US9550835B2 - Anti-DDR1 antibody having anti-tumor activity - Google Patents
Anti-DDR1 antibody having anti-tumor activity Download PDFInfo
- Publication number
- US9550835B2 US9550835B2 US14/240,057 US201214240057A US9550835B2 US 9550835 B2 US9550835 B2 US 9550835B2 US 201214240057 A US201214240057 A US 201214240057A US 9550835 B2 US9550835 B2 US 9550835B2
- Authority
- US
- United States
- Prior art keywords
- antibody
- ddr1
- cells
- ferm
- cancer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 230000000259 anti-tumor effect Effects 0.000 title abstract description 20
- 102100036725 Epithelial discoidin domain-containing receptor 1 Human genes 0.000 claims abstract description 216
- 101710131668 Epithelial discoidin domain-containing receptor 1 Proteins 0.000 claims abstract description 213
- 125000003275 alpha amino acid group Chemical group 0.000 claims abstract description 44
- 210000004027 cell Anatomy 0.000 claims description 296
- 210000004408 hybridoma Anatomy 0.000 claims description 64
- 108010049959 Discoidins Proteins 0.000 claims description 16
- 229940127089 cytotoxic agent Drugs 0.000 claims description 16
- 239000002254 cytotoxic agent Substances 0.000 claims description 13
- 231100000599 cytotoxic agent Toxicity 0.000 claims description 13
- NQMRYBIKMRVZLB-UHFFFAOYSA-N methylamine hydrochloride Chemical compound [Cl-].[NH3+]C NQMRYBIKMRVZLB-UHFFFAOYSA-N 0.000 claims description 12
- 108020004635 Complementary DNA Proteins 0.000 claims 1
- 230000014509 gene expression Effects 0.000 abstract description 82
- 108090001012 Transforming Growth Factor beta Proteins 0.000 abstract description 46
- 102000004887 Transforming Growth Factor beta Human genes 0.000 abstract description 45
- 230000012292 cell migration Effects 0.000 abstract description 42
- ZRKFYGHZFMAOKI-QMGMOQQFSA-N tgfbeta Chemical compound C([C@H](NC(=O)[C@H](C(C)C)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCSC)C(C)C)[C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O)C1=CC=C(O)C=C1 ZRKFYGHZFMAOKI-QMGMOQQFSA-N 0.000 abstract description 41
- 230000000694 effects Effects 0.000 abstract description 35
- 230000007423 decrease Effects 0.000 abstract description 34
- 230000026731 phosphorylation Effects 0.000 abstract description 34
- 238000006366 phosphorylation reaction Methods 0.000 abstract description 34
- 230000004663 cell proliferation Effects 0.000 abstract description 33
- 101000929433 Homo sapiens Epithelial discoidin domain-containing receptor 1 Proteins 0.000 abstract description 19
- 102000057404 human DDR1 Human genes 0.000 abstract description 18
- 230000003389 potentiating effect Effects 0.000 abstract description 8
- 238000000034 method Methods 0.000 description 131
- 108090000623 proteins and genes Proteins 0.000 description 95
- 206010028980 Neoplasm Diseases 0.000 description 83
- 201000011510 cancer Diseases 0.000 description 73
- 230000027455 binding Effects 0.000 description 66
- 239000000427 antigen Substances 0.000 description 56
- 102000036639 antigens Human genes 0.000 description 56
- 108091007433 antigens Proteins 0.000 description 56
- 235000001014 amino acid Nutrition 0.000 description 47
- 150000001413 amino acids Chemical class 0.000 description 43
- 239000013604 expression vector Substances 0.000 description 43
- 229920001436 collagen Polymers 0.000 description 41
- 102000008186 Collagen Human genes 0.000 description 39
- 108010035532 Collagen Proteins 0.000 description 39
- 108090000765 processed proteins & peptides Proteins 0.000 description 38
- 235000018102 proteins Nutrition 0.000 description 37
- 102000004169 proteins and genes Human genes 0.000 description 37
- 239000013598 vector Substances 0.000 description 37
- 108020004414 DNA Proteins 0.000 description 35
- 239000003795 chemical substances by application Substances 0.000 description 33
- 241001465754 Metazoa Species 0.000 description 31
- 239000003446 ligand Substances 0.000 description 31
- 241000699666 Mus <mouse, genus> Species 0.000 description 28
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 27
- 230000002401 inhibitory effect Effects 0.000 description 27
- 239000002299 complementary DNA Substances 0.000 description 24
- 108020004999 messenger RNA Proteins 0.000 description 24
- 239000000872 buffer Substances 0.000 description 20
- 108010047041 Complementarity Determining Regions Proteins 0.000 description 19
- 241000124008 Mammalia Species 0.000 description 19
- 238000003556 assay Methods 0.000 description 18
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 18
- 201000005202 lung cancer Diseases 0.000 description 18
- 208000020816 lung neoplasm Diseases 0.000 description 18
- 239000002953 phosphate buffered saline Substances 0.000 description 18
- 102100024952 Protein CBFA2T1 Human genes 0.000 description 17
- 230000003053 immunization Effects 0.000 description 17
- 238000001262 western blot Methods 0.000 description 17
- 206010006187 Breast cancer Diseases 0.000 description 16
- 208000026310 Breast neoplasm Diseases 0.000 description 16
- 206010035226 Plasma cell myeloma Diseases 0.000 description 16
- 238000007792 addition Methods 0.000 description 16
- 230000001419 dependent effect Effects 0.000 description 16
- 239000001963 growth medium Substances 0.000 description 16
- 201000000050 myeloid neoplasm Diseases 0.000 description 16
- 102000004196 processed proteins & peptides Human genes 0.000 description 16
- 230000001629 suppression Effects 0.000 description 16
- 238000004458 analytical method Methods 0.000 description 15
- 239000012228 culture supernatant Substances 0.000 description 15
- 238000012258 culturing Methods 0.000 description 15
- 239000004480 active ingredient Substances 0.000 description 14
- 230000001235 sensitizing effect Effects 0.000 description 14
- 239000000243 solution Substances 0.000 description 14
- 230000004614 tumor growth Effects 0.000 description 14
- 230000007910 cell fusion Effects 0.000 description 13
- 238000004519 manufacturing process Methods 0.000 description 13
- 239000002773 nucleotide Substances 0.000 description 13
- 125000003729 nucleotide group Chemical group 0.000 description 13
- 238000005406 washing Methods 0.000 description 13
- 108091028043 Nucleic acid sequence Proteins 0.000 description 12
- 239000008177 pharmaceutical agent Substances 0.000 description 12
- 229920001184 polypeptide Polymers 0.000 description 12
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 11
- 102000004190 Enzymes Human genes 0.000 description 11
- 108090000790 Enzymes Proteins 0.000 description 11
- 241000699670 Mus sp. Species 0.000 description 11
- 239000003623 enhancer Substances 0.000 description 11
- 229940088598 enzyme Drugs 0.000 description 11
- 108020004707 nucleic acids Proteins 0.000 description 11
- 102000039446 nucleic acids Human genes 0.000 description 11
- 150000007523 nucleic acids Chemical class 0.000 description 11
- 241000283707 Capra Species 0.000 description 10
- 102220497176 Small vasohibin-binding protein_T47D_mutation Human genes 0.000 description 10
- 230000004927 fusion Effects 0.000 description 10
- 238000002649 immunization Methods 0.000 description 10
- 230000005764 inhibitory process Effects 0.000 description 10
- 238000002360 preparation method Methods 0.000 description 10
- 239000000126 substance Substances 0.000 description 10
- 238000006467 substitution reaction Methods 0.000 description 10
- 241000588724 Escherichia coli Species 0.000 description 9
- 208000032612 Glial tumor Diseases 0.000 description 9
- 206010018338 Glioma Diseases 0.000 description 9
- 210000002865 immune cell Anatomy 0.000 description 9
- 238000000338 in vitro Methods 0.000 description 9
- 238000001764 infiltration Methods 0.000 description 9
- 230000008595 infiltration Effects 0.000 description 9
- 201000005296 lung carcinoma Diseases 0.000 description 9
- 230000036961 partial effect Effects 0.000 description 9
- 238000012216 screening Methods 0.000 description 9
- 206010004593 Bile duct cancer Diseases 0.000 description 8
- 101150118748 Ddr1 gene Proteins 0.000 description 8
- 238000002965 ELISA Methods 0.000 description 8
- 206010014733 Endometrial cancer Diseases 0.000 description 8
- 206010014759 Endometrial neoplasm Diseases 0.000 description 8
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 8
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 8
- 206010027476 Metastases Diseases 0.000 description 8
- 206010033128 Ovarian cancer Diseases 0.000 description 8
- 206010061535 Ovarian neoplasm Diseases 0.000 description 8
- 208000026900 bile duct neoplasm Diseases 0.000 description 8
- 208000006990 cholangiocarcinoma Diseases 0.000 description 8
- 230000007705 epithelial mesenchymal transition Effects 0.000 description 8
- 108020001507 fusion proteins Proteins 0.000 description 8
- 102000037865 fusion proteins Human genes 0.000 description 8
- 238000001114 immunoprecipitation Methods 0.000 description 8
- 238000001727 in vivo Methods 0.000 description 8
- 239000003550 marker Substances 0.000 description 8
- 239000002609 medium Substances 0.000 description 8
- 230000009401 metastasis Effects 0.000 description 8
- 239000013642 negative control Substances 0.000 description 8
- 230000035755 proliferation Effects 0.000 description 8
- 108091008146 restriction endonucleases Proteins 0.000 description 8
- 238000003757 reverse transcription PCR Methods 0.000 description 8
- QAPSNMNOIOSXSQ-YNEHKIRRSA-N 1-[(2r,4s,5r)-4-[tert-butyl(dimethyl)silyl]oxy-5-(hydroxymethyl)oxolan-2-yl]-5-methylpyrimidine-2,4-dione Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O[Si](C)(C)C(C)(C)C)C1 QAPSNMNOIOSXSQ-YNEHKIRRSA-N 0.000 description 7
- 208000000461 Esophageal Neoplasms Diseases 0.000 description 7
- 101000935587 Homo sapiens Flavin reductase (NADPH) Proteins 0.000 description 7
- 206010030155 Oesophageal carcinoma Diseases 0.000 description 7
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 7
- 208000005718 Stomach Neoplasms Diseases 0.000 description 7
- 102000006601 Thymidine Kinase Human genes 0.000 description 7
- 108020004440 Thymidine kinase Proteins 0.000 description 7
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 7
- 238000004587 chromatography analysis Methods 0.000 description 7
- 238000012217 deletion Methods 0.000 description 7
- 230000037430 deletion Effects 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 7
- 201000004101 esophageal cancer Diseases 0.000 description 7
- 206010017758 gastric cancer Diseases 0.000 description 7
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 description 7
- 201000002528 pancreatic cancer Diseases 0.000 description 7
- 208000008443 pancreatic carcinoma Diseases 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- 238000000746 purification Methods 0.000 description 7
- 201000011549 stomach cancer Diseases 0.000 description 7
- 230000009261 transgenic effect Effects 0.000 description 7
- 244000061176 Nicotiana tabacum Species 0.000 description 6
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 6
- 239000002202 Polyethylene glycol Substances 0.000 description 6
- 101710120037 Toxin CcdB Proteins 0.000 description 6
- 238000002835 absorbance Methods 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 239000003085 diluting agent Substances 0.000 description 6
- 210000004379 membrane Anatomy 0.000 description 6
- 239000012528 membrane Substances 0.000 description 6
- 238000010172 mouse model Methods 0.000 description 6
- 239000002504 physiological saline solution Substances 0.000 description 6
- 229920001223 polyethylene glycol Polymers 0.000 description 6
- 239000012679 serum free medium Substances 0.000 description 6
- 102000012422 Collagen Type I Human genes 0.000 description 5
- 108010022452 Collagen Type I Proteins 0.000 description 5
- 241000196324 Embryophyta Species 0.000 description 5
- 241000282412 Homo Species 0.000 description 5
- 239000006180 TBST buffer Substances 0.000 description 5
- 210000000628 antibody-producing cell Anatomy 0.000 description 5
- 239000008004 cell lysis buffer Substances 0.000 description 5
- 230000002950 deficient Effects 0.000 description 5
- 238000010790 dilution Methods 0.000 description 5
- 239000012895 dilution Substances 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 210000002950 fibroblast Anatomy 0.000 description 5
- 239000012634 fragment Substances 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 238000010353 genetic engineering Methods 0.000 description 5
- 210000004698 lymphocyte Anatomy 0.000 description 5
- 235000013336 milk Nutrition 0.000 description 5
- 239000008267 milk Substances 0.000 description 5
- 210000004080 milk Anatomy 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 239000003053 toxin Substances 0.000 description 5
- 231100000765 toxin Toxicity 0.000 description 5
- 108700012359 toxins Proteins 0.000 description 5
- 238000011282 treatment Methods 0.000 description 5
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 4
- 241000255789 Bombyx mori Species 0.000 description 4
- 206010009944 Colon cancer Diseases 0.000 description 4
- 208000001333 Colorectal Neoplasms Diseases 0.000 description 4
- 241000699800 Cricetinae Species 0.000 description 4
- 241000829100 Macaca mulatta polyomavirus 1 Species 0.000 description 4
- 241000283973 Oryctolagus cuniculus Species 0.000 description 4
- 229910019142 PO4 Inorganic materials 0.000 description 4
- 239000012980 RPMI-1640 medium Substances 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 239000002671 adjuvant Substances 0.000 description 4
- 210000004102 animal cell Anatomy 0.000 description 4
- -1 antiseptics Substances 0.000 description 4
- 238000007845 assembly PCR Methods 0.000 description 4
- 230000035578 autophosphorylation Effects 0.000 description 4
- 230000000903 blocking effect Effects 0.000 description 4
- 210000004748 cultured cell Anatomy 0.000 description 4
- 238000000354 decomposition reaction Methods 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 239000003814 drug Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 230000005012 migration Effects 0.000 description 4
- 238000013508 migration Methods 0.000 description 4
- 230000013152 negative regulation of cell migration Effects 0.000 description 4
- 230000027405 negative regulation of phosphorylation Effects 0.000 description 4
- 208000002154 non-small cell lung carcinoma Diseases 0.000 description 4
- 239000010452 phosphate Substances 0.000 description 4
- 102000027426 receptor tyrosine kinases Human genes 0.000 description 4
- 108091008598 receptor tyrosine kinases Proteins 0.000 description 4
- 208000024891 symptom Diseases 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 208000029729 tumor suppressor gene on chromosome 11 Diseases 0.000 description 4
- 241000894006 Bacteria Species 0.000 description 3
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 3
- 208000005623 Carcinogenesis Diseases 0.000 description 3
- 102000004266 Collagen Type IV Human genes 0.000 description 3
- 108010042086 Collagen Type IV Proteins 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 241000238631 Hexapoda Species 0.000 description 3
- 108060003951 Immunoglobulin Proteins 0.000 description 3
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 3
- 108091000080 Phosphotransferase Proteins 0.000 description 3
- 206010060862 Prostate cancer Diseases 0.000 description 3
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 3
- 108010076504 Protein Sorting Signals Proteins 0.000 description 3
- 241000700159 Rattus Species 0.000 description 3
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 3
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 3
- 108010084592 Saporins Proteins 0.000 description 3
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 3
- 238000001042 affinity chromatography Methods 0.000 description 3
- 125000000539 amino acid group Chemical group 0.000 description 3
- 239000002246 antineoplastic agent Substances 0.000 description 3
- 230000006907 apoptotic process Effects 0.000 description 3
- 239000011324 bead Substances 0.000 description 3
- 230000036952 cancer formation Effects 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 3
- 231100000504 carcinogenesis Toxicity 0.000 description 3
- 239000003431 cross linking reagent Substances 0.000 description 3
- 230000001472 cytotoxic effect Effects 0.000 description 3
- 230000007812 deficiency Effects 0.000 description 3
- 238000003745 diagnosis Methods 0.000 description 3
- 230000029087 digestion Effects 0.000 description 3
- 239000000539 dimer Substances 0.000 description 3
- 238000010494 dissociation reaction Methods 0.000 description 3
- 230000005593 dissociations Effects 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 239000012894 fetal calf serum Substances 0.000 description 3
- 230000012010 growth Effects 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 230000002163 immunogen Effects 0.000 description 3
- 102000018358 immunoglobulin Human genes 0.000 description 3
- 239000012133 immunoprecipitate Substances 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 238000002372 labelling Methods 0.000 description 3
- 210000004962 mammalian cell Anatomy 0.000 description 3
- 210000001161 mammalian embryo Anatomy 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000001404 mediated effect Effects 0.000 description 3
- 201000001441 melanoma Diseases 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 102000020233 phosphotransferase Human genes 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- 230000001131 transforming effect Effects 0.000 description 3
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 3
- 125000001493 tyrosinyl group Chemical group [H]OC1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 3
- 238000000108 ultra-filtration Methods 0.000 description 3
- 239000011534 wash buffer Substances 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- XUDGDVPXDYGCTG-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 2-[2-(2,5-dioxopyrrolidin-1-yl)oxycarbonyloxyethylsulfonyl]ethyl carbonate Chemical compound O=C1CCC(=O)N1OC(=O)OCCS(=O)(=O)CCOC(=O)ON1C(=O)CCC1=O XUDGDVPXDYGCTG-UHFFFAOYSA-N 0.000 description 2
- FXYPGCIGRDZWNR-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 3-[[3-(2,5-dioxopyrrolidin-1-yl)oxy-3-oxopropyl]disulfanyl]propanoate Chemical compound O=C1CCC(=O)N1OC(=O)CCSSCCC(=O)ON1C(=O)CCC1=O FXYPGCIGRDZWNR-UHFFFAOYSA-N 0.000 description 2
- WQQBUTMELIQJNY-UHFFFAOYSA-N 1-[4-(2,5-dioxo-3-sulfopyrrolidin-1-yl)oxy-2,3-dihydroxy-4-oxobutanoyl]oxy-2,5-dioxopyrrolidine-3-sulfonic acid Chemical compound O=C1CC(S(O)(=O)=O)C(=O)N1OC(=O)C(O)C(O)C(=O)ON1C(=O)CC(S(O)(=O)=O)C1=O WQQBUTMELIQJNY-UHFFFAOYSA-N 0.000 description 2
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 2
- QLHLYJHNOCILIT-UHFFFAOYSA-N 4-o-(2,5-dioxopyrrolidin-1-yl) 1-o-[2-[4-(2,5-dioxopyrrolidin-1-yl)oxy-4-oxobutanoyl]oxyethyl] butanedioate Chemical compound O=C1CCC(=O)N1OC(=O)CCC(=O)OCCOC(=O)CCC(=O)ON1C(=O)CCC1=O QLHLYJHNOCILIT-UHFFFAOYSA-N 0.000 description 2
- 102000007469 Actins Human genes 0.000 description 2
- 108010085238 Actins Proteins 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 206010005003 Bladder cancer Diseases 0.000 description 2
- 241000701822 Bovine papillomavirus Species 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- 241000282693 Cercopithecidae Species 0.000 description 2
- 102100035360 Cerebellar degeneration-related antigen 1 Human genes 0.000 description 2
- 241000699802 Cricetulus griseus Species 0.000 description 2
- 241000701022 Cytomegalovirus Species 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 2
- 108010088842 Fibrinolysin Proteins 0.000 description 2
- 102000016359 Fibronectins Human genes 0.000 description 2
- 108010067306 Fibronectins Proteins 0.000 description 2
- ZRALSGWEFCBTJO-UHFFFAOYSA-N Guanidine Chemical compound NC(N)=N ZRALSGWEFCBTJO-UHFFFAOYSA-N 0.000 description 2
- 239000012981 Hank's balanced salt solution Substances 0.000 description 2
- 108010091358 Hypoxanthine Phosphoribosyltransferase Proteins 0.000 description 2
- 102000018251 Hypoxanthine Phosphoribosyltransferase Human genes 0.000 description 2
- 102100034343 Integrase Human genes 0.000 description 2
- 208000008839 Kidney Neoplasms Diseases 0.000 description 2
- 208000009625 Lesch-Nyhan syndrome Diseases 0.000 description 2
- 108091036060 Linker DNA Proteins 0.000 description 2
- 206010025323 Lymphomas Diseases 0.000 description 2
- 239000000020 Nitrocellulose Substances 0.000 description 2
- 108090000526 Papain Proteins 0.000 description 2
- 241001494479 Pecora Species 0.000 description 2
- 102000057297 Pepsin A Human genes 0.000 description 2
- 108090000284 Pepsin A Proteins 0.000 description 2
- 102000003992 Peroxidases Human genes 0.000 description 2
- 241001505332 Polyomavirus sp. Species 0.000 description 2
- 229920001213 Polysorbate 20 Polymers 0.000 description 2
- 239000004365 Protease Substances 0.000 description 2
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 2
- 206010038389 Renal cancer Diseases 0.000 description 2
- 241000235070 Saccharomyces Species 0.000 description 2
- 229920002684 Sepharose Polymers 0.000 description 2
- 206010041067 Small cell lung cancer Diseases 0.000 description 2
- PXIPVTKHYLBLMZ-UHFFFAOYSA-N Sodium azide Chemical compound [Na+].[N-]=[N+]=[N-] PXIPVTKHYLBLMZ-UHFFFAOYSA-N 0.000 description 2
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 2
- 208000024770 Thyroid neoplasm Diseases 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 description 2
- 235000010724 Wisteria floribunda Nutrition 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000012148 binding buffer Substances 0.000 description 2
- 239000012472 biological sample Substances 0.000 description 2
- NXVYSVARUKNFNF-UHFFFAOYSA-N bis(2,5-dioxopyrrolidin-1-yl) 2,3-dihydroxybutanedioate Chemical compound O=C1CCC(=O)N1OC(=O)C(O)C(O)C(=O)ON1C(=O)CCC1=O NXVYSVARUKNFNF-UHFFFAOYSA-N 0.000 description 2
- VYLDEYYOISNGST-UHFFFAOYSA-N bissulfosuccinimidyl suberate Chemical compound O=C1C(S(=O)(=O)O)CC(=O)N1OC(=O)CCCCCCC(=O)ON1C(=O)C(S(O)(=O)=O)CC1=O VYLDEYYOISNGST-UHFFFAOYSA-N 0.000 description 2
- 238000010804 cDNA synthesis Methods 0.000 description 2
- 238000010805 cDNA synthesis kit Methods 0.000 description 2
- 239000012830 cancer therapeutic Substances 0.000 description 2
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 230000030833 cell death Effects 0.000 description 2
- 239000006285 cell suspension Substances 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 229940096422 collagen type i Drugs 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- ZWIBGKZDAWNIFC-UHFFFAOYSA-N disuccinimidyl suberate Chemical compound O=C1CCC(=O)N1OC(=O)CCCCCCC(=O)ON1C(=O)CCC1=O ZWIBGKZDAWNIFC-UHFFFAOYSA-N 0.000 description 2
- 239000003937 drug carrier Substances 0.000 description 2
- 238000001962 electrophoresis Methods 0.000 description 2
- 238000004520 electroporation Methods 0.000 description 2
- 239000012149 elution buffer Substances 0.000 description 2
- 230000002538 fungal effect Effects 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 238000012215 gene cloning Methods 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- FDGQSTZJBFJUBT-UHFFFAOYSA-N hypoxanthine Chemical compound O=C1NC=NC2=C1NC=N2 FDGQSTZJBFJUBT-UHFFFAOYSA-N 0.000 description 2
- 229940072221 immunoglobulins Drugs 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- 238000004255 ion exchange chromatography Methods 0.000 description 2
- 201000010982 kidney cancer Diseases 0.000 description 2
- 101150066555 lacZ gene Proteins 0.000 description 2
- 208000032839 leukemia Diseases 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 201000007270 liver cancer Diseases 0.000 description 2
- 208000014018 liver neoplasm Diseases 0.000 description 2
- 230000002934 lysing effect Effects 0.000 description 2
- 238000010232 migration assay Methods 0.000 description 2
- 238000010369 molecular cloning Methods 0.000 description 2
- 230000004879 molecular function Effects 0.000 description 2
- 230000035772 mutation Effects 0.000 description 2
- 238000007857 nested PCR Methods 0.000 description 2
- 230000003472 neutralizing effect Effects 0.000 description 2
- 229920001220 nitrocellulos Polymers 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 238000011275 oncology therapy Methods 0.000 description 2
- 201000008968 osteosarcoma Diseases 0.000 description 2
- 229940055729 papain Drugs 0.000 description 2
- 235000019834 papain Nutrition 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 229940111202 pepsin Drugs 0.000 description 2
