US9226340B2 - Heating device - Google Patents
Heating device Download PDFInfo
- Publication number
- US9226340B2 US9226340B2 US14/400,328 US201314400328A US9226340B2 US 9226340 B2 US9226340 B2 US 9226340B2 US 201314400328 A US201314400328 A US 201314400328A US 9226340 B2 US9226340 B2 US 9226340B2
- Authority
- US
- United States
- Prior art keywords
- energization
- heater
- temperature
- heating
- housing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000010438 heat treatment Methods 0.000 title claims abstract description 99
- 238000001514 detection method Methods 0.000 claims abstract description 10
- 229910052751 metal Inorganic materials 0.000 description 13
- 239000002184 metal Substances 0.000 description 13
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 239000002826 coolant Substances 0.000 description 5
- 239000000779 smoke Substances 0.000 description 5
- 239000000498 cooling water Substances 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 238000004378 air conditioning Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 238000005057 refrigeration Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 230000002528 anti-freeze Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910001120 nichrome Inorganic materials 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 239000002918 waste heat Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B1/00—Details of electric heating devices
- H05B1/02—Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/22—Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
- B60H1/2215—Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant the heat being derived from electric heaters
- B60H1/2218—Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant the heat being derived from electric heaters controlling the operation of electric heaters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/22—Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
- B60H1/2215—Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant the heat being derived from electric heaters
- B60H1/2221—Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant the heat being derived from electric heaters arrangements of electric heaters for heating an intermediate liquid
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B1/00—Details of electric heating devices
- H05B1/02—Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
- H05B1/0227—Applications
- H05B1/023—Industrial applications
- H05B1/0236—Industrial applications for vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/22—Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
- B60H2001/2228—Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant controlling the operation of heaters
- B60H2001/2231—Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant controlling the operation of heaters for proper or safe operation of the heater
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/22—Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
- B60H2001/2246—Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant obtaining information from a variable, e.g. by means of a sensor
- B60H2001/2256—Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant obtaining information from a variable, e.g. by means of a sensor related to the operation of the heater itself, e.g. flame detection or overheating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/22—Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
- B60H2001/2259—Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant output of a control signal
- B60H2001/2262—Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant output of a control signal related to the period of on/off time of the heater
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B20/00—Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
- Y02B20/40—Control techniques providing energy savings, e.g. smart controller or presence detection
Definitions
- the present invention relates to heating devices, and particularly to a heating device including a housing which forms a passage for a heating medium between the housing and a heating portion of a heater.
- a heating device of this kind includes a heater having a heating portion which generates heat by energization; a housing which contains the heating portion and forms a passage for a heating medium between the housing and the heating portion; a energization controlling means for detecting the temperature of the heating medium in the passage and turning on and off the energization of the heater depending on the detected temperature of the heating medium.
- Patent Document 1 discloses a protective device for protecting a water heater for electric vehicles.
- the protective device is provided with a heating protection means including: a temperature determination means for determining whether or not the temperature of the water heater is higher than a designated temperature based on a value detected with a temperature sensor for detecting temperature of the water heater; an off-instruction means for turning off the switch of the water heater when the temperature of the water heater is higher than the designated temperature according to a result determined by the temperature determination means; and an off-holding means for controlling the off-instruction means so as to hold the off-state of the switch when the temperature of the water heater remains higher than the designated temperature.
- Patent Document 1 Japanese Patent No. 3369881
- the temperature of the heating medium is controlled within a proper range by the energization controlling means for turning on/off the energization of the heater.
- the temperature of the heater does not abnormally rise.
- the heating protection means of Patent Document 1 described above is disadvantageously incapable of distinguishing between a state when a heating medium exists in the passage and a state when no or little heating medium exists in the passage. For that reason, the heating protection means can be unable to detect accidental heating of an empty passage in the heating device, leading to an occurrence of smoke or fire in the heating device.
- the present invention has been made based on the above-mentioned circumstances, and an object of the present invention is to provide a heating device capable of detecting accidental heating of an empty passage with high accuracy and securely preventing an occurrence of smoke or fire so as to improve reliability of the heating device.
- a heating device includes: a heater having a heating portion which generates heat by energization; a housing which contains the heating portion and forms a passage for a heating medium between the housing and the heating portion; a temperature detection means which detects in the passage, temperature inside the housing due to heat of the heating medium and the heating portion; and an energization controlling means for turning on and off the energization of the heater depending on the temperature inside the housing detected by the temperature detection means.
- the energization controlling means turns off energization of the heater to put the heater in an energization standby state if temperature inside the housing detected by the temperature detection means is equal to or greater than a first specified threshold.
- the energization controlling means continuously turns off energization of the heater to put the heater in an energization complete stop state if the temperature inside the housing detected in the energization standby state is equal to or greater than a second specified threshold.
- the energization controlling means should turn on energization of the heater to put the heater in an energization resuming state if the temperature inside the housing detected in the energization standby state is equal to or smaller than a third specified threshold.
- a heating device that achieves high reliability can be provided because a temperature range between the first threshold and the second threshold is designated as a range for determining heating of an empty passage, and in the standby state for energization of the heater, the energization controlling means distinguishes accidental heating of an empty passage in the heating device from normal temperature control through the heater so that the heating device promptly detects accidental heating of an empty passage with high accuracy and prevents reliably an occurrence of smoke or fire while the energization controlling means performs normal energization control of the heater.
- FIG. 1 is a longitudinal sectional view of a heating device in accordance with an embodiment of the present invention.
- FIG. 2 is a cross-sectional view illustrating a principal part of the heating device taken from line A-A in FIG. 1 .
- FIG. 3 is a flowchart showing a routine performed by an inverter of FIG. 1 for controlling the energization of a heater.
- FIG. 4 is a diagram showing a relationship between the energization status of the heater and a temperature T detected with a temperature sensor on a time-series basis while the inverter of FIG. 1 normally controls the energization of the heater.
- FIG. 5 is a diagram showing a relationship between the energization status of the heater and a temperature T detected with the temperature sensor on a time-series basis while the inverter of FIG. 1 performs a process for correcting the abnormally high-temperature of the heater.
- a heating device 1 includes a heater 2 and a case (housing) 4 which contains the heater 2 .
- the heater 2 is an electrothermal heater which generates heat by energization.
- the heater 2 is composed of a bottomed cylindrical metal pipe 6 (heating portion).
- a coiled heating wire 8 such as a nichrome wire is inserted in the metal pipe 6 , and a heat-resistant insulating material 10 , such as magnesium oxide, having high electrical insulation properties and thermal conductivity is filled into the metal pipe 6 by pressure to seal the heating wire 8 .
- a terminal 12 molded from silicon, glass and the like by casting is provided at one end opening of the metal pipe 6 .
- a lead wire 14 connected to the heating wire 8 is pulled through the terminal 12 .
- the lead wire 14 and an external power unit 15 electrically connected to the lead wire 14 constitute an energization circuit (not shown) for providing the heating wire 8 with electricity.
- an energization circuit (not shown) for providing the heating wire 8 with electricity.
- the case 4 is composed of one or more cast bodies.
- the case 4 contains the heater 2 by airtightly surrounding vicinities of both ends of the metal pipe 6 through O-rings 16 . Clearance is created between an inner surface 4 a of the case 4 and an outer circumference 6 a of the metal pipe 6 .
- the clearance serves as a passage 18 into which a heating medium as a LLC (coolant, antifreeze), such as ethylene glycol, flows.
- An inlet pipe 20 and an outlet pipe 22 for the heating medium are protrusively provided at appropriate positions on an outer surface 4 b of the case 4 so that the both pipes communicate with the passage.
- the heating device 1 having such a schematic configuration, which is to be mounted, for example, in a hybrid car, an electric vehicle and the like, is used to heat a coolant or the like circulating through a refrigeration circuit in an air conditioning apparatus for a vehicle, serving as an auxiliary heat source for providing heat to make up a shortage in waste heat out of the engine in the case of a hybrid car, or as an alternative heat source for providing heat in place of the engine that does not exist in the case of an electric vehicle.
- an LLC circulating in a cooling water circuit for cooling an engine flows via the inlet pipe 20 into the passage 18 , and the heater 2 heats the LLC.
- Heat from the LLC which has been heated by the engine and the heating device 1 is used to heat a coolant circulating through a refrigeration circuit provided in an air conditioning apparatus for the vehicle.
- the heated coolant is used to heat and cool the air in the vehicle cabin.
- the LLC which has been used for heating the coolant is discharged from the passage 18 via the outlet pipe 22 and returned to the cooling water circuit. Then, the LLC is again used to cool the engine.
- a through-hole 24 is bored into the case 4 in a direction perpendicular to the longitudinal direction of the heater 2 .
- a temperature sensor 26 (temperature detection means) for detecting the temperature of a LLC which flows through the passage 18 is inserted in the through-hole 24 .
- the temperature sensor 26 is a roughly cylindrical shaped thermistor.
- An end face 30 of a temperature measurement end 28 of the sensor 26 comes into contact with the outer circumference 6 a of the metal pipe 6 of the heater 2 . This enables the temperature sensor 26 to detect not only the temperature of the LLC but also the surface temperature of the metal pipe 6 , i.e. the heating portion of the heater 2 .
- Two annular grooves 32 are formed on a side 26 a of the temperature sensor 26 .
- An O-ring 34 is fitted to each annular groove 32 .
- the temperature sensor 26 is airtightly connected to and secured to the through-hole 24 through the O-ring 34 .
- the temperature sensor 26 is electrically connected to an inverter 40 through a lead wire 38 pulled out of its outer end 36 .
- the inverter 40 controls energization (energization controlling means) by turning on and off the energization of the heater 2 in response to the temperature of the LLC and/or the surface temperature of the metal pipe 6 detected with the temperature sensor 26 through the power unit 15 and the energization circuit described above.
- the temperature of the LLC is controlled within a proper range by the use of the temperature sensor 26 under this energization control. Thus, the temperature of the heater 2 does not abnormally rise.
- the heating device 1 having the temperature sensor 26 which is out of contact with the metal pipe 6 and capable of detecting only the temperature of the LLC in the case of a conventional heating device, can undergo a deterioration in the responsiveness of the temperature sensor 26 due to the heat-insulation effect of the air surrounding the temperature sensor 26 , leading to a delay in the detection of such accidental heating. As a result, temperature in the passage 18 can go on to increase, causing an occurrence of smoke or fire in the heating device 1 .
- the present embodiment provides energization control by taking advantage of a difference in heat transfer property between the LLC as a fluid and the air as a gas, that is, the temperature of the LLC becomes dominant when the LLC exists in the passage 18 and the temperature of the heater 2 becomes dominant when no or little LLC exists in the passage 18 , as the temperature sensor 26 is brought into direct contact with the outer circumference 6 a of the metal pipe 6 , i.e. the heating portion of the heater 2 , while the temperature sensor 26 is placed in the passage 18 where the LLC flows.
- Energization control performed by the inverter 40 will now be described with reference to the flowchart of FIG. 3 and the diagrams of FIGS. 4 and 5 each chronologically showing a relationship between the energization status of the heater 2 and a temperature T detected with the temperature sensor 26 .
- a control routine for the energization control starts upon energization of the heater 2 , it is firstly determined whether or not a temperature (temperature inside the housing) T calculated on both the temperature of the LLC in the passage 18 and the surface temperature of the metal pipe 6 detected with the temperature sensor 26 is equal to or greater than a first specified threshold TS 1 (step S 1 ).
- step S 1 If the temperature T is evaluated to be true (YES) in the step S 1 , i.e., the expression T ⁇ TS 1 holds true, the inverter 40 turns off the energization of the heater 2 to put the heater 2 in a standby state (a wait state) (step S 2 ) as shown in FIGS. 4 and 5 .
- the inverter 40 maintains the energization of the heater 2 and transitions to the step S 1 again as shown in FIGS. 4 and 5 .
- step S 3 when the inverter 40 is in the wait state of the step S 2 , it is determined whether or not the temperature T detected with the temperature sensor 26 is equal to or greater than a second specified threshold TS 2 (step S 3 ).
- the inverter 40 determines that no LLC exists in the passage 18 or the quantity of the LLC is smaller than a normal level, i.e., the heater 2 is heating an empty passage. Then, as shown in FIG. 5 , the heater 2 enters an energization complete stop state (a sleep state) in which the energization of the heater 2 is continuously turned off as a process correcting the abnormally high-temperature state of the heating device 1 , and it does not automatically resume a subsequent energization process (step S 4 ).
- a sleep state the energization complete stop state
- step S 5 it is determined whether or not the temperature T detected with the temperature sensor 26 in the wait state described above is smaller equal to or than a third specified threshold TS 3 (step S 5 ).
- the inverter 40 determines that the passage 18 contains a proper quantity of the LLC, and puts the heater 2 in an energization resuming state so as to resume normal energization control by turning on the energization of the heater 2 as shown in FIG. 4 (step S 6 ).
- the inverter 40 maintains the non-energization of the heater 2 and transitions to the step S 3 again as shown in FIG. 4 .
- a temperature range between the first threshold TS 1 and the second threshold TS 2 is designated as a range for determining heating of an empty passage. Then, in the standby state (wait state) for energization of the heater 2 , the inverter 40 distinguishes accidental heating of an empty passage in the heating device 1 from normal temperature control through the heater 2 . If heating of an empty passage is evaluated to be true, the inverter 40 puts the heater 2 in the energization complete stop state (sleep state) in which the energization of the heater 2 is continuously turned off and subsequent energization cannot be automatically resumed.
- the inverter 40 is enabled to put the heater 2 in the energization resuming state by returning from the standby state for energization of the heater 2 .
- the energization control provides normal energization control without unnecessarily stopping the heating device 1 for protection when an LLC exists in the passage 18 while the energization control provides error processing to stop promptly the heating device 1 for protection when no or little LLC exists in the passage 18 .
- the heating device 1 that achieves high reliability as it promptly detects accidental heating of an empty passage with high accuracy and prevents reliably an occurrence of smoke or fire while performing normal energization control of the heater 2 by the use of the temperature sensor 26 .
- the present invention is not limited to the embodiment of the heating device 1 described above, but various modifications may be made.
- the heating device 1 is not limited to use in a car air conditioning apparatus of an hybrid car or an electric vehicle, but can be used as a heat source for other purposes.
Landscapes
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Control Of Resistance Heating (AREA)
- Air-Conditioning For Vehicles (AREA)
Abstract
Description
-
- 1 heating device
- 2 heater
- 4 case (housing)
- 6 metal pipe (heating portion)
- 18 passage
- 26 temperature sensor (temperature detection means)
- 40 Inverter (energization controlling means)
Claims (1)
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2012108324A JP5851930B2 (en) | 2012-05-10 | 2012-05-10 | Heating device |
| JP2012-108324 | 2012-05-10 | ||
| PCT/JP2013/062921 WO2013168734A1 (en) | 2012-05-10 | 2013-05-08 | Heating device |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20150129576A1 US20150129576A1 (en) | 2015-05-14 |
| US9226340B2 true US9226340B2 (en) | 2015-12-29 |
Family
ID=49550768
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/400,328 Active US9226340B2 (en) | 2012-05-10 | 2013-05-08 | Heating device |
Country Status (5)
| Country | Link |
|---|---|
| US (1) | US9226340B2 (en) |
| JP (1) | JP5851930B2 (en) |
| CN (1) | CN104303591B (en) |
| DE (1) | DE112013002404B4 (en) |
| WO (1) | WO2013168734A1 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11649790B1 (en) * | 2022-03-21 | 2023-05-16 | Weichai Power Co., Ltd. | Control method and apparatus applied to controller |
Families Citing this family (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP6383536B2 (en) * | 2013-12-09 | 2018-08-29 | カルソニックカンセイ株式会社 | Vehicle air-conditioning safety device and control method thereof |
| KR102040484B1 (en) * | 2014-02-21 | 2019-11-27 | 한온시스템 주식회사 | Cooling-water heating type heater |
| WO2017043382A1 (en) * | 2015-09-09 | 2017-03-16 | カルソニックカンセイ株式会社 | Fluid heating device and manufacturing method for same |
| EP3348931B1 (en) | 2015-09-09 | 2024-07-17 | Marelli Cabin Comfort Japan Corporation | Fluid heating device and manufacturing method for same |
| JP6298495B2 (en) * | 2015-09-09 | 2018-03-20 | カルソニックカンセイ株式会社 | Fluid heating apparatus and manufacturing method thereof |
| US11040598B2 (en) * | 2016-07-06 | 2021-06-22 | Hanon Systems | Induction heater and method for controlling overheating of induction heater |
| FR3062601B1 (en) * | 2017-02-06 | 2019-06-07 | Valeo Systemes Thermiques | ELECTRICAL HEATING DEVICE, HEATING CIRCUIT, AND CORRESPONDING TEMPERATURE MANAGEMENT METHOD |
| CN107148092B (en) * | 2017-06-28 | 2023-12-08 | 广东威灵电机制造有限公司 | Heater |
| KR102451881B1 (en) * | 2017-10-12 | 2022-10-06 | 현대자동차 주식회사 | Control method of air conditioner system for vehicle |
| GB201721646D0 (en) * | 2017-12-21 | 2018-02-07 | British American Tobacco Investments Ltd | Aerosol provision device |
| CN110901338A (en) * | 2019-11-29 | 2020-03-24 | 安徽江淮汽车集团股份有限公司 | Air conditioner dry burning prevention control method and device and computer readable storage medium |
| WO2021144912A1 (en) * | 2020-01-16 | 2021-07-22 | カグラベーパーテック株式会社 | Heat exchanger |
| CN114670603B (en) * | 2022-01-27 | 2024-06-18 | 北京新能源汽车股份有限公司 | A heater anti-dry burning control method and device based on multi-sensor |
| WO2024079240A1 (en) * | 2022-10-14 | 2024-04-18 | Valeo Systemes Thermiques | A thermal management system and method for an automobile vehicle |
| CN116068417B (en) * | 2022-12-05 | 2023-12-29 | 江苏拓米洛高端装备股份有限公司 | Battery heating value determining method and device and test box |
Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4197581A (en) * | 1978-04-12 | 1980-04-08 | General Electric Company | Control system for and method of controlling a cooking appliance |
| JPS61122453A (en) | 1984-11-19 | 1986-06-10 | Matsushita Electric Ind Co Ltd | electric instant water heater |
| JPH10157446A (en) | 1996-12-04 | 1998-06-16 | Matsushita Electric Ind Co Ltd | Water heater protection for electric vehicles |
| JP2000035248A (en) | 1998-07-17 | 2000-02-02 | Komatsu Electronics Kk | Chemical heating apparatus |
| JP2002343538A (en) | 2001-05-22 | 2002-11-29 | Kumagai Denko Kk | Heating device for water tank |
| US6665492B1 (en) * | 1997-03-19 | 2003-12-16 | Northrop Grumman | High-velocity electrically heated air impingement apparatus with heater control responsive to two temperature sensors |
| US7312420B2 (en) * | 2005-09-20 | 2007-12-25 | Lexmark International, Inc. | Switching device and system |
| US7472695B2 (en) * | 2003-07-28 | 2009-01-06 | Phillips & Temro Industries Inc. | Controller for air intake heater |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CH449829A (en) | 1965-05-05 | 1968-01-15 | W Oertli Ag Ing | Method for preheating fuel in front of an atomizer nozzle and device for carrying out the method |
| JP3519264B2 (en) | 1997-02-17 | 2004-04-12 | 松下電器産業株式会社 | Automotive air conditioning controller |
-
2012
- 2012-05-10 JP JP2012108324A patent/JP5851930B2/en active Active
-
2013
- 2013-05-08 CN CN201380024139.3A patent/CN104303591B/en active Active
- 2013-05-08 DE DE112013002404.7T patent/DE112013002404B4/en active Active
- 2013-05-08 US US14/400,328 patent/US9226340B2/en active Active
- 2013-05-08 WO PCT/JP2013/062921 patent/WO2013168734A1/en not_active Ceased
Patent Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4197581A (en) * | 1978-04-12 | 1980-04-08 | General Electric Company | Control system for and method of controlling a cooking appliance |
| JPS61122453A (en) | 1984-11-19 | 1986-06-10 | Matsushita Electric Ind Co Ltd | electric instant water heater |
| JPH10157446A (en) | 1996-12-04 | 1998-06-16 | Matsushita Electric Ind Co Ltd | Water heater protection for electric vehicles |
| US6665492B1 (en) * | 1997-03-19 | 2003-12-16 | Northrop Grumman | High-velocity electrically heated air impingement apparatus with heater control responsive to two temperature sensors |
| JP2000035248A (en) | 1998-07-17 | 2000-02-02 | Komatsu Electronics Kk | Chemical heating apparatus |
| JP2002343538A (en) | 2001-05-22 | 2002-11-29 | Kumagai Denko Kk | Heating device for water tank |
| US7472695B2 (en) * | 2003-07-28 | 2009-01-06 | Phillips & Temro Industries Inc. | Controller for air intake heater |
| US7312420B2 (en) * | 2005-09-20 | 2007-12-25 | Lexmark International, Inc. | Switching device and system |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11649790B1 (en) * | 2022-03-21 | 2023-05-16 | Weichai Power Co., Ltd. | Control method and apparatus applied to controller |
Also Published As
| Publication number | Publication date |
|---|---|
| DE112013002404B4 (en) | 2022-11-24 |
| US20150129576A1 (en) | 2015-05-14 |
| JP2013235759A (en) | 2013-11-21 |
| WO2013168734A1 (en) | 2013-11-14 |
| JP5851930B2 (en) | 2016-02-03 |
| DE112013002404T5 (en) | 2015-01-29 |
| CN104303591B (en) | 2016-05-04 |
| CN104303591A (en) | 2015-01-21 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US9226340B2 (en) | Heating device | |
| US9271332B2 (en) | Heating device | |
| US20150131980A1 (en) | Heating Device | |
| JP4757907B2 (en) | Hot water storage water heater | |
| US20210372314A1 (en) | Apparatus and Method for Ascertaining a Heating Temperature of a Heating Element for an Electrically Heatable Catalytic Converter | |
| US8485142B2 (en) | Internal combustion engine cooling system and method for determining failure therein | |
| JP5796717B2 (en) | Electric vehicle charging control device | |
| US20200025411A1 (en) | Electric heating device, corresponding heating circuit and method for managing the temperature | |
| KR101826484B1 (en) | anti freezing apparatus of piping system with Metal heater | |
| WO2021098232A1 (en) | Method for detecting abnormality of heat dissipation pipeline, water-cooled radiator, and automobile | |
| KR20160091002A (en) | Safety control method and apparatus of the cooling-water heating type heater | |
| US10476090B2 (en) | Fuel cell system | |
| JPWO2013186904A1 (en) | Condensation detection device, cooling system, and cooling medium flow rate control method | |
| KR101592747B1 (en) | Device sensing overheat of heater for fuel cell vehicle | |
| JP5771235B2 (en) | Water heater | |
| CN119521465B (en) | A PFA heater high temperature protection device and debugging method | |
| JP2015025594A (en) | Heating apparatus | |
| CN205427658U (en) | Nuclear power station cooling water set pipeline heating control system | |
| JP2015020605A (en) | Vehicle heating device | |
| JP6610288B2 (en) | Heat transfer boiler system | |
| KR20160007798A (en) | Apparatus and method for detecting overheating of heater for fuel cell vehicle |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: SANDEN CORPORATION, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MAEMURA, YOSHINOBU;USHIGOME, KAZUYASU;REEL/FRAME:034152/0291 Effective date: 20141017 |
|
| FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
| AS | Assignment |
Owner name: SANDEN HOLDINGS CORPORATION, JAPAN Free format text: CHANGE OF NAME;ASSIGNOR:SANDEN CORPORATION;REEL/FRAME:038489/0677 Effective date: 20150402 |
|
| AS | Assignment |
Owner name: SANDEN HOLDINGS CORPORATION, JAPAN Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE PROPERTY NUMBERS PREVIOUSLY RECORDED AT REEL: 038489 FRAME: 0677. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNOR:SANDEN CORPORATION;REEL/FRAME:047208/0635 Effective date: 20150402 |
|
| MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
| AS | Assignment |
Owner name: SANDEN HOLDINGS CORPORATION, JAPAN Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE TYPOGRAPHICAL ERRORS IN PATENT NOS. 6129293, 7574813, 8238525, 8083454, D545888, D467946, D573242, D487173, AND REMOVE 8750534 PREVIOUSLY RECORDED ON REEL 047208 FRAME 0635. ASSIGNOR(S) HEREBY CONFIRMS THE CHANGE OF NAME;ASSIGNOR:SANDEN CORPORATION;REEL/FRAME:053545/0524 Effective date: 20150402 |
|
| AS | Assignment |
Owner name: SANDEN CORPORATION, JAPAN Free format text: CHANGE OF NAME;ASSIGNOR:SANDEN HOLDINGS CORPORATION;REEL/FRAME:061296/0529 Effective date: 20220101 |
|
| MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |