contain a third amine.
  • the third amine can be any of the amines listed above.
  • the third amine can be IPD, TMD or poly(oxy(methyl-1,2-ethanediyl)), or alpha-(2-aminomethylethyl)omega-(2-aminomethylethoxy) (JEFFAMINE® D-230 or JEFFAMINE® D-400).
  • the third amine is generally present in an amount in the range of 1 weight percent to 50 weight percent, based on the total weight of the composition. In an embodiment, the third amine can be present in a range of from 10 weight percent to 75 weight percent, based on the total weight of the composition, and from 1 weight percent to 25 weight percent, based on the total weight of the composition in yet another embodiment.
  • defoamers and surfactants can be used as formulation aids.
  • defoamers examples include, but are not limited to TEGO Airex 944, Airex 950 from Evonik, Germany.
  • surfactants include, but are not limited to BYK 307 and BYK 333 form BYK-Chemie, Germany.
  • a process comprising, consisting of, or consisting essentially of: a) contacting a first modifier with salicylic acid to form a slurry; b) contacting a molar excess of an first amine with said slurry to form an accelerator; c) admixing said accelerator with i) a non-isolated adduct of a difunctional epoxy and a second amine; and ii) a second modifier to form a hardener composition.
  • the accelerator component is produced by the following process:
  • the neutralization process occurs at slightly elevated temperatures (generally in the range of from 30 to 50° C.).
  • the salicylic acid is added to the first modifier to form a slurry.
  • a molar excess of the first amine is added, thereby completely neutralizing the salicylic acid, while maintaining the reaction temperature below 100° C.
  • about 50 mol % of the first amine is neutralized.
  • the formation of component b), the non-isolated adduct takes place at elevated temperatures from 60 to 120° C. under reaction control by speed of addition. The addition speed depends mainly on the cooling power of the reactor used.
  • the temperature is in the range of from 75° C. to 85° C.
  • the reactor is charged with the first amine and the difunctional epoxy is added from the top under stirring. After addition is finished, a post reaction of 20 to 40 minutes is performed. During the post reaction time the reaction between the difunctional epoxy and amine continues to completion, so that no unreacted epoxy remains in the reaction mixture.
  • the adduct is a non-isolated adduct. Once the reaction is completed, the adduct b) does not undergo an extra distillation step to remove any remaining unreacted amine component.
  • adduct b Once adduct b) is formed, the other components can be added in any combination or sub-combination.
  • a curable composition comprises, consists of, of consists essentially of: I) the above-described hardener and II) an epoxy resin.
  • the epoxy resin is a liquid epoxy resin.
  • liquid epoxy resins that can be used include, but are not limited to bisphenol-A diglycidyl ethers (BADGE), bisphenol-F diglycidyl ethers (BFDGE), and epoxy novolacs.
  • the epoxy resin can be a solid bisphenol A epoxy resin.
  • the curable composition can be optionally diluted with reactive diluents such as for example cresyl glycidyl ether (CGE), p. t.-butylphenyl glycidyl ether (ptBPGE), C12/C14 glycidyl ether, butanediol diglycidyl ether (BDDGE), hexanediol-diglycidyl ether (HDDGE), branched glycidyl ethers such as C13/15 alcohol glycidyl ether, and glycidyl esters such as Versatic Acid glycidyl esters.
  • reactive diluents such as for example cresyl glycidyl ether (CGE), p. t.-butylphenyl glycidyl ether (ptBPGE), C12/C14 glycidyl ether, butanediol diglycidyl ether
  • the hardener component and the epoxy resin are mixed according to the hardener equivalent weight (HEW) and epoxide equivalent weight (EEW) to ensure that 1 equivalent of epoxy reacts with 1 equivalent amine hydrogen.
  • HW hardener equivalent weight
  • EW epoxide equivalent weight
  • composition is then cured at ambient temperature.
  • compositions are generally used as primers for concrete and floorings.
  • PolypoxTM E 403 reactive diluted epoxy resin from UPPC:
  • PolypoxTM H 014 hardener from UPPC, Mannich base type, based on MXDA and ptBP diluted with TMD.
  • Pot life refers to the period of time, at a given temperature, that a mixture of a resin component and a hardener component remains workable, as is understood by one having ordinary skill in the art. Pot life is the time a 100 gram mixture of resin/hardener needs to reach improper working viscosity.
  • a steel wire with a coil on its lower end is moved up and down with moderate speed. As the mixture turns viscous in the course of the curing reaction, the cup will be lifted near the end point. The edge of the cup will touch then an electric switch, stopping a clock, defining the pot life.
  • Curable compositions are thermoanalyzed with a Mettler Toledo DSC822, available from Mettler-Toledo Inc., Columbus, Ohio, USA.
  • the actual glass transition temperature (Tg A ) is measured in the range of 20° C. to 120° C.
  • the potential glass transition temperature (Tg p ) is measured after a 10 minute postcuring at 180° C. in the range of 20° C. to 130° C. following Deutsches Institut für Normung (DIN German Institute for Standardization DIN 65467), at a heating rate of 15 K/minute.
  • the inventive hardener was made by blending the following:
  • BAC-SA accelerator a neutralization product of salicylic acid and 1,3-BAC (1,3-Biscyclohexyldiamine) dissolved in styrenated phenol (Sanko SP-F, from Sanko)
  • MXDA-LER Adduct 15 parts of MXDA-LER Adduct, a reaction product of 4 moles MXDA (m-Xylyendiamine, Mitsubishi Gas) with 1 mole DERTM 331, containing unreacted MXDA
  • TMD Trimethylhexamethylendiamine, from Evonik Industries
  • Lorol spezial mixture of C12/C14 fatty alcohols, from Cognis/BASF, Germany
  • the comparative example is a standard Mannich base type hardener, PolypoxTM H 014.
  • the percent change in Shore D hardness was determined with the initial hardness and the final hardness after 168 hours of exposure to the solutions.
  • the percent change in Shore D hardness was calculated as (1 ⁇ (final hardness/initial hardness))*100, where a negative percent change in hardness indicated a greater value for initial hardness than final hardness.
  • test liquids were acetic acid, sulfuric acid, sodium hydroxide, gasoline, B.P.G. 5b, xylene, and methylisobutylketone (MIBK). Specific compounds are listed below:
  • MIBK Methylisobutylketone

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)

Abstract

A hardener composition comprising a) an accelerator comprising a first amine at least partially neutralized by salicylic acid and a first modifier; b) a non-isolated adduct of i) a difunctional epoxy; and ii) a second amine; and c) a second modifier, and a process for making the hardener composition, are disclosed. The hardener can be used with an epoxy resin to form a curable composition.

Description

REFERENCE TO RELATED APPLICATIONS
The present application claims the benefit of U.S. Provisional Application No. 61/683,883, filed on Aug. 16, 2012.
BACKGROUND OF THE INVENTION
Field of the Invention
The present invention is related to fast curing agents for epoxy resins. Specifically, the present invention is related to VOC and (alkyl) phenol-free curing agents for epoxy resins.
Introduction
Cold curing epoxy systems are suitable for a wide range of industrial applications, such as floorings, mortars, adhesives, coatings, lacquers, and paints. Most of the cold curing amine hardeners contain benzyl alcohol as a modifier, which is a volatile organic compound (VOC) and causes emissions, even after curing the epoxy system.
To achieve both fast curing and chemical resistance, Mannich bases are normally used. Mannich bases can be formulated VOC-free, but are based on (alkyl) phenols, and are classified by the European Union's regulations as R 62 substances, bearing a “risk of impaired fertility”.
Therefore, a need remains for components that can substitute for Mannich bases, in terms of technical performance. Mannich bases are used to achieve fast curing times and to produce chemical resistant coatings. Additionally, their surface appearance must be at least “fair,” because although these coatings are not normally used as decorative coatings, they would lack interlayer adhesion otherwise.
SUMMARY OF THE INVENTION
In an embodiment of the present invention, there is disclosed a hardener composition comprising, consisting of, or consisting essentially of: a) an accelerator comprising a first amine at least partially neutralized by salicylic acid and a first modifier; b) a non-isolated adduct of i) a difunctional epoxy; and ii) a second amine; and c) a second modifier.
In another embodiment of the present invention, there is disclosed a process comprising, consisting of, or consisting essentially of: a) contacting a first modifier with salicylic acid to form a slurry; b) contacting a molar excess of a first amine with the slurry under reaction conditions to form an accelerator; c) admixing the accelerator with i) a non-isolated adduct of a difunctional epoxy and a second amine; and ii) a second modifier to form a hardener composition.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a visualization of values over a 7 day time period for the chemical resistance testing, the “umbrella size” is proportional to the chemical resistance, for the inventive formulation.
FIG. 2 is a visualization of values over a 7 day time period for the chemical resistance testing, the “umbrella size” is proportional to the chemical resistance, for the comparative formulation.
DETAILED DESCRIPTION OF THE INVENTION
In an embodiment of the invention, there is disclosed a hardener composition comprising, consisting of or consisting essentially of: a) an accelerator comprising a first amine at least partially neutralized by salicylic acid and a first modifier; b) a non-isolated adduct of i) a difunctional epoxy; and ii) a second amine; and d) a second modifier.
Accelerator
In an embodiment, the accelerator comprises, consists of, or consists essentially of a first amine at least partially neutralized by salicylic acid and a first modifier.
The accelerator is generally present in the composition in the range of from 30 weight percent to 90 weight percent, based on the total weight of the composition. The accelerator is present in the composition in the range of from 40 weight percent to 80 weight percent in another embodiment, and is present in the range of from 50 weight percent to 70 weight percent in yet another embodiment.
In an embodiment, the first amine is cycloaliphatic. Examples of the first amine include, but are not limited to aromatic or araliphatic amines such as Methylendianiline (MDA), m-Xylylenediamine (MXDA) and their hydrogenated versions, 4-[(4-aminocyclohexyl)methyl]cyclohexan-1-amine (PACM) and 1,3-BAC.
The first amine is generally present in the accelerator in an amount in the range of from 20 weight percent to 80 weight percent, based on the total weight of the accelerator. The first amine is present in the accelerator in an amount in the range of from 30 weight percent to 70 weight percent in another embodiment, and in an amount in the range of from about 40 weight percent to 50 weight percent in yet another embodiment. Concentrations above 80 weight percent can make the coating sensitive to blushing or whitening. Concentrations below 20 weight percent can lead to unfavorably high viscosities and unfavorably high HEW (hydrogen equivalent weight). The first amine is at least partially neutralized by salicylic acid. In an embodiment, the neutralization process is carried out as follows: at slightly elevated temperatures (30-50° C.), the salicylic acid is added to the first modifier to form a slurry. A molar excess of a first amine is added, completely neutralizing the salicylic acid. The reaction temperature is maintained below 100° C.
Salicylic acid is generally present in the accelerator in an amount in the range of from 2 weight percent to 35 weight percent, based on the total weight of the accelerator. Salicylic acid is present in the accelerator in an amount in the range of from 10 weight percent to 30 weight percent in another embodiment, and is present in an amount in the range of from 15 weight percent to 25 weight percent in yet another embodiment.
Concentrations of salicylic acid above 35 weight percent can decrease the chemical resistance of the cured material. Concentrations below 2 weight percent can result in poor acceleration.
In an embodiment, the first modifier is a high-boiling solvent that does not contain any volatile organic compounds. Examples of the first modifier include, but are not limited to araliphatic phenols, (such as styrenated phenol), and Diisopropyl naphthalene (DI), branched or unbranched mid chain fatty alcohols having from 12 to 20 carbon atoms per molecule and mixtures thereof.
The first modifier is generally present in the accelerator in an amount in the range of from 10 weight percent to 50 weight percent, based on the total weight of the accelerator. The first modifier is present in the accelerator in an amount in the range of from about 20 weight percent to 40 weight percent in another embodiment, and in the range of from 25 weight percent to 35 weight percent in yet another embodiment.
Concentrations of the first modifier in amounts higher than 50 weight percent can weaken the network density and thus the mechanical strength. Concentrations of the first modifier less than 10 weight percent can lead to an unfavorably high viscosity.
Difunctional Epoxy and Second Amine
In an embodiment, one component of the composition is a non-isolated adduct of a difunctional epoxy i) and a second amine ii).
Examples of difunctional epoxies i) include but are not limited to bisphenol A or F diglycidylether, 1,4 butandiol diglycidylether, neopentyldiglycidylether, and 1,6-hexandiol diglycidylether.
Examples of the second amine ii) include but are not limited to aliphatic polyamines, arylaliphatic polyamines, cycloaliphatic polyamines, aromatic polyamines, heterocyclic polyamines, polyalkoxypolyamines, and combinations thereof. The alkoxy group of the polyalkoxypolyamines is an oxyethylene, oxypropylene, oxy-1,2-butylene, oxy-1,4-butylene or a co-polymer thereof.
Examples of aliphatic polyamines include, but are not limited to ethylenediamine (EDA), diethylenetriamine (DETA), triethylenetetramine (TETA), trimethyl hexane diamine (TMDA), hexamethylenediamine (HMDA), N-(2-aminoethyl)-1,3-propanediamine (N3-Amine), N,N′-1,2-ethanediylbis-1,3-propanediamine (N4-amine), and dipropylenetriamine. Examples of arylaliphatic polyamines include, but are not limited to m-xylylenediamine (MXDA), and p-xylylenediamine Examples of cycloaliphatic polyamines include, but are not limited to 1,3-bisaminocyclohexylamine (1,3-BAC), isophorone diamine (IPD), and 4,4′-methylenebiscyclohexanamine. Examples of aromatic polyamines include, but are not limited to m-phenylenediamine, diaminodiphenylmethane (DDM), and diaminodiphenylsulfone (DDS). Examples of heterocyclic polyamines include, but are not limited to N-aminoethylpiperazine (NAEP), and 3,9-bis(3-aminopropyl) 2,4,8,10-tetraoxaspiro(5,5)undecane. Examples of polyalkoxypolyamines where the alkoxy group is an oxyethylene, oxypropylene, oxy-1,2-butylene, oxy-1,4-butylene or a co-polymer thereof include, but are not limited to 4,7-dioxadecane-1,10-diamine, 1-propanamine,2,1-ethanediyloxy))bis(diaminopropylated diethylene glycol) (ANCAMINE® 1922A); poly(oxy(methyl-1,2-ethanediyl)), alpha-(2-aminomethylethyl)omega-(2-aminomethylethoxy) (JEFFAMINE® D-230, D-400); triethyleneglycoldiamine and oligomers (JEFFAMINE® XTJ-504, JEFFAMINE® XTJ-512), poly(oxy(methyl-1,2-ethanediyl)),alpha,alpha′-(oxydi-2,1-ethanediyl)bis(omega-(aminomethylethoxy)) (JEFFAMINE® XTJ-511); bis(3-aminopropyl)polytetrahydrofuran 350; bis(3-aminopropyl)polytetrahydrofuran 750; poly(oxy(methyl-1,2-ethanediyl)), a-hydro-w-(2-aminomethylethoxy) ether with 2-ethyl-2-(hydroxymethyl)-1,3-propanediol (JEFFAMINE® T-403), and diaminopropyl dipropylene glycol.
In an embodiment, the difunctional epoxy component i) is generally used in molar under-stochiometric amount compared to the second amine component ii) or up to a maximum molar ratio of 1:1, to ensure that component b) is an aminofunctional molecule with an unreacted amine.
Generally, one of ordinary skill in the art can determine the amount of non-isolated adduct a) to use in the hardener formulation. The nature of the second amine component ii) used and the degree of the reaction with difunctional epoxy component i) can strongly affects the viscosity of the adduct b). If adduct b) is highly viscous, then less can be used in the hardener formulation. If adduct b) has a lower viscosity, then more of the adduct can be used in the overall formulation.
In an embodiment, the non-isolated adduct is present in the composition in the range of from 1 weight percent to 75 weight percent, based on the total weight of the composition. The adduct is present in the composition in the range of from 5 weight percent to 75 weight percent in another embodiment, and from 1 weight percent to 25 weight percent in yet another embodiment.
Second Modifier
The composition can also include a second modifier. The second modifier is useful for dilution and may accelerate the curing speed in combination with epoxy resins. The second modifier can also enhance surface appearance.
Examples of the second modifier include, but are not limited to branched or linear, mid to long chain branched or unbranched fatty alcohols containing from 12 to 20 carbon atoms per molecule and mixtures thereof. Additional examples include polyethylene, propylene or butylene glycols, or mixtures thereof from 2 to 15 monomer units and their mono- and di-alkyl or aryl ethers.
The second modifier is generally present in a range of from 5 weight percent to 25 weight percent, based on the total weight of the composition.
Optional Components
Third Amine
In an embodiment, the composition can contain a third amine. The third amine can be any of the amines listed above. In an embodiment, the third amine can be IPD, TMD or poly(oxy(methyl-1,2-ethanediyl)), or alpha-(2-aminomethylethyl)omega-(2-aminomethylethoxy) (JEFFAMINE® D-230 or JEFFAMINE® D-400).
The third amine is generally present in an amount in the range of 1 weight percent to 50 weight percent, based on the total weight of the composition. In an embodiment, the third amine can be present in a range of from 10 weight percent to 75 weight percent, based on the total weight of the composition, and from 1 weight percent to 25 weight percent, based on the total weight of the composition in yet another embodiment.
Formulation Aids
In some embodiments of the present invention, defoamers and surfactants can be used as formulation aids.
Examples of defoamers include, but are not limited to TEGO Airex 944, Airex 950 from Evonik, Germany.
Examples of surfactants include, but are not limited to BYK 307 and BYK 333 form BYK-Chemie, Germany.
Process for Producing the Composition
In an embodiment of the present invention, there is disclosed a process comprising, consisting of, or consisting essentially of: a) contacting a first modifier with salicylic acid to form a slurry; b) contacting a molar excess of an first amine with said slurry to form an accelerator; c) admixing said accelerator with i) a non-isolated adduct of a difunctional epoxy and a second amine; and ii) a second modifier to form a hardener composition.
The accelerator component is produced by the following process:
The neutralization process occurs at slightly elevated temperatures (generally in the range of from 30 to 50° C.). The salicylic acid is added to the first modifier to form a slurry. A molar excess of the first amine is added, thereby completely neutralizing the salicylic acid, while maintaining the reaction temperature below 100° C. In an embodiment, about 50 mol % of the first amine is neutralized. In an embodiment, the formation of component b), the non-isolated adduct, takes place at elevated temperatures from 60 to 120° C. under reaction control by speed of addition. The addition speed depends mainly on the cooling power of the reactor used. In an embodiment, the temperature is in the range of from 75° C. to 85° C. The reactor is charged with the first amine and the difunctional epoxy is added from the top under stirring. After addition is finished, a post reaction of 20 to 40 minutes is performed. During the post reaction time the reaction between the difunctional epoxy and amine continues to completion, so that no unreacted epoxy remains in the reaction mixture.
The adduct is a non-isolated adduct. Once the reaction is completed, the adduct b) does not undergo an extra distillation step to remove any remaining unreacted amine component.
Once adduct b) is formed, the other components can be added in any combination or sub-combination.
Curable Composition Product
In an embodiment, a curable composition comprises, consists of, of consists essentially of: I) the above-described hardener and II) an epoxy resin.
In an embodiment, the epoxy resin is a liquid epoxy resin. Examples of liquid epoxy resins that can be used include, but are not limited to bisphenol-A diglycidyl ethers (BADGE), bisphenol-F diglycidyl ethers (BFDGE), and epoxy novolacs. In another embodiment, the epoxy resin can be a solid bisphenol A epoxy resin.
The curable composition can be optionally diluted with reactive diluents such as for example cresyl glycidyl ether (CGE), p. t.-butylphenyl glycidyl ether (ptBPGE), C12/C14 glycidyl ether, butanediol diglycidyl ether (BDDGE), hexanediol-diglycidyl ether (HDDGE), branched glycidyl ethers such as C13/15 alcohol glycidyl ether, and glycidyl esters such as Versatic Acid glycidyl esters.
In an embodiment, the hardener component and the epoxy resin are mixed according to the hardener equivalent weight (HEW) and epoxide equivalent weight (EEW) to ensure that 1 equivalent of epoxy reacts with 1 equivalent amine hydrogen.
The composition is then cured at ambient temperature.
These compositions are generally used as primers for concrete and floorings.
EXAMPLES
In the following Examples, various terms and designations used such as for example:
Polypox™ E 403: reactive diluted epoxy resin from UPPC:
bisphenol A/F type with C12/C14 glycidyl ether
Polypox™ H 014: hardener from UPPC, Mannich base type, based on MXDA and ptBP diluted with TMD.
Testing Methods
“Pot life” as used herein refers to the period of time, at a given temperature, that a mixture of a resin component and a hardener component remains workable, as is understood by one having ordinary skill in the art. Pot life is the time a 100 gram mixture of resin/hardener needs to reach improper working viscosity. In a disposable cup, a steel wire with a coil on its lower end is moved up and down with moderate speed. As the mixture turns viscous in the course of the curing reaction, the cup will be lifted near the end point. The edge of the cup will touch then an electric switch, stopping a clock, defining the pot life.
Curable compositions are thermoanalyzed with a Mettler Toledo DSC822, available from Mettler-Toledo Inc., Columbus, Ohio, USA. The actual glass transition temperature (TgA) is measured in the range of 20° C. to 120° C. The potential glass transition temperature (Tgp) is measured after a 10 minute postcuring at 180° C. in the range of 20° C. to 130° C. following Deutsches Institut für Normung (DIN German Institute for Standardization DIN 65467), at a heating rate of 15 K/minute.
Examples
The inventive hardener was made by blending the following:
60 parts BAC-SA accelerator, a neutralization product of salicylic acid and 1,3-BAC (1,3-Biscyclohexyldiamine) dissolved in styrenated phenol (Sanko SP-F, from Sanko)
15 parts of MXDA-LER Adduct, a reaction product of 4 moles MXDA (m-Xylyendiamine, Mitsubishi Gas) with 1 mole DER™ 331, containing unreacted MXDA
15 parts TMD (Trimethylhexamethylendiamine, from Evonik Industries)
10 parts Lorol spezial (mixture of C12/C14 fatty alcohols, from Cognis/BASF, Germany)
The comparative example is a standard Mannich base type hardener, Polypox™ H 014.
Both hardener examples were used with Polypox™ E 403, a bisphenol A/bisphenol F epoxy resin, diluted with C12/C14 fatty alcohol glycidyl ether.
Technical values of the inventive and comparative examples are listed in Table 1, below.
TABLE 1
Technical Values
Polypox ™ H 014
Analysis Values Inventive hardener I (comparative)
H-Equivalent (g/equiv.) 73 85
Amine Number (mg 395 355
KOH/g)
Pot life 100 g, 23° C. appr. 14 13
(min)
Mix ratio (hardener/resin 38:100 44:100
Polypox ™ E 403)
Viscosity 25° C. (mPas) 800 693
Refractive index 1.5347 1.5486
Color Number (Gardner) 0.8 0.5
Glass transition 67 62
temperature (° C.)
TgP (DSC)
180° C., 10 min
25° C.-150° C., 10° C./min

The Shore D hardness development and visual inspection is shown in Table 2, below.
TABLE 2
Shore D hardness development and visual inspection
Polypox ™ H 014
Inventive hardener I (comparative)
Shore-D 23° C. 50%
relative humidity
4 h 58 62
6 h 68 70
8 h 70 72
24 h  73 75
48 h  75 75
7 d 74 75
Surface No carbamate No carbamate
Shore-D 13° C., 80%
relative humidity
6 h 35 39
8 h 55 60
24 h  74 72
48 h  72 72
7 d 74 72
Surface Mild carbamate Carbamate

The pendulum hardness values according to Koenig, 200 μm are found in Table 3, below. This was for a 200 μm layer on glass plates with the values given in seconds.
TABLE 3
Pendulum Hardness Values
Polypox ™ H 014
Inventive hardener I (comparative)
23° C., 50% relative
humidity
4 h 15 23
6 h 47 72
8 h 67 96
13° C., 80% relative
humidity
6 h 2 9
8 h 8 19

Chemical Resistance Comparison
After homogenization of both components (the inventive or comparative hardener with Polypox™ E 403 epoxy resin) for 2 minutes, the liquid mixture was poured into molds, so that the film thickness was 3 mm and was cured for 7 days at room temperature.
These films were tested by exposing them to different solutions for 7 days (168 hours) by placing a cotton pad that is saturated with the solution on the sample and covering the pad and sample. After 1 day (24 hours) of exposure, 2 days (48 hours) of exposure, and 7 days of exposure the Shore D hardness of the samples was measured. The Shore D hardness measurements are shown in FIGS. 1 and 2, and in Tables 4-6.
The percent change in Shore D hardness, as shown as percent % Δ, was determined with the initial hardness and the final hardness after 168 hours of exposure to the solutions. The percent change in Shore D hardness was calculated as (1−(final hardness/initial hardness))*100, where a negative percent change in hardness indicated a greater value for initial hardness than final hardness.
The test liquids were acetic acid, sulfuric acid, sodium hydroxide, gasoline, B.P.G. 5b, xylene, and methylisobutylketone (MIBK). Specific compounds are listed below:
Acetic acid, analytical grade, available from Merck KGaA
Sulfuric acid, analytical grade, available from Merck KGaA
Sodium hydroxide, analytical grade, available from Merck KGaA
Bau- und Prüfgrundsätze Gruppe 5b of the DIBT (Policy for Construction and Testing Group 5b of the German Institute for Construction Technique) (hereinafter designated as ‘B.P.G. 5b’), a mixture of 48 volume percent methanol, analytical grade, available from Merck KGaA, 48 volume percent isopropanol, analytical grade, available from Merck KGaA, and 4 volume percent water
Gasoline, available from Esso (Exxon)
Xylene, analytical grade, available from Merck KGaA
Ethanol, available from Merck KGaA
Methylisobutylketone (MIBK), analytical grade, available from Merck KGaA
The results are shown in Tables 4-6, below. They are also shown in FIG. 1, for the inventive formulation, and in FIG. 2 for the comparative formulation.
TABLE 4
Results after 1 day
Shore D relative decrease
Shore D relative decrease after 1 day (%)
after 1 day (%) Polypox ™ H 014
Test liquid Inventive hardener I (comparative)
Sulfuric acid 20% 0.0 −1.3
NaOH 20% 0.0 −1.3
B.P.G. 5b −4.0 −11.3
Acetic acid 10% −4.0 −3.8
Gasoline −1.3 −6.3
Xylene −2.7 −17.9
MIBK −14.7 −26.7
Ethanol 15% 0.0 −1.3
TABLE 5
Results after 2 days
Shore D relative decrease
Shore D relative decrease after 2 days (%)
after 2 days (%) Polypox ™ H 014
Test liquid Inventive hardener I (comparative)
Sulfuric acid 20% 0.0 −2.6
NaOH 20% 0.0 −1.3
B.P.G. 5b −8.0 −16.3
Acetic acid 10% −5.3 −3.8
Gasoline −1.3 −8.8
Xylene −2.7 −29.5
MIBK −24.0 −40.0
Ethanol 15% 0.0 −1.3
TABLE 6
Results after 7 days
Shore D relative decrease
Shore D relative decrease after 7 days (%)
after 7 days (%) Polypox ™ H 014
Test liquid Inventive hardener I (comparative)
Sulfuric acid 20% 0.0 −2.5
NaOH 20% 0.0 −2.5
B.P.G. 5b −14.7 −27.5
Acetic acid 10% −10.7 −6.3
Gasoline −1.3 −17.5
Xylene −9.3 −56.4
MIBK −46.7 −68.0
Ethanol 15% −1.3 −1.3

Claims (13)

What is claimed is:
1. A hardener composition comprising:
a) an accelerator comprising a first amine at least partially neutralized by salicylic acid and a first modifier;
wherein said first modifier is styrenated phenol;
b) a non-isolated adduct of
i). a difunctional epoxy and
ii). a second amine;
c) a second modifier;
wherein the second modifier is a branched or unbranched mid chain fatty alcohols having from 12 to 20 carbon atoms per molecule and mixtures thereof or polyethylene, propylene or butylene glycols, or mixtures thereof from 2 to 15 monomer units and their mono- and di- alkyl or aryl ethers; and
d) a third amine.
2. A hardener composition in accordance with claim 1 of the preceding claims wherein said difunctional epoxy is selected from the group consisting of bisphenol A diglycidylether, bisphenol F diglycidylether, and mixtures thereof.
3. A hardener composition in accordance with claim 1 of the preceding claims wherein said first amine is cycloaliphatic.
4. A hardener composition in accordance with claim 1 of the preceding claims wherein said second amine is an araliphatic polyamine.
5. A hardener composition in accordance with claim 1 wherein the accelerator is present in an amount in the range of from 30 weight percent to 90 weight percent, the non-isolated adduct is present in an amount in the range of from 1 weight percent to 75 weight percent, and the second modifier is present in an amount in the range of from 5 weight percent to 25 weight percent, based on the total weight of the composition.
6. A curable composition comprising:
I) the hardener composition of claim 1; and
II) an epoxy resin selected from the group consisting of liquid bisphenol-A diglycidyl ethers, liquid bisphenol-F diglycidyl ethers, liquid epoxy novolacs, solid bisphenol-A, and combinations thereof.
7. A primer prepared using the curable composition of claim 6.
8. A process comprising:
a) contacting a first modifier with salicylic acid to form a slurry; wherein the first modifier is styrenated phenol;
b) contacting a molar excess of a first amine with the slurry under reaction conditions to form an accelerator; and
c) admixing the accelerator with
i) a non-isolated adduct of a difunctional epoxy and a second amine; and
ii) a second modifier; wherein the second modifier is selected from the group consisting of branched or unbranched mid chain fatty alcohols having from 12 to 20 carbon atoms per molecule and mixtures thereof or polyethylene, propylene or butylene glycols, or mixtures thereof from 2 to 15 monomer units and their mono- and di- alkyl or aryl ethers to form a hardener composition; and
iii) a third amine.
9. A process in accordance with claim 8 wherein said reaction conditions include a reaction temperature of under 100° C.
10. A process in accordance with claim 8 wherein said first modifier and said second modifier are selected from the group consisting of araliphtic phenols, branched or unbranched mid chain fatty alcohols having from 12 to 20 carbon atoms per molecule and mixtures thereof.
11. A process in accordance with claim 8 wherein said difunctional epoxy is selected from the group consisting of bisphenol A diglycidylether, bisphenol F diglycidylether, and mixtures thereof.
12. A process in accordance with claim 8 wherein said first amine is cycloaliphatic.
13. A process in accordance with claim 8 wherein said second amine is an araliphatic polyamine.
US14/408,077 2012-08-16 2013-07-17 Fast curing agents for epdxy resins Active US9631046B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/408,077 US9631046B2 (en) 2012-08-16 2013-07-17 Fast curing agents for epdxy resins

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261683883P 2012-08-16 2012-08-16
US14/408,077 US9631046B2 (en) 2012-08-16 2013-07-17 Fast curing agents for epdxy resins
PCT/US2013/050777 WO2014028158A1 (en) 2012-08-16 2013-07-17 Fast curing agents for epoxy resins

Publications (2)

Publication Number Publication Date
US20150175739A1 US20150175739A1 (en) 2015-06-25
US9631046B2 true US9631046B2 (en) 2017-04-25

Family

ID=48917685

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/408,077 Active US9631046B2 (en) 2012-08-16 2013-07-17 Fast curing agents for epdxy resins

Country Status (9)

Country Link
US (1) US9631046B2 (en)
EP (1) EP2885333B1 (en)
JP (1) JP2015524875A (en)
CN (1) CN104736596A (en)
BR (1) BR112014032992A2 (en)
DK (1) DK2885333T3 (en)
ES (1) ES2719806T3 (en)
MX (1) MX2015001995A (en)
WO (1) WO2014028158A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201641531A (en) * 2015-04-30 2016-12-01 藍色立方體有限責任公司 Hardener composition
CN106978103A (en) 2017-04-07 2017-07-25 德山化工(浙江)有限公司 Silicone oil processing pyrogenic silica, its preparation method and application
CN107879668B (en) * 2017-12-08 2020-09-25 卡本复合材料(天津)有限公司 Anti-cracking epoxy mortar for rapid repair of expansion joint and preparation method thereof

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB868733A (en) 1958-07-04 1961-05-25 Bakelite Ltd Improvements in or relating to epoxide resin compositions
US3397177A (en) 1966-02-02 1968-08-13 Shell Oil Co Curing agent composition and use in curing polyepoxides
US3639928A (en) 1970-11-27 1972-02-08 Jefferson Chem Co Inc Accelerator combination for epoxy curing
US4229563A (en) 1979-08-03 1980-10-21 Ameron, Inc. Aromatic amidoamines
US4246148A (en) 1979-08-27 1981-01-20 Celanese Corporation Two component aqueous coating composition based on an epoxy-polyamine adduct and a polyepoxide
US4264758A (en) 1979-11-02 1981-04-28 Texaco Development Corporation Novel epoxy curing system
US20050176899A1 (en) 2002-04-29 2005-08-11 Huntsman Advanced Materials Americas, Inc. Mannich bases from isolated amine adducts
US20080287644A1 (en) 2007-04-05 2008-11-20 Uppc Ag Hardener for epoxy resins, method for hardening an epoxy resin and use of the hardener
EP2028244A1 (en) 2007-08-02 2009-02-25 Cytec Surface Specialties Austria GmbH Water-borne paints based on epoxy resins
US20090061095A1 (en) 2007-08-31 2009-03-05 The Sherwin-Williams Company Amine functional adducts and curable compositions comprising same
US20090118457A1 (en) 2005-04-29 2009-05-07 Sika Technology Ag Resorcinol-based mannich base
WO2009080209A1 (en) 2007-12-19 2009-07-02 Cognis Ip Management Gmbh Phenalkamine and salted amine blends as curing agents for epoxy resins

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB868733A (en) 1958-07-04 1961-05-25 Bakelite Ltd Improvements in or relating to epoxide resin compositions
US3397177A (en) 1966-02-02 1968-08-13 Shell Oil Co Curing agent composition and use in curing polyepoxides
US3639928A (en) 1970-11-27 1972-02-08 Jefferson Chem Co Inc Accelerator combination for epoxy curing
US4229563A (en) 1979-08-03 1980-10-21 Ameron, Inc. Aromatic amidoamines
US4246148A (en) 1979-08-27 1981-01-20 Celanese Corporation Two component aqueous coating composition based on an epoxy-polyamine adduct and a polyepoxide
US4264758A (en) 1979-11-02 1981-04-28 Texaco Development Corporation Novel epoxy curing system
US20050176899A1 (en) 2002-04-29 2005-08-11 Huntsman Advanced Materials Americas, Inc. Mannich bases from isolated amine adducts
US20090118457A1 (en) 2005-04-29 2009-05-07 Sika Technology Ag Resorcinol-based mannich base
US20080287644A1 (en) 2007-04-05 2008-11-20 Uppc Ag Hardener for epoxy resins, method for hardening an epoxy resin and use of the hardener
EP2028244A1 (en) 2007-08-02 2009-02-25 Cytec Surface Specialties Austria GmbH Water-borne paints based on epoxy resins
US20090061095A1 (en) 2007-08-31 2009-03-05 The Sherwin-Williams Company Amine functional adducts and curable compositions comprising same
WO2009080209A1 (en) 2007-12-19 2009-07-02 Cognis Ip Management Gmbh Phenalkamine and salted amine blends as curing agents for epoxy resins
US20100286345A1 (en) 2007-12-19 2010-11-11 Cognis Ip Management Gmbh Phenalkamine and Salted Amine Blends as Curing Agents for Epoxy Resins

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PCT/US2013/050777, Feb. 26, 2015 International Preliminary Report on Patentability.
PCT/US2013/050777, Oct. 17, 2013, International Search Report and Written Opinion.

Also Published As

Publication number Publication date
MX2015001995A (en) 2015-05-15
WO2014028158A1 (en) 2014-02-20
EP2885333B1 (en) 2019-01-23
JP2015524875A (en) 2015-08-27
ES2719806T3 (en) 2019-07-16
BR112014032992A2 (en) 2017-06-27
US20150175739A1 (en) 2015-06-25
DK2885333T3 (en) 2019-03-11
CN104736596A (en) 2015-06-24
EP2885333A1 (en) 2015-06-24

Similar Documents

Publication Publication Date Title
US20150203625A1 (en) Hardeners for cold curing epoxy systems
US8519091B2 (en) Polyalkyleneamine adducts as curing agents for thick layer water-based epoxy systems
AU2013372263B2 (en) Hardeners for low-emission epoxy resin products
US9102787B2 (en) Curable compositions
US10155841B2 (en) Curing agent composition
US10287389B2 (en) Furan-based amines as curing agents for epoxy resins in low VOC applications
CN105408384A (en) Amine hardener with improved chemical resistance
KR20200140348A (en) How to make phenalkamine
US20220411571A1 (en) Hardener for epoxy casting resins
AU2013229697B2 (en) Amine curable epoxy resin composition
US9631046B2 (en) Fast curing agents for epdxy resins
EP2997067B1 (en) Hardeners for cold-curing epoxy systems
US9518147B2 (en) Adduct compositions
US10160826B2 (en) Hardeners for cold-curing epoxy systems
WO2016176568A1 (en) Hardener composition

Legal Events

Date Code Title Description
AS Assignment

Owner name: UPPC GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SCHROETZ, MARKUS;REEL/FRAME:036300/0287

Effective date: 20120820

Owner name: THE DOW CHEMICAL COMPANY, MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:UPPC GMBH;REEL/FRAME:036300/0343

Effective date: 20120912

Owner name: DOW GLOBAL TECHNOLOGIES LLC, MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:THE DOW CHEMICAL COMPANY;REEL/FRAME:036300/0415

Effective date: 20120918

AS Assignment

Owner name: BLUE CUBE IP LLC, MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DOW GLOBAL TECHNOLOGIES LLC;REEL/FRAME:036397/0972

Effective date: 20150820

STCF Information on status: patent grant

Free format text: PATENTED CASE

CC Certificate of correction
MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8