- 210000001322 periplasm Anatomy 0.000 description 2
- 210000003200 peritoneal cavity Anatomy 0.000 description 2
- 108040007629 peroxidase activity proteins Proteins 0.000 description 2
- 235000020030 perry Nutrition 0.000 description 2
- 238000002823 phage display Methods 0.000 description 2
- YBYRMVIVWMBXKQ-UHFFFAOYSA-N phenylmethanesulfonyl fluoride Chemical compound FS(=O)(=O)CC1=CC=CC=C1 YBYRMVIVWMBXKQ-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 238000003566 phosphorylation assay Methods 0.000 description 2
- DCWXELXMIBXGTH-UHFFFAOYSA-N phosphotyrosine Chemical compound OC(=O)C(N)CC1=CC=C(OP(O)(O)=O)C=C1 DCWXELXMIBXGTH-UHFFFAOYSA-N 0.000 description 2
- 229940012957 plasmin Drugs 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 108091033319 polynucleotide Proteins 0.000 description 2
- 239000002157 polynucleotide Substances 0.000 description 2
- 102000040430 polynucleotide Human genes 0.000 description 2
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 2
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 230000003449 preventive effect Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 229940002612 prodrug Drugs 0.000 description 2
- 239000000651 prodrug Substances 0.000 description 2
- 150000003230 pyrimidines Chemical class 0.000 description 2
- 238000010839 reverse transcription Methods 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 230000028327 secretion Effects 0.000 description 2
- 239000006152 selective media Substances 0.000 description 2
- 238000012163 sequencing technique Methods 0.000 description 2
- 210000002966 serum Anatomy 0.000 description 2
- 239000012090 serum-supplement Substances 0.000 description 2
- 102000035016 single-pass transmembrane receptors Human genes 0.000 description 2
- 108091005455 single-pass transmembrane receptors Proteins 0.000 description 2
- 208000000587 small cell lung carcinoma Diseases 0.000 description 2
- 239000007974 sodium acetate buffer Substances 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 210000004989 spleen cell Anatomy 0.000 description 2
- 238000007619 statistical method Methods 0.000 description 2
- 230000001954 sterilising effect Effects 0.000 description 2
- 238000004659 sterilization and disinfection Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 229940124597 therapeutic agent Drugs 0.000 description 2
- 229940104230 thymidine Drugs 0.000 description 2
- 201000002510 thyroid cancer Diseases 0.000 description 2
- WYWHKKSPHMUBEB-UHFFFAOYSA-N tioguanine Chemical compound N1C(N)=NC(=S)C2=C1N=CN2 WYWHKKSPHMUBEB-UHFFFAOYSA-N 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 238000013518 transcription Methods 0.000 description 2
- 230000035897 transcription Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000013519 translation Methods 0.000 description 2
- 241000701161 unidentified adenovirus Species 0.000 description 2
- 201000005112 urinary bladder cancer Diseases 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 description 1
- NDJNDUULNXNRQD-XKBRQERYSA-N 1-[(2r,4s,5s)-5-[bromo(hydroxy)methyl]-4-hydroxyoxolan-2-yl]pyrimidine-2,4-dione Chemical compound C1[C@H](O)[C@@H](C(Br)O)O[C@H]1N1C(=O)NC(=O)C=C1 NDJNDUULNXNRQD-XKBRQERYSA-N 0.000 description 1
- NOYCWFCBEPFQSX-UHFFFAOYSA-N 1-[2-[2-(2,5-dioxo-3-sulfopyrrolidin-1-yl)oxycarbonyloxyethylsulfonyl]ethoxycarbonyloxy]-2,5-dioxopyrrolidine-3-sulfonic acid Chemical compound O=C1C(S(=O)(=O)O)CC(=O)N1OC(=O)OCCS(=O)(=O)CCOC(=O)ON1C(=O)C(S(O)(=O)=O)CC1=O NOYCWFCBEPFQSX-UHFFFAOYSA-N 0.000 description 1
- NFGXHKASABOEEW-UHFFFAOYSA-N 1-methylethyl 11-methoxy-3,7,11-trimethyl-2,4-dodecadienoate Chemical compound COC(C)(C)CCCC(C)CC=CC(C)=CC(=O)OC(C)C NFGXHKASABOEEW-UHFFFAOYSA-N 0.000 description 1
- KSXTUUUQYQYKCR-LQDDAWAPSA-M 2,3-bis[[(z)-octadec-9-enoyl]oxy]propyl-trimethylazanium;chloride Chemical compound [Cl-].CCCCCCCC\C=C/CCCCCCCC(=O)OCC(C[N+](C)(C)C)OC(=O)CCCCCCC\C=C/CCCCCCCC KSXTUUUQYQYKCR-LQDDAWAPSA-M 0.000 description 1
- YYDMSFVTLYEPOH-UHFFFAOYSA-N 2,5-dioxo-1-propanoyloxypyrrolidine-3-sulfonic acid Chemical compound CCC(=O)ON1C(=O)CC(S(O)(=O)=O)C1=O YYDMSFVTLYEPOH-UHFFFAOYSA-N 0.000 description 1
- SYEKJCKNTHYWOJ-UHFFFAOYSA-N 2-(2,5-dioxopyrrolidin-1-yl)-2-sulfobutanedioic acid;ethane-1,2-diol Chemical compound OCCO.OC(=O)CC(S(O)(=O)=O)(C(O)=O)N1C(=O)CCC1=O.OC(=O)CC(S(O)(=O)=O)(C(O)=O)N1C(=O)CCC1=O SYEKJCKNTHYWOJ-UHFFFAOYSA-N 0.000 description 1
- IVLXQGJVBGMLRR-UHFFFAOYSA-N 2-aminoacetic acid;hydron;chloride Chemical compound Cl.NCC(O)=O IVLXQGJVBGMLRR-UHFFFAOYSA-N 0.000 description 1
- BFSVOASYOCHEOV-UHFFFAOYSA-N 2-diethylaminoethanol Chemical compound CCN(CC)CCO BFSVOASYOCHEOV-UHFFFAOYSA-N 0.000 description 1
- TVZGACDUOSZQKY-LBPRGKRZSA-N 4-aminofolic acid Chemical compound C1=NC2=NC(N)=NC(N)=C2N=C1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 TVZGACDUOSZQKY-LBPRGKRZSA-N 0.000 description 1
- UZOVYGYOLBIAJR-UHFFFAOYSA-N 4-isocyanato-4'-methyldiphenylmethane Chemical compound C1=CC(C)=CC=C1CC1=CC=C(N=C=O)C=C1 UZOVYGYOLBIAJR-UHFFFAOYSA-N 0.000 description 1
- LPXQRXLUHJKZIE-UHFFFAOYSA-N 8-azaguanine Chemical compound NC1=NC(O)=C2NN=NC2=N1 LPXQRXLUHJKZIE-UHFFFAOYSA-N 0.000 description 1
- 229960005508 8-azaguanine Drugs 0.000 description 1
- 241000589155 Agrobacterium tumefaciens Species 0.000 description 1
- 102100027211 Albumin Human genes 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 1
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 108010039627 Aprotinin Proteins 0.000 description 1
- 206010003445 Ascites Diseases 0.000 description 1
- 241000228212 Aspergillus Species 0.000 description 1
- 241000228245 Aspergillus niger Species 0.000 description 1
- 101100136076 Aspergillus oryzae (strain ATCC 42149 / RIB 40) pel1 gene Proteins 0.000 description 1
- 238000011725 BALB/c mouse Methods 0.000 description 1
- 244000063299 Bacillus subtilis Species 0.000 description 1
- 235000014469 Bacillus subtilis Nutrition 0.000 description 1
- DWRXFEITVBNRMK-UHFFFAOYSA-N Beta-D-1-Arabinofuranosylthymine Natural products O=C1NC(=O)C(C)=CN1C1C(O)C(O)C(CO)O1 DWRXFEITVBNRMK-UHFFFAOYSA-N 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 241000282836 Camelus dromedarius Species 0.000 description 1
- 102000014914 Carrier Proteins Human genes 0.000 description 1
- 108010078791 Carrier Proteins Proteins 0.000 description 1
- 102000011632 Caseins Human genes 0.000 description 1
- 108010076119 Caseins Proteins 0.000 description 1
- 108090000317 Chymotrypsin Proteins 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- 101150074155 DHFR gene Proteins 0.000 description 1
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 241000255581 Drosophila <fruit fly, genus> Species 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 238000012286 ELISA Assay Methods 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 229930182566 Gentamicin Natural products 0.000 description 1
- CEAZRRDELHUEMR-URQXQFDESA-N Gentamicin Chemical class O1[C@H](C(C)NC)CC[C@@H](N)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](NC)[C@@](C)(O)CO2)O)[C@H](N)C[C@@H]1N CEAZRRDELHUEMR-URQXQFDESA-N 0.000 description 1
- 102000004366 Glucosidases Human genes 0.000 description 1
- 108010056771 Glucosidases Proteins 0.000 description 1
- 102100021519 Hemoglobin subunit beta Human genes 0.000 description 1
- 108091005904 Hemoglobin subunit beta Proteins 0.000 description 1
- 102100035108 High affinity nerve growth factor receptor Human genes 0.000 description 1
- 101100170063 Homo sapiens DDR1 gene Proteins 0.000 description 1
- 101000596894 Homo sapiens High affinity nerve growth factor receptor Proteins 0.000 description 1
- 241000701024 Human betaherpesvirus 5 Species 0.000 description 1
- 241000701044 Human gammaherpesvirus 4 Species 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- 206010020649 Hyperkeratosis Diseases 0.000 description 1
- UGQMRVRMYYASKQ-UHFFFAOYSA-N Hypoxanthine nucleoside Natural products OC1C(O)C(CO)OC1N1C(NC=NC2=O)=C2N=C1 UGQMRVRMYYASKQ-UHFFFAOYSA-N 0.000 description 1
- 208000018121 Hypoxanthine-guanine phosphoribosyltransferase deficiency Diseases 0.000 description 1
- 108010091135 Immunoglobulin Fc Fragments Proteins 0.000 description 1
- 102000018071 Immunoglobulin Fc Fragments Human genes 0.000 description 1
- 241000235058 Komagataella pastoris Species 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 108090001090 Lectins Proteins 0.000 description 1
- 102000004856 Lectins Human genes 0.000 description 1
- 239000012097 Lipofectamine 2000 Substances 0.000 description 1
- 108010053229 Lysyl endopeptidase Proteins 0.000 description 1
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 102000014171 Milk Proteins Human genes 0.000 description 1
- 108010011756 Milk Proteins Proteins 0.000 description 1
- 241000711408 Murine respirovirus Species 0.000 description 1
- 101100170064 Mus musculus Ddr1 gene Proteins 0.000 description 1
- 101000935589 Mus musculus Flavin reductase (NADPH) Proteins 0.000 description 1
- 108010021466 Mutant Proteins Proteins 0.000 description 1
- 102000008300 Mutant Proteins Human genes 0.000 description 1
- HSHXDCVZWHOWCS-UHFFFAOYSA-N N'-hexadecylthiophene-2-carbohydrazide Chemical compound CCCCCCCCCCCCCCCCNNC(=O)c1cccs1 HSHXDCVZWHOWCS-UHFFFAOYSA-N 0.000 description 1
- NQTADLQHYWFPDB-UHFFFAOYSA-N N-Hydroxysuccinimide Chemical compound ON1C(=O)CCC1=O NQTADLQHYWFPDB-UHFFFAOYSA-N 0.000 description 1
- CHJJGSNFBQVOTG-UHFFFAOYSA-N N-methyl-guanidine Natural products CNC(N)=N CHJJGSNFBQVOTG-UHFFFAOYSA-N 0.000 description 1
- 229930193140 Neomycin Natural products 0.000 description 1
- 108090000028 Neprilysin Proteins 0.000 description 1
- 241000208125 Nicotiana Species 0.000 description 1
- 108700020796 Oncogene Proteins 0.000 description 1
- 102000010292 Peptide Elongation Factor 1 Human genes 0.000 description 1
- 108010077524 Peptide Elongation Factor 1 Proteins 0.000 description 1
- 229940122907 Phosphatase inhibitor Drugs 0.000 description 1
- 241000235648 Pichia Species 0.000 description 1
- 241000276498 Pollachius virens Species 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 229920002535 Polyethylene Glycol 1500 Polymers 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 102000001253 Protein Kinase Human genes 0.000 description 1
- 102000004022 Protein-Tyrosine Kinases Human genes 0.000 description 1
- 108090000412 Protein-Tyrosine Kinases Proteins 0.000 description 1
- 101100170066 Rattus norvegicus Ddr1 gene Proteins 0.000 description 1
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 1
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 239000012722 SDS sample buffer Substances 0.000 description 1
- 241000191940 Staphylococcus Species 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 241000194017 Streptococcus Species 0.000 description 1
- 241000187747 Streptomyces Species 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 210000001744 T-lymphocyte Anatomy 0.000 description 1
- 108010022394 Threonine synthase Proteins 0.000 description 1
- 102000004357 Transferases Human genes 0.000 description 1
- 108090000992 Transferases Proteins 0.000 description 1
- 239000013504 Triton X-100 Substances 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- 108090000631 Trypsin Proteins 0.000 description 1
- 102000004142 Trypsin Human genes 0.000 description 1
- 101100068489 Vicia faba AGPC gene Proteins 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 108010027570 Xanthine phosphoribosyltransferase Proteins 0.000 description 1
- 241000269370 Xenopus <genus> Species 0.000 description 1
- 108010084455 Zeocin Proteins 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- VJHCJDRQFCCTHL-UHFFFAOYSA-N acetic acid 2,3,4,5,6-pentahydroxyhexanal Chemical compound CC(O)=O.OCC(O)C(O)C(O)C(O)C=O VJHCJDRQFCCTHL-UHFFFAOYSA-N 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 238000005377 adsorption chromatography Methods 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 125000003295 alanine group Chemical group N[C@@H](C)C(=O)* 0.000 description 1
- 238000012867 alanine scanning Methods 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 230000000735 allogeneic effect Effects 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 229940126575 aminoglycoside Drugs 0.000 description 1
- 229960003896 aminopterin Drugs 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 238000012870 ammonium sulfate precipitation Methods 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 238000005571 anion exchange chromatography Methods 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000002421 anti-septic effect Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- 229940064004 antiseptic throat preparations Drugs 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229960004405 aprotinin Drugs 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 238000003149 assay kit Methods 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- IQFYYKKMVGJFEH-UHFFFAOYSA-N beta-L-thymidine Natural products O=C1NC(=O)C(C)=CN1C1OC(CO)C(O)C1 IQFYYKKMVGJFEH-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- BQRGNLJZBFXNCZ-UHFFFAOYSA-N calcein am Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC(CN(CC(=O)OCOC(C)=O)CC(=O)OCOC(C)=O)=C(OC(C)=O)C=C1OC1=C2C=C(CN(CC(=O)OCOC(C)=O)CC(=O)OCOC(=O)C)C(OC(C)=O)=C1 BQRGNLJZBFXNCZ-UHFFFAOYSA-N 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 229940105329 carboxymethylcellulose Drugs 0.000 description 1
- 229950008138 carmellose Drugs 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 238000005277 cation exchange chromatography Methods 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 238000010609 cell counting kit-8 assay Methods 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000003915 cell function Effects 0.000 description 1
- 238000003163 cell fusion method Methods 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 230000010307 cell transformation Effects 0.000 description 1
- 230000003833 cell viability Effects 0.000 description 1
- 230000004662 cellular morphological change Effects 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 235000010980 cellulose Nutrition 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000010382 chemical cross-linking Methods 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 235000013330 chicken meat Nutrition 0.000 description 1
- 239000003593 chromogenic compound Substances 0.000 description 1
- 239000012916 chromogenic reagent Substances 0.000 description 1
- 229960002376 chymotrypsin Drugs 0.000 description 1
- 238000003501 co-culture Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000001268 conjugating effect Effects 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- 229940099112 cornstarch Drugs 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 108040000002 cyclin-dependent protein kinase activating kinase activity proteins Proteins 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 230000003013 cytotoxicity Effects 0.000 description 1
- 231100000135 cytotoxicity Toxicity 0.000 description 1
- 239000003398 denaturant Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 239000005546 dideoxynucleotide Substances 0.000 description 1
- 235000013681 dietary sucrose Nutrition 0.000 description 1
- CRVGKGJPQYZRPT-UHFFFAOYSA-N diethylamino acetate Chemical compound CCN(CC)OC(C)=O CRVGKGJPQYZRPT-UHFFFAOYSA-N 0.000 description 1
- 102000038379 digestive enzymes Human genes 0.000 description 1
- 108091007734 digestive enzymes Proteins 0.000 description 1
- 102000004419 dihydrofolate reductase Human genes 0.000 description 1
- 238000003113 dilution method Methods 0.000 description 1
- 238000006471 dimerization reaction Methods 0.000 description 1
- SWSQBOPZIKWTGO-UHFFFAOYSA-N dimethylaminoamidine Natural products CN(C)C(N)=N SWSQBOPZIKWTGO-UHFFFAOYSA-N 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000009509 drug development Methods 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 238000012869 ethanol precipitation Methods 0.000 description 1
- 210000003527 eukaryotic cell Anatomy 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 238000001215 fluorescent labelling Methods 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 238000002523 gelfiltration Methods 0.000 description 1
- 102000018146 globin Human genes 0.000 description 1
- 108060003196 globin Proteins 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 229960004198 guanidine Drugs 0.000 description 1
- 229960000789 guanidine hydrochloride Drugs 0.000 description 1
- PJJJBBJSCAKJQF-UHFFFAOYSA-N guanidinium chloride Chemical compound [Cl-].NC(N)=[NH2+] PJJJBBJSCAKJQF-UHFFFAOYSA-N 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 210000005260 human cell Anatomy 0.000 description 1
- 229920002674 hyaluronan Polymers 0.000 description 1
- 229960003160 hyaluronic acid Drugs 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 229910052588 hydroxylapatite Inorganic materials 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 230000005847 immunogenicity Effects 0.000 description 1
- 230000016784 immunoglobulin production Effects 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 238000003331 infrared imaging Methods 0.000 description 1
- ZPNFWUPYTFPOJU-LPYSRVMUSA-N iniprol Chemical compound C([C@H]1C(=O)NCC(=O)NCC(=O)N[C@H]2CSSC[C@H]3C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@H](C(N[C@H](C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC=4C=CC=CC=4)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CC=4C=CC=CC=4)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCCN)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC2=O)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC=2C=CC=CC=2)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H]2N(CCC2)C(=O)[C@@H](N)CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N2[C@@H](CCC2)C(=O)N2[C@@H](CCC2)C(=O)N[C@@H](CC=2C=CC(O)=CC=2)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N2[C@@H](CCC2)C(=O)N3)C(=O)NCC(=O)NCC(=O)N[C@@H](C)C(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@H](C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@H](C(=O)N1)C(C)C)[C@@H](C)O)[C@@H](C)CC)=O)[C@@H](C)CC)C1=CC=C(O)C=C1 ZPNFWUPYTFPOJU-LPYSRVMUSA-N 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- UWKQSNNFCGGAFS-XIFFEERXSA-N irinotecan Chemical compound C1=C2C(CC)=C3CN(C(C4=C([C@@](C(=O)OC4)(O)CC)C=4)=O)C=4C3=NC2=CC=C1OC(=O)N(CC1)CCC1N1CCCCC1 UWKQSNNFCGGAFS-XIFFEERXSA-N 0.000 description 1
- 229960004768 irinotecan Drugs 0.000 description 1
- 238000001155 isoelectric focusing Methods 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- 108010045069 keyhole-limpet hemocyanin Proteins 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 239000002523 lectin Substances 0.000 description 1
- 238000001638 lipofection Methods 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 230000033001 locomotion Effects 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000012139 lysis buffer Substances 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 229910001425 magnesium ion Inorganic materials 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 235000021239 milk protein Nutrition 0.000 description 1
- 239000007758 minimum essential medium Substances 0.000 description 1
- 238000002715 modification method Methods 0.000 description 1
- 230000017074 necrotic cell death Effects 0.000 description 1
- 230000006654 negative regulation of apoptotic process Effects 0.000 description 1
- 230000035407 negative regulation of cell proliferation Effects 0.000 description 1
- 229960004927 neomycin Drugs 0.000 description 1
- 230000000050 nutritive effect Effects 0.000 description 1
- 210000000287 oocyte Anatomy 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- 238000004091 panning Methods 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 101150040383 pel2 gene Proteins 0.000 description 1
- 101150050446 pelB gene Proteins 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- CWCMIVBLVUHDHK-ZSNHEYEWSA-N phleomycin D1 Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC[C@@H](N=1)C=1SC=C(N=1)C(=O)NCCCCNC(N)=N)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C CWCMIVBLVUHDHK-ZSNHEYEWSA-N 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 229940080469 phosphocellulose Drugs 0.000 description 1
- 230000001766 physiological effect Effects 0.000 description 1
- 210000005059 placental tissue Anatomy 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 238000004393 prognosis Methods 0.000 description 1
- 210000001236 prokaryotic cell Anatomy 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000012514 protein characterization Methods 0.000 description 1
- 108060006633 protein kinase Proteins 0.000 description 1
- 238000001742 protein purification Methods 0.000 description 1
- 239000012460 protein solution Substances 0.000 description 1
- 238000000163 radioactive labelling Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000004366 reverse phase liquid chromatography Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000005185 salting out Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000012723 sample buffer Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- VSIVTUIKYVGDCX-UHFFFAOYSA-M sodium;4-[2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)tetrazol-2-ium-5-yl]benzene-1,3-disulfonate Chemical compound [Na+].COC1=CC([N+]([O-])=O)=CC=C1[N+]1=NC(C=2C(=CC(=CC=2)S([O-])(=O)=O)S([O-])(=O)=O)=NN1C1=CC=C([N+]([O-])=O)C=C1 VSIVTUIKYVGDCX-UHFFFAOYSA-M 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000010473 stable expression Effects 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 210000000130 stem cell Anatomy 0.000 description 1
- 239000008174 sterile solution Substances 0.000 description 1
- 239000012089 stop solution Substances 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 229960004793 sucrose Drugs 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- VUYXVWGKCKTUMF-UHFFFAOYSA-N tetratriacontaethylene glycol monomethyl ether Chemical compound COCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCO VUYXVWGKCKTUMF-UHFFFAOYSA-N 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 229960003087 tioguanine Drugs 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 238000001890 transfection Methods 0.000 description 1
- 238000002054 transplantation Methods 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 239000013638 trimer Substances 0.000 description 1
- 239000012588 trypsin Substances 0.000 description 1
- 125000000430 tryptophan group Chemical group [H]N([H])C(C(=O)O*)C([H])([H])C1=C([H])N([H])C2=C([H])C([H])=C([H])C([H])=C12 0.000 description 1
- 238000005199 ultracentrifugation Methods 0.000 description 1
- 241000701447 unidentified baculovirus Species 0.000 description 1
- 241001430294 unidentified retrovirus Species 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 210000003501 vero cell Anatomy 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
- 235000021247 β-casein Nutrition 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/40—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against enzymes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/395—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
- A61K39/39533—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
- A61K39/3955—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against proteinaceous materials, e.g. enzymes, hormones, lymphokines
-
- A61K47/48646—
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2851—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the lectin superfamily, e.g. CD23, CD72
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/30—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
- C07K16/3023—Lung
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/505—Medicinal preparations containing antigens or antibodies comprising antibodies
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/30—Immunoglobulins specific features characterized by aspects of specificity or valency
- C07K2317/34—Identification of a linear epitope shorter than 20 amino acid residues or of a conformational epitope defined by amino acid residues
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/76—Antagonist effect on antigen, e.g. neutralization or inhibition of binding
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/77—Internalization into the cell
Definitions
- the present invention relates to novel DDR1 antibodies having antitumor activity and to agents for treating cancer comprising the antibodies as an active ingredient.
- Discoidin Domain Receptor 1 (also referred to as DDR1, EDDR1, NEP, NTRK1 or CAK; hereinafter referred to as DDR1) is a receptor tyrosine kinase (RTK) having a molecular weight of 105 kDa that was cloned from human placental tissue as a homologous protein of RTK (Non-Patent Document 1). It is known to induce signal transduction to downstream molecules through its autophosphorylation that occurs as a result of binding with collagen, which is the ligand (Non-Patent Document 2).
- RTK receptor tyrosine kinase
- DDR1 is a single-pass transmembrane receptor, and its extracellular domain is composed of a discoidin (DS) domain and stalk domain from the N-terminal; the former is required for binding to collagen, while the latter is required for dimerization of DDR1, and both have been reported to be required for autophosphorylation of DDR1 by collagen (Non-Patent Documents 3 and 4).
- DS discoidin
- DDR1 Suggested molecular functions of DDR1 are contribution to cellular morphological changes, adhesion, cell migration, infiltration, proliferation, inhibition of apoptosis, and the like.
- Experimental findings serving as the basis for these presumed functions are based on phenotype analyses of DDR1-overexpressing strains or DDR1 expression-suppressed strains, and phenomena occurring in cells induced by collagen treatment.
- Non-Patent Document 5 Experimental findings including adhesion and increased infiltration in macrophages (Non-Patent Document 5), increased infiltration ability and suppression of apoptosis in human prostate cancer cells (Non-Patent Document 6), suppression of apoptosis and increased proliferation in human colorectal cancer cells (Non-Patent Document 7), and increased cell migration ability and increased infiltration ability in human lung cancer cells (Non-Patent Document 8) have been reported thus far, strongly suggesting involvement of the molecular functions of DDR1 in cancer proliferation and metastasis.
- Non-Patent Document 9 high expression and activity levels of DDR1 in cancer tissue have been reported in multiple types of cancer as indicated in the following cases: glioma (Non-Patent Document 9), breast cancer (Non-Patent Document 10), endometrial cancer (Non-Patent Document 11), ovarian cancer (Non-Patent Document 12), lung cancer (Non-Patent Document 13) and bile duct cancer (Non-Patent Document 14).
- the correlation between expression of DDR1 and the prognosis and metastasis of cancer has been reported in glioma (Non-Patent Document 15) and lung cancer (Non-Patent Document 8).
- Non-Patent Document 16 the existence of a function of DDR1 that is not mediated by collagen binding activity or kinase activity has also been suggested in recent years (Non-Patent Document 16), thus indicating that there are still aspects of the mechanism of action of DDR1 that remain unknown.
- DDR1 As a target of cancer therapy, an approach has already been disclosed based on the potential for screening cancer therapeutic agents, by using as indicators, DDR1-mediated phenomena (such as phosphorylation) and measuring whether or not they are inhibited, based on experimental results which indicate that DDR1 is highly expressed in cancer cells of breast cancer or the like (Patent Document 1).
- polyclonal antibodies to DDR1 have been prepared, which have been reported to neutralize binding between DDR1 and collagen as well as suppress the cell protective action of collagen in cancer cells (Patent Document 2).
- the present invention was made in view of the above circumstances, and an objective of the present invention is to provide novel anti-DDR1 antibodies having antitumor activity.
- an object of the present invention is to provide agents for treating or preventing cancer comprising the antibodies as an active ingredient.
- the present invention is based on such findings, and more specifically relates to the inventions indicated below.
- [7] The antibody according to any one of [1] to [6], which decreases the expression level of TGF- ⁇ in cells.
- FERM BP-11398 (#27), and (c) a hybridoma deposited under Accession No. FERM BP-11397 (#24).
- An agent for treating or preventing cancer comprising the antibody according to any one of [1] to [18] or [22] as an active ingredient.
- An agent for suppressing cell growth comprising the antibody according to any one of [1] to [18] or [22] as an active ingredient.
- An agent for inhibiting cell migration comprising the antibody according to any one of [1] to [18] or [22] as an active ingredient.
- An agent for inhibiting phosphorylation of DDR1 in a cell which comprises the antibody according to any one of [1] to [18] or [22] as an active ingredient.
- An agent for suppressing expression level of DDR1 in a cell which comprises the antibody according to any one of [1] to [18] or [22] as an active ingredient.
- An agent for suppressing expression level of TGF- ⁇ in a cell which comprises the antibody according to any one of [1] to [18] or [22] as an active ingredient.
- a method for treating or preventing cancer comprising administration of an effective amount of the antibody according to any one of [1] to [18] or [22] to a mammal.
- a method for suppressing cell proliferation comprising administration of an effective amount of the antibody according to any one of [1] to [18] or [22] to a mammal.
- a method for inhibiting cell migration comprising administration of an effective amount of the antibody according to any one of [1] to [18] or [22] to a mammal.
- [36] A method for inhibiting phosphorylation in a cell, comprising administration of an effective amount of the antibody according to any one of [1] to [18] or [22] to a mammal.
- [37] A method for suppressing expression of DDR1 in a cell, comprising administration of an effective amount of the antibody according to any one of [1] to [18] or [22] to a mammal.
- [38] A method for suppressing expression of TGF- ⁇ in a cell, comprising administration of an effective amount of the antibody according to any one of [1] to [18] or [22] to a mammal.
- a method for producing an antibody comprising a step of culturing the cell according to [21] and collecting the antibody from the culture supernatant.
- a method for treating cancer comprising administration of an effective dose of the antibody of any one of [1] to [18] or [22] to a subject afflicted with cancer.
- a method for treating cancer comprising administration of an effective dose of the antibody of any one of [1] to [18] or [22] to a subject diagnosed as having cancer.
- a method for treating cancer comprising the step of diagnosing whether a subject has cancer, and the step of administering an effective dose of the antibody of any one of [1] to [18] or [22] to a subject diagnosed as having cancer.
- [48] The method of any one of [41] to [45], wherein the cancer is lung cancer, breast cancer, glioma, ovarian cancer, gastric cancer, pancreatic cancer, esophageal cancer, endometrial cancer or bile duct cancer.
- the present invention also relates to the inventions indicated below.
- an antibody of the present invention in the production of an agent for treating or preventing cancer, an agent for suppressing cell proliferation, an agent for inhibiting cell migration, an agent for inhibiting phosphorylation of DDR1 in cells, an agent for suppressing expression level of DDR1 in cells, or an agent for suppressing expression level of TGF- ⁇ in cells.
- An antibody of the present invention for use in a method of treating or preventing cancer, a method of suppressing cell proliferation, a method of inhibiting cell migration, a method of inhibiting phosphorylation in cells, a method of suppressing expression of DDR1 in cells, or a method of suppressing expression of TGF- ⁇ in cells.
- FIG. 1 is a table showing the clone numbers, subclasses, and binding activity to DDR1 and DDR2 of anti-DDR1 antibodies. Values in the table represent absorbance at 450 nm in ELISA (OD450) and differences in absorbance between when the secondary antibody was present and absent ( ⁇ ab OD450). Each antibody was shown to specifically bind to DDR1.
- FIG. 2 indicates the domain of DDR1 to which the anti-DDR1 antibody binds.
- FIG. 2( a ) is a schematic diagram depicting full-length DDR1 (Full Length or FL), DDR1 from which the DS domain had been deleted (ADS), and DDR1 from which the stalk domain had been deleted ( ⁇ Stalk).
- FIG. 2( b ) shows photographs used to evaluate binding of each antibody to FL-DDR1, ⁇ DS-DDR1 and ⁇ Stalk-DDR1 by IP-western method. Each anti-DDR1 antibody was used for immunoprecipitation (IP), and anti-FLAG antibody was used for western blotting. Anti-DDR1 antibodies #115, #27 and #24 were all shown to bind to the stalk domain of DDR1. On the other hand, 20M102 was shown to bind to the DS domain of DDR1.
- IP immunoprecipitation
- 20M102 was shown to bind to the DS domain of DDR1.
- FIG. 3 is a graph indicating antitumor activity of anti-DDR1 antibody in a mouse model grafted with human lung cancer.
- PBS negative control
- anti-DDR1 antibody was administered intraperitoneally to mice grafted with human lung carcinoma cell line NCI-H1993, followed by measuring changes in tumor volume over time. Tumor growth suppressive effects were observed with antibodies #115, #24 and #27. In particular, antibody #115 demonstrated the most potent tumor growth suppressive effect. On the other hand, 20M102 did not demonstrate tumor growth suppressive effects.
- FIG. 4 is a graph indicating the ligand-dependent cell migration-inhibiting activity of anti-DDR1 antibodies.
- the ligand-dependent cell migration activity of human lung carcinoma cell line NCI-H1993 was measured using the xCELLigence SystemTM. Collagen type 4 was used for the ligand.
- the degree of cell migration inhibition (%) of each anti-DDR1 antibody is indicated on the vertical axis, taking as 100 the case when the ligand-induced cell migration is completely inhibited. Negative values for the degree of inhibition indicate that cell migration was increased by addition of antibody compared to ligand alone. Inhibition of ligand-dependent cell migration was observed for antibodies #115 and #24.
- FIG. 4 the degree of cell migration inhibition
- ligand-dependent cell migration activity of human lung carcinoma cell line NCI-H1993 was measured using the Cultrex assay kit. Collagen type 4 was used for the ligand. The degree of cell migration inhibition (%) of each anti-DDR1 antibody is indicated on the vertical axis, taking as 100 the case when the ligand-induced cell migration is completely inhibited. Inhibition of ligand-dependent cell migration was observed for antibodies #115, #24 and #27.
- FIG. 5 shows photographs representing the inhibitory activity of anti-DDR1 antibody on ligand-dependent DDR1 phosphorylation.
- Ligand-dependent DDR1 phosphorylation in human breast cancer cell line T47D was detected by western blotting using polyclonal antibody that specifically recognizes DDR1 in which the 796th tyrosine has been phosphorylated (pYDDR1). Collagen type 1 or collagen type 4 was used for the ligand. Inhibition of ligand-dependent DDR1 phosphorylation was observed for antibodies #27 and #24.
- FIG. 6 is a graph indicating internalization of anti-DDR1 antibody into cells. Internalization of an anti-DDR1 antibody into cells was evaluated by adding the anti-DDR1 antibody and MabZAP (saporin-labeled anti-mouse IgG antibody) to human breast cancer cell line T47D, and investigating whether or not cell proliferation is inhibited. The ratio of cell proliferation when anti-DDR1 antibody and MabZAP were added is indicated on the vertical axis, taking as 1 cell proliferation in the absence of both anti-DDR1 antibody and MabZAP. Internalization into cells was observed for antibodies #115 and #24.
- MabZAP saporin-labeled anti-mouse IgG antibody
- FIG. 7 shows photographs representing decreases in expression levels of DDR1 caused by anti-DDR1 antibodies.
- Expression levels of DDR1 in cells were detected by western blotting by adding PBS (negative control) or an anti-DDR1 antibody to human breast cancer cell line T47D. Actin was used as an internal control. Decreases in expression levels of DDR1 were observed for antibodies #115 and #24.
- FIG. 8 is a graph indicating inhibitory activity of anti-DDR1 antibodies on ligand-dependent expression of TGF- ⁇ .
- Ligand-dependent expression levels of TGF- ⁇ mRNA in a co-culturing system containing human lung carcinoma cell line NCI-H1993 and mouse fibroblasts MRC5 were measured by quantitative RT-PCR (qRT-PCR). Collagen type 1 was used for the ligand.
- the ratio of the amount of TGF- ⁇ mRNA is indicated on the vertical axis, taking as 1 the case when not adding ligand or antibody (control). Suppression of ligand-dependent expression of TGF- ⁇ was observed for antibody #115.
- the present invention provides novel anti-DDR1 antibodies that have antitumor activity.
- the inventors of the present invention discovered for the first time that antibodies binding to the stalk domain of the extracellular domain of discoidin domain receptor 1 (DDR1) protein have potent antitumor activity even when used alone, compared to antibodies that bind to other discoidin (DS) domains. Namely, the present invention provides antibodies that bind to the stalk domain of DDR1.
- DDR1 discoidin domain receptor 1
- the animal species of DDR1 used in the present invention is preferably mammalian and most preferably human.
- the gene sequence and amino acid sequence of human DDR1 are registered under GenBank Accession No. NM_013993 and NP_054699, respectively.
- the gene sequence and amino acid sequence of mouse DDR1 are registered under GenBank Accession No. NM_007584 and NP_031610, respectively, while the gene sequence and amino acid sequence of rat DDR1 are registered under GenBank Accession No. NM_013137 and NP_037269, respectively.
- the sequences in other animal species can be determined by those skilled in the art by gene cloning technology and the like using interspecies homology.
- DDR1 is a single-pass transmembrane receptor tyrosine kinase (RTK), and is structurally divided into an extracellular domain, transmembrane domain and intracellular domain (kinase domain).
- RTK transmembrane receptor tyrosine kinase
- the amino acid sequence of human DDR1 is shown in SEQ ID NO: 2 and the nucleotide sequence is shown in SEQ ID NO: 1.
- the extracellular domain contains a discoidin (DS) domain and a stalk domain, and the DS domain is thought to be involved in binding with collagen, which is the ligand.
- DS discoidin
- the domain composed of the amino acid sequence from the 32nd amino acid to the 185th amino acid in the amino acid sequence of human DDR1 (SEQ ID NO: 2) is referred to as the DS domain
- the domain composed of the amino acid sequence from the 199th amino acid to the 412th amino acid is referred to as the stalk domain.
- the amino acid sequence of the DS domain of human DDR1 is shown in SEQ ID NO: 3
- the amino acid sequence of the stalk domain is shown in SEQ ID NO: 4.
- Domains corresponding to each DDR1 domain in species other than humans can be similarly determined based on sequence homology with human DDR1.
- binding activity can be measured using techniques known to those skilled in the art, such as enzyme-linked immunosorbent assay (ELISA), Biacore, western blotting, or FACS.
- ELISA enzyme-linked immunosorbent assay
- Biacore Biacore
- western blotting or FACS.
- binding means that the value of binding activity measured using a method such as one described above is two times or higher than the value of binding activity of a negative control or the background value of the measurement method being used; it is preferably three times or higher, more preferably five times or higher, and most preferably ten times or higher.
- An antibody that binds to the stalk domain of DDR1 can be produced by acquiring a plurality of anti-DDR1 antibodies by immunizing an animal such as a mouse with a DDR1 protein, followed by selecting antibodies that bind to the stalk domain by screening as described in Example 1 below.
- the antibody can also be produced by preliminarily producing a partial protein equivalent to the stalk domain of DDR1 using genetic engineering techniques known to those skilled in the art, and then immunizing an animal such as a mouse with that partial protein.
- a preferable embodiment of an anti-DDR1 antibody provided by the present invention is an anti-DDR1 antibody that suppresses cell proliferation.
- the cells in the present invention may be primary cultured cells collected from body tissue or a cell line that has been established by immortalizing such cells by some form of method.
- the cell phenotype is preferably that of cells that highly express DDR1 gene or DDR1 protein compared to ordinary cells.
- the amount of DDR1 gene expressed in cells can be evaluated using a technique known to those skilled in the art such as RT-PCR or GeneChip analysis using a primer specific to DDR1 gene.
- the amount of DDR1 protein expressed in cells can be evaluated using a technique known to those skilled in the art such as western blotting or immunohistostaining (IHC) using an antibody specific to DDR1 protein.
- IHC immunohistostaining
- “suppression of cell proliferation” refers to a decrease in cell proliferation in cells that have been contacted by anti-DDR1 antibody compared to cells that have not been contacted by the antibody.
- a decrease in cell proliferation includes a decrease in growth rate while the cells are in a viable state, as well as induction of cell death by apoptosis, necrosis, and the like.
- Suppression of cell proliferation is preferably induced as a result of anti-DDR1 antibody having bound to DDR1 on the cell surface.
- Suppression of cell proliferation may be observed in vitro or in vivo.
- Suppression of cell proliferation in vitro can be measured with an assay system known to those skilled in the art such as [ 3 H]thymidine uptake, MTT, or WST.
- Suppression of cell proliferation in vivo can be measured with an assay system known to those skilled in the art such as a xenograft model in which human cells are grafted into a mouse.
- Proliferation is preferably suppressed by anti-DDR1 antibody by, for example, 30% or more, 40% or more, 50% or more, 60% or more, or 70% or more based on a value of 100% for the case of cell proliferation in the evaluation system being completely suppressed.
- antibody 20M102 disclosed in the prior art Patent Document 3 that binds to the DS domain of DDR1 suppressing cell proliferation by about 20% in vivo (see FIG. 6 of the aforementioned publication)
- antibodies #24, #27, and #115 provided by the present invention that bind to the stalk domain of DDR1 were found by the present inventors to suppress cell proliferation in vivo by 48%, 61%, and 71%, respectively (see Example 3 to be subsequently described).
- a preferable embodiment of the anti-DDR1 antibody provided by the present invention is anti-DDR1 antibody that inhibits cell migration.
- Cell migration is a phenomenon that explains the autonomous movement of cells in the living body and such; antibodies that inhibit cell migration are thought to be useful as having the potential to suppress infiltration and metastasis of cancer cells.
- “inhibition of cell migration” refers to a decrease in cell migration activity in cells that have been contacted with an anti-DDR1 antibody compared to cells that have not been contacted with the antibody. Inhibition of cell migration can be measured with an assay system that detects migration of cells between chambers as described in, for example, Example 4.
- Cell migration is known to be stimulated in cells in which DDR1 protein is expressed on the cell surface as a result of a ligand binding to the extracellular domain of DDR1, and is known to be particularly induced as a result of collagen binding to the domain as ligand (Yang, S. H., et al., Oncol. Rep. (2010) 24, 311-319).
- the collagen is suitably type I collagen or type IV collagen.
- Inhibition of cell migration is preferably induced as a result of anti-DDR1 antibody having inhibited binding between DDR1 and a ligand.
- a preferable embodiment of the anti-DDR1 antibody provided by the present invention is anti-DDR1 antibody that inhibits phosphorylation of DDR1 in cells.
- Phosphorylation of DDR1 is preferably phosphorylation of a tyrosine residue contained in DDR1, and particularly preferably phosphorylation of the 796th tyrosine residue in the amino acid sequence of DDR1.
- Phosphorylation of DDR1 is known to cause transmission of a signal indicating cell viability or cell infiltration or metastasis and the like, and an antibody that inhibits phosphorylation of DDR1 is thought to be useful as having the potential to suppress proliferation of cancer cells or their infiltration or metastasis.
- “inhibition of phosphorylation of DDR1” refers to a decrease in the proportion of phosphorylated DDR1 in cells that have been contacted with anti-DDR1 antibody compared to cells that have not been contacted with the antibody. Inhibition of phosphorylation of DDR1 can be measured with an assay system known to those skilled in the art such as western blotting using an anti-phosphotyrosine antibody.
- phosphorylation of DDR1 is known to occur as a result of a ligand binding to the extracellular domain of DDR1, and is known to be particularly induced as a result of collagen binding to the domain as the ligand (Vogel, W., et al., Mol. Cell (1997) 1, 13-23).
- the collagen is suitably type I collagen or type IV collagen.
- Inhibition of phosphorylation of DDR1 is preferably induced as a result of anti-DDR1 antibody having inhibited binding between DDR1 and a ligand.
- Phosphorylation of DDR1 may be induced by autophosphorylation of DDR1 or by phosphorylation by another kinase.
- DDR1-expressing cells such as A549, NCI-H1993, SK-MES-1, Panc-1, MFE-280, HCT-116, BT474, ZR-75-1, T47D or BxPC3 are stimulated with collagen and DDR1 protein is extracted from the cells. Phosphorylation of a tyrosine residue of the extracted DDR1 protein is confirmed by western blotting using an anti-phosphotyrosine antibody. More specifically, phosphorylation of DDR1 can be measured according to the method described in Example 5. DDR1 is known to be expressed in the aforementioned cells from the following publications (L'HOTE, C. G.
- a preferable embodiment of the anti-DDR1 antibody provided by the present invention is anti-DDR1 antibody that is taken up into cells.
- anti-DDR1 antibody into cells is preferably induced as a result of anti-DDR1 antibody having bound to DDR1 protein expressed on the cell surface.
- Antibodies taken up into cells is thought to be useful as having the potential to suppress proliferation of cancer cells by conjugating with compounds having cytotoxic activity such as toxins.
- “internalization into cells” refers to when the amount of antibody taken up into cells that have been contacted with anti-DDR1 antibody is greater than when cells have been contacted with a negative control antibody.
- the cell phenotype is preferably one that expresses DDR1 more than ordinary cells, and such cells can be selected by gene-level analyses such as RT-PCR or GeneChip analysis using a primer specific to DDR1 gene, or by protein-level analyses such as western blotting or immunohistostaining (IHC) using an antibody specific to DDR1 protein.
- gene-level analyses such as RT-PCR or GeneChip analysis using a primer specific to DDR1 gene
- protein-level analyses such as western blotting or immunohistostaining (IHC) using an antibody specific to DDR1 protein.
- a preferable embodiment of the anti-DDR1 antibody provided by the present invention is an anti-DDR1 antibody that decreases the expression level of DDR1 in cells.
- a decrease in the expression level of DDR1 may be the result of promotion of decomposition of DDR1 protein or the result of suppression of translation of DDR1 protein. In addition, it may also be the result of promotion of decomposition of DDR1 mRNA or the result of suppression of transcription of DDR1 mRNA.
- Antibodies that decrease the expression level of DDR1 have the potential to suppress phenomena such as cell survival, infiltration, or metastasis involving DDR1 in cancer cells, and are thus thought to be useful.
- a “decrease in the expression level of DDR1” refers to a decrease in the expression level of DDR1 in cells that have been contacted with an anti-DDR1 antibody compared to cells that have not been contacted with the antibody.
- a decrease in the expression level of DDR1 is preferably induced as a result of anti-DDR1 antibody having bound to DDR1 on the cell surface.
- the amount of DDR1 mRNA can be measured with an assay system known to those skilled in the art such as RT-PCR using a primer specific for DDR1 gene.
- the amount of DDR1 protein can be measured with an assay system known to those skilled in the art such as western blotting using an antibody specific to DDR1 protein.
- the expression level of DDR1 can be measured, for example, by the method indicated below.
- DDR1 protein is extracted from DDR1-expressing cells (such as A549, NCI-H1993, SK-MES-1, Panc-1, MFE-280, HCT-116, BT474, ZR-75-1, T47D or BxPC3).
- the extracted DDR1 protein is then detected by western blotting. More specifically, the expression level of DDR1 can be measured according to the method described in Example 7.
- a preferable embodiment of the anti-DDR1 antibody provided by the present invention is anti-DDR1 antibody that decreases the expression level of TGF- ⁇ in cells.
- a decrease in the expression level of TGF- ⁇ may be the result of promotion of decomposition of TGF- ⁇ protein or the result of suppression of translation of TGF- ⁇ protein. In addition, it may also be the result of promotion of decomposition of TGF- ⁇ mRNA or the result of suppression of transcription of TGF- ⁇ mRNA.
- TGF- ⁇ is a marker molecule the expression of which is known to rise during epithelial-mesenchymal transition (EMT) that has been reported to act to promote tumorigenesis, and an antibody that decreases the expression level of TGF- ⁇ is thought to be useful as it has the potential to inhibit tumorigenesis by suppressing epithelial-mesenchymal transition of cells.
- one embodiment of the anti-DDR1 antibody in the present invention may include an anti-DDR1 antibody that inhibits epithelial-mesenchymal transition (EMT) of cells.
- EMT epithelial-mesenchymal transition
- a “decrease in the expression level of TGF- ⁇ ” refers to a decrease in the expression level of TGF- ⁇ in cells that have been contacted with an anti-DDR1 antibody compared to cells that have not been contacted with the antibody.
- DDR1-mediated expression of TGF- ⁇ is induced by collagen (Guerrot, D., et al., Am. J. Pathol. (2011) 179, 83-91).
- the collagen is suitably type I collagen or type IV collagen.
- a decrease in the expression level of TGF- ⁇ is preferably induced as a result of anti-DDR1 antibody having inhibited binding between DDR1 and collagen.
- the amount of TGF- ⁇ mRNA can be measured with an assay system known to those skilled in the art such as RT-PCR using a primer specific for TGF- ⁇ gene.
- the amount of TGF- ⁇ protein can be measured with an assay system known to those skilled in the art such as western blotting using an antibody specific to TGF- ⁇ protein.
- the expression level of TGF- ⁇ can be measured, for example, by the method indicated below.
- DDR1-expressing cells such as A549, NCI-H1993, SK-MES-1, Panc-1, MFE-280, HCT-116, BT474, ZR-75-1, T47D or BxPC3 are stimulated with collagen.
- Fibroblasts such as MRC5 may be co-cultured at this time.
- RNA is then extracted from the cells and after carrying out a reverse transcription reaction to cDNA, the amount of TGF- ⁇ mRNA is measured by RT-PCR using a primer specific to TGF- ⁇ . More specifically, the expression level of TGF- ⁇ can be measured according to the method described in Example 8.
- Cells in the present invention are preferably cancer cells, and more preferably cancer cells that express DDR1.
- the cells are particularly preferably cancer cells that express higher levels of DDR1 than normal cells.
- Such cells can be selected by gene-level analyses such as RT-PCR or GeneChip analysis using a primer specific to DDR1 gene, or by protein-level analyses such as western blotting or immunohistostaining (IHC) using an antibody specific to DDR1 protein.
- the type of cancer of the cancer cells of the present invention is not particularly limited and include, for example, lung cancer (such as small-cell lung cancer or non-small-cell lung cancer), breast cancer, glioma, ovarian cancer, gastric cancer, pancreatic cancer, esophageal cancer, endometrial cancer, bile duct cancer, colorectal cancer, liver cancer, leukemia, lymphoma, renal cancer, prostate cancer, melanoma, thyroid cancer, bladder cancer, and osteosarcoma.
- lung cancer non-small-cell lung cancer
- breast cancer glioma, ovarian cancer
- gastric cancer pancreatic cancer
- esophageal cancer endometrial cancer
- bile duct cancer colorectal cancer
- lung cancer non-small-cell lung cancer
- breast cancer glioma, ovarian cancer
- gastric cancer pancreatic cancer
- esophageal cancer endometrial cancer
- bile duct cancer colorectal cancer
- liver cancer
- the present invention provides the antibodies described in (a) to (c) below:
- the antibodies described in (a) to (c) above are all antibodies that bind to the stalk domain of DDR1.
- Those skilled in the art are able to determine the nucleotide sequences and amino acid sequences of antibodies produced from hybridomas using methods described in the subsequent examples, and are able to produce recombinant antibodies using known genetic engineering techniques based on those sequences.
- the present invention provides antibodies having a CDR sequence that is identical to a CDR sequence of the antibodies described in (a) to (c) above.
- Antibodies contain six CDRs, which are H chain CDR1, CDR2, and CDR3 and L chain CDR1, CDR2, and CDR3, and only one of these CDRs is required to be identical, more preferably the three CDRs of the H chain or the three CDRs of the L chain are identical, and even more preferably all six CDRs are identical.
- the present invention provides antibodies that compete for binding to DDR1 with an antibody of the present invention.
- “competing for binding to DDR1” refers to a decrease in DDR1 binding activity of an antibody of the present invention when in the presence of a certain anti-DDR1 antibody in an assay system used to measure antibody binding to DDR1. Since such an antibody is thought to be an antibody that binds to an antigenic determinant (epitope) that is identical to that of the antibody of the present invention or is extremely close in proximity to the epitope of the antibody of the present invention, it is useful similarly to the antibody of the present invention.
- the full length of DDR1 protein or the extracellular domain of DDR1 protein may be used to measure binding to DDR1.
- the stalk domain of DDR1 protein may also be used.
- Competition for binding to DDR1 can be measured with an assay system known to those skilled in the art such as a cross-blocking assay.
- a competitive ELISA assay using an enzyme label is a preferable cross-blocking assay.
- Competition for binding to DDR1 can be measured, for example, by the method indicated below. After incubating DDR1 protein coated onto the wells of a microtiter plate in the presence or absence of a test antibody, anti-DDR1 antibody is added to the wells of the microtiter plate. If the test antibody and the anti-DDR1 antibody competed for the binding to DDR1, the amount of anti-DDR1 antibody that binds to DDR1 protein in the wells will decrease.
- the amount of bound antibody can be easily measured by preliminarily labeling the anti-DDR1 antibody.
- the amount of bound antibody can be measured by labeling the anti-DDR1 antibody with biotin and using an avidin-peroxidase conjugate along with a suitable substrate.
- the amount of bound antibody can be measured by radioactive labeling or fluorescent labeling of the anti-DDR1 antibody.
- the amount of bound antibody can be measured with a labeled antibody that specifically recognizes the constant region of antibody derived from those animal species.
- the amount of bound antibody can be measured with a labeled antibody that specifically recognizes each subclass.
- the present invention provides antibodies that bind to an epitope same as that to which an antibody of the present invention binds.
- Antibody epitopes can be identified by the method of synthesizing a group of peptides (e.g., a peptide array) that cover the amino acid sequence of an antigen by mutual overlapping, and measuring binding activity of antibodies to each of the peptides (Poetz, O., et al., Proteomics (2005) 5, 2402-11). Alternatively, identification can also be made by methods such as antigen-antibody crystal structure analysis (Vyas, N.
- an epitope identified in this manner is identical to an epitope to which an antibody of the present invention binds or is in extremely close proximity to an epitope to which the antibody of the present invention binds, since an antibody that binds to that epitope is considered to have binding activity equivalent to that of the antibody of the present invention, it is useful similarly to the antibody of the present invention.
- An “epitope in extremely close proximity” means that the difference in the location of the epitope is preferably within five amino acids, more preferably within four amino acids, even more preferably within three amino acids, particularly preferably within two amino acids, and most preferably one amino acid.
- an antibody that binds to an epitope to which an antibody of the present invention binds can be obtained by a method known to those skilled in the art.
- the antibody can be obtained by a method comprising determining an epitope to which an antibody of the present invention binds using the aforementioned method, and producing an antibody by using a polypeptide having an amino acid sequence contained in that epitope as an immunogen, or by a method comprising determining an epitope of an antibody produced according to ordinary methods and selecting an antibody which binds to the same epitope as an antibody of the present invention does.
- the present invention provides antibodies in which one or more amino acids in the antibody of the present invention have been added, deleted and/or substituted with other amino acids, and which have a binding activity to the stalk domain of DDR1, which binding activity is equivalent to that of the antibody prior to the addition, deletion and/or substitution.
- “having equivalent binding activity to the stalk domain of DDR1” refers to binding activity to the stalk domain of DDR1 of an antibody in which one or more amino acids have been added, deleted and/or substituted with other amino acids being preferably 70% or more, more preferably 80% or more, even more preferably 90% or more, and most preferably 95% or more compared to that of the antibody prior to the addition, deletion and/or substitution. Since such an antibody is thought to have nearly the same properties as the antibody of the present invention, it is useful in the same manner as an antibody of the present invention.
- Addition, deletion and/or substitution of amino acids can be carried out in accordance with techniques known to those skilled in the art, an example of which is site-specific mutagenesis (Hashimoto-Gotoh, T., et al., Gene (1995) 152, 271-275; Zoller, M. J. and Smith, M., Methods Enzymol. (1983) 100, 468-500; Kramer, W., et al., Nucleic Acids Res. (1987) 12, 9441-9456; Kramer W. and Fritz H. J., Methods Enzymol (1987) 154, 350-367; Kunkel, T. A., Proc. Natl. Acad. Sci. USA (1985) 82, 488-492).
- an amino acid is preferably substituted with a different amino acid that maintains the properties of an amino acid side chain.
- amino acid substitutions that maintain the properties of an amino acid side chain include amino acid substitutions within each of the groups of hydrophobic amino acids (A, I, L, M, F, P, W, Y and V), hydrophilic amino acids (R, D, N, C, E, Q, G, H, K, S and T), amino acids having an aliphatic side chain (G, A, V, L, I and P), amino acids having a hydroxyl group-containing side chain (S, T and Y), amino acids having a sulfur atom-containing side chain (C and M), amino acids having a carboxylic acid and amide-containing side chain (D, N, E and Q), amino acids having a base-containing side chain (R, K and H), and amino acids having an aromatic group-containing side chain (H, F, Y and W).
- hydrophobic amino acids A, I, L, M, F, P, W, Y and
- addition, deletion, and/or substitution are carried out, and addition, deletion, and/or substitution are preferably carried out on amino acids not involved in antigen binding or maintaining antibody structure.
- an antibody is divided into constant regions and variable regions, such a position within the constant regions can be easily specified by those skilled in the art.
- variable regions are divided into framework regions and CDR regions, such a position within the framework regions can be specified without excessive burden by those skilled in the art.
- Such a position can also be specified in CDR regions by those skilled in the art.
- the antibody of the present invention may be a polyclonal antibody or a monoclonal antibody, and is preferably a monoclonal antibody.
- a monoclonal antibody can be acquired using known techniques such as the hybridoma method comprising immunizing an animal with an antigen, or the phage display method comprising screening an antibody library.
- the monoclonal antibody of the present invention includes not only antibodies obtained from a clone derived from antibody-producing cells such as hybridomas, but also includes humanized antibodies and chimeric antibodies not derived from hybridomas.
- IgG There are no particular limitations on the antibody subclass. IgG, IgM, IgA, IgD, or IgE are preferable, and IgG is more preferable.
- monoclonal antibody can be acquired, for example, in the manner described below.
- a DDR1 protein serving as antigen is prepared and this is used to immunize an animal in accordance with ordinary immunization methods.
- Immune cells obtained from the immunized animal are fused with known parent cells in accordance with ordinary cell fusion methods to obtain hybridomas.
- a hybridoma that produces the target anti-DDR1 antibody is then selected from the resulting hybridomas by ordinary screening methods. More specifically, monoclonal antibody can be acquired according to the method described in Example 1.
- DDR1 protein used as sensitizing antigen for acquiring the antibody can be obtained by expressing DDR1 gene.
- the nucleotide sequence of human DDR1 gene is already known (GenBank Accession No. NM_013993). Namely, after inserting the gene sequence encoding DDR1 into a known expression vector and transforming suitable host cells, the target DDR1 protein can be purified by known methods from the host cells or culture supernatant thereof. In addition, a purified native DDR1 protein can also be used in the same manner.
- Purified native DDR1 protein can be generated by carrying out purification using several chromatographic procedures, such as ordinary ion chromatography or affinity chromatography, once or multiple times, either alone or in combination.
- a fusion protein can be used as an immunogen by fusing a partial polypeptide containing at least a portion of the stalk domain of DDR1 with a different polypeptide.
- An antibody Fc fragment or peptide tag, or the like can be used to produce a fusion protein for use as an immunogen.
- a vector that expresses a fusion protein can be produced by fusing two or more types of desired genes encoding polypeptide fragments in frame and inserting the fused genes into an expression vector, as previously described.
- DDR1 protein purified in this manner can be used as a sensitizing antigen for the immunization of a mammal.
- a peptide having the sequence of entire stalk domain of DDR1 or containing at least its five consecutive amino acids can be preferably used as a partial peptide.
- Sequences containing at least five consecutive amino acids refer to those preferably containing six or more and more preferably eight or more consecutive amino acids.
- sequences containing at least five or more consecutive amino acids refer to amino acid sequences that are specific to the stalk domain of DDR1 and have antigenicity.
- mice, rats, hamsters, rabbits, chickens, and monkeys can be used for as the immunized animal.
- rodents such as mice, rats, and hamsters are preferable as the immunized animal.
- the animal described above can be immunized with a sensitizing antigen using known methods.
- the mammal is immunized by injecting the sensitizing antigen intraperitoneally or subcutaneously.
- the sensitizing antigen is administered to a mammal several times every four to 21 days.
- the sensitizing antigen is used for immunization after dilution to a suitable dilution ratio with phosphate-buffered saline (PBS), physiological saline, or the like.
- PBS phosphate-buffered saline
- the sensitizing antigen can also be administered with an adjuvant.
- it can be mixed with Freund's complete adjuvant and emulsified for use as the sensitizing antigen.
- a suitable carrier can also be used when immunizing with the sensitizing antigen.
- a partial peptide with a low molecular weight is used as the sensitizing antigen, it is desirable to bind the sensitizing antigen to a carrier protein, such as albumin, keyhole limpet hemocyanin, and the like, for immunization.
- the immune cells are harvested from the mammal and used for cell fusion.
- spleen cells can be used preferably as the immune cells.
- Mammalian myeloma cells are used as the cells to be fused with the immune cells.
- the myeloma cells preferably have a suitable selection marker for screening.
- a selection marker refers to a trait that allows cells to live (or not) under certain culture conditions.
- Known selection markers include hypoxanthine-guanine phosphoribosyl transferase deficiency (hereinafter abbreviated to “HGPRT deficiency”) and thymidine kinase deficiency (hereinafter abbreviated to “TK deficiency”).
- HGPRT deficiency hypoxanthine-guanine phosphoribosyl transferase deficiency
- TK deficiency thymidine kinase deficiency
- Cells deficient in HGPRT or TK are hypoxanthine-aminopterin-thymidine sensitive (hereinafter abbreviated to “HAT sensitivity”).
- HGPRT-deficient cells and TK-deficient cells can both be selected with a medium containing 6-thioguanine, 8-azaguanine (hereinafter abbreviated to “8AG”) or 5′-bromodeoxyuridine.
- 8AG 8-azaguanine
- 5′-bromodeoxyuridine a medium containing 6-thioguanine, 8-azaguanine (hereinafter abbreviated to “8AG”) or 5′-bromodeoxyuridine.
- 8AG 8-azaguanine
- a selection marker referred to as G418 resistance also imparts resistance to 2-deoxystreptamine-type antibiotics (gentamycin analogs) because it is a neomycin-resistance gene.
- myeloma cells that are suitable for cell fusion are known, and examples of myeloma cells that can be used include P3 (P3x63Ag8.653) (J. Immunol. (1979)123, 1548-1550), P3x63Ag8U.1 (Current Topics in Microbiology and Immunology (1978)81, 1-7), NS-1 (Kohler G.& Milstein C., Eur. J. Immunol. (1976)6, 511-519), MPC-11 (Margulies D. H. et al., Cell (1976)8, 405-415), SP2/0 (Shulman M. et al., Nature (1978)276, 269-270), FO (de St. Groth S.
- P3 P3x63Ag8.653
- P3x63Ag8U.1 Current Topics in Microbiology and Immunology (1978)81, 1-7)
- NS-1 Kel
- the fusion of the aforementioned immune cells and myeloma cells can be carried out according to known methods, such as the method of Kohler and Milstein (Kohler G. & Milstein C., Methods Enzymol. (1981)73, 3-46).
- the aforementioned cell fusion can be carried out in an ordinary nutritive culture medium in the presence of a cell fusion promoter.
- cell fusion promoters examples include polyethylene glycol (PEG) and Sendai virus (HVJ).
- An auxiliary agent, such as dimethylsulfoxide, can also be added as desired to further enhance the fusion efficiency.
- the ratio in which the immune cells and myeloma cells are used can be set arbitrarily. For example, there are preferably 1-10 times more immune cells than myeloma cells.
- culture media that can be used for the cell fusion described above include MEM and RPMI1640 culture medium, preferably used for the growth of the aforementioned myeloma cell lines, as well as ordinary culture medium used for this type of cell culture.
- a serum supplement such as fetal calf serum (FCS), can also be added to the culture medium.
- Cell fusion is carried out to form target fused cells (hybridomas) by thoroughly mixing predetermined amounts of the immune cells and myeloma cells in the culture medium and then mixing in PEG solution, prewarmed to about 37° C.
- PEG with an average molecular weight of about 1000-6000, for example, can normally be added at a concentration of 30%-60% (w/v).
- the cell fusion agents and other agents not amenable to hybridoma growth are removed by the repeated sequential addition of a suitable culture medium, as indicated above, centrifugation, and the removal of the supernatant.
- the hybridomas thus obtained can be selected with a selective culture medium corresponding to the selection marker possessed by the myeloma used for cell fusion.
- HGPRT- or TK-deficient cells can be selected by culture in HAT culture medium (culture medium containing hypoxanthine, aminopterin, and thymidine).
- HAT culture medium culture medium containing hypoxanthine, aminopterin, and thymidine.
- HAT culture medium culture medium containing hypoxanthine, aminopterin, and thymidine
- HAT culture medium culture medium containing hypoxanthine, aminopterin, and thymidine
- those cells that have successfully fused with normal cells can be selectively grown in HAT culture medium.
- Culture in HAT medium is continued for an adequate amount of time for cells other than the target hybridomas (nonfused cells) to die.
- the target hybridomas can generally be selected by culture for several days to several weeks. Next, screening and monocloning for a hybrid
- Screening and monocloning for a target antibody is preferably carried out with a known screening method based on an antigen-antibody reaction.
- an antigen is bound to a carrier, such as polystyrene beads or a commercially available 96-well microtiter plate, and reacted with the culture supernatant of the hybridoma.
- the carrier is then washed, and reacted with an enzyme-labeled secondary antibody or the like.
- an antibody that reacts with the sensitizing antigen is present in the culture supernatant, the secondary antibody binds to the carrier through this antibody.
- whether or not the target antibody is present in the culture supernatant can be determined by detecting the secondary antibody bound to the carrier.
- a hybridoma producing the desired antibody, which can bind to the antigen can be cloned by a method such as limiting dilution.
- the antigen used for immunization or a substantially equivalent DDR1 protein can be used preferentially as the antigen.
- a target antibody can also be obtained by sensitizing human lymphocytes with the antigen.
- human lymphocytes are first sensitized with DDR1 protein in vitro.
- the immunosensitized lymphocytes are then fused to a suitable fusion partner.
- Myeloma cells of human origin with the ability to divide continuously, for example, can be used as the fusion partner (see Japanese Patent Application Kokoku Publication No. (JP-B) H1-59878 (examined, approved Japanese patent application published for opposition)).
- JP-B Japanese Patent Application Kokoku Publication No.
- An anti-DDR1 human antibody can also be obtained by immunizing DDR1 protein as the antigen to a transgenic animal with the entire repertoire of human antibody genes.
- Antibody-producing cells of the immunized animal can be immortalized by treatments such as fusion with a suitable fusion partner or infection with Epstein-Barr virus.
- a human antibody can also be isolated from immortalized cells obtained in this manner (WO 94/25585, WO 93/12227, WO 92/03918, and WO 94/02602). Cells producing antibodies with target reaction specificity can also be cloned by cloning the immortalized cells.
- the immune system of the animal recognizes human DDR1 as foreign.
- a human antibody directed against human DDR1 can easily be obtained.
- a hybridoma producing a monoclonal antibody prepared in this manner can be subcultured in ordinary culture medium.
- the hybridoma can also be stored for an extended period of time in liquid nitrogen.
- the hybridoma can be cultured in accordance with ordinary methods to obtain the target monoclonal antibody from its culture supernatant.
- the monoclonal antibody can be produced by administering the hybridoma to a mammal compatible with it to allow the hybridoma to grow, using the resulting ascites as the monoclonal antibody.
- the former method is suitable for obtaining highly pure antibody.
- an antibody encoded by antibody genes cloned from antibody-producing cells can also be used.
- Cloned antibody genes can be expressed as antibody by incorporating them in a suitable vector and introducing the vector into a host. Methods for isolating the antibody genes, introducing them into a vector, and transforming host cells with it have already been established (Vandamme, A. M. et al., Eur. J. Biochem. (1990) 192, 767-775).
- a cDNA encoding a variable region (V region) of the anti-DDR1 antibody can be obtained from hybridoma cells producing the anti-DDR1 antibody.
- total RNA is usually first extracted from the hybridoma. Examples of methods for extracting total RNA from cells include guanidine ultracentrifugation (Chirgwin, J. M. et al., Biochemistry (1979) 18, 5294-5299) and the AGPC method (Chomczynski, P. et al., Anal. Biochem. (1987) 162, 156-159).
- mRNA can be purified from the extracted total RNA using an mRNA Purification Kit (GE Healthcare) and the like.
- kits such as the QuickPrep mRNA Purification Kit (GE Healthcare) are commercially available for the extraction of mRNAs directly from cells. These kits can be used to obtain mRNAs from a hybridoma.
- the cDNA encoding an antibody V region can be synthesized from the resulting mRNAs using reverse transcriptase.
- the cDNA can be synthesized with, for example, the AMV Reverse Transcriptase First-strand cDNA Synthesis Kit (Seikagaku Corp.).
- Target cDNA fragments are purified from the resulting PCR product and linked to vector DNA.
- a recombinant vector is thus prepared, and after its introduction into Escherichia coli or the like and the selection of colonies, the desired recombinant vector can be prepared from the E. coli that formed colonies. Whether or not the recombinant vector has the nucleotide sequences of the target cDNA can be confirmed by a known method, such as dideoxynucleotide chain termination sequencing.
- PCR using a primer that amplifies a variable region gene can also be used to obtain a gene encoding a variable region.
- cDNA is synthesized using the extracted mRNA as the template to construct a cDNA library. It is convenient to use a commercially available kit to synthesize the cDNA library. Because the amount of mRNA obtained from only a small number of cells is extremely small, its direct purification results in a low yield. Thus, mRNA is normally purified after the addition of a carrier RNA that clearly does not contain any antibody gene. Alternatively, when it is possible to extract a certain amount of RNA, RNA from only antibody-producing cells can be efficiently extracted. For example, the addition of carrier RNA may not be necessary for the extraction of RNA from 10 or more, 30 or more, or preferably 50 or more antibody-producing cells.
- the antibody gene is then amplified by PCR using the cDNA library thus constructed as the template.
- Primers for amplifying the antibody genes by PCR are known.
- primers to amplify human antibody genes can be designed based on, for example, J. Mol. Biol. (1991) 222, 581-597. These primers have nucleotide sequences that differ for each immunoglobulin subclass.
- PCR is performed with all possibilities considered.
- primers that amplify a gene encoding ⁇ 1 to ⁇ 5 as heavy chains and ⁇ and ⁇ , chains as light chains can be used.
- a primer that anneals to a sequence corresponding to the hinge region is typically used for the primer on the 3′ side.
- a primer corresponding to each subclass can be used for the primer on the 5′ side.
- the PCR products amplified with primers that amplify the genes of each subclass of heavy chains and light chains are made into independent libraries.
- the use of a library synthesized in this manner makes it possible to reconstitute immunoglobulins comprised of combinations of heavy chains and light chains.
- a target antibody can then be screened for using the binding activity of the reconstituted immunoglobulins to antigens as an indicator.
- the cDNA is digested with a restriction enzyme that recognizes a restriction site inserted into both ends of the cDNA.
- a preferred restriction enzyme recognizes and digests a nucleotide sequence that is unlikely to occur in the nucleotide sequence constituting the antibody gene.
- a restriction enzyme that imparts a cohesive end is preferable when inserting a single copy of the digested fragment into a vector in the proper direction.
- An antibody expression vector can be generated by inserting the cDNA encoding V regions of the antibody, digested as described above, into a suitable expression vector.
- a chimeric antibody can be produced by fusing in frame genes encoding an antibody constant region (C region) and genes encoding the V region described above.
- “chimeric antibody” refers to an antibody containing constant and variable regions derived from different organisms.
- xenogeneic chimeric antibodies such as mouse-human antibodies and human-human allogeneic chimeric antibodies, are included in the chimeric antibodies of the present invention.
- a chimeric antibody expression vector can also be constructed by inserting the V region genes into an expression vector that originally had constant regions.
- the recognition sequence of a restriction enzyme that digests the V region gene can be arranged on the 5′ side of an expression vector retaining a DNA encoding the desired antibody constant region (C region).
- a chimeric antibody expression vector is constructed by digesting the two with the same combination of restriction enzymes and then fusing them in frame.
- Antibody genes can be incorporated into an expression vector for expression under the control of an expression control domain to produce the antibody of the present invention.
- An expression control domain for expressing antibody can include, for example, an enhancer and a promoter. Recombinant cells expressing DNA encoding the antibody can then be obtained by transforming suitable host cells with this expression vector.
- DNAs encoding the antibody heavy chain (H chain) and light chain (L chain) can each be incorporated into different expression vectors.
- Vectors incorporating either the H chain or the L chain can express an antibody molecule with the H chain and L chain after the vectors are simultaneously transformed (cotransfected) into the same host cell.
- DNAs encoding H chain and L chain can be incorporated in a single expression vector to transform host cells (WO 94/11523).
- Animal cells, plant cells, or fungal cells can be used when eukaryotic cells are used as hosts.
- animal cells include mammalian cells (such as CHO, COS, 3T3, myeloma, BHK [baby hamster kidney], Hela, C127, HEK293, Bowes melanoma cells, and Vero cells), amphibian cells (such as Xenopus oocytes), and insect cells (such as Drosophila S2, sf9, sf21, and Tn5 cells).
- Known examples of plant cells used in antibody gene expression systems are cells from the genus Nicotiana , such as Nicotiana tabacum . Callus-cultured cells can be used for plant cell transformation.
- fungal cells examples include those of yeast (the genus Saccharomyces , such as Saccharomyces cerevisiae and Saccharomyces pombe , and the methanol-utilizing yeast genus Pichia , such as Pichia pastoris ) and of filamentous fungi (the genus Aspergillus , such as Aspergillus niger ).
- yeast the genus Saccharomyces , such as Saccharomyces cerevisiae and Saccharomyces pombe
- the methanol-utilizing yeast genus Pichia such as Pichia pastoris
- filamentous fungi the genus Aspergillus , such as Aspergillus niger
- Antibody gene expression systems that use prokaryotic cells are also known.
- cells of bacteria such as E. coli, Streptococcus, Staphylococcus, Streptomyces , or Bacillus subtilis can be used in the present invention.
- an expression vector When using mammalian cells, an expression vector can be constructed in which a routinely used useful promoter, the antibody genes to be expressed, and a polyA signal at the 3′ side downstream from it are operably linked.
- a promoter/enhancer is human cytomegalovirus immediate early promoter/enhancer.
- viral promoter/enhancers or mammalian cell promoter/enhancers, such as human elongation factor 1 ⁇ (HEF1 ⁇ ).
- viral promoter/enhancers include retroviruses, polyomaviruses, adenoviruses, and simian virus 40 (SV40).
- SV40 simian virus 40
- an SV40 promoter/enhancer When using an SV40 promoter/enhancer, the method of Mulligan et al. can be used (Nature (1979) 277, 108). An HEF1 ⁇ promoter/enhancer can also be used to easily express a target gene with the method of Mizushima et al. (Nucleic Acids Res. (1990) 18, 5322).
- antibody genes can be expressed by operably linking a routinely used useful promoter, an antibody secretion signal sequence, and the antibody genes to be expressed.
- promoters include the lacZ promoter and the araB promoter.
- the lacZ promoter the method of Ward et al. can be used (Nature (1989) 341, 544-546; FASEB J. (1992) 6, 2422-2427).
- the araB promoter can be used to express target genes according to the method of Better et al. (Science (1988) 240, 1041-1043).
- an example of the antibody secretion signal sequence that can be used for the production into the periplasm of E. coli is the pelB signal sequence (Lei, S. P. et al., J. Bacteriol. (1987) 169, 4379).
- the antibody produced in the periplasm is separated and then structurally refolded using a protein denaturant such as a guanidine hydrochloride or urea so that the antibody has the desired binding activity.
- Examples of useful replication origins that can be inserted into an expression vector include those originating in SV40, polyomaviruses, adenoviruses, and bovine papillomavirus (BPV).
- a selection marker can also be inserted into the expression vector to amplify the number of gene copies in a host cell system. Specific examples of selection markers that can be used include the aminoglycoside transferase (APH) gene, the thymidine kinase (TK) gene, the E. coli xanthine-guanine phosphoribosyl transferase (Ecogpt) gene, and the dihydrofolate reductase (dhfr) gene.
- APH aminoglycoside transferase
- TK thymidine kinase
- Ecogpt E. coli xanthine-guanine phosphoribosyl transferase
- dhfr dihydrofolate reductas
- a target antibody is produced by introducing these expression vectors into host cells and culturing the transformed host cells in vitro or in vivo. Culture of the host cells is carried out in accordance with known methods. Examples of culture media that can be used include DMEM, MEM, RPMI1640, and IMDM, and these can be used in combination with a serum supplement such as FCS.
- the present invention relates to antibodies produced by culturing host cells that have been transformed in this manner. This includes, for example, an antibody that has been collected from a culture supernatant and the like after having cultured transformed host cells.
- the present invention provides a method for producing an antibody that comprises a step of culturing transformed host cells and collecting antibody.
- collection of antibody in this production method comprises collection of the culture medium or culture supernatant.
- the antibody of the present invention is produced within cells, the antibody is collected after having first lysed the cells.
- mammals or insects can also be used to produce a recombinant antibody in addition to the aforementioned host cells.
- mammals that can be used include goats, pigs, sheep, mice, and cows (Vicki Glaser, SPECTRUM Biotechnology Applications (1993)).
- transgenic animals can be used. Namely, the antibody can be acquired from an animal inserted with a gene that encodes a target antibody.
- an antibody gene can be constructed in the form of a fused gene by in-frame insertion into a gene that encodes a protein inherently produced in milk. Goat ⁇ -casein, for example, can be used as protein secreted into milk.
- a DNA fragment containing the fused gene inserted with the antibody gene is injected into a goat embryo and the injected embryo is introduced into a female goat.
- the desired antibody can be acquired in the form of a fusion protein with milk protein from milk produced by the transgenic goat (or offspring thereof) born from the goat that received the embryo.
- hormones can be suitably used in the transgenic goat to increase the amount of milk containing the desired antibody produced by the transgenic goat (Ebert, K. M., et al., Bio/Technology (1994) 12, 699-702).
- a silkworm for example, can be used as an insect for producing the antibody of the present invention.
- the target antibody can be obtained from the body fluid of the silkworm by infecting the silkworm with Baculovirus inserted with a nucleic acid encoding the target antibody (Susumu, et al., Nature (1985) 315, 592-4).
- a tobacco plant for example, can be used when using a plant to produce the antibody of the present invention.
- a nucleic acid encoding the target antibody is inserted into a plant expression vector such as pMON530, and this vector is inserted into bacteria such as Agrobacterium tumefaciens .
- the desired antibody can be obtained from the leaves of the tobacco plant by infecting a tobacco plant such as Nicotiana tabacum with the bacteria (Ma, et al., Eur. J. Immunol. (1994) 24, 131-8).
- the antibody expressed and produced as previously described can be isolated from within host cells or outside host cells (such as in a culture medium or milk) and then purified in the form of a substantially pure, homogeneous antibody.
- Antibody separation and purification can be carried out by using known methods ordinarily used to purify protein, either alone or in suitable combinations.
- the antibody can be separated and purified by suitably selecting and combining methods such as ammonium sulfate or ethanol precipitation, acid extraction, chromatographic column, filter, ultrafiltration, salting out, solvent precipitation, solvent extraction, distillation, immunoprecipitation, SDS-polyacrylamide gel electrophoresis, isoelectric focusing electrophoresis, dialysis, or recrystallization (Harlow, E. and Lane, D., Antibodies: A Laboratory Manual (1988), Cold Spring Harbor Laboratory).
- chromatography examples include affinity chromatography, ion exchange chromatography such as anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic (interaction) chromatography, gel filtration, reverse phase chromatography, adsorption chromatography, hydroxyapatite chromatography, and lectin chromatography (Strategies for Protein Purification and Characterization: A Laboratory Course Manual, ed. Daniel R. Marshak, et al. (1996), Cold Spring Harbor Laboratory Press). These chromatography procedures can be carried out using liquid phase chromatography such as HPLC or FPLC.
- columns used in affinity chromatography include a protein A column and protein G column. Examples of protein A columns include Hyper D, POROS, and Sepharose F.F. (manufactured by Pharmacia).
- An antibody can be arbitrarily modified or partially removed of peptide by allowing a suitable protein-modifying enzyme to act thereon either before or after purification, as necessary.
- protein-modifying enzymes include trypsin, chymotrypsin, lysyl endopeptidase, protein kinase, and glucosidase.
- a C region originating in an animal antibody can be used for the C region of a recombinant antibody of the present invention.
- useful mouse antibody H chain C regions include C ⁇ 1, C ⁇ 2a, C ⁇ 2b, C ⁇ 3, C ⁇ , C ⁇ , C ⁇ 1, C ⁇ 2, and C ⁇
- L chain C regions include C ⁇ and C ⁇ .
- useful animal antibodies other than mouse antibodies include rat, rabbit, goat, sheep, camel, and monkey antibodies. The sequences of these antibodies are known.
- the C region can also be modified to improve the stability of the antibody or its production.
- an artificially modified recombinant antibody when administering the antibody to a human, an artificially modified recombinant antibody can be made in order to, for example, lower its antigenicity in humans.
- recombinant antibodies include chimeric antibodies and humanized antibodies.
- Chimeric antibodies refer to antibodies in which variable regions and constant regions of different origins are linked.
- an antibody with heavy chain and light chain variable regions of a mouse antibody and heavy chain and light chain constant regions of a human antibody is a mouse-human xenogeneic chimeric antibody.
- a recombinant vector expressing a chimeric antibody can be prepared by linking inframe DNA encoding variable regions of a mouse antibody with a DNA encoding a constant region of a human antibody and then incorporating it into an expression vector. Recombinant cells transformed with the vector are cultured and the incorporated DNAs are expressed to obtain the chimeric antibody produced in a culture.
- C regions of a human antibody may be used as the C regions of chimeric antibodies and humanized antibodies.
- C ⁇ 1, C ⁇ 2, C ⁇ 3, C ⁇ 4, C ⁇ , C ⁇ , C ⁇ 1, C ⁇ 2, and C ⁇ can be used for the C region in H chains.
- C ⁇ and C ⁇ can be used for the C region in L chains.
- the amino acid sequences of these C regions and the nucleotide sequences that encode them are known.
- a human antibody C region can also be modified to improve the stability of the antibody itself or the antibody production.
- chimeric antibodies are composed of V regions originating from antibodies of an animal other than a human and C regions originating from human antibodies.
- humanized antibodies are composed of complementarity determining regions (CDRs) originating from antibodies of animals other than humans, framework regions (FRs) originating from human antibodies, and C regions originating from human antibodies. Because humanized antibodies have reduced immunogenicity in the human body, they are useful as an active ingredient of a therapeutic agent of the present invention.
- Antibody variable regions are normally composed of three complementarity determining regions (CDRs) flanked by four framework regions (FRs).
- CDR complementarity determining regions
- FRs framework regions
- a CDR is substantially a region that determines the binding specificity of an antibody.
- the amino acid sequences of CDRs are rich in diversity. Conversely, the amino acid sequences that constitute FRs often demonstrate high homology, even among antibodies with different binding specificities. Consequently, it is generally considered that the binding specificity of a certain antibody can be grafted onto another antibody by grafting the CDRs.
- a humanized antibody is also referred to as a “reshaped” human antibody.
- humanized antibodies in which the antibody CDRs of an animal other than a human, such as a mouse, have been grafted onto human antibodies are known.
- General genetic recombination techniques for producing humanized antibodies are also known.
- a specific example of a known method of grafting the CDRs of a mouse antibody to human FRs is overlap extension PCR.
- the overlap extension PCR a nucleotide sequence encoding a CDR of the mouse antibody to be grafted is added to primers used to synthesize a human antibody FR. Primers are prepared for each of the four FRs.
- the nucleotide sequences to be linked are designed so that they are mutually connected in frame.
- Human FRs are individually synthesized by specific primer sets.
- products are obtained in which a DNA that encodes a mouse CDR has been added to each FR.
- the nucleotide sequences encoding mouse CDRs of the products are designed to overlap one another.
- a complementary-strand synthesis reaction is then carried out by annealing the overlapping CDR portions of the above-mentioned products. As a result of this reaction, human FRs are linked through the mouse CDR sequence.
- a vector for expressing the humanized antibody can then be prepared by inserting the DNA obtained in the manner described above and DNA encoding a human antibody C region into an expression vector so that they are fused in frame.
- the humanized antibody is then produced in a culture of cultured cells by introducing the expression vector into a host to establish recombinant cells, followed by culturing the recombinant cells and expressing the DNA encoding the humanized antibody (EP 239400 and WO 96/02576).
- FRs of a human antibody can be preferentially selected so that the CDRs form a favorable antigen-binding site when linked through the CDRs, by qualitatively or quantitatively measuring and evaluating its binding activity to the antigen of the humanized antibody prepared in the manner described above.
- Amino acid residues of the FRs can also be substituted as necessary, so that the CDRs of the reshaped human antibody form a suitable antigen-binding site.
- an amino acid sequence mutation can be introduced into FRs by applying PCR used to graft the mouse CDRs to the human FRs.
- a mutation of a partial nucleotide sequence can be introduced into a primer that anneals to the FR.
- a mutated nucleotide sequence is introduced into the FR synthesized with such a primer.
- a mutant FR sequence with a desired property can be selected by measuring and evaluating the binding activity of the amino-acid-substituted mutant antibody to the antigen, using the method described above (Sato, K. et al., Cancer Res. (1993) 53, 851-856).
- human lymphocytes are sensitized with the desired antigen or cells expressing the desired antigen in vitro.
- the desired human antibody with binding activity for the antigen can be acquired by fusing the sensitized lymphocytes to human myeloma cells (JP-B H1-59878).
- U266 cells for example, can be used as the human myeloma cells, to serve as the fusion partner.
- a desired human antibody can also be acquired by immunizing with the desired antigen a transgenic animal with the repertoire of human antibody genes (WO 93/12227, WO 92/03918, WO 94/02602, WO 94/25585, WO 96/34096, and WO 96/33735).
- technologies by which human antibodies can be acquired by panning, using a human antibody library are also known.
- the V region of a human antibody can be expressed on the surface of a phage in the form of a single-chain antibody (scFv) using the phage display method, thus allowing the selection of a phage that binds to an antigen.
- the V region sequence is fused in frame to the sequence of the C region of the desired human antibody, and is then inserted into a suitable expression vector to prepare an expression vector.
- the human antibody can be acquired by introducing the expression vector into the preferred expression cells, as described above, and expressing the gene encoding the human antibody.
- the antibodies of the present invention include not only bivalent antibodies as represented by IgG, but also monovalent antibodies or polyvalent antibodies as represented by IgM, as long as they bind to the stalk domain of DDR1.
- the polyvalent antibodies of the present invention include those with the same antigen-binding sites, and those in which some or all of the antigen-binding sites are different.
- the antibody of the present invention may be a bispecific antibody provided it binds to the stalk domain of DDR1.
- a bispecific antibody refers to an antibody having variable regions that recognize different epitopes within the same antibody molecule, and the epitopes may be present in different molecules or may be present in the same molecule.
- a bispecific antibody can also have antigen-binding sites that recognize different epitopes of the stalk domain of DDR1.
- the bispecific antibody can also be that in which one of the recognition sites recognizes the stalk domain of DDR1 while the other recognition site recognizes an antigen other than DDR1.
- an antigen other than DDR1 may be, for example, an antigen that is specifically expressed on the cell surface of target cancer cells in the same manner as DDR1, or a cytotoxic substance or a surface antigen of immune cells such as T cells.
- antibody includes these antibodies as well.
- bispecific antibody can be produced by binding two types of antibodies having different recognized antigens.
- the bound antibodies may respectively be one-half of a molecule of antibody having an H chain and L chain, or may be one-fourth of antibody composed of H chain only.
- bispecific antibody-producing fused cells can be produced by fusing hybridomas that produce different monoclonal antibodies.
- bispecific antibody can also be produced using genetic engineering techniques.
- the antibody of the present invention may be a conjugated antibody bound to various types of molecules such as polymeric substances for example polyethylene glycol (PEG) or hyaluronic acid, fluorescent substances, luminescent substances, or enzymes.
- PEG polyethylene glycol
- hyaluronic acid fluorescent substances
- luminescent substances luminescent substances
- enzymes enzymes
- the present invention provides an antibody obtained by lowering the molecular weight of the antibody of the present invention.
- Minibodies include antibody fragments in which a portion of the whole antibody (such as whole IgG) is deleted. Partial deficiencies in antibody molecules are permitted as long as it binds to the stalk domain of DDR1.
- the antibody fragment of the present invention preferably comprises one or both of the heavy chain variable regions (VH) and light chain variable regions (VL).
- the amino acid sequences of VH or VL can comprise additions, deletions and/or substitutions.
- a portion of one or both of VH and VL can be deleted as long as it binds to the stalk domain of DDR1.
- the antibody fragments may also be chimerized or humanized. Specific examples of antibody fragments include, for example, Fab, Fab′, F(ab′)2, and Fv.
- minibodies include Fab, Fab′, F(ab′)2, Fv, scFV (single-chain Fv), diabody, sc(Fv)2 (single-chain (Fv)2), etc.
- Polymers of these antibodies are also included in the minibodies of the present invention.
- Antibody fragments can be produced by digesting an antibody with an enzyme.
- enzymes used to produce antibody fragments include papain, pepsin, plasmin, etc.
- DNAs encoding these antibody fragments can be constructed, introduced into an expression vector, and then expressed in suitable host cells (see, for example, Co M. S. et al., J. Immunol. (1994)152, 2968-2976, Better M. & Horwitz A. H., Methods in Enzymology (1989)178, 476-496, Pluckthun A. & Skerra A., Methods in Enzymology (1989)178, 497-515, Lamoyi E., Methods in Enzymology (1986)121, 652-663, Rousseaux J. et al., Methods in Enzymology (1986)121, 663-669, Bird R. E. & Walker B. W., Trends Biotechnol. (1991)9, 132-137).
- Digestive enzymes cleave a specific position of an antibody to yield an antibody fragment with a specific structure, as indicated below. Meanwhile, an arbitrary portion of an antibody can be deleted by applying genetic engineering techniques.
- An scFv is obtained by linking the VH and VL of an antibody.
- the VH and VL are linked through a linker, preferably a peptide linker (Huston, J. S. et al., Proc. Natl Acad. Sci. U.S.A. (1988) 85, 5879-5883).
- the VH and VL in an scFv may be derived from any antibody described as an antibody herein.
- There is no particular limitation on the peptide linkers that link the V regions For example, any arbitrary single-chain peptide comprising about three to 25 residues can be used as a linker.
- the V regions can be linked by, for example, the PCR method described above.
- a DNA encoding the entire or desired partial amino acid sequence of the DNA sequence encoding the H chain or the H chain V region of an antibody, and a DNA sequence encoding the L chain or the L chain V region of an antibody are used as templates.
- DNA encoding the V regions of the H chain and that encoding L chain are both amplified by the PCR method using primers with sequences corresponding to the sequences at both ends of the DNA to be amplified.
- DNA encoding the peptide linker portion is prepared.
- the DNA encoding the peptide linker can also be synthesized by PCR.
- Nucleotide sequences that can link the amplification products of each separately synthesized V region are added to the 5′ side of the primers used at this time.
- a PCR reaction is carried out using the “VH DNA”, the “peptide linker DNA”, and the “VL DNA” together with the primers for the assembly PCR.
- the primers for the assembly PCR consist of a combination of a primer that anneals to the 5′ side of the “VH DNA” and a primer that anneals to the 3′ side of the “VL DNA”. Therefore, the primers for the assembly PCR consist of a primer set that can amplify the DNA encoding the entire sequence of the scFv to be synthesized.
- nucleotide sequences that can link to each V region DNA are added to the “peptide linker DNA”. As a result, these DNAs are linked together and the full length of scFv is finally produced as an amplification product of the primers used for the assembly PCR.
- an expression vector comprising the DNA and recombinant cells transformed with the expression vector can be acquired with ordinary methods.
- the scFv can also be acquired by expressing the DNA encoding the scFv in cultures of the resulting recombinant cells.
- Diabodies refer to bivalent minibodies constructed by gene fusion (Holliger, P., et al., Proc. Natl. Acad. Sci. USA (1993) 90, 6444-6448; EP404097; WO93/11161).
- Diabodies are dimers composed of two polypeptide chains. Normally, in each of the polypeptide chains that compose dimers, VL and VH are bound by a linker in the same chain.
- Linkers of the polypeptide chains in diabodies are typically sufficiently short to prevent mutual binding between VL and VH within the same chain. More specifically, the amino acid residues that compose the linkers are preferably 2 to 12 residues, more preferably 3 to 10 residues, and particularly preferably about 5 residues. Consequently, the VL and VH encoded on the same polypeptide chain are unable to form scFv and dimerize so as to form two Fv between different polypeptide chains. As a result, diabodies have two antigen-binding sites.
- sc(Fv)2 are minibodies in which two VH and two VL are bound with a linker and the like to make it single-stranded (Hudson, P. J. and Kortt, A. A., J. Immunol. Methods (1999) 231, 177-189).
- sc(Fv)2 can be produced by, for example, connecting two scFv with a linker. Alternatively, they can also be produced by connecting two VH and two VL via linkers, using the N-terminal side of a single-stranded polypeptide as a starting point, in the order of [VH]-[linker]-[VL]-[linker]-[VH]-[linker]-[VL].
- the order of the two VH and two VL is not particularly limited to the order indicated above, and they may be arranged in any order. Examples of those arrangements are indicated below.
- the multiple linkers may be of the same type or of different types.
- Peptide linkers are preferred in the present invention.
- the length of the peptide linkers There is no particular limitation on the length of the peptide linkers, and the length can be suitably selected by those skilled in the art according to the purpose of use.
- the number of amino acid residues constituting a peptide linker ranges from one to 100 amino acids, preferably from three to 50 amino acids, more preferably from five to 30 amino acids, and particularly preferably from 12 to 18 amino acids (for example, 15 amino acids).
- the amino acid sequence constituting a peptide linker can be any arbitrary sequence as long as it does not inhibit the binding function of the scFv.
- V regions can be linked using a synthetic chemical linker (chemical cross-linking agent).
- Cross-linking agents ordinarily used to cross-link peptide compounds and such can be used in the present invention.
- cross-linking agents that can be used include N-hydroxysuccinimide (NHS), disuccinimidylsuberate (DSS), bis(sulfosuccinimidyl)suberate (BS3), dithiobis(succinimidylpropionate) (DSP), dithiobis(sulfosuccinimidylpropionate) (DTSSP), ethyleneglycol bis(succinimidylsuccinate) (EGS), ethyleneglycol bis(sulfosuccinimidylsuccinate) (sulfo-EGS), disuccinimidyl tartrate (DST), disulfosuccinimidyl tartrate (sulfo-DST), bis[2-(succinimidooxycarbony
- the present invention provides antibodies in which a cytotoxic agent is linked to the antibody of the present invention.
- a cytotoxic agent refers to a substance that suppresses cell proliferation or induces cell death by inhibiting cell function.
- cytotoxic agents include chemotherapeutic agents, toxins, cytokines, enzymes, and radioisotopes.
- Enzymes include those that do not have cytotoxic activity, but can be used for the purpose of demonstrating cytotoxicity such as by activating a prodrug, for antibody-directed enzyme prodrug therapy (ADEPT).
- Cytotoxic agents can be linked to the antibody of the present invention through a covalent bond by using a chemical modification technique. Methods for chemically modifying antibodies have already been established in this field (as in, for example, U.S. Pat. No. 5,057,313 and U.S. Pat. No.
- the cytotoxic agent in the case the cytotoxic agent is a protein, it can be linked with the antibody of the present invention in the form of a fusion protein.
- Production of fusion protein can be carried out using a technique known to persons skilled in the art by linking a polynucleotide encoding the antibody of the present invention with a polynucleotide encoding a cytotoxic agent in frame, inserting into an expression vector, and expressing in a host.
- the antibody of the present invention and a cytotoxic agent may be linked directly or may be linked through a peptide linker as previously described.
- the present invention provides a nucleic acid that encodes the antibody of the present invention.
- the present invention provides a vector containing a nucleic acid encoding the antibody of the present invention.
- a vector containing a nucleic acid encoding the antibody of the present invention.
- the vector can be used as long as it is able to stably retain an inserted nucleic acid, and various commercially available vectors can be used.
- vectors used for gene cloning include M13 vectors and pUC vectors.
- an expression vector is particularly useful.
- the expression vector is particularly useful.
- the expression vector is particularly useful.
- the expression vector is a vector that expresses polypeptide in vitro, in Escherichia coli , in cultured cells, or in a biological body.
- vectors for in vitro expression examples include pBEST vector (Promega Inc.), examples of vectors for expression in Escherichia coli include pGEX, pET, and pBluescript vectors (Stratagene Corp.), examples of vectors for expression in cultured cells include pME18S-FL3 vector (GenBank Accession No. AB009864), examples of vectors for expression in animal cells include pcDNA, and examples of vectors for expression in a biological body include pME18S vector (Mol. Cell. Biol. 8:466-472 (1988)). Insertion of the nucleic acid of the present invention into a vector can be carried out using, for example, the In-Fusion Advantage PCR Cloning Kit (Clontech Laboratories, Inc.).
- the present invention provides host cells that retain the aforementioned vector.
- host cells There are no particular restrictions on the host cells, and various host cells can be suitably used corresponding to the particular purpose, examples of which include Escherichia coli (such as JM109, DH5 ⁇ or BL21 (DE3)) and various animal cells (such as CHO or COS).
- Escherichia coli such as JM109, DH5 ⁇ or BL21 (DE3)
- various animal cells such as CHO or COS
- the host cells can be used as a production system for producing or expressing the antibody of the present invention.
- the production system includes in vitro and in vivo production systems.
- a technique known to those skilled in the art can be used to insert a vector into host cells, examples of which include the calcium chloride method, calcium phosphate method, DEAE dextran method, methods using cationic liposome DOTAP (Boehringer Mannheim), electroporation, lipofection, methods using lipofectamine (Gibco-BRL Inc.), and micro-injection.
- the entire process from gene insertion to polypeptide expression can be carried out using the Free Style 293 Expression System (Invitrogen Corp.).
- the present invention provides a hybridoma that produces antibody that binds to the stalk domain of DDR1.
- the present invention provides the hybridoma described in any of (a) to (c) below:
- the hybridomas of (a) to (c) above all produce an antibody that binds with the stalk domain of DDR1.
- the hybridomas of (a) to (c) above produce an antibody that suppresses cell proliferation, antibody that inhibits cell migration, antibody that inhibits phosphorylation of DDR1 in cells, antibody that is taken up into cells, antibody that decreases the expression level of DDR1 in cells, and/or antibody that decreases the expression level of TGF- ⁇ in cells.
- the present invention provides an agent for treating or preventing cancer that contains the antibody of the present invention as an active ingredient.
- treating refers to obtaining a pharmacological and/or physiological effect.
- the effect can be preventive in terms of completely or partially preventing proliferation and metastasis of cancer cells or symptoms attributable to cancer, and can be also therapeutic in terms of completely or partially treating cancer symptoms.
- “treating” includes all cancer therapy performed in mammals and particularly in humans. Moreover, it also includes prevention of the onset of cancer in subjects in whom cancer factors are present but have not yet been diagnosed with cancer, suppression of the progression and symptoms of cancer, and alleviation of the progression and symptoms of cancer.
- the antibody of the present invention can be developed as an active ingredient of a cancer therapeutic or preventive agent since it has useful characteristics for suppressing proliferation, infiltration, and metastasis of cancer cells, such as activity that suppresses cell proliferation, activity that inhibits cell migration, activity that inhibits phosphorylation of DDR1 in cells, activity that is taken up into cells, activity that decreases the expression level of DDR1 in cells, and/or activity that decreases the expression level of TGF- ⁇ in cells.
- the antibody of the present invention can be used in a method for treating cancer by administering to a subject that has been diagnosed with cancer.
- the diagnosis preferably uses as an indicator the expression level of DDR1 in a biological sample obtained from the subject, and an increase in the expression level compared to the normal control level of DDR1 suggests onset of cancer in the subject.
- cancer targeted by the pharmaceutical agent of the present invention is preferably a cancer that expresses DDR1 and more preferably a cancer that expresses DDR1 at a higher level than normal.
- a cancer can be selected by gene-level analyses such as RT-PCR or GeneChip analysis using a primer specific to DDR1 gene, or by protein-level analyses such as western blotting or immunohistostaining (IHC) using an antibody specific to DDR1 protein.
- lung cancer such as small-cell lung cancer or non-small-cell lung cancer
- breast cancer such as small-cell lung cancer or non-small-cell lung cancer
- gastric cancer pancreatic cancer
- esophageal cancer endometrial cancer
- bile duct cancer colorectal cancer
- liver cancer leukemia, lymphoma, renal cancer, prostate cancer, melanoma, thyroid cancer, bladder cancer, and osteosarcoma
- lung cancer non-small-cell lung cancer
- breast cancer glioma, ovarian cancer
- gastric cancer pancreatic cancer
- esophageal cancer endometrial cancer
- bile duct cancer colorectal cancer
- liver cancer leukemia, lymphoma, renal cancer, prostate cancer, melanoma
- thyroid cancer bladder cancer
- osteosarcoma Preferable examples include lung cancer (non-small-cell lung cancer), breast cancer, glioma, ovarian cancer, gastric cancer, pancreatic cancer, esophageal cancer
- the present invention relates to an agent for suppressing cell proliferation, an agent for inhibiting cell migration, an agent for inhibiting phosphorylation of DDR1 in cells, an agent for suppressing expression level of DDR1 in cells, or an agent for suppressing expression level of TGF- ⁇ in cells, which contains an antibody of the present invention as an active ingredient.
- the pharmaceutical agent of the present invention can further contain a cytotoxic agent.
- the pharmaceutical agent containing an antibody of the present invention as an active ingredient can also be expressed as a method for treating or preventing cancer, a method for suppressing cell proliferation, a method for inhibiting cell migration, a method for inhibiting phosphorylation in cells, a method for suppressing expression of DDR1 in cells, or a method for suppressing expression of TGF- ⁇ in cells, by using the antibody of the present invention.
- the present invention relates to a method for treating or preventing cancer, a method for suppressing cell proliferation, a method for inhibiting cell migration, a method for inhibiting phosphorylation in cells, a method for suppressing expression of DDR1 in cells, or a method for suppressing expression of TGF- ⁇ in cells, comprising administering an effective amount of the antibody of the present invention to a target animal.
- the target animal is preferably a mammal, and most preferably a human.
- a cytotoxic agent can further be administered in these methods of the present invention.
- the use of the antibody of the present invention to produce the pharmaceutical agent of the present invention can also be expressed as the antibody of the present invention used in the treatment or prevention of cancer, suppression of cell proliferation, inhibition of cell migration, inhibition of phosphorylation in cells, suppression of expression of DDR1 in cells, or suppression of expression of TGF- ⁇ in cells.
- the agent for treating or preventing cancer of the present invention can also be administered by formulating in accordance with known pharmaceutical methods in addition to administering directly to a subject (such as a patient) (see, for example, Remington's Pharmaceutical Science, latest edition, Mark Publishing Company, Easton, USA).
- the pharmaceutical agent of the present invention can be formulated by combining the antibody of the present invention with other pharmaceutical ingredients as necessary.
- pharmaceutically acceptable carriers or additives may be contained together.
- the pharmaceutical agent of the present invention can be used parenterally in the form of an injection preparation of a sterile solution or suspension with water or other pharmaceutically acceptable liquid.
- Drug forms for oral administration or parenteral administration, and production methods thereof, are well known to persons skilled in the art, and can be produced in accordance with ordinary methods by mixing a pharmaceutically acceptable carrier and the like with the pharmaceutical agent of the present invention.
- examples of carriers include, but are not limited to, sterilized water, physiological saline, vegetable oils, emulsifiers, surfactants, excipients, vehicles, colorants, fragrances, preservatives, antiseptics, stabilizers, buffers, suspension agents, isotonic agents, binders, disintegration agents, lubricants, fluidity promoters, flavoring agents, and correctives, and other routinely used carriers can also be suitably used.
- the pharmaceutical agent of the present invention may be formulated by suitably combining and mixing these ingredients in the form of unit doses required for carrying out commonly recognized drug development. The amount of active ingredient in these preparations is set so as to obtain a suitable volume within an instructed range.
- the pharmaceutical agent of the present invention can be administered orally or parenterally, and it is preferably administered parenterally, and specific examples include injection administration, transnasal administration, transpulmonary administration, and transcutaneous administration.
- injection administration include intravenous administration, intramuscular administration, intraperitoneal administration, and subcutaneous administration.
- the dosage can be suitably selected, for example, within the range of 0.0001 mg to 1,000 mg per kilogram of body weight of the patient, or within the range of 0.001 mg to 10,000 mg per patient, although not limited thereto.
- the administered subject is a mammal and preferably a human.
- the present invention provides a kit containing the antibody or pharmaceutical agent of the present invention, and a kit for use in the various methods of the present invention.
- the kit of the present invention contains the antibody or pharmaceutical agent of the present invention.
- the kit of the present invention can further contain instructions and the like describing the method of use in the form of a package.
- Hamster ovary cells (CHO (dhfr ⁇ ) cells) were transfected with the expression vector for a fusion protein (hDDR1-ECD-mIgG2aFc), in which the extracellular domain of human DDR1 and an Fc domain of mouse IgG2a were fused, and CHO cell lines that produce hDDR1-ECD-mIgG2aFc protein were cloned with G418 selection.
- the nucleotide sequence and amino acid sequence of hDDR1-ECD-mIgG2aFc are indicated as SEQ ID NOs: 5 and 6, respectively.
- the buffer of the purified protein was replaced with phosphate-buffered physiological saline (pH 7.35-7.65; Takara Bio) and the purified protein was concentrated using an ultrafiltration kit for a molecular weight fraction of 10 kDa (CentriconTM, Millipore).
- concentration of the purified protein was calculated from the absorbance at 280 nm using a molar absorption coefficient calculated according to the calculation formula of the document (Pace C. N. et al., Protein Sci. (1995) 4:2411-2423).
- mice Male, six weeks old at the start of immunization, Charles River Laboratories Japan
- MRL/lpr mice male, six weeks old at the start of immunization, Charles River Laboratories Japan
- Antigen emulsified with Freund's complete adjuvant H37 Ra, Difco Laboratories
- FIA antigen emulsified with Freund's incomplete adjuvant
- the animals were subsequently immunized three times more at one week intervals. Increases in the serum antibody titer in response to the antigen were confirmed by Enzyme Linked Immunosorbent Assay (ELISA) as indicated in the sections 1-4, followed by a final immunization of intravenous administration of antigen diluted with phosphate-buffered physiological saline (phosphate-buffered saline without calcium ions or magnesium ions, PBS( ⁇ ); Nissui Pharmaceutical) at 10 ⁇ g/head.
- ELISA Enzyme Linked Immunosorbent Assay
- mouse spleen cells and mouse myeloma cells P3X63Ag8U.1 (referred to as P3U1, ATCC CRL-1597) were fused according to ordinary methods using PEG 1500 (Roche Diagnostics).
- the fused cells were cultured in RPMI1640 medium (Invitrogen) containing 10% FBS (Invitrogen) (hereafter referred to as 10% FBS/RPMI1640).
- the fused cells were suspended in semifluid medium (StemCells) followed by the selective culture and colonization of the hybridomas.
- Hybridoma colonies were picked from the medium on the ninth or tenth day after fusion and seeded into a 96-well plate containing HAT selective medium (10% FBS/DMEM, 2 vol % HAT 50 ⁇ concentrate [Dainippon Pharmaceutical] and 5 vol % BM-Condimed H1 [Roche Diagnostics]) at one colony per well. After culturing for 3 to 4 days, the supernatant was collected from each well and hybridomas having binding activity to the extracellular domain of human DDR1 were selected by measuring their binding activity to the aforementioned antigen and to a control protein fused with the Fc domain of mouse IgG2a by ELISA as indicated in Section 1-4.
- HAT selective medium 10% FBS/DMEM, 2 vol % HAT 50 ⁇ concentrate [Dainippon Pharmaceutical] and 5 vol % BM-Condimed H1 [Roche Diagnostics]
- the resulting hybridomas described above were cultured in HAT selective medium using low-IgG FBS (Invitrogen) for the FBS.
- Protein G beads (Pharmacia), in which the solvent was replaced with wash buffer (20 mM sodium acetate buffer, pH 5.0), were added to 20 mL to 50 mL of the culture supernatant at 50 ⁇ L per 10 mL of culture supernatant, followed by mixing by inversion overnight at 4° C. After the Protein G beads had been collected and washed with wash buffer, the antibody was eluted with elution buffer (50 mM sodium acetate buffer, pH 3.3), and was immediately neutralized with neutralizing buffer (Tris-HCl buffer, pH 7.8).
- elution buffer 50 mM sodium acetate buffer, pH 3.3
- the buffer was replaced with phosphate-buffered physiological saline (pH 7.35-7.65; Nissui Pharmaceutical Co., Ltd.) and the purified antibody was concentrated using an ultrafiltration kit for a molecular weight fraction of 10 kDa (AmiconTM, Millipore), followed by sterilization with a 0.22 ⁇ m sterilization filter (Millipore GV, Millipore).
- Binding activity of anti-DDR1 antibody was measured by ELISA indicated below.
- Antigen hDDR1-ECD-mIgG2aFc protein
- coating buffer 100 mM sodium bicarbonate, pH 9.6, 0.02% sodium azide
- control protein fused with the Fc domain of mouse IgG2a was dispensed into a 96-well plate (Nunc-ImmunoTM 96 MicroWellTM MaxiSorpTM plate; Nalge Nunc International) at 80 ⁇ L/well, followed by incubating at least overnight at 4° C.
- tPBSH phosphate-buffered physiological saline containing 0.05 vol % Tween 20
- ⁇ DS-DDR1 protein in which the 32nd to 185th amino acids of human DDR1 are lacking, the corresponding cDNA domain was removed by PCR and a cDNA sequence was inserted into an expression vector pCXND3 so as to fuse the 31st and 186th amino acids in-frame. At this time, a FLAG tag was fused to the carboxyl terminal of human DDR1.
- This expression vector is hereinafter referred to as pCXND3- ⁇ DS-DDR1-FLAG.
- pCXND3 is an expression vector having a cytomegalovirus enhancer and fowl ⁇ -actin-rabbit globin promoter.
- the amino acid sequence of ⁇ DS-DDR1 is shown in SEQ ID NO: 8 and the nucleotide sequence is shown in SEQ ID NO: 7.
- ⁇ Stalk-DDR1 protein in which the 199th to 412th amino acids of human DDR1 are lacking, the corresponding cDNA domain was removed by PCR and a cDNA sequence was inserted into an expression vector pCXND3 so as to fuse the 198th and 413th amino acids in-frame. At this time, a FLAG tag was fused to the carboxyl terminal of human DDR1.
- This expression vector is hereinafter referred to as pCXND3- ⁇ Stalk-DDR1-FLAG.
- the amino acid sequence of ⁇ Stalk-DDR1 is shown in SEQ ID NO: 10 and the nucleotide sequence is shown in SEQ ID NO: 9.
- FL-DDR1 human full-length DDR1
- pCXND3-DDR1-FLAG The amino acid sequence of FL-DDR1 is shown in SEQ ID NO: 12 and the nucleotide sequence is shown in SEQ ID NO: 11.
- FIG. 2( a ) Schematic diagrams of ⁇ DS-DDR1, ⁇ Stalk-DDR1, and FL-DDR1 are shown in FIG. 2( a ) .
- CHO cells 2 ⁇ 10 6 CHO cells were seeded into a 10 cm dish and cultured overnight. On the following day, 24 ⁇ g each of 3 types of expression vectors, pCXND3-DDR1-FLAG, pCXND3- ⁇ DS-DDR1-FLAG, and pCXND3- ⁇ Stalk-DDR1-FLAG were transiently transfected into CHO cells using Lipofectamine 2000 (Invitrogen).
- the CHO cells were washed with PBS after having cultured for 3 days at 37° C. and 5% CO 2 , followed by lysing with cell lysis buffer (100 mM Tris-HCl (pH 7.5), 150 mM NaCl, 5 mM EDTA, 10% glycerol, 1% Triton X-100, PhosSTOP (Roche) and Complete Mini EDTA-Free (Roche)).
- cell lysis buffer 100 mM Tris-HCl (pH 7.5), 150 mM NaCl, 5 mM EDTA, 10% glycerol, 1% Triton X-100, PhosSTOP (Roche) and Complete Mini EDTA-Free (Roche)
- the cell-solution mixture was disrupted with an ultrasonic disrupter (Tomy Seiko Co., Ltd.) followed by centrifuging for 15 minutes at 4° C.
- anti-DDR1 antibodies #115, #27 and #24 all caused immunoprecipitation of ⁇ DS-DDR1, ⁇ Stalk-DDR1 did not immunoprecipitate. Based on the above, the aforementioned anti-DDR1 antibodies were all clearly determined to recognize the Stalk domain of DDR1. Conversely, although 20M102 caused immunoprecipitation of ⁇ Stalk-DDR1, since it did not cause immunoprecipitation of ⁇ DS-DDR1, it was determined to clearly recognize the DS domain of DDR1 ( FIG. 2( b ) ).
- Anti-DDR1 antibody was prepared to 2 mg/mL with PBS and administered into the peritoneal cavity of the mice grafted with human lung cancer twice a week for two weeks at 40 mg/kg. PBS was administered in the same manner for use as a negative control.
- Tumor growth suppressive effect (%) (1 ⁇ amount of tumor growth of antibody-treated group/amount of tumor growth of control group) ⁇ 100
- Tumor volume was expressed as the mean ⁇ standard deviation.
- Statistical analysis consisted of a comparison between the control group and the treated group by the LSD method using the SAS Preclinical Package Ver. 5.0. In addition, reliability of 95% (*: p ⁇ 0.05) was determined to constitute significance.
- Anti-DDR1 antibody #115 demonstrated the most potent tumor growth suppressive effect of 71%.
- Anti-DDR1 antibodies #24 and #27 were observed to demonstrate potent tumor growth suppressive effects of 48% and 61%, respectively.
- 20M102 did not demonstrate tumor growth suppressive effects ( FIG. 3 ).
- the inhibitory activity of anti-DDR1 antibody on collagen-dependent cell migration in human lung carcinoma cell line NCI-H1993 was evaluated using the xCELLigence System (Roche Applied Science). The experimental procedure was carried out in accordance with protocol provided with the system. The aforementioned cells were collected in Cell Dissociation Buffer (Gibco) followed by centrifuging for 5 minutes at 12000 rpm and 4° C. After further washing with PBS (Nacalai Tesque Inc.), the cells were suspended in serum-free medium, and for antibody-treated cells, antibody solution was added so as to be 10 ⁇ g/mL of anti-DDR1 antibody followed by culturing for 30 minutes.
- Cell Dissociation Buffer Gibco
- PBS Nacalai Tesque Inc.
- Culture solution for the lower chamber was prepared with serum-free medium to be 10 ⁇ g/mL of anti-DDR1 antibody and 100 ⁇ g/mL of collagen type 4 (Cellmatrix).
- Each membrane of the upper chamber of a CIM-plate composed of an upper chamber and lower chamber was coated at 40 ⁇ L/well with fibronectin solution (Sigma) adjusted to 5 ⁇ g/mL with PBS.
- Antibody-collagen solution was added to the lower chamber at 160 ⁇ L/well and the upper chamber was combined.
- the number of cells that migrated to the back side of the membrane of the upper chamber was measured on the basis of electrical resistance values with the xCELLigence System placed in an incubator at 37° C. (migration time: 10 hours).
- a group to which only ligand (collagen) was added without adding anti-DDR1 antibody was used as a negative control.
- the inhibitory activity of anti-DDR1 antibody on collagen-dependent cell migration in human lung carcinoma cell line NCI-H1993 was evaluated using the Cultrex Cell Migration Assay Kit (Trevingen).
- the experimental procedure was carried out in accordance with protocol provided with the kit.
- the aforementioned cells were collected in Cell Dissociation Buffer (Gibco) followed by centrifuging for 5 minutes at 12000 rpm and 4° C. After further washing with PBS (Nacalai Tesque Inc.), the cells were suspended in serum-free medium.
- PBS Nacalai Tesque Inc.
- an antibody solution was added thereto so as to be 10 ⁇ g/mL of anti-DDR1 antibody followed by culturing for 30 minutes.
- a culture solution for the lower chamber was prepared with serum-free medium to be 10 ⁇ g/mL of anti-DDR1 antibody and 100 ⁇ g/mL of collagen type 4 (Cellmatrix).
- Each membrane on the bottom of the upper chamber of the Cultrex kit composed of an upper chamber and lower chamber was coated at 40 ⁇ L/well with fibronectin solution (Sigma) adjusted to 5 ⁇ g/mL with PBS.
- Antibody-collagen solution was added to the lower chamber at 150 ⁇ L/well and the upper chamber was combined.
- the antibody-treated cells were allowed to migrate for 19 hours at 37° C. after adding the cells to each well of the upper chamber at 1 ⁇ 10 4 cells/well.
- Human breast cancer cell line T47D cells were washed with PBS( ⁇ ) followed by lysing with cell lysis buffer (Lysis buffer (CST)), 1/100 ⁇ Phosphatase Inhibitor Cocktails 2, 3 (Sigma), 1/100 ⁇ Aprotinin (Sigma) and 1/100 ⁇ PMSF (Sigma)) and freezing at ⁇ 80° C. Subsequently, the cell solution was disrupted with an ultrasonic disrupter (Tomy Seiko Co., Ltd.) followed by centrifuging for 10 minutes at 4° C. (20,000 ⁇ g). The resultant was then suspended in NuPAGE-LDS sample buffer (Invitrogen) and heated for 10 minutes at 70° C. The prepared protein solution was electrophoresed for 1 hour at 20 mA using SuperSepTM Ace 7.5% (Wako Pure Chemical Industries Ltd.).
- CST cell lysis buffer
- Phosphatase Inhibitor Cocktails 2, 3 Sigma
- 1/100 ⁇ Aprotinin Sigma
- the protein electrophoresed with SuperSepTM Ace 7.5% was electrophoretically transferred to a 0.45 ⁇ m polyvinylidene difluoride filter (Immobilon-FL, Millipore) with a transfer buffer (Bio-Rad) over the course of 3 hours at 70 V. Blocking was carried out by washing the filter with TBS (50 mM Tris-HCl (pH 7.6), 150 mM NaCl) and incubating overnight in Blocking One-P/Blocking One (Nacalai Tesque Inc.).
- TBS 50 mM Tris-HCl (pH 7.6), 150 mM NaCl
- the filter was then washed four times for 5 minutes each with TBST (TBS containing 0.05 vol % Tween 20), and incubated for 2 hours at room temperature with anti-DDR1 antibody (Santa Cruz, diluted 1:3000 with Can Get Signal Solution 1 (Toyobo Co., Ltd.)) and anti-pY796DDR1 antibody (rabbit polyclonal antibody to LYAGD Y YRVQG peptide (where Y represents phosphorylated tyrosine) (SEQ ID NO: 15), produced by MBL) (diluted 1:3000 with Can Get Signal Solution 1 (Toyobo Co., Ltd.)).
- the filter was then washed 4 times for 5 minutes each with TBST, and incubated for 1 hour with HRP-labeled anti-rabbit secondary antibody (CST) diluted 1:10,000 with Can Get Signal Solution 2 (Toyobo Co., Ltd.). After washing three times for 5 minutes each with TBST and further washing once for 5 minutes with TBS, the filter was scanned using LAS4000 (Fuji Film Corp.).
- CST HRP-labeled anti-rabbit secondary antibody
- Human breast cancer cell line T47D cells were seeded at 5 ⁇ 10 3 cells/well and cultured for 24 hours at 37° C.
- Anti-DDR1 antibody and MabZAP serum-derived immunoglobulin-derived immunoglobulin-derived immunoglobulin-derived immunoglobulin-derived immunoglobulin-derived immunoglobulin-derived immunoglobulin-derived immunoglobulin-derived immunoglobulin-derived immunoglobulin-derived immunoglobulin-derived immunosorbent assay.
- WST-8 Cell Counting Kit-8, DOJINDO LABORATORIES
- Anti-DDR1 antibody (SantaCruz, diluted 1:3000 with Can Get Signal 1) and anti-actin antibody (SantaCruz, diluted 1:3000 with Can Get Signal 1) were used for the detection antibodies, and incubation with each antibody was carried out for 2 hours at room temperature.
- the filter was washed four times for 5 minutes each with TBST followed by incubating for 1 hour with HRP-labeled anti-rabbit secondary antibody (CST) and HRP-labeled anti-sheep secondary antibody (Invitrogen) diluted 1:10000 with Can Get Signal 2. After washing three times for 5 minutes each with TBST and further washing once for 5 minutes with TBS, the filter was scanned using LAS4000 (Fuji Film Corp.). As a result, antibodies #115 and #24 were observed to decrease the expression level of DDR1 ( FIG. 7 ).
- the inhibitory activity of anti-DDR1 antibody on expression of cancer cell TGF- ⁇ mRNA was measured in a co-culture system of cancer cells and fibroblasts.
- 10,000 cells each of human lung carcinoma cell line NCI-H1993 and mouse fibroblast line MRC5 were seeded into Nano Culture Plates (SCIVAX) at 3,333 cells/well followed by the addition of collagen type I (Cellmatrix) to make a final concentration of 100 ⁇ g/mL and culturing for 24 hours at 37° C.
- RNA was extracted using the RNAeasy 96-Well Kit (Qiagen) and a reverse transcription reaction was carried out using the Transcriptor First Strand cDNA Synthesis Kit (Roche).
- Taqman qRT-PCR was carried out with the LightCycler 480 (Roche) using the Human TGF- ⁇ Probe/Primer Mix (Applied Biosystems) and the Human Actin Probe/Primer Mix (Applied Biosystems).
- Applied Biosystems Human TGF- ⁇ Probe/Primer Mix
- Human Actin Probe/Primer Mix Applied Biosystems
- Measured values were used to calculate relative mRNA expression levels from qRT-PCR Cp values based on a value of 1 for samples not treated with collagen or antibody. As a result, a phenomenon was observed in which rising expression levels of TGF- ⁇ mRNA induced by collagen in cancer cells are inhibited by antibody #115 ( FIG.
- TGF- ⁇ is a marker molecule for which expression is known to rise during epithelial-mesenchymal transition (EMT) that has been reported to act to promote tumorigenesis, and this result suggests the potential for antibody #115 to inhibit EMT induced by collagen via DDR1.
- EMT epithelial-mesenchymal transition
- nucleotide sequence of each isolated DNA fragment was determined with the DNA Sequencer ABI PRISM 3730x1 DNA Analyzer (Applied Biosystems) in accordance with the procedure described in the manual provided, using the BigDye Terminator Cycle Sequencing Kit (Applied Biosystems).
- cDNA sequences encoding the heavy chain and light chain of anti-DDR1 antibody 20M102 described in SEQ ID NOs: 16 to 19 of WO2010/01972 were synthesized and respectively inserted into expression vectors pCXND3 and pCXZD1 using restriction enzyme sites. These are hereinafter referred to as pCXND3-20M102 Heavy Chain and pCXZD1-20M102 Light Chain.
- pCXND3 and pCXZD1 are both expression vectors having a cytomegalovirus enhancer and fowl ⁇ -actin-rabbit ⁇ -globin promoter. Neomycin-resistance gene was inserted into pCXND3 and zeocin-resistance gene was inserted into pCXZD1 as marker genes.
- Antigen human DDR1-ECD-His
- coating buffer 100 mM sodium bicarbonate, pH 9.6
- coating buffer 100 mM sodium bicarbonate, pH 9.6
- Anti-DDR1 antibody was prepared to 2 mg/mL with PBS and administered into the peritoneal cavity of the mice grafted with human lung cancer twice a week for two weeks at 40 mg/kg. PBS was administered in the same manner for use as a negative control.
- Tumor growth suppressive effect (%) (1 ⁇ amount of tumor growth of antibody-treated group/amount of tumor growth of control group) ⁇ 100
- Tumor volume was expressed as the mean ⁇ standard deviation.
- Statistical analysis consisted of a comparison between the control group and the treated group by the LSD method using the SAS Preclinical Package Ver. 5.0. In addition, reliability of 95% (*: p ⁇ 0.05) was determined to constitute significance.
- Anti-DDR1 antibody 20M102 was not observed to demonstrate prominent antitumor effects in the NCI-H1993 model ( FIG. 3 ).
- the present invention made it possible to obtain anti-DDR1 antibodies which could demonstrate potent antitumor effects in vivo even when used alone.
- the present invention enables treatment of tumors such as cancer without using a chemotherapeutic agent, and thus is considered to be beneficial for patients.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Immunology (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Molecular Biology (AREA)
- Genetics & Genomics (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Cell Biology (AREA)
- Epidemiology (AREA)
- Endocrinology (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Microbiology (AREA)
- Mycology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Peptides Or Proteins (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
- [Patent Document 1] WO1995/002187
- [Patent Document 2] WO2006/098465
- [Patent Document 3] WO2010/019702
- [Non-patent Document 1] Johnson J. D. et al., Proc. Natl. Acad. Sci. USA 1993; 90:5677-81
- [Non-patent Document 2] Shintani Y. et al., J. Cell Biol. 2008; 180:1277-89
- [Non-patent Document 3] Curat C. A. et al., J. Biol. Chem. 2001; 276:45952-58
- [Non-patent Document 4] Abdulhussein R. et al., J. Biol. Chem. 2008; 283:12026-12033
- [Non-patent Document 5] Franco C. et al., Circ. Res. 2009; 105:1141-8
- [Non-patent Document 6] Shimada K. et al., Cancer Sci. 2008; 99:39-45
- [Non-patent Document 7] Kim H. G. et al., J. Biol. Chem. 2011; 286:17672-81
- [Non-patent Document 8] Yang S. H. et al., Oncol. Rep. 2010; 24:311-9
- [Non-patent Document 9] Ram R. et al., J. Neuroonco 1.2006; 76:239-48
- [Non-patent Document 10] Kimman M. L. et al., BMC Cancer 2007; 7:1-20
- [Non-patent Document 11] Colas E. et al., Int. J. Cancer 2011; 129:
- [Non-patent Document 12] Heinzelmann-Schwarz V. A. et al., Clin. Cancer Res. 2004; 10:4427-36
- [Non-patent Document 13] Rikova K. et al., Cell 2007; 131:1190-203
- [Non-patent Document 14] Gu T. L. et al., PLoS One 2011; 6:e15640
- [Non-patent Document 15] Yamanaka R. et al., Oncogene 2006; 25:5994-6002
- [Non-patent Document 16] Hidalgo-Carcedo C. et al., Nat. Cell Biol. 2011; 13:49-58
[15] The antibody according to any one of [1] to [14] that is a monoclonal antibody.
[16] The antibody according to any one of [1] to [15] that is a chimeric antibody or humanized antibody.
[17] The antibody according to any one of [1] to [16] that is a minibody.
[18] The antibody according to any one of [1] to [17] that is linked with a cytotoxic agent.
[19] A nucleic acid that encodes the antibody according to any one of [1] to [18].
[20] A vector that comprises the nucleic acid according to [19].
[21] A host cell that retains the vector according to [20].
[22] An antibody collected from a culture supernatant obtained by culturing the cell according to [21].
[23] A hybridoma that produces an antibody that binds to the stalk domain of DDR1.
[24] A hybridoma according to any of the following (a) to (c):
(a) a hybridoma deposited under Accession No. FERM BP-11399 (#115),
(b) a hybridoma deposited under Accession No. FERM BP-11398 (#27), and
(c) a hybridoma deposited under Accession No. FERM BP-11397 (#24).
[25] An agent for treating or preventing cancer, comprising the antibody according to any one of [1] to [18] or [22] as an active ingredient.
[26] The agent for treating or preventing cancer according to [25], wherein the cancer is lung cancer, breast cancer, glioma, ovarian cancer, gastric cancer, pancreatic cancer, esophageal cancer, endometrial cancer, or bile duct cancer.
[27] An agent for suppressing cell growth, comprising the antibody according to any one of [1] to [18] or [22] as an active ingredient.
[28] An agent for inhibiting cell migration, comprising the antibody according to any one of [1] to [18] or [22] as an active ingredient.
[29] An agent for inhibiting phosphorylation of DDR1 in a cell, which comprises the antibody according to any one of [1] to [18] or [22] as an active ingredient.
[30] An agent for suppressing expression level of DDR1 in a cell, which comprises the antibody according to any one of [1] to [18] or [22] as an active ingredient.
[31] An agent for suppressing expression level of TGF-β in a cell, which comprises the antibody according to any one of [1] to [18] or [22] as an active ingredient.
[32] The agent according to any one of [25] to [31], further comprising a cytotoxic agent.
[33] A method for treating or preventing cancer, comprising administration of an effective amount of the antibody according to any one of [1] to [18] or [22] to a mammal.
[34] A method for suppressing cell proliferation, comprising administration of an effective amount of the antibody according to any one of [1] to [18] or [22] to a mammal.
[35] A method for inhibiting cell migration, comprising administration of an effective amount of the antibody according to any one of [1] to [18] or [22] to a mammal.
[36] A method for inhibiting phosphorylation in a cell, comprising administration of an effective amount of the antibody according to any one of [1] to [18] or [22] to a mammal.
[37] A method for suppressing expression of DDR1 in a cell, comprising administration of an effective amount of the antibody according to any one of [1] to [18] or [22] to a mammal.
[38] A method for suppressing expression of TGF-β in a cell, comprising administration of an effective amount of the antibody according to any one of [1] to [18] or [22] to a mammal.
[39] The method according to any one of [33] to [38], further comprising administration of a cytotoxic agent.
[40] A method for producing an antibody, comprising a step of culturing the cell according to [21] and collecting the antibody from the culture supernatant.
[b] An antibody of the present invention for use in a method of treating or preventing cancer, a method of suppressing cell proliferation, a method of inhibiting cell migration, a method of inhibiting phosphorylation in cells, a method of suppressing expression of DDR1 in cells, or a method of suppressing expression of TGF-β in cells.
[c] A process for producing an agent for treating or preventing cancer, an agent for suppressing cell proliferation, an agent for inhibiting cell migration, an agent for inhibiting phosphorylation of DDR1 in cells, an agent for suppressing expression level of DDR1 in cells, or an agent for suppressing expression level of TGF-β in cells, comprising the step of using an antibody of the present invention.
Migration inhibitory activity (%)=(1−number of migrated cells of antibody-treated group/number of migrated cells of control group)×100
Migration inhibitory activity (%)=(1−number of migrated cells of antibody-treated group/number of migrated cells of control group)×100
Claims (11)
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2011-181683 | 2011-08-23 | ||
| JP2011181683 | 2011-08-23 | ||
| PCT/JP2012/071332 WO2013027802A1 (en) | 2011-08-23 | 2012-08-23 | Novel anti-ddr1 antibody having anti-tumor activity |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20140248282A1 US20140248282A1 (en) | 2014-09-04 |
| US9550835B2 true US9550835B2 (en) | 2017-01-24 |
Family
ID=47746540
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/240,057 Active 2033-07-29 US9550835B2 (en) | 2011-08-23 | 2012-08-23 | Anti-DDR1 antibody having anti-tumor activity |
Country Status (4)
| Country | Link |
|---|---|
| US (1) | US9550835B2 (en) |
| EP (1) | EP2749572A4 (en) |
| JP (1) | JP6101205B2 (en) |
| WO (1) | WO2013027802A1 (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10314844B2 (en) | 2017-02-24 | 2019-06-11 | Gilead Sciences, Inc. | Inhibitors of Bruton's tyrosine kinase |
| US10370381B2 (en) | 2017-02-24 | 2019-08-06 | Gilead Sciences, Inc. | Inhibitors of bruton'S tyrosine kinase |
| US12331130B2 (en) | 2019-12-17 | 2025-06-17 | The Board Of Regents Of The University Of Texas System | DDR1 antibodies and uses thereof |
Families Citing this family (81)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2010019702A2 (en) | 2008-08-12 | 2010-02-18 | Oncomed Pharmaceuticals, Inc. | Ddr1-binding agents and methods of use thereof |
| AR092662A1 (en) * | 2012-09-24 | 2015-04-29 | Gilead Sciences Inc | ANTI-DDR1 ANTIBODIES |
| CA2931615A1 (en) | 2013-11-26 | 2015-06-04 | Gilead Sciences, Inc. | Therapies for treating myeloproliferative disorders |
| AU2015206194A1 (en) | 2014-01-20 | 2016-07-28 | Gilead Sciences, Inc. | Therapies for treating cancers |
| TW201639573A (en) | 2015-02-03 | 2016-11-16 | 吉李德科學股份有限公司 | Combination therapies for treating cancers |
| HUE038059T2 (en) | 2015-03-04 | 2018-10-29 | Gilead Sciences Inc | Toll-like receptor modulating 4,6-diamino-pyrido[3,2-d]pyrimidine compounds |
| EP3355875B1 (en) | 2015-10-01 | 2021-09-29 | Gilead Sciences, Inc. | Combination of a btk inhibitor and a checkpoint inhibitor for treating cancers |
| BR112017002594A2 (en) | 2015-12-17 | 2017-12-19 | Gilead Sciences Inc | tank binding kinase inhibitor compounds |
| JP2019510752A (en) | 2016-03-04 | 2019-04-18 | ギリアード サイエンシーズ, インコーポレイテッド | Compositions and combinations of autotaxin inhibitors |
| AU2017248354A1 (en) | 2016-04-08 | 2018-10-04 | Gilead Sciences, Inc. | Compositions and methods for treating cancer, inflammatory diseases and autoimmune diseases |
| WO2017215590A1 (en) | 2016-06-13 | 2017-12-21 | I-Mab | Anti-pd-l1 antibodies and uses thereof |
| US20180036289A1 (en) | 2016-08-04 | 2018-02-08 | Gilead Sciences, Inc. | Cobicistat for use in cancer treatments |
| ES2826748T3 (en) | 2016-09-02 | 2021-05-19 | Gilead Sciences Inc | Derivatives of 4,6-diamino-pyrido [3,2-d] pyrimidine as modulators of Toll-like receptors |
| US10370342B2 (en) | 2016-09-02 | 2019-08-06 | Gilead Sciences, Inc. | Toll like receptor modulator compounds |
| WO2018083237A1 (en) * | 2016-11-03 | 2018-05-11 | Roche Diagnostics Operations Inc. | Novel anti-py520-ddr1 antibodies |
| WO2018083240A1 (en) * | 2016-11-03 | 2018-05-11 | Roche Diagnostics Gmbh | Novel anti-py796-ddr1 antibodies |
| WO2018085069A1 (en) | 2016-11-03 | 2018-05-11 | Gilead Sciences, Inc. | Combination of a bcl-2 inhibitor and a bromodomain inhibitor for treating cancer |
| WO2018083238A1 (en) * | 2016-11-03 | 2018-05-11 | Roche Diagnostics Gmbh | Novel anti-py792-ddr1 antibodies |
| WO2018097977A1 (en) | 2016-11-22 | 2018-05-31 | Gilead Sciences, Inc. | Crystalline forms of a phosphate complex of a bet inhibitor |
| MX391656B (en) | 2017-01-24 | 2025-03-21 | I Mab Biopharma Us Ltd | ANTI-CD73 ANTIBODIES AND THEIR USES. |
| JOP20180040A1 (en) | 2017-04-20 | 2019-01-30 | Gilead Sciences Inc | Pd-1/pd-l1 inhibitors |
| CA3084582A1 (en) | 2017-12-20 | 2019-06-27 | Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. | 2'3' cyclic dinucleotides with phosphonate bond activating the sting adaptor protein |
| CN111566120B (en) | 2017-12-20 | 2023-09-29 | 捷克共和国有机化学与生物化学研究所 | 3' cyclic dinucleotides with phosphonate bonds of activated STING adaptor protein |
| WO2019160882A1 (en) | 2018-02-13 | 2019-08-22 | Gilead Sciences, Inc. | Pd-1/pd-l1 inhibitors |
| TWI833744B (en) | 2018-04-06 | 2024-03-01 | 捷克科學院有機化學與生物化學研究所 | 3'3'-cyclic dinucleotides |
| TWI818007B (en) | 2018-04-06 | 2023-10-11 | 捷克科學院有機化學與生物化學研究所 | 2'3'-cyclic dinucleotides |
| TW202005654A (en) | 2018-04-06 | 2020-02-01 | 捷克科學院有機化學與生物化學研究所 | 2'2'-cyclic dinucleotides |
| CN112041311B (en) | 2018-04-19 | 2023-10-03 | 吉利德科学公司 | PD-1/PD-L1 inhibitors |
| WO2019211799A1 (en) | 2018-05-03 | 2019-11-07 | Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. | 2'3'-cyclic dinucleotide analogue comprising a cyclopentanyl modified nucleotide |
| WO2019217780A1 (en) | 2018-05-11 | 2019-11-14 | Phosphorex, Inc. | Microparticles and nanoparticles having negative surface charges |
| HRP20220215T1 (en) | 2018-05-14 | 2022-04-29 | Gilead Sciences, Inc. | MCL-1 INHIBITORS |
| KR20230159715A (en) | 2018-07-13 | 2023-11-21 | 길리애드 사이언시즈, 인코포레이티드 | Pd-1/pd-l1 inhibitors |
| WO2020072656A1 (en) | 2018-10-03 | 2020-04-09 | Gilead Sciences, Inc. | Imidozopyrimidine derivatives |
| EP3870566A1 (en) | 2018-10-24 | 2021-09-01 | Gilead Sciences, Inc. | Pd-1/pd-l1 inhibitors |
| PE20211655A1 (en) | 2018-10-31 | 2021-08-24 | Gilead Sciences Inc | 6-AZABENZIMIDAZOLE COMPOUNDS SUBSTITUTED AS HPK1 INHIBITORS |
| TWI721624B (en) | 2018-10-31 | 2021-03-11 | 美商基利科學股份有限公司 | Substituted 6-azabenzimidazole compounds |
| KR102808642B1 (en) | 2019-03-07 | 2025-05-14 | 인스티튜트 오브 오가닉 케미스트리 앤드 바이오케미스트리 에이에스 씨알 브이.브이.아이. | 3'3'-cyclic dinucleotide and prodrugs thereof |
| KR102707808B1 (en) | 2019-03-07 | 2024-09-19 | 인스티튜트 오브 오가닉 케미스트리 앤드 바이오케미스트리 에이에스 씨알 브이.브이.아이. | 2'3'-cyclic dinucleotides and prodrugs thereof |
| US11766447B2 (en) | 2019-03-07 | 2023-09-26 | Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. | 3′3′-cyclic dinucleotide analogue comprising a cyclopentanyl modified nucleotide as sting modulator |
| TW202210480A (en) | 2019-04-17 | 2022-03-16 | 美商基利科學股份有限公司 | Solid forms of a toll-like receptor modulator |
| TWI751517B (en) | 2019-04-17 | 2022-01-01 | 美商基利科學股份有限公司 | Solid forms of a toll-like receptor modulator |
| EP3972695A1 (en) | 2019-05-23 | 2022-03-30 | Gilead Sciences, Inc. | Substituted exo-methylene-oxindoles which are hpk1/map4k1 inhibitors |
| US20220305115A1 (en) | 2019-06-18 | 2022-09-29 | Janssen Sciences Ireland Unlimited Company | Combination of hepatitis b virus (hbv) vaccines and pyridopyrimidine derivatives |
| AU2020301161B2 (en) | 2019-06-25 | 2023-10-26 | Gilead Sciences, Inc. | FLT3L-Fc fusion proteins and methods of use |
| WO2021076908A1 (en) | 2019-10-18 | 2021-04-22 | Forty Seven, Inc. | Combination therapies for treating myelodysplastic syndromes and acute myeloid leukemia |
| CA3153636A1 (en) | 2019-10-31 | 2021-05-06 | Forty Seven, Inc. | Anti-cd47 and anti-cd20 based treatment of blood cancer |
| TWI778443B (en) | 2019-11-12 | 2022-09-21 | 美商基利科學股份有限公司 | Mcl1 inhibitors |
| ES3001984T3 (en) | 2019-12-24 | 2025-03-06 | Carna Biosciences Inc | Diacylglycerol kinase modulating compounds |
| BR112022014623A2 (en) | 2020-02-14 | 2022-09-13 | Jounce Therapeutics Inc | ANTIBODIES AND FUSION PROTEINS THAT BIND CCR8 AND USES THEREOF |
| CA3181922A1 (en) | 2020-05-01 | 2021-11-04 | Gilead Sciences, Inc. | Cd73 inhibiting 2,4-dioxopyrimidine compounds |
| TW202302145A (en) | 2021-04-14 | 2023-01-16 | 美商基利科學股份有限公司 | Co-inhibition of cd47/sirpα binding and nedd8-activating enzyme e1 regulatory subunit for the treatment of cancer |
| US20220389394A1 (en) | 2021-05-18 | 2022-12-08 | Gilead Sciences, Inc. | METHODS OF USING FLT3L-Fc FUSION PROTEINS |
| AU2022297367B2 (en) | 2021-06-23 | 2025-04-10 | Gilead Sciences, Inc. | Diacylglyercol kinase modulating compounds |
| JP7651018B2 (en) | 2021-06-23 | 2025-03-25 | ギリアード サイエンシーズ, インコーポレイテッド | Diacylglycerol kinase modulating compounds |
| WO2022271677A1 (en) | 2021-06-23 | 2022-12-29 | Gilead Sciences, Inc. | Diacylglyercol kinase modulating compounds |
| JP7654118B2 (en) | 2021-06-23 | 2025-03-31 | ギリアード サイエンシーズ, インコーポレイテッド | Diacylglycerol kinase modulating compounds |
| EP4423078A1 (en) | 2021-10-28 | 2024-09-04 | Gilead Sciences, Inc. | Pyridizin-3(2h)-one derivatives |
| EP4422756A1 (en) | 2021-10-29 | 2024-09-04 | Gilead Sciences, Inc. | Cd73 compounds |
| US20230220106A1 (en) | 2021-12-08 | 2023-07-13 | Dragonfly Therapeutics, Inc. | Antibodies targeting 5t4 and uses thereof |
| US20230203202A1 (en) | 2021-12-08 | 2023-06-29 | Dragonfly Therapeutics, Inc. | Proteins binding nkg2d, cd16 and 5t4 |
| AU2022417491A1 (en) | 2021-12-22 | 2024-05-23 | Gilead Sciences, Inc. | Ikaros zinc finger family degraders and uses thereof |
| JP2024546851A (en) | 2021-12-22 | 2024-12-26 | ギリアード サイエンシーズ, インコーポレイテッド | IKAROS ZINC FINGER FAMILY DEGRADANT AND USES THEREOF |
| TW202340168A (en) | 2022-01-28 | 2023-10-16 | 美商基利科學股份有限公司 | Parp7 inhibitors |
| US12358887B2 (en) | 2022-03-17 | 2025-07-15 | Gilead Sciences, Inc. | IKAROS Zinc Finger Family degraders and uses thereof |
| KR20240165995A (en) | 2022-03-24 | 2024-11-25 | 길리애드 사이언시즈, 인코포레이티드 | Combination therapy for the treatment of TROP-2 expressing cancers |
| TWI876305B (en) | 2022-04-05 | 2025-03-11 | 美商基利科學股份有限公司 | Combination therapy for treating colorectal cancer |
| PE20250157A1 (en) | 2022-04-21 | 2025-01-22 | Gilead Sciences Inc | KRAS G12D MODULATION COMPOUNDS |
| US20240116928A1 (en) | 2022-07-01 | 2024-04-11 | Gilead Sciences, Inc. | Cd73 compounds |
| US20240091351A1 (en) | 2022-09-21 | 2024-03-21 | Gilead Sciences, Inc. | FOCAL IONIZING RADIATION AND CD47/SIRPa DISRUPTION ANTICANCER COMBINATION THERAPY |
| WO2024107899A1 (en) * | 2022-11-16 | 2024-05-23 | Incendia Therapeutics, Inc. | Methods of treating cancer using anti-ddr1 antibodies |
| AU2023409398A1 (en) | 2022-12-22 | 2025-06-05 | Gilead Sciences, Inc. | Prmt5 inhibitors and uses thereof |
| CN120882725A (en) | 2023-04-11 | 2025-10-31 | 吉利德科学公司 | KRAS-regulated compounds |
| AU2024259556A1 (en) | 2023-04-21 | 2025-10-23 | Gilead Sciences, Inc. | Prmt5 inhibitors and uses thereof |
| US20250042922A1 (en) | 2023-06-30 | 2025-02-06 | Gilead Sciences, Inc. | Kras modulating compounds |
| US20250066328A1 (en) | 2023-07-26 | 2025-02-27 | Gilead Sciences, Inc. | Parp7 inhibitors |
| WO2025024811A1 (en) | 2023-07-26 | 2025-01-30 | Gilead Sciences, Inc. | Parp7 inhibitors |
| US20250109147A1 (en) | 2023-09-08 | 2025-04-03 | Gilead Sciences, Inc. | Kras g12d modulating compounds |
| WO2025054347A1 (en) | 2023-09-08 | 2025-03-13 | Gilead Sciences, Inc. | Kras g12d modulating compounds |
| US20250154172A1 (en) | 2023-11-03 | 2025-05-15 | Gilead Sciences, Inc. | Prmt5 inhibitors and uses thereof |
| WO2025137640A1 (en) | 2023-12-22 | 2025-06-26 | Gilead Sciences, Inc. | Azaspiro wrn inhibitors |
| CN118909125B (en) * | 2024-10-10 | 2025-01-03 | 杭州美赛生物医药科技有限公司 | Anti-DDR1 antibodies and their applications |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1995002187A1 (en) | 1993-07-09 | 1995-01-19 | The Institute Of Cancer Research | Cell growth factor receptors |
| WO2003085125A1 (en) | 2002-04-03 | 2003-10-16 | Agy Therapeutics, Inc. | Use of biomolecular targets in the treatment and visualization of brain tumors |
| WO2006098465A1 (en) | 2005-03-15 | 2006-09-21 | Takeda Pharmaceutical Company Limited | Prophylactic/therapeutic agent for cancer |
| WO2010019702A2 (en) | 2008-08-12 | 2010-02-18 | Oncomed Pharmaceuticals, Inc. | Ddr1-binding agents and methods of use thereof |
Family Cites Families (22)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5156840A (en) | 1982-03-09 | 1992-10-20 | Cytogen Corporation | Amine-containing porphyrin derivatives |
| JPS58201994A (en) | 1982-05-21 | 1983-11-25 | Hideaki Hagiwara | Method for producing antigen-specific human immunoglobulin |
| US5057313A (en) | 1986-02-25 | 1991-10-15 | The Center For Molecular Medicine And Immunology | Diagnostic and therapeutic antibody conjugates |
| GB8607679D0 (en) | 1986-03-27 | 1986-04-30 | Winter G P | Recombinant dna product |
| DE3920358A1 (en) | 1989-06-22 | 1991-01-17 | Behringwerke Ag | BISPECIFIC AND OLIGO-SPECIFIC, MONO- AND OLIGOVALENT ANTI-BODY CONSTRUCTS, THEIR PRODUCTION AND USE |
| GB9015198D0 (en) | 1990-07-10 | 1990-08-29 | Brien Caroline J O | Binding substance |
| DK0585287T3 (en) | 1990-07-10 | 2000-04-17 | Cambridge Antibody Tech | Process for producing specific binding pair elements |
| WO1993012227A1 (en) | 1991-12-17 | 1993-06-24 | Genpharm International, Inc. | Transgenic non-human animals capable of producing heterologous antibodies |
| CA2089661C (en) | 1990-08-29 | 2007-04-03 | Nils Lonberg | Transgenic non-human animals capable of producing heterologous antibodies |
| DE69229477T2 (en) | 1991-09-23 | 1999-12-09 | Cambridge Antibody Technology Ltd., Melbourn | Methods for the production of humanized antibodies |
| ATE207080T1 (en) | 1991-11-25 | 2001-11-15 | Enzon Inc | MULTIVALENT ANTIGEN-BINDING PROTEINS |
| ATE463573T1 (en) | 1991-12-02 | 2010-04-15 | Medimmune Ltd | PRODUCTION OF AUTOANTIBODIES ON PHAGE SURFACES BASED ON ANTIBODIES SEGMENT LIBRARIES |
| CA2131151A1 (en) | 1992-03-24 | 1994-09-30 | Kevin S. Johnson | Methods for producing members of specific binding pairs |
| SG48760A1 (en) | 1992-07-24 | 2003-03-18 | Abgenix Inc | Generation of xenogenetic antibodies |
| US5648267A (en) | 1992-11-13 | 1997-07-15 | Idec Pharmaceuticals Corporation | Impaired dominant selectable marker sequence and intronic insertion strategies for enhancement of expression of gene product and expression vector systems comprising same |
| CA2161351C (en) | 1993-04-26 | 2010-12-21 | Nils Lonberg | Transgenic non-human animals capable of producing heterologous antibodies |
| GB9313509D0 (en) | 1993-06-30 | 1993-08-11 | Medical Res Council | Chemisynthetic libraries |
| AU690171B2 (en) | 1993-12-03 | 1998-04-23 | Medical Research Council | Recombinant binding proteins and peptides |
| EP0770628B9 (en) | 1994-07-13 | 2007-02-28 | Chugai Seiyaku Kabushiki Kaisha | Reconstituted human antibody against human interleukin-8 |
| KR100654645B1 (en) | 1995-04-27 | 2007-04-04 | 아브게닉스, 인크. | Human Antibodies from Immunized Genomous |
| WO1996034096A1 (en) | 1995-04-28 | 1996-10-31 | Abgenix, Inc. | Human antibodies derived from immunized xenomice |
| JP5470532B2 (en) | 2008-07-04 | 2014-04-16 | 株式会社高木化学研究所 | Flame retardant original polyester fiber, flame retardant using the same, and method for producing flame retardant original polyester fiber |
-
2012
- 2012-08-23 EP EP12826213.6A patent/EP2749572A4/en not_active Withdrawn
- 2012-08-23 WO PCT/JP2012/071332 patent/WO2013027802A1/en not_active Ceased
- 2012-08-23 US US14/240,057 patent/US9550835B2/en active Active
- 2012-08-23 JP JP2013530059A patent/JP6101205B2/en active Active
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1995002187A1 (en) | 1993-07-09 | 1995-01-19 | The Institute Of Cancer Research | Cell growth factor receptors |
| WO2003085125A1 (en) | 2002-04-03 | 2003-10-16 | Agy Therapeutics, Inc. | Use of biomolecular targets in the treatment and visualization of brain tumors |
| JP2005521420A (en) | 2002-04-03 | 2005-07-21 | エージーワイ セラピューティクス インコーポレイティッド | Use of biomolecular targets in the treatment and visualization of brain tumors |
| WO2006098465A1 (en) | 2005-03-15 | 2006-09-21 | Takeda Pharmaceutical Company Limited | Prophylactic/therapeutic agent for cancer |
| EP1876186A1 (en) | 2005-03-15 | 2008-01-09 | Takeda Pharmaceutical Company Limited | Prophylactic/therapeutic agent for cancer |
| WO2010019702A2 (en) | 2008-08-12 | 2010-02-18 | Oncomed Pharmaceuticals, Inc. | Ddr1-binding agents and methods of use thereof |
Non-Patent Citations (20)
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10314844B2 (en) | 2017-02-24 | 2019-06-11 | Gilead Sciences, Inc. | Inhibitors of Bruton's tyrosine kinase |
| US10370381B2 (en) | 2017-02-24 | 2019-08-06 | Gilead Sciences, Inc. | Inhibitors of bruton'S tyrosine kinase |
| US12331130B2 (en) | 2019-12-17 | 2025-06-17 | The Board Of Regents Of The University Of Texas System | DDR1 antibodies and uses thereof |
Also Published As
| Publication number | Publication date |
|---|---|
| EP2749572A4 (en) | 2015-04-01 |
| JPWO2013027802A1 (en) | 2015-03-19 |
| EP2749572A1 (en) | 2014-07-02 |
| JP6101205B2 (en) | 2017-03-22 |
| US20140248282A1 (en) | 2014-09-04 |
| WO2013027802A1 (en) | 2013-02-28 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US9550835B2 (en) | Anti-DDR1 antibody having anti-tumor activity | |
| US20250236679A1 (en) | Anti-dll3 antibody | |
| US9175091B2 (en) | Monoclonal antibody capable of binding to anexelekto, and use thereof | |
| JP5808052B2 (en) | Pharmaceutical composition comprising antagonist of EGF family ligand as ingredient | |
| US8722858B2 (en) | Anti-Prominin-1 antibody having ADCC activity or CDC activity | |
| US9920129B2 (en) | Diagnosis and treatment of cancer using anti-ITM2A antibody | |
| US9079957B2 (en) | Diagnosis and treatment of cancer using anti-TMPRSS11E antibody | |
| HK1149767A (en) | Monoclonal antibody capable of binding to anexelekto, and use thereof |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: CHUGAI SEIYAKU KABUSHIKI KAISHA, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ONO, MEI;SANO, YUJI;SUZUKI, TSUKASA;SIGNING DATES FROM 20140310 TO 20140312;REEL/FRAME:032557/0850 |
|
| FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
| MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
| MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |