US9068187B1 - Protease inhibitor: protease sensitivity expression system composition and methods improving the therapeutic activity and specificity of proteins delivered by bacteria - Google Patents
Protease inhibitor: protease sensitivity expression system composition and methods improving the therapeutic activity and specificity of proteins delivered by bacteria Download PDFInfo
- Publication number
- US9068187B1 US9068187B1 US14/016,407 US201314016407A US9068187B1 US 9068187 B1 US9068187 B1 US 9068187B1 US 201314016407 A US201314016407 A US 201314016407A US 9068187 B1 US9068187 B1 US 9068187B1
- Authority
- US
- United States
- Prior art keywords
- protease
- seq
- peptide
- bacteria
- tumor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 108091005804 Peptidases Proteins 0.000 title claims abstract description 158
- 239000004365 Protease Substances 0.000 title claims abstract description 157
- 108090000623 proteins and genes Proteins 0.000 title claims abstract description 156
- 241000894006 Bacteria Species 0.000 title claims abstract description 150
- 239000000137 peptide hydrolase inhibitor Substances 0.000 title claims abstract description 124
- 102000004169 proteins and genes Human genes 0.000 title claims abstract description 110
- 230000001225 therapeutic effect Effects 0.000 title claims abstract description 75
- 229940124158 Protease/peptidase inhibitor Drugs 0.000 title claims abstract description 66
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 title claims abstract 14
- 230000035945 sensitivity Effects 0.000 title abstract description 15
- 238000000034 method Methods 0.000 title description 48
- 230000014509 gene expression Effects 0.000 title description 47
- 239000000203 mixture Substances 0.000 title description 20
- 206010028980 Neoplasm Diseases 0.000 claims abstract description 222
- 239000003053 toxin Substances 0.000 claims abstract description 92
- 231100000765 toxin Toxicity 0.000 claims abstract description 92
- 108700012359 toxins Proteins 0.000 claims abstract description 88
- 210000004027 cell Anatomy 0.000 claims abstract description 82
- 239000002596 immunotoxin Substances 0.000 claims abstract description 10
- 210000005170 neoplastic cell Anatomy 0.000 claims abstract description 6
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 358
- 102000035195 Peptidases Human genes 0.000 claims description 144
- 108010073254 Colicins Proteins 0.000 claims description 141
- 230000008685 targeting Effects 0.000 claims description 99
- 230000002101 lytic effect Effects 0.000 claims description 98
- 108010076504 Protein Sorting Signals Proteins 0.000 claims description 62
- 101710094856 Apoptin Proteins 0.000 claims description 38
- 210000004899 c-terminal region Anatomy 0.000 claims description 35
- 101800004564 Transforming growth factor alpha Proteins 0.000 claims description 33
- 108090000790 Enzymes Proteins 0.000 claims description 28
- 102000004190 Enzymes Human genes 0.000 claims description 28
- 241000282414 Homo sapiens Species 0.000 claims description 26
- 210000001519 tissue Anatomy 0.000 claims description 25
- 206010025323 Lymphomas Diseases 0.000 claims description 24
- 108010073429 Type V Secretion Systems Proteins 0.000 claims description 17
- 208000032839 leukemia Diseases 0.000 claims description 17
- 231100000433 cytotoxic Toxicity 0.000 claims description 15
- 230000001472 cytotoxic effect Effects 0.000 claims description 15
- 239000012528 membrane Substances 0.000 claims description 14
- 229940002612 prodrug Drugs 0.000 claims description 14
- 239000000651 prodrug Substances 0.000 claims description 14
- 231100000746 cytolethal distending toxin Toxicity 0.000 claims description 12
- 108010077850 Nuclear Localization Signals Proteins 0.000 claims description 11
- 210000001185 bone marrow Anatomy 0.000 claims description 10
- 101100383218 Escherichia coli colE7 gene Proteins 0.000 claims description 9
- 206010035226 Plasma cell myeloma Diseases 0.000 claims description 8
- 108010079723 Shiga Toxin Proteins 0.000 claims description 8
- 230000021615 conjugation Effects 0.000 claims description 8
- 210000000440 neutrophil Anatomy 0.000 claims description 8
- 230000005945 translocation Effects 0.000 claims description 8
- 208000034578 Multiple myelomas Diseases 0.000 claims description 7
- 239000000147 enterotoxin Substances 0.000 claims description 7
- 231100000655 enterotoxin Toxicity 0.000 claims description 7
- 210000002865 immune cell Anatomy 0.000 claims description 7
- 241000193403 Clostridium Species 0.000 claims description 6
- 102000004127 Cytokines Human genes 0.000 claims description 6
- 108090000695 Cytokines Proteins 0.000 claims description 6
- 108010014387 aerolysin Proteins 0.000 claims description 6
- 230000003197 catalytic effect Effects 0.000 claims description 6
- 230000002950 deficient Effects 0.000 claims description 6
- 101710146739 Enterotoxin Proteins 0.000 claims description 5
- 238000002560 therapeutic procedure Methods 0.000 claims description 5
- 101710135785 Subtilisin-like protease Proteins 0.000 claims description 4
- 210000001744 T-lymphocyte Anatomy 0.000 claims description 4
- 208000037386 Typhoid Diseases 0.000 claims description 4
- 210000002540 macrophage Anatomy 0.000 claims description 4
- 201000008297 typhoid fever Diseases 0.000 claims description 4
- 108010051834 CTTHWGFTLC peptide Proteins 0.000 claims description 3
- 241001465754 Metazoa Species 0.000 claims description 3
- 230000002733 dermonecrotic effect Effects 0.000 claims description 3
- 108010083528 Adenylate Cyclase Toxin Proteins 0.000 claims description 2
- 102000019034 Chemokines Human genes 0.000 claims description 2
- 108010012236 Chemokines Proteins 0.000 claims description 2
- 101710121697 Heat-stable enterotoxin Proteins 0.000 claims description 2
- 101150047779 ompB gene Proteins 0.000 claims description 2
- 101150031507 porB gene Proteins 0.000 claims description 2
- 230000002757 inflammatory effect Effects 0.000 claims 2
- 241000588921 Enterobacteriaceae Species 0.000 claims 1
- 102000006747 Transforming Growth Factor alpha Human genes 0.000 claims 1
- 230000002238 attenuated effect Effects 0.000 abstract description 60
- 229940042399 direct acting antivirals protease inhibitors Drugs 0.000 abstract description 55
- 230000000694 effects Effects 0.000 abstract description 51
- 239000003814 drug Substances 0.000 abstract description 26
- 239000011159 matrix material Substances 0.000 abstract description 22
- 108020001507 fusion proteins Proteins 0.000 abstract description 19
- 102000037865 fusion proteins Human genes 0.000 abstract description 19
- 229940124597 therapeutic agent Drugs 0.000 abstract description 13
- 230000004186 co-expression Effects 0.000 abstract description 12
- 230000000670 limiting effect Effects 0.000 abstract description 10
- 230000001717 pathogenic effect Effects 0.000 abstract description 8
- 230000015556 catabolic process Effects 0.000 abstract description 5
- 238000006731 degradation reaction Methods 0.000 abstract description 5
- 230000002708 enhancing effect Effects 0.000 abstract description 5
- 230000002779 inactivation Effects 0.000 abstract description 5
- 230000001965 increasing effect Effects 0.000 abstract description 5
- 210000000987 immune system Anatomy 0.000 abstract description 3
- 238000004519 manufacturing process Methods 0.000 abstract description 3
- 239000006041 probiotic Substances 0.000 abstract description 3
- 230000000529 probiotic effect Effects 0.000 abstract description 3
- 235000018291 probiotics Nutrition 0.000 abstract description 3
- 231100000057 systemic toxicity Toxicity 0.000 abstract description 3
- 150000003384 small molecules Chemical class 0.000 abstract description 2
- 239000003124 biologic agent Substances 0.000 abstract 1
- 238000002648 combination therapy Methods 0.000 abstract 1
- 238000012423 maintenance Methods 0.000 abstract 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 155
- 235000019419 proteases Nutrition 0.000 description 110
- 230000001580 bacterial effect Effects 0.000 description 99
- 235000018102 proteins Nutrition 0.000 description 98
- 238000003776 cleavage reaction Methods 0.000 description 76
- 230000007017 scission Effects 0.000 description 76
- 235000001014 amino acid Nutrition 0.000 description 66
- 229940024606 amino acid Drugs 0.000 description 62
- 150000001413 amino acids Chemical class 0.000 description 60
- 230000004927 fusion Effects 0.000 description 51
- 201000011510 cancer Diseases 0.000 description 50
- 239000012636 effector Substances 0.000 description 50
- 239000003112 inhibitor Substances 0.000 description 50
- 239000013598 vector Substances 0.000 description 46
- 241000607142 Salmonella Species 0.000 description 44
- 125000000539 amino acid group Chemical group 0.000 description 39
- 150000007523 nucleic acids Chemical class 0.000 description 34
- 102400001320 Transforming growth factor alpha Human genes 0.000 description 32
- 108020004707 nucleic acids Proteins 0.000 description 32
- 102000039446 nucleic acids Human genes 0.000 description 32
- 229920001184 polypeptide Polymers 0.000 description 31
- 230000035772 mutation Effects 0.000 description 30
- 241000588724 Escherichia coli Species 0.000 description 27
- 229940088598 enzyme Drugs 0.000 description 27
- 241000293869 Salmonella enterica subsp. enterica serovar Typhimurium Species 0.000 description 26
- 101150021605 hlyA gene Proteins 0.000 description 25
- 101100378273 Brachyspira hyodysenteriae acpP gene Proteins 0.000 description 24
- 101100098690 Listeria monocytogenes serovar 1/2a (strain ATCC BAA-679 / EGD-e) hly gene Proteins 0.000 description 24
- 108010053770 Deoxyribonucleases Proteins 0.000 description 23
- 102000016911 Deoxyribonucleases Human genes 0.000 description 23
- 230000000259 anti-tumor effect Effects 0.000 description 23
- 238000002823 phage display Methods 0.000 description 23
- 125000003275 alpha amino acid group Chemical group 0.000 description 22
- 102000005962 receptors Human genes 0.000 description 21
- 108020003175 receptors Proteins 0.000 description 21
- 230000002068 genetic effect Effects 0.000 description 20
- 238000011282 treatment Methods 0.000 description 20
- 102100038080 B-cell receptor CD22 Human genes 0.000 description 19
- 101000884305 Homo sapiens B-cell receptor CD22 Proteins 0.000 description 19
- 239000003446 ligand Substances 0.000 description 19
- 239000008194 pharmaceutical composition Substances 0.000 description 19
- 238000011160 research Methods 0.000 description 19
- 239000003937 drug carrier Substances 0.000 description 18
- 230000001939 inductive effect Effects 0.000 description 18
- 101710116034 Immunity protein Proteins 0.000 description 17
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 16
- 210000001163 endosome Anatomy 0.000 description 16
- 108010084457 Cathepsins Proteins 0.000 description 15
- 102000005600 Cathepsins Human genes 0.000 description 15
- 239000000427 antigen Substances 0.000 description 15
- 201000010099 disease Diseases 0.000 description 15
- 230000001018 virulence Effects 0.000 description 15
- 241001138501 Salmonella enterica Species 0.000 description 14
- 108090000631 Trypsin Proteins 0.000 description 14
- 102000004142 Trypsin Human genes 0.000 description 14
- 238000012217 deletion Methods 0.000 description 14
- 230000037430 deletion Effects 0.000 description 14
- 239000013612 plasmid Substances 0.000 description 14
- 230000028327 secretion Effects 0.000 description 14
- 210000004881 tumor cell Anatomy 0.000 description 14
- 241000293871 Salmonella enterica subsp. enterica serovar Typhi Species 0.000 description 13
- 238000007792 addition Methods 0.000 description 13
- 230000002401 inhibitory effect Effects 0.000 description 13
- 241000894007 species Species 0.000 description 13
- 108020004414 DNA Proteins 0.000 description 12
- 102000004961 Furin Human genes 0.000 description 12
- 108090001126 Furin Proteins 0.000 description 12
- 230000001093 anti-cancer Effects 0.000 description 12
- 230000000903 blocking effect Effects 0.000 description 12
- 230000001613 neoplastic effect Effects 0.000 description 12
- 239000002773 nucleotide Substances 0.000 description 12
- 125000003729 nucleotide group Chemical group 0.000 description 12
- 201000009030 Carcinoma Diseases 0.000 description 11
- 241000282412 Homo Species 0.000 description 11
- 108010072866 Prostate-Specific Antigen Proteins 0.000 description 11
- 102100038358 Prostate-specific antigen Human genes 0.000 description 11
- 108091007433 antigens Proteins 0.000 description 11
- 102000036639 antigens Human genes 0.000 description 11
- 239000012634 fragment Substances 0.000 description 11
- 238000002347 injection Methods 0.000 description 11
- 239000007924 injection Substances 0.000 description 11
- 210000000130 stem cell Anatomy 0.000 description 11
- 238000006467 substitution reaction Methods 0.000 description 11
- 238000012360 testing method Methods 0.000 description 11
- 239000012588 trypsin Substances 0.000 description 11
- 229960005486 vaccine Drugs 0.000 description 11
- 238000004458 analytical method Methods 0.000 description 10
- 230000003115 biocidal effect Effects 0.000 description 10
- 231100000599 cytotoxic agent Toxicity 0.000 description 10
- 210000002307 prostate Anatomy 0.000 description 10
- 108060008226 thioredoxin Proteins 0.000 description 10
- 231100000699 Bacterial toxin Toxicity 0.000 description 9
- 102000029816 Collagenase Human genes 0.000 description 9
- 108060005980 Collagenase Proteins 0.000 description 9
- 108010088842 Fibrinolysin Proteins 0.000 description 9
- 241000579835 Merops Species 0.000 description 9
- 101100021843 Shigella flexneri lpxM1 gene Proteins 0.000 description 9
- 101100021844 Shigella flexneri lpxM2 gene Proteins 0.000 description 9
- 102000002933 Thioredoxin Human genes 0.000 description 9
- 108090000190 Thrombin Proteins 0.000 description 9
- 102000003990 Urokinase-type plasminogen activator Human genes 0.000 description 9
- 108090000435 Urokinase-type plasminogen activator Proteins 0.000 description 9
- 238000003556 assay Methods 0.000 description 9
- 239000000688 bacterial toxin Substances 0.000 description 9
- 239000003795 chemical substances by application Substances 0.000 description 9
- 239000002619 cytotoxin Substances 0.000 description 9
- 238000013461 design Methods 0.000 description 9
- 238000001727 in vivo Methods 0.000 description 9
- 101150060640 lpxM gene Proteins 0.000 description 9
- -1 pfkAB Proteins 0.000 description 9
- 229940012957 plasmin Drugs 0.000 description 9
- 229940094937 thioredoxin Drugs 0.000 description 9
- 229960005356 urokinase Drugs 0.000 description 9
- 210000005166 vasculature Anatomy 0.000 description 9
- 108010039627 Aprotinin Proteins 0.000 description 8
- 102400000921 Gastrin Human genes 0.000 description 8
- 108010052343 Gastrins Proteins 0.000 description 8
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 8
- 241000186781 Listeria Species 0.000 description 8
- 241001529936 Murinae Species 0.000 description 8
- 230000002862 amidating effect Effects 0.000 description 8
- AOXOCDRNSPFDPE-UKEONUMOSA-N chembl413654 Chemical compound C([C@H](C(=O)NCC(=O)N[C@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@H](CCSC)C(=O)N[C@H](CC(O)=O)C(=O)N[C@H](CC=1C=CC=CC=1)C(N)=O)NC(=O)[C@@H](C)NC(=O)[C@@H](CCC(O)=O)NC(=O)[C@@H](CCC(O)=O)NC(=O)[C@@H](CCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H]1N(CCC1)C(=O)CNC(=O)[C@@H](N)CCC(O)=O)C1=CC=C(O)C=C1 AOXOCDRNSPFDPE-UKEONUMOSA-N 0.000 description 8
- 210000000349 chromosome Anatomy 0.000 description 8
- 229960002424 collagenase Drugs 0.000 description 8
- 229940079593 drug Drugs 0.000 description 8
- 230000006870 function Effects 0.000 description 8
- ZPNFWUPYTFPOJU-LPYSRVMUSA-N iniprol Chemical compound C([C@H]1C(=O)NCC(=O)NCC(=O)N[C@H]2CSSC[C@H]3C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@H](C(N[C@H](C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC=4C=CC=CC=4)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CC=4C=CC=CC=4)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCCN)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC2=O)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC=2C=CC=CC=2)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H]2N(CCC2)C(=O)[C@@H](N)CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N2[C@@H](CCC2)C(=O)N2[C@@H](CCC2)C(=O)N[C@@H](CC=2C=CC(O)=CC=2)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N2[C@@H](CCC2)C(=O)N3)C(=O)NCC(=O)NCC(=O)N[C@@H](C)C(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@H](C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@H](C(=O)N1)C(C)C)[C@@H](C)O)[C@@H](C)CC)=O)[C@@H](C)CC)C1=CC=C(O)C=C1 ZPNFWUPYTFPOJU-LPYSRVMUSA-N 0.000 description 8
- 230000010354 integration Effects 0.000 description 8
- 230000002601 intratumoral effect Effects 0.000 description 8
- 210000001165 lymph node Anatomy 0.000 description 8
- 238000002887 multiple sequence alignment Methods 0.000 description 8
- 238000010561 standard procedure Methods 0.000 description 8
- 229960004072 thrombin Drugs 0.000 description 8
- 231100000331 toxic Toxicity 0.000 description 8
- 230000002588 toxic effect Effects 0.000 description 8
- 239000002753 trypsin inhibitor Substances 0.000 description 8
- 108010062877 Bacteriocins Proteins 0.000 description 7
- FWPKHBSTLJXXIA-CATQOQJWSA-N CC[C@H](C)[C@H](NC(=O)[C@@H](NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CCSC)[C@@H](C)CC)[C@@H](C)CC)[C@@H](C)O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](Cc1c[nH]c2ccccc12)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](Cc1ccccc1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(O)=O Chemical compound CC[C@H](C)[C@H](NC(=O)[C@@H](NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CCSC)[C@@H](C)CC)[C@@H](C)CC)[C@@H](C)O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](Cc1c[nH]c2ccccc12)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](Cc1ccccc1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(O)=O FWPKHBSTLJXXIA-CATQOQJWSA-N 0.000 description 7
- 108020004705 Codon Proteins 0.000 description 7
- 101710121036 Delta-hemolysin Proteins 0.000 description 7
- 239000004471 Glycine Substances 0.000 description 7
- 102000001398 Granzyme Human genes 0.000 description 7
- 208000009869 Neu-Laxova syndrome Diseases 0.000 description 7
- 108010083644 Ribonucleases Proteins 0.000 description 7
- 102000006382 Ribonucleases Human genes 0.000 description 7
- 241000193990 Streptococcus sp. 'group B' Species 0.000 description 7
- 229960004405 aprotinin Drugs 0.000 description 7
- 208000032852 chronic lymphocytic leukemia Diseases 0.000 description 7
- 230000008030 elimination Effects 0.000 description 7
- 238000003379 elimination reaction Methods 0.000 description 7
- 230000002496 gastric effect Effects 0.000 description 7
- 230000036039 immunity Effects 0.000 description 7
- 230000004048 modification Effects 0.000 description 7
- 238000012986 modification Methods 0.000 description 7
- 231100000654 protein toxin Toxicity 0.000 description 7
- 230000001988 toxicity Effects 0.000 description 7
- 231100000419 toxicity Toxicity 0.000 description 7
- 208000031261 Acute myeloid leukaemia Diseases 0.000 description 6
- 101710183140 Cytolethal distending toxin subunit B Proteins 0.000 description 6
- 101710112752 Cytotoxin Proteins 0.000 description 6
- 108060005986 Granzyme Proteins 0.000 description 6
- 101001055144 Homo sapiens Interleukin-2 receptor subunit alpha Proteins 0.000 description 6
- 102100026878 Interleukin-2 receptor subunit alpha Human genes 0.000 description 6
- 108010062010 N-Acetylmuramoyl-L-alanine Amidase Proteins 0.000 description 6
- 108010066154 Nuclear Export Signals Proteins 0.000 description 6
- 108010079246 OMPA outer membrane proteins Proteins 0.000 description 6
- 108010084592 Saporins Proteins 0.000 description 6
- 230000004913 activation Effects 0.000 description 6
- 238000009638 autodisplay Methods 0.000 description 6
- 210000000988 bone and bone Anatomy 0.000 description 6
- 230000000875 corresponding effect Effects 0.000 description 6
- 230000000593 degrading effect Effects 0.000 description 6
- 230000002637 immunotoxin Effects 0.000 description 6
- 229940051026 immunotoxin Drugs 0.000 description 6
- 231100000608 immunotoxin Toxicity 0.000 description 6
- 230000006872 improvement Effects 0.000 description 6
- 230000013011 mating Effects 0.000 description 6
- 201000001441 melanoma Diseases 0.000 description 6
- 239000002207 metabolite Substances 0.000 description 6
- 230000009826 neoplastic cell growth Effects 0.000 description 6
- 230000030648 nucleus localization Effects 0.000 description 6
- 102000040430 polynucleotide Human genes 0.000 description 6
- 108091033319 polynucleotide Proteins 0.000 description 6
- 239000002157 polynucleotide Substances 0.000 description 6
- 108020001580 protein domains Proteins 0.000 description 6
- 108010093489 thiaminase II Proteins 0.000 description 6
- 108010077805 Bacterial Proteins Proteins 0.000 description 5
- 108010051152 Carboxylesterase Proteins 0.000 description 5
- 102000013392 Carboxylesterase Human genes 0.000 description 5
- 108010074860 Factor Xa Proteins 0.000 description 5
- 229940082999 Furin inhibitor Drugs 0.000 description 5
- 108010002231 IgA-specific serine endopeptidase Proteins 0.000 description 5
- 102100038356 Kallikrein-2 Human genes 0.000 description 5
- 101710176220 Kallikrein-2 Proteins 0.000 description 5
- 208000015914 Non-Hodgkin lymphomas Diseases 0.000 description 5
- 108091028043 Nucleic acid sequence Proteins 0.000 description 5
- 108010039491 Ricin Proteins 0.000 description 5
- 241000194017 Streptococcus Species 0.000 description 5
- 229940122618 Trypsin inhibitor Drugs 0.000 description 5
- 101710162629 Trypsin inhibitor Proteins 0.000 description 5
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 5
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 5
- 241000607598 Vibrio Species 0.000 description 5
- 230000008485 antagonism Effects 0.000 description 5
- 230000001772 anti-angiogenic effect Effects 0.000 description 5
- 230000001640 apoptogenic effect Effects 0.000 description 5
- 238000003149 assay kit Methods 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 230000014107 chromosome localization Effects 0.000 description 5
- 238000010367 cloning Methods 0.000 description 5
- 210000000805 cytoplasm Anatomy 0.000 description 5
- 239000002158 endotoxin Substances 0.000 description 5
- 102000052116 epidermal growth factor receptor activity proteins Human genes 0.000 description 5
- 108700015053 epidermal growth factor receptor activity proteins Proteins 0.000 description 5
- 210000001035 gastrointestinal tract Anatomy 0.000 description 5
- 102000006495 integrins Human genes 0.000 description 5
- 108010044426 integrins Proteins 0.000 description 5
- 238000001990 intravenous administration Methods 0.000 description 5
- GZQKNULLWNGMCW-PWQABINMSA-N lipid A (E. coli) Chemical compound O1[C@H](CO)[C@@H](OP(O)(O)=O)[C@H](OC(=O)C[C@@H](CCCCCCCCCCC)OC(=O)CCCCCCCCCCCCC)[C@@H](NC(=O)C[C@@H](CCCCCCCCCCC)OC(=O)CCCCCCCCCCC)[C@@H]1OC[C@@H]1[C@@H](O)[C@H](OC(=O)C[C@H](O)CCCCCCCCCCC)[C@@H](NC(=O)C[C@H](O)CCCCCCCCCCC)[C@@H](OP(O)(O)=O)O1 GZQKNULLWNGMCW-PWQABINMSA-N 0.000 description 5
- 101150093674 lpxD gene Proteins 0.000 description 5
- 201000005962 mycosis fungoides Diseases 0.000 description 5
- YOHYSYJDKVYCJI-UHFFFAOYSA-N n-[3-[[6-[3-(trifluoromethyl)anilino]pyrimidin-4-yl]amino]phenyl]cyclopropanecarboxamide Chemical compound FC(F)(F)C1=CC=CC(NC=2N=CN=C(NC=3C=C(NC(=O)C4CC4)C=CC=3)C=2)=C1 YOHYSYJDKVYCJI-UHFFFAOYSA-N 0.000 description 5
- 235000019833 protease Nutrition 0.000 description 5
- 108091008146 restriction endonucleases Proteins 0.000 description 5
- 230000004797 therapeutic response Effects 0.000 description 5
- MZOFCQQQCNRIBI-VMXHOPILSA-N (3s)-4-[[(2s)-1-[[(2s)-1-[[(1s)-1-carboxy-2-hydroxyethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-3-[[2-[[(2s)-2,6-diaminohexanoyl]amino]acetyl]amino]-4-oxobutanoic acid Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@@H](N)CCCCN MZOFCQQQCNRIBI-VMXHOPILSA-N 0.000 description 4
- 241000242759 Actiniaria Species 0.000 description 4
- 241000606749 Aggregatibacter actinomycetemcomitans Species 0.000 description 4
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 4
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 4
- 241000244186 Ascaris Species 0.000 description 4
- 102100024222 B-lymphocyte antigen CD19 Human genes 0.000 description 4
- 241000193830 Bacillus <bacterium> Species 0.000 description 4
- 108010079882 Bax protein (53-86) Proteins 0.000 description 4
- 206010006187 Breast cancer Diseases 0.000 description 4
- 208000026310 Breast neoplasm Diseases 0.000 description 4
- 241000282472 Canis lupus familiaris Species 0.000 description 4
- 102100025064 Cellular tumor antigen p53 Human genes 0.000 description 4
- 108090000317 Chymotrypsin Proteins 0.000 description 4
- 241000700108 Ctenophora <comb jellyfish phylum> Species 0.000 description 4
- 108010080611 Cytosine Deaminase Proteins 0.000 description 4
- 230000006820 DNA synthesis Effects 0.000 description 4
- 102100037241 Endoglin Human genes 0.000 description 4
- 241000192125 Firmicutes Species 0.000 description 4
- 108010006464 Hemolysin Proteins Proteins 0.000 description 4
- 101000980825 Homo sapiens B-lymphocyte antigen CD19 Proteins 0.000 description 4
- 101000721661 Homo sapiens Cellular tumor antigen p53 Proteins 0.000 description 4
- 108010043135 L-methionine gamma-lyase Proteins 0.000 description 4
- 208000031422 Lymphocytic Chronic B-Cell Leukemia Diseases 0.000 description 4
- 102000003735 Mesothelin Human genes 0.000 description 4
- 108090000015 Mesothelin Proteins 0.000 description 4
- 108090000284 Pepsin A Proteins 0.000 description 4
- 102000057297 Pepsin A Human genes 0.000 description 4
- 208000007641 Pinealoma Diseases 0.000 description 4
- 241000210647 Salmonella enterica subsp. enterica serovar Montevideo Species 0.000 description 4
- 206010039491 Sarcoma Diseases 0.000 description 4
- 241000700584 Simplexvirus Species 0.000 description 4
- 241000193985 Streptococcus agalactiae Species 0.000 description 4
- 241000194022 Streptococcus sp. Species 0.000 description 4
- 102000006601 Thymidine Kinase Human genes 0.000 description 4
- 108020004440 Thymidine kinase Proteins 0.000 description 4
- 230000001154 acute effect Effects 0.000 description 4
- 230000000118 anti-neoplastic effect Effects 0.000 description 4
- 239000002246 antineoplastic agent Substances 0.000 description 4
- 210000003719 b-lymphocyte Anatomy 0.000 description 4
- UBAZGMLMVVQSCD-UHFFFAOYSA-N carbon dioxide;molecular oxygen Chemical compound O=O.O=C=O UBAZGMLMVVQSCD-UHFFFAOYSA-N 0.000 description 4
- 229960002376 chymotrypsin Drugs 0.000 description 4
- 230000000295 complement effect Effects 0.000 description 4
- 230000003013 cytotoxicity Effects 0.000 description 4
- 231100000135 cytotoxicity Toxicity 0.000 description 4
- 230000006378 damage Effects 0.000 description 4
- 230000009849 deactivation Effects 0.000 description 4
- 239000003228 hemolysin Substances 0.000 description 4
- 238000000338 in vitro Methods 0.000 description 4
- 230000005764 inhibitory process Effects 0.000 description 4
- 230000036210 malignancy Effects 0.000 description 4
- 230000002503 metabolic effect Effects 0.000 description 4
- 230000000869 mutational effect Effects 0.000 description 4
- 210000004940 nucleus Anatomy 0.000 description 4
- 230000008520 organization Effects 0.000 description 4
- 230000000149 penetrating effect Effects 0.000 description 4
- 229940111202 pepsin Drugs 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 238000003752 polymerase chain reaction Methods 0.000 description 4
- 238000011321 prophylaxis Methods 0.000 description 4
- 230000017854 proteolysis Effects 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 210000003705 ribosome Anatomy 0.000 description 4
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 4
- 238000005204 segregation Methods 0.000 description 4
- 239000003001 serine protease inhibitor Substances 0.000 description 4
- 101150014665 tolB gene Proteins 0.000 description 4
- 101150071242 tolC gene Proteins 0.000 description 4
- 230000002103 transcriptional effect Effects 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 241000606750 Actinobacillus Species 0.000 description 3
- 208000010839 B-cell chronic lymphocytic leukemia Diseases 0.000 description 3
- 208000032791 BCR-ABL1 positive chronic myelogenous leukemia Diseases 0.000 description 3
- 241000194110 Bacillus sp. (in: Bacteria) Species 0.000 description 3
- 244000135860 Capparis spinosa subsp spinosa Species 0.000 description 3
- 108090000712 Cathepsin B Proteins 0.000 description 3
- 102000004225 Cathepsin B Human genes 0.000 description 3
- 206010007953 Central nervous system lymphoma Diseases 0.000 description 3
- 208000010833 Chronic myeloid leukaemia Diseases 0.000 description 3
- 241000193163 Clostridioides difficile Species 0.000 description 3
- 206010009944 Colon cancer Diseases 0.000 description 3
- KKZHXOOZHFABQQ-UWJYBYFXSA-N Cys-Ala-Tyr Chemical compound SC[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@H](C(O)=O)CC1=CC=C(O)C=C1 KKZHXOOZHFABQQ-UWJYBYFXSA-N 0.000 description 3
- 241000283086 Equidae Species 0.000 description 3
- 101000578492 Escherichia coli Lysis protein Proteins 0.000 description 3
- 101710089384 Extracellular protease Proteins 0.000 description 3
- 241000282326 Felis catus Species 0.000 description 3
- 108091028109 FinP Proteins 0.000 description 3
- 208000021309 Germ cell tumor Diseases 0.000 description 3
- 244000068988 Glycine max Species 0.000 description 3
- 235000010469 Glycine max Nutrition 0.000 description 3
- 101100232357 Homo sapiens IL13RA1 gene Proteins 0.000 description 3
- 101100232360 Homo sapiens IL13RA2 gene Proteins 0.000 description 3
- 101001057504 Homo sapiens Interferon-stimulated gene 20 kDa protein Proteins 0.000 description 3
- 101001033312 Homo sapiens Interleukin-4 receptor subunit alpha Proteins 0.000 description 3
- 101000934338 Homo sapiens Myeloid cell surface antigen CD33 Proteins 0.000 description 3
- 101000904173 Homo sapiens Progonadoliberin-1 Proteins 0.000 description 3
- 101000851376 Homo sapiens Tumor necrosis factor receptor superfamily member 8 Proteins 0.000 description 3
- 102100020791 Interleukin-13 receptor subunit alpha-1 Human genes 0.000 description 3
- 102100039078 Interleukin-4 receptor subunit alpha Human genes 0.000 description 3
- 101710128836 Large T antigen Proteins 0.000 description 3
- 241001084338 Listeria sp. Species 0.000 description 3
- 208000033761 Myelogenous Chronic BCR-ABL Positive Leukemia Diseases 0.000 description 3
- 208000033776 Myeloid Acute Leukemia Diseases 0.000 description 3
- 102100025243 Myeloid cell surface antigen CD33 Human genes 0.000 description 3
- 208000034176 Neoplasms, Germ Cell and Embryonal Diseases 0.000 description 3
- 102000043299 Parathyroid hormone-related Human genes 0.000 description 3
- 108010047320 Pepsinogen A Proteins 0.000 description 3
- 102100024028 Progonadoliberin-1 Human genes 0.000 description 3
- 206010060862 Prostate cancer Diseases 0.000 description 3
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 3
- 101800004937 Protein C Proteins 0.000 description 3
- 241001354013 Salmonella enterica subsp. enterica serovar Enteritidis Species 0.000 description 3
- 241000607124 Salmonella enterica subsp. enterica serovar Muenchen Species 0.000 description 3
- 241000607149 Salmonella sp. Species 0.000 description 3
- 102400000827 Saposin-D Human genes 0.000 description 3
- 101800001700 Saposin-D Proteins 0.000 description 3
- 206010040070 Septic Shock Diseases 0.000 description 3
- 238000012300 Sequence Analysis Methods 0.000 description 3
- 108010022999 Serine Proteases Proteins 0.000 description 3
- 102000012479 Serine Proteases Human genes 0.000 description 3
- 102000008847 Serpin Human genes 0.000 description 3
- 108050000761 Serpin Proteins 0.000 description 3
- 241000607720 Serratia Species 0.000 description 3
- 101710084578 Short neurotoxin 1 Proteins 0.000 description 3
- 108010003723 Single-Domain Antibodies Proteins 0.000 description 3
- 101000996723 Sus scrofa Gonadotropin-releasing hormone receptor Proteins 0.000 description 3
- 208000031673 T-Cell Cutaneous Lymphoma Diseases 0.000 description 3
- 239000004098 Tetracycline Substances 0.000 description 3
- 102000003978 Tissue Plasminogen Activator Human genes 0.000 description 3
- 108090000373 Tissue Plasminogen Activator Proteins 0.000 description 3
- 101710182532 Toxin a Proteins 0.000 description 3
- 102000004338 Transferrin Human genes 0.000 description 3
- 108090000901 Transferrin Proteins 0.000 description 3
- 102100036857 Tumor necrosis factor receptor superfamily member 8 Human genes 0.000 description 3
- 108010064721 Type I Secretion Systems Proteins 0.000 description 3
- 230000004075 alteration Effects 0.000 description 3
- PYMYPHUHKUWMLA-WDCZJNDASA-N arabinose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)C=O PYMYPHUHKUWMLA-WDCZJNDASA-N 0.000 description 3
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 3
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 3
- 239000008280 blood Substances 0.000 description 3
- 108010042445 cell-binding peptide P-15 Proteins 0.000 description 3
- 230000001413 cellular effect Effects 0.000 description 3
- 238000012512 characterization method Methods 0.000 description 3
- 108010056602 colicin immunity proteins Proteins 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 201000007241 cutaneous T cell lymphoma Diseases 0.000 description 3
- 210000002889 endothelial cell Anatomy 0.000 description 3
- 238000001415 gene therapy Methods 0.000 description 3
- 230000030414 genetic transfer Effects 0.000 description 3
- XLXSAKCOAKORKW-UHFFFAOYSA-N gonadorelin Chemical compound C1CCC(C(=O)NCC(N)=O)N1C(=O)C(CCCN=C(N)N)NC(=O)C(CC(C)C)NC(=O)CNC(=O)C(NC(=O)C(CO)NC(=O)C(CC=1C2=CC=CC=C2NC=1)NC(=O)C(CC=1NC=NC=1)NC(=O)C1NC(=O)CC1)CC1=CC=C(O)C=C1 XLXSAKCOAKORKW-UHFFFAOYSA-N 0.000 description 3
- 201000009277 hairy cell leukemia Diseases 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 208000015181 infectious disease Diseases 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 230000002147 killing effect Effects 0.000 description 3
- 210000004185 liver Anatomy 0.000 description 3
- 239000003550 marker Substances 0.000 description 3
- 238000004949 mass spectrometry Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 230000001404 mediated effect Effects 0.000 description 3
- 244000005700 microbiome Species 0.000 description 3
- 210000003205 muscle Anatomy 0.000 description 3
- 201000000050 myeloid neoplasm Diseases 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 3
- 230000003472 neutralizing effect Effects 0.000 description 3
- 208000016800 primary central nervous system lymphoma Diseases 0.000 description 3
- 208000025638 primary cutaneous T-cell non-Hodgkin lymphoma Diseases 0.000 description 3
- 208000029340 primitive neuroectodermal tumor Diseases 0.000 description 3
- 230000000861 pro-apoptotic effect Effects 0.000 description 3
- 229960000856 protein c Drugs 0.000 description 3
- 230000006337 proteolytic cleavage Effects 0.000 description 3
- 230000010076 replication Effects 0.000 description 3
- 238000012552 review Methods 0.000 description 3
- 230000036303 septic shock Effects 0.000 description 3
- 210000002966 serum Anatomy 0.000 description 3
- 201000000849 skin cancer Diseases 0.000 description 3
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 3
- 230000006641 stabilisation Effects 0.000 description 3
- 238000011105 stabilization Methods 0.000 description 3
- 210000002784 stomach Anatomy 0.000 description 3
- 210000002536 stromal cell Anatomy 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 201000008205 supratentorial primitive neuroectodermal tumor Diseases 0.000 description 3
- 229960002180 tetracycline Drugs 0.000 description 3
- 229930101283 tetracycline Natural products 0.000 description 3
- 235000019364 tetracycline Nutrition 0.000 description 3
- 150000003522 tetracyclines Chemical class 0.000 description 3
- 229960000187 tissue plasminogen activator Drugs 0.000 description 3
- 239000012581 transferrin Substances 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 238000005829 trimerization reaction Methods 0.000 description 3
- 230000002792 vascular Effects 0.000 description 3
- 208000002008 AIDS-Related Lymphoma Diseases 0.000 description 2
- 108091005508 Acid proteases Proteins 0.000 description 2
- 206010000830 Acute leukaemia Diseases 0.000 description 2
- 208000024893 Acute lymphoblastic leukemia Diseases 0.000 description 2
- 208000014697 Acute lymphocytic leukaemia Diseases 0.000 description 2
- 101100075612 Aggregatibacter actinomycetemcomitans ltxA gene Proteins 0.000 description 2
- 244000291564 Allium cepa Species 0.000 description 2
- 235000002732 Allium cepa var. cepa Nutrition 0.000 description 2
- 102000034263 Amino acid transporters Human genes 0.000 description 2
- 108050005273 Amino acid transporters Proteins 0.000 description 2
- 241001167018 Aroa Species 0.000 description 2
- 206010003571 Astrocytoma Diseases 0.000 description 2
- 201000008271 Atypical teratoid rhabdoid tumor Diseases 0.000 description 2
- 241000271566 Aves Species 0.000 description 2
- 101100216993 Bacillus subtilis (strain 168) aroD gene Proteins 0.000 description 2
- 241000606125 Bacteroides Species 0.000 description 2
- 241001148536 Bacteroides sp. Species 0.000 description 2
- 108091005658 Basic proteases Proteins 0.000 description 2
- 241000131482 Bifidobacterium sp. Species 0.000 description 2
- 206010004593 Bile duct cancer Diseases 0.000 description 2
- 206010005003 Bladder cancer Diseases 0.000 description 2
- 208000003174 Brain Neoplasms Diseases 0.000 description 2
- 206010006143 Brain stem glioma Diseases 0.000 description 2
- 208000011691 Burkitt lymphomas Diseases 0.000 description 2
- 102000017420 CD3 protein, epsilon/gamma/delta subunit Human genes 0.000 description 2
- 108050005493 CD3 protein, epsilon/gamma/delta subunit Proteins 0.000 description 2
- 101150013553 CD40 gene Proteins 0.000 description 2
- 101100123850 Caenorhabditis elegans her-1 gene Proteins 0.000 description 2
- 108090000613 Cathepsin S Proteins 0.000 description 2
- 102100035654 Cathepsin S Human genes 0.000 description 2
- 208000037138 Central nervous system embryonal tumor Diseases 0.000 description 2
- 206010008342 Cervix carcinoma Diseases 0.000 description 2
- XTEGARKTQYYJKE-UHFFFAOYSA-M Chlorate Chemical compound [O-]Cl(=O)=O XTEGARKTQYYJKE-UHFFFAOYSA-M 0.000 description 2
- 101710116299 Choriogonadotropin subunit beta Proteins 0.000 description 2
- 101710166590 Choriogonadotropin subunit beta 3 Proteins 0.000 description 2
- 102100031196 Choriogonadotropin subunit beta 3 Human genes 0.000 description 2
- FBUKMFOXMZRGRB-UHFFFAOYSA-N Coronaric acid Natural products CCCCCC=CCC1OC1CCCCCCCC(O)=O FBUKMFOXMZRGRB-UHFFFAOYSA-N 0.000 description 2
- 208000009798 Craniopharyngioma Diseases 0.000 description 2
- 101710095468 Cyclase Proteins 0.000 description 2
- 101000972324 Cynodon dactylon Leaf protein Proteins 0.000 description 2
- 102000000311 Cytosine Deaminase Human genes 0.000 description 2
- QNAYBMKLOCPYGJ-UWTATZPHSA-N D-alanine Chemical compound C[C@@H](N)C(O)=O QNAYBMKLOCPYGJ-UWTATZPHSA-N 0.000 description 2
- 108700022150 Designed Ankyrin Repeat Proteins Proteins 0.000 description 2
- 101100030911 Dickeya chrysanthemi prtF gene Proteins 0.000 description 2
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 2
- 102000001301 EGF receptor Human genes 0.000 description 2
- 101150029707 ERBB2 gene Proteins 0.000 description 2
- 101100491986 Emericella nidulans (strain FGSC A4 / ATCC 38163 / CBS 112.46 / NRRL 194 / M139) aromA gene Proteins 0.000 description 2
- 108010036395 Endoglin Proteins 0.000 description 2
- 241000194032 Enterococcus faecalis Species 0.000 description 2
- 201000008228 Ependymoblastoma Diseases 0.000 description 2
- 206010014967 Ependymoma Diseases 0.000 description 2
- 206010014968 Ependymoma malignant Diseases 0.000 description 2
- 241000588722 Escherichia Species 0.000 description 2
- 208000012468 Ewing sarcoma/peripheral primitive neuroectodermal tumor Diseases 0.000 description 2
- 102000018233 Fibroblast Growth Factor Human genes 0.000 description 2
- 108050007372 Fibroblast Growth Factor Proteins 0.000 description 2
- 102000013382 Gelatinases Human genes 0.000 description 2
- 108010026132 Gelatinases Proteins 0.000 description 2
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 2
- 241000589989 Helicobacter Species 0.000 description 2
- 208000017604 Hodgkin disease Diseases 0.000 description 2
- 208000021519 Hodgkin lymphoma Diseases 0.000 description 2
- 208000010747 Hodgkins lymphoma Diseases 0.000 description 2
- 101000599048 Homo sapiens Interleukin-6 receptor subunit alpha Proteins 0.000 description 2
- 101000628547 Homo sapiens Metalloreductase STEAP1 Proteins 0.000 description 2
- 101001050878 Homo sapiens Potassium channel subfamily K member 9 Proteins 0.000 description 2
- 101000914496 Homo sapiens T-cell antigen CD7 Proteins 0.000 description 2
- 101000934346 Homo sapiens T-cell surface antigen CD2 Proteins 0.000 description 2
- 101000934341 Homo sapiens T-cell surface glycoprotein CD5 Proteins 0.000 description 2
- 206010021143 Hypoxia Diseases 0.000 description 2
- 102000008607 Integrin beta3 Human genes 0.000 description 2
- 108010020950 Integrin beta3 Proteins 0.000 description 2
- 102000003814 Interleukin-10 Human genes 0.000 description 2
- 108090000174 Interleukin-10 Proteins 0.000 description 2
- 102100037792 Interleukin-6 receptor subunit alpha Human genes 0.000 description 2
- 206010061252 Intraocular melanoma Diseases 0.000 description 2
- 208000009164 Islet Cell Adenoma Diseases 0.000 description 2
- 102000004195 Isomerases Human genes 0.000 description 2
- 108090000769 Isomerases Proteins 0.000 description 2
- 208000007766 Kaposi sarcoma Diseases 0.000 description 2
- ODKSFYDXXFIFQN-BYPYZUCNSA-N L-arginine Chemical compound OC(=O)[C@@H](N)CCCN=C(N)N ODKSFYDXXFIFQN-BYPYZUCNSA-N 0.000 description 2
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 2
- 239000005517 L01XE01 - Imatinib Substances 0.000 description 2
- 241000186660 Lactobacillus Species 0.000 description 2
- 241000178948 Lactococcus sp. Species 0.000 description 2
- GDBQQVLCIARPGH-UHFFFAOYSA-N Leupeptin Natural products CC(C)CC(NC(C)=O)C(=O)NC(CC(C)C)C(=O)NC(C=O)CCCN=C(N)N GDBQQVLCIARPGH-UHFFFAOYSA-N 0.000 description 2
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 2
- 241000227653 Lycopersicon Species 0.000 description 2
- 206010025312 Lymphoma AIDS related Diseases 0.000 description 2
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 2
- 206010025557 Malignant fibrous histiocytoma of bone Diseases 0.000 description 2
- 208000000172 Medulloblastoma Diseases 0.000 description 2
- 102000005741 Metalloproteases Human genes 0.000 description 2
- 108010006035 Metalloproteases Proteins 0.000 description 2
- 102100026712 Metalloreductase STEAP1 Human genes 0.000 description 2
- 206010027480 Metastatic malignant melanoma Diseases 0.000 description 2
- 208000003445 Mouth Neoplasms Diseases 0.000 description 2
- 101100386510 Mus musculus Dazap2 gene Proteins 0.000 description 2
- 208000001894 Nasopharyngeal Neoplasms Diseases 0.000 description 2
- 206010061306 Nasopharyngeal cancer Diseases 0.000 description 2
- 241000588653 Neisseria Species 0.000 description 2
- 108700019961 Neoplasm Genes Proteins 0.000 description 2
- 102000048850 Neoplasm Genes Human genes 0.000 description 2
- 206010029260 Neuroblastoma Diseases 0.000 description 2
- 241001195348 Nusa Species 0.000 description 2
- 108010067372 Pancreatic elastase Proteins 0.000 description 2
- 102000016387 Pancreatic elastase Human genes 0.000 description 2
- 108700020797 Parathyroid Hormone-Related Proteins 0.000 description 2
- 102000007079 Peptide Fragments Human genes 0.000 description 2
- 108010033276 Peptide Fragments Proteins 0.000 description 2
- 108010067902 Peptide Library Proteins 0.000 description 2
- 201000005702 Pertussis Diseases 0.000 description 2
- 108010081690 Pertussis Toxin Proteins 0.000 description 2
- 206010050487 Pinealoblastoma Diseases 0.000 description 2
- 102000013566 Plasminogen Human genes 0.000 description 2
- 108010051456 Plasminogen Proteins 0.000 description 2
- 102000004211 Platelet factor 4 Human genes 0.000 description 2
- 108090000778 Platelet factor 4 Proteins 0.000 description 2
- 102100024986 Potassium channel subfamily K member 9 Human genes 0.000 description 2
- 208000006664 Precursor Cell Lymphoblastic Leukemia-Lymphoma Diseases 0.000 description 2
- 102000006437 Proprotein Convertases Human genes 0.000 description 2
- 108010044159 Proprotein Convertases Proteins 0.000 description 2
- 241000588770 Proteus mirabilis Species 0.000 description 2
- 241000589516 Pseudomonas Species 0.000 description 2
- 102000018120 Recombinases Human genes 0.000 description 2
- 108010091086 Recombinases Proteins 0.000 description 2
- 206010070308 Refractory cancer Diseases 0.000 description 2
- 201000000582 Retinoblastoma Diseases 0.000 description 2
- 241001135268 Salmonella enterica subsp. enterica serovar Derby Species 0.000 description 2
- 241000392514 Salmonella enterica subsp. enterica serovar Dublin Species 0.000 description 2
- 241000607132 Salmonella enterica subsp. enterica serovar Gallinarum Species 0.000 description 2
- 208000009359 Sezary Syndrome Diseases 0.000 description 2
- 108010017898 Shiga Toxins Proteins 0.000 description 2
- 208000000453 Skin Neoplasms Diseases 0.000 description 2
- 244000061456 Solanum tuberosum Species 0.000 description 2
- 235000002595 Solanum tuberosum Nutrition 0.000 description 2
- 102000005157 Somatostatin Human genes 0.000 description 2
- 108010056088 Somatostatin Proteins 0.000 description 2
- 241000191963 Staphylococcus epidermidis Species 0.000 description 2
- 244000057717 Streptococcus lactis Species 0.000 description 2
- 235000014897 Streptococcus lactis Nutrition 0.000 description 2
- 241000194019 Streptococcus mutans Species 0.000 description 2
- 241000193996 Streptococcus pyogenes Species 0.000 description 2
- 108700018667 Streptomyces subtilisin inhibitor Proteins 0.000 description 2
- 102100027208 T-cell antigen CD7 Human genes 0.000 description 2
- 102100025237 T-cell surface antigen CD2 Human genes 0.000 description 2
- 102100025244 T-cell surface glycoprotein CD5 Human genes 0.000 description 2
- 102000035100 Threonine proteases Human genes 0.000 description 2
- 108091005501 Threonine proteases Proteins 0.000 description 2
- 101710182223 Toxin B Proteins 0.000 description 2
- 101710120037 Toxin CcdB Proteins 0.000 description 2
- 102100040245 Tumor necrosis factor receptor superfamily member 5 Human genes 0.000 description 2
- 102400000757 Ubiquitin Human genes 0.000 description 2
- 108090000848 Ubiquitin Proteins 0.000 description 2
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 description 2
- 101150115929 Usp45 gene Proteins 0.000 description 2
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 description 2
- 201000005969 Uveal melanoma Diseases 0.000 description 2
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 2
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 2
- 108010003205 Vasoactive Intestinal Peptide Proteins 0.000 description 2
- 102400000015 Vasoactive intestinal peptide Human genes 0.000 description 2
- 102100021164 Vasodilator-stimulated phosphoprotein Human genes 0.000 description 2
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 2
- 241000607626 Vibrio cholerae Species 0.000 description 2
- 208000033559 Waldenström macroglobulinemia Diseases 0.000 description 2
- 241000607479 Yersinia pestis Species 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 208000036676 acute undifferentiated leukemia Diseases 0.000 description 2
- 230000010933 acylation Effects 0.000 description 2
- 238000005917 acylation reaction Methods 0.000 description 2
- 208000020990 adrenal cortex carcinoma Diseases 0.000 description 2
- 208000007128 adrenocortical carcinoma Diseases 0.000 description 2
- 108010050122 alpha 1-Antitrypsin Proteins 0.000 description 2
- 102000015395 alpha 1-Antitrypsin Human genes 0.000 description 2
- 230000009435 amidation Effects 0.000 description 2
- 238000007112 amidation reaction Methods 0.000 description 2
- 238000004873 anchoring Methods 0.000 description 2
- 239000002870 angiogenesis inducing agent Substances 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 230000000844 anti-bacterial effect Effects 0.000 description 2
- 229940088710 antibiotic agent Drugs 0.000 description 2
- 239000003146 anticoagulant agent Substances 0.000 description 2
- 229940127219 anticoagulant drug Drugs 0.000 description 2
- 229940034982 antineoplastic agent Drugs 0.000 description 2
- 239000004019 antithrombin Substances 0.000 description 2
- 230000006907 apoptotic process Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 101150037081 aroA gene Proteins 0.000 description 2
- 101150090235 aroB gene Proteins 0.000 description 2
- 101150042732 aroC gene Proteins 0.000 description 2
- 101150102858 aroD gene Proteins 0.000 description 2
- 101150040872 aroE gene Proteins 0.000 description 2
- 101150108612 aroQ gene Proteins 0.000 description 2
- 230000005784 autoimmunity Effects 0.000 description 2
- 230000002358 autolytic effect Effects 0.000 description 2
- 230000000680 avirulence Effects 0.000 description 2
- 210000003578 bacterial chromosome Anatomy 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 229920001222 biopolymer Polymers 0.000 description 2
- 201000008873 bone osteosarcoma Diseases 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 108020001778 catalytic domains Proteins 0.000 description 2
- 201000010881 cervical cancer Diseases 0.000 description 2
- 239000002738 chelating agent Substances 0.000 description 2
- 230000002759 chromosomal effect Effects 0.000 description 2
- 230000001684 chronic effect Effects 0.000 description 2
- 208000029742 colonic neoplasm Diseases 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 101150023485 cyaE gene Proteins 0.000 description 2
- 230000001351 cycling effect Effects 0.000 description 2
- 230000009089 cytolysis Effects 0.000 description 2
- 229940127089 cytotoxic agent Drugs 0.000 description 2
- 230000034994 death Effects 0.000 description 2
- 230000004069 differentiation Effects 0.000 description 2
- 230000006334 disulfide bridging Effects 0.000 description 2
- 125000002228 disulfide group Chemical group 0.000 description 2
- 231100000371 dose-limiting toxicity Toxicity 0.000 description 2
- 229940032049 enterococcus faecalis Drugs 0.000 description 2
- 230000002255 enzymatic effect Effects 0.000 description 2
- 239000013604 expression vector Substances 0.000 description 2
- 208000024519 eye neoplasm Diseases 0.000 description 2
- 230000035558 fertility Effects 0.000 description 2
- 229940126864 fibroblast growth factor Drugs 0.000 description 2
- 238000001502 gel electrophoresis Methods 0.000 description 2
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 2
- 125000003630 glycyl group Chemical group [H]N([H])C([H])([H])C(*)=O 0.000 description 2
- HHLFWLYXYJOTON-UHFFFAOYSA-N glyoxylic acid Chemical compound OC(=O)C=O HHLFWLYXYJOTON-UHFFFAOYSA-N 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- 208000014829 head and neck neoplasm Diseases 0.000 description 2
- 230000002489 hematologic effect Effects 0.000 description 2
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- KTUFNOKKBVMGRW-UHFFFAOYSA-N imatinib Chemical compound C1CN(C)CCN1CC1=CC=C(C(=O)NC=2C=C(NC=3N=C(C=CN=3)C=3C=NC=CC=3)C(C)=CC=2)C=C1 KTUFNOKKBVMGRW-UHFFFAOYSA-N 0.000 description 2
- 229960002411 imatinib Drugs 0.000 description 2
- 230000028993 immune response Effects 0.000 description 2
- 230000001506 immunosuppresive effect Effects 0.000 description 2
- 230000001976 improved effect Effects 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 229940076144 interleukin-10 Drugs 0.000 description 2
- 238000007918 intramuscular administration Methods 0.000 description 2
- 230000009545 invasion Effects 0.000 description 2
- VBUWHHLIZKOSMS-RIWXPGAOSA-N invicorp Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(O)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](CCSC)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC=1NC=NC=1)C(C)C)[C@@H](C)O)[C@@H](C)O)C(C)C)C1=CC=C(O)C=C1 VBUWHHLIZKOSMS-RIWXPGAOSA-N 0.000 description 2
- UWKQSNNFCGGAFS-XIFFEERXSA-N irinotecan Chemical compound C1=C2C(CC)=C3CN(C(C4=C([C@@](C(=O)OC4)(O)CC)C=4)=O)C=4C3=NC2=CC=C1OC(=O)N(CC1)CCC1N1CCCCC1 UWKQSNNFCGGAFS-XIFFEERXSA-N 0.000 description 2
- 210000003734 kidney Anatomy 0.000 description 2
- 210000000244 kidney pelvis Anatomy 0.000 description 2
- 229940039696 lactobacillus Drugs 0.000 description 2
- 108010052968 leupeptin Proteins 0.000 description 2
- GDBQQVLCIARPGH-ULQDDVLXSA-N leupeptin Chemical compound CC(C)C[C@H](NC(C)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](C=O)CCCN=C(N)N GDBQQVLCIARPGH-ULQDDVLXSA-N 0.000 description 2
- 208000012987 lip and oral cavity carcinoma Diseases 0.000 description 2
- 229920006008 lipopolysaccharide Polymers 0.000 description 2
- 201000007270 liver cancer Diseases 0.000 description 2
- 208000014018 liver neoplasm Diseases 0.000 description 2
- 210000004072 lung Anatomy 0.000 description 2
- 201000005202 lung cancer Diseases 0.000 description 2
- 208000020816 lung neoplasm Diseases 0.000 description 2
- 210000003712 lysosome Anatomy 0.000 description 2
- 230000001868 lysosomic effect Effects 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000003475 metalloproteinase inhibitor Substances 0.000 description 2
- 208000021039 metastatic melanoma Diseases 0.000 description 2
- 229930182817 methionine Natural products 0.000 description 2
- 229960004452 methionine Drugs 0.000 description 2
- 230000000813 microbial effect Effects 0.000 description 2
- 238000009126 molecular therapy Methods 0.000 description 2
- 210000000865 mononuclear phagocyte system Anatomy 0.000 description 2
- 238000010172 mouse model Methods 0.000 description 2
- 208000018795 nasal cavity and paranasal sinus carcinoma Diseases 0.000 description 2
- 208000002154 non-small cell lung carcinoma Diseases 0.000 description 2
- 230000030147 nuclear export Effects 0.000 description 2
- 235000015097 nutrients Nutrition 0.000 description 2
- 201000008106 ocular cancer Diseases 0.000 description 2
- 201000002575 ocular melanoma Diseases 0.000 description 2
- 208000022102 pancreatic neuroendocrine neoplasm Diseases 0.000 description 2
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 2
- 244000052769 pathogen Species 0.000 description 2
- 230000008506 pathogenesis Effects 0.000 description 2
- 230000007918 pathogenicity Effects 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 201000003113 pineoblastoma Diseases 0.000 description 2
- 208000010626 plasma cell neoplasm Diseases 0.000 description 2
- 230000003389 potentiating effect Effects 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- 108010083979 proaerolysin Proteins 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 230000004952 protein activity Effects 0.000 description 2
- 230000004853 protein function Effects 0.000 description 2
- 230000002797 proteolythic effect Effects 0.000 description 2
- 101150002764 purA gene Proteins 0.000 description 2
- 208000016691 refractory malignant neoplasm Diseases 0.000 description 2
- OHRURASPPZQGQM-GCCNXGTGSA-N romidepsin Chemical compound O1C(=O)[C@H](C(C)C)NC(=O)C(=C/C)/NC(=O)[C@H]2CSSCC\C=C\[C@@H]1CC(=O)N[C@H](C(C)C)C(=O)N2 OHRURASPPZQGQM-GCCNXGTGSA-N 0.000 description 2
- 229960004889 salicylic acid Drugs 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 230000003248 secreting effect Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- NHXLMOGPVYXJNR-ATOGVRKGSA-N somatostatin Chemical compound C([C@H]1C(=O)N[C@H](C(N[C@@H](CO)C(=O)N[C@@H](CSSC[C@@H](C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC=2C3=CC=CC=C3NC=2)C(=O)N[C@@H](CCCCN)C(=O)N[C@H](C(=O)N1)[C@@H](C)O)NC(=O)CNC(=O)[C@H](C)N)C(O)=O)=O)[C@H](O)C)C1=CC=CC=C1 NHXLMOGPVYXJNR-ATOGVRKGSA-N 0.000 description 2
- 229960000553 somatostatin Drugs 0.000 description 2
- 230000002269 spontaneous effect Effects 0.000 description 2
- 238000012289 standard assay Methods 0.000 description 2
- 239000000829 suppository Substances 0.000 description 2
- 230000009885 systemic effect Effects 0.000 description 2
- 238000002626 targeted therapy Methods 0.000 description 2
- 208000008732 thymoma Diseases 0.000 description 2
- 108091006106 transcriptional activators Proteins 0.000 description 2
- 230000002463 transducing effect Effects 0.000 description 2
- 238000010361 transduction Methods 0.000 description 2
- 230000026683 transduction Effects 0.000 description 2
- 206010044412 transitional cell carcinoma Diseases 0.000 description 2
- 101150069282 trpB2 gene Proteins 0.000 description 2
- 229960001322 trypsin Drugs 0.000 description 2
- 208000029729 tumor suppressor gene on chromosome 11 Diseases 0.000 description 2
- 208000018417 undifferentiated high grade pleomorphic sarcoma of bone Diseases 0.000 description 2
- 210000000626 ureter Anatomy 0.000 description 2
- 201000005112 urinary bladder cancer Diseases 0.000 description 2
- 208000037965 uterine sarcoma Diseases 0.000 description 2
- 108010054220 vasodilator-stimulated phosphoprotein Proteins 0.000 description 2
- MRXDGVXSWIXTQL-HYHFHBMOSA-N (2s)-2-[[(1s)-1-(2-amino-1,4,5,6-tetrahydropyrimidin-6-yl)-2-[[(2s)-4-methyl-1-oxo-1-[[(2s)-1-oxo-3-phenylpropan-2-yl]amino]pentan-2-yl]amino]-2-oxoethyl]carbamoylamino]-3-phenylpropanoic acid Chemical compound C([C@H](NC(=O)N[C@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C=O)C1NC(N)=NCC1)C(O)=O)C1=CC=CC=C1 MRXDGVXSWIXTQL-HYHFHBMOSA-N 0.000 description 1
- MKSPBYRGLCNGRC-OEMOKZHXSA-N (2s)-2-[[(2s)-1-[(2s)-1-[(2s)-2-[[(2s)-2-[[(2s,3r)-2-[[(2s)-2-aminopropanoyl]amino]-3-hydroxybutanoyl]amino]-3-(1h-indol-3-yl)propanoyl]amino]-4-methylpentanoyl]pyrrolidine-2-carbonyl]pyrrolidine-2-carbonyl]amino]-5-(diaminomethylideneamino)pentanoic acid Chemical compound O=C([C@@H]1CCCN1C(=O)[C@@H](NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@@H](NC(=O)[C@H](C)N)[C@@H](C)O)CC(C)C)N1CCC[C@H]1C(=O)N[C@@H](CCCNC(N)=N)C(O)=O MKSPBYRGLCNGRC-OEMOKZHXSA-N 0.000 description 1
- VZQHRKZCAZCACO-PYJNHQTQSA-N (2s)-2-[[(2s)-2-[2-[[(2s)-2-[[(2s)-2-amino-5-(diaminomethylideneamino)pentanoyl]amino]propanoyl]amino]prop-2-enoylamino]-3-methylbutanoyl]amino]propanoic acid Chemical compound OC(=O)[C@H](C)NC(=O)[C@H](C(C)C)NC(=O)C(=C)NC(=O)[C@H](C)NC(=O)[C@@H](N)CCCNC(N)=N VZQHRKZCAZCACO-PYJNHQTQSA-N 0.000 description 1
- QVVDVENEPNODSI-BTNSXGMBSA-N (2s)-2-[[(2s)-2-[[(2s)-2-[[(2s)-2-[[(2s)-2-[[(2s)-2-amino-5-(diaminomethylideneamino)pentanoyl]amino]-5-(diaminomethylideneamino)pentanoyl]amino]-5-(diaminomethylideneamino)pentanoyl]amino]-5-(diaminomethylideneamino)pentanoyl]amino]-5-(diaminomethylidene Chemical compound NC(N)=NCCC[C@H](N)C(=O)N[C@@H](CCCN=C(N)N)C(=O)N[C@@H](CCCN=C(N)N)C(=O)N[C@@H](CCCN=C(N)N)C(=O)N[C@@H](CCCN=C(N)N)C(=O)N[C@@H](CCCN=C(N)N)C(O)=O QVVDVENEPNODSI-BTNSXGMBSA-N 0.000 description 1
- WCDDVEOXEIYWFB-VXORFPGASA-N (2s,3s,4r,5r,6r)-3-[(2s,3r,5s,6r)-3-acetamido-5-hydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-4,5,6-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@@H]1C[C@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](C(O)=O)O[C@@H](O)[C@H](O)[C@H]1O WCDDVEOXEIYWFB-VXORFPGASA-N 0.000 description 1
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 1
- UEJJHQNACJXSKW-UHFFFAOYSA-N 2-(2,6-dioxopiperidin-3-yl)-1H-isoindole-1,3(2H)-dione Chemical compound O=C1C2=CC=CC=C2C(=O)N1C1CCC(=O)NC1=O UEJJHQNACJXSKW-UHFFFAOYSA-N 0.000 description 1
- QZDDFQLIQRYMBV-UHFFFAOYSA-N 2-[3-nitro-2-(2-nitrophenyl)-4-oxochromen-8-yl]acetic acid Chemical compound OC(=O)CC1=CC=CC(C(C=2[N+]([O-])=O)=O)=C1OC=2C1=CC=CC=C1[N+]([O-])=O QZDDFQLIQRYMBV-UHFFFAOYSA-N 0.000 description 1
- AZKSAVLVSZKNRD-UHFFFAOYSA-M 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide Chemical compound [Br-].S1C(C)=C(C)N=C1[N+]1=NC(C=2C=CC=CC=2)=NN1C1=CC=CC=C1 AZKSAVLVSZKNRD-UHFFFAOYSA-M 0.000 description 1
- BMZIBHZDQPLVIS-UHFFFAOYSA-N 4-[2-(2-morpholin-4-ylethylselanyl)ethyl]morpholine Chemical compound C1COCCN1CC[Se]CCN1CCOCC1 BMZIBHZDQPLVIS-UHFFFAOYSA-N 0.000 description 1
- ALYNCZNDIQEVRV-UHFFFAOYSA-N 4-aminobenzoic acid Chemical compound NC1=CC=C(C(O)=O)C=C1 ALYNCZNDIQEVRV-UHFFFAOYSA-N 0.000 description 1
- QCVGEOXPDFCNHA-UHFFFAOYSA-N 5,5-dimethyl-2,4-dioxo-1,3-oxazolidine-3-carboxamide Chemical compound CC1(C)OC(=O)N(C(N)=O)C1=O QCVGEOXPDFCNHA-UHFFFAOYSA-N 0.000 description 1
- 101000720083 Actinia equina DELTA-actitoxin-Aeq1a Proteins 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 108010053754 Aldehyde reductase Proteins 0.000 description 1
- 102100027265 Aldo-keto reductase family 1 member B1 Human genes 0.000 description 1
- 102100022749 Aminopeptidase N Human genes 0.000 description 1
- 102000001921 Aminopeptidase P Human genes 0.000 description 1
- 108090000915 Aminopeptidases Proteins 0.000 description 1
- 102000004400 Aminopeptidases Human genes 0.000 description 1
- 206010061424 Anal cancer Diseases 0.000 description 1
- 235000002198 Annona diversifolia Nutrition 0.000 description 1
- 108700031308 Antennapedia Homeodomain Proteins 0.000 description 1
- 241001156002 Anthonomus pomorum Species 0.000 description 1
- 208000007860 Anus Neoplasms Diseases 0.000 description 1
- 102100021569 Apoptosis regulator Bcl-2 Human genes 0.000 description 1
- 206010073360 Appendix cancer Diseases 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 108010085764 Ascaris trypsin inhibitor Proteins 0.000 description 1
- 108010024976 Asparaginase Proteins 0.000 description 1
- 102000015790 Asparaginase Human genes 0.000 description 1
- BSYNRYMUTXBXSQ-UHFFFAOYSA-N Aspirin Chemical class CC(=O)OC1=CC=CC=C1C(O)=O BSYNRYMUTXBXSQ-UHFFFAOYSA-N 0.000 description 1
- 108010007337 Azurin Proteins 0.000 description 1
- 102100022005 B-lymphocyte antigen CD20 Human genes 0.000 description 1
- 108091012583 BCL2 Proteins 0.000 description 1
- 241000193755 Bacillus cereus Species 0.000 description 1
- 244000063299 Bacillus subtilis Species 0.000 description 1
- 235000014469 Bacillus subtilis Nutrition 0.000 description 1
- 101100290087 Bacillus subtilis (strain 168) yvyI gene Proteins 0.000 description 1
- 208000035143 Bacterial infection Diseases 0.000 description 1
- 206010004146 Basal cell carcinoma Diseases 0.000 description 1
- 101150086017 Bcl2l11 gene Proteins 0.000 description 1
- 241000186000 Bifidobacterium Species 0.000 description 1
- 102400000948 Big gastrin Human genes 0.000 description 1
- 101800000285 Big gastrin Proteins 0.000 description 1
- 108010051479 Bombesin Proteins 0.000 description 1
- 102000013585 Bombesin Human genes 0.000 description 1
- 108010073466 Bombesin Receptors Proteins 0.000 description 1
- 241000269348 Bombina Species 0.000 description 1
- 241000255791 Bombyx Species 0.000 description 1
- 206010005949 Bone cancer Diseases 0.000 description 1
- 208000018084 Bone neoplasm Diseases 0.000 description 1
- 241000588807 Bordetella Species 0.000 description 1
- 102400000967 Bradykinin Human genes 0.000 description 1
- 101800004538 Bradykinin Proteins 0.000 description 1
- OBMZMSLWNNWEJA-XNCRXQDQSA-N C1=CC=2C(C[C@@H]3NC(=O)[C@@H](NC(=O)[C@H](NC(=O)N(CC#CCN(CCCC[C@H](NC(=O)[C@@H](CC4=CC=CC=C4)NC3=O)C(=O)N)CC=C)NC(=O)[C@@H](N)C)CC3=CNC4=C3C=CC=C4)C)=CNC=2C=C1 Chemical compound C1=CC=2C(C[C@@H]3NC(=O)[C@@H](NC(=O)[C@H](NC(=O)N(CC#CCN(CCCC[C@H](NC(=O)[C@@H](CC4=CC=CC=C4)NC3=O)C(=O)N)CC=C)NC(=O)[C@@H](N)C)CC3=CNC4=C3C=CC=C4)C)=CNC=2C=C1 OBMZMSLWNNWEJA-XNCRXQDQSA-N 0.000 description 1
- 108010059574 C5a peptidase Proteins 0.000 description 1
- 102100024217 CAMPATH-1 antigen Human genes 0.000 description 1
- 108010049990 CD13 Antigens Proteins 0.000 description 1
- 108010065524 CD52 Antigen Proteins 0.000 description 1
- 102100025221 CD70 antigen Human genes 0.000 description 1
- 108050007957 Cadherin Proteins 0.000 description 1
- 102000000905 Cadherin Human genes 0.000 description 1
- 101100381481 Caenorhabditis elegans baz-2 gene Proteins 0.000 description 1
- 108010032088 Calpain Proteins 0.000 description 1
- 102000007590 Calpain Human genes 0.000 description 1
- 241000282832 Camelidae Species 0.000 description 1
- 241000282836 Camelus dromedarius Species 0.000 description 1
- 101000898643 Candida albicans Vacuolar aspartic protease Proteins 0.000 description 1
- 101000898783 Candida tropicalis Candidapepsin Proteins 0.000 description 1
- 241000190885 Capnocytophaga ochracea Species 0.000 description 1
- 206010007275 Carcinoid tumour Diseases 0.000 description 1
- 206010007279 Carcinoid tumour of the gastrointestinal tract Diseases 0.000 description 1
- 102000014914 Carrier Proteins Human genes 0.000 description 1
- 229940123003 Cathepsin inhibitor Drugs 0.000 description 1
- 102000020313 Cell-Penetrating Peptides Human genes 0.000 description 1
- 108010051109 Cell-Penetrating Peptides Proteins 0.000 description 1
- 108091006146 Channels Proteins 0.000 description 1
- 101710130450 Chelonianin Proteins 0.000 description 1
- 101710164760 Chlorotoxin Proteins 0.000 description 1
- 101710150890 Cholecystokinin B Proteins 0.000 description 1
- 229920001287 Chondroitin sulfate Polymers 0.000 description 1
- 201000009047 Chordoma Diseases 0.000 description 1
- 241000588881 Chromobacterium Species 0.000 description 1
- 241000588879 Chromobacterium violaceum Species 0.000 description 1
- 206010061764 Chromosomal deletion Diseases 0.000 description 1
- OLVPQBGMUGIKIW-UHFFFAOYSA-N Chymostatin Natural products C=1C=CC=CC=1CC(C=O)NC(=O)C(C(C)CC)NC(=O)C(C1NC(N)=NCC1)NC(=O)NC(C(O)=O)CC1=CC=CC=C1 OLVPQBGMUGIKIW-UHFFFAOYSA-N 0.000 description 1
- 241000588923 Citrobacter Species 0.000 description 1
- 108010090591 Cloacin Proteins 0.000 description 1
- 108091026890 Coding region Proteins 0.000 description 1
- 101710151837 Colicin-Ia immunity protein Proteins 0.000 description 1
- 206010071161 Colon dysplasia Diseases 0.000 description 1
- 208000001333 Colorectal Neoplasms Diseases 0.000 description 1
- 102100025680 Complement decay-accelerating factor Human genes 0.000 description 1
- 206010010144 Completed suicide Diseases 0.000 description 1
- 101000898784 Cryphonectria parasitica Endothiapepsin Proteins 0.000 description 1
- 101100138542 Cupriavidus necator (strain ATCC 17699 / DSM 428 / KCTC 22496 / NCIMB 10442 / H16 / Stanier 337) phbH gene Proteins 0.000 description 1
- 101100299477 Cupriavidus necator (strain ATCC 17699 / DSM 428 / KCTC 22496 / NCIMB 10442 / H16 / Stanier 337) phbI gene Proteins 0.000 description 1
- 108010090777 Cycloisomaltooligosaccharide glucanotransferase Proteins 0.000 description 1
- 108090000395 Cysteine Endopeptidases Proteins 0.000 description 1
- 102000003950 Cysteine Endopeptidases Human genes 0.000 description 1
- 102000005927 Cysteine Proteases Human genes 0.000 description 1
- 108010005843 Cysteine Proteases Proteins 0.000 description 1
- 102000018832 Cytochromes Human genes 0.000 description 1
- 108010052832 Cytochromes Proteins 0.000 description 1
- 241000605056 Cytophaga Species 0.000 description 1
- QNAYBMKLOCPYGJ-UHFFFAOYSA-N D-alpha-Ala Natural products CC([NH3+])C([O-])=O QNAYBMKLOCPYGJ-UHFFFAOYSA-N 0.000 description 1
- 239000012623 DNA damaging agent Substances 0.000 description 1
- 108010053105 DUP-1 peptide Proteins 0.000 description 1
- 241000283014 Dama Species 0.000 description 1
- 240000008853 Datura stramonium Species 0.000 description 1
- 108010002156 Depsipeptides Proteins 0.000 description 1
- 101100495315 Dictyostelium discoideum cdk5 gene Proteins 0.000 description 1
- 101100174653 Dictyostelium discoideum g6pd-2 gene Proteins 0.000 description 1
- 101100447530 Dictyostelium discoideum gpi gene Proteins 0.000 description 1
- 101100399297 Dictyostelium discoideum limE gene Proteins 0.000 description 1
- 102000004860 Dipeptidases Human genes 0.000 description 1
- 108090001081 Dipeptidases Proteins 0.000 description 1
- 241000255581 Drosophila <fruit fly, genus> Species 0.000 description 1
- 101100214681 Drosophila melanogaster Acp62F gene Proteins 0.000 description 1
- 208000000059 Dyspnea Diseases 0.000 description 1
- 206010013975 Dyspnoeas Diseases 0.000 description 1
- 108700034444 E coli Hlya Proteins 0.000 description 1
- 108060006698 EGF receptor Proteins 0.000 description 1
- 108010000912 Egg Proteins Proteins 0.000 description 1
- 102000002322 Egg Proteins Human genes 0.000 description 1
- 108010014258 Elastin Proteins 0.000 description 1
- 102000016942 Elastin Human genes 0.000 description 1
- 241000589566 Elizabethkingia meningoseptica Species 0.000 description 1
- 241000611354 Empedobacter Species 0.000 description 1
- 206010014733 Endometrial cancer Diseases 0.000 description 1
- 206010014759 Endometrial neoplasm Diseases 0.000 description 1
- 102100031780 Endonuclease Human genes 0.000 description 1
- 108010042407 Endonucleases Proteins 0.000 description 1
- 108010059378 Endopeptidases Proteins 0.000 description 1
- 102000005593 Endopeptidases Human genes 0.000 description 1
- 241000792859 Enema Species 0.000 description 1
- 241001495410 Enterococcus sp. Species 0.000 description 1
- 108010055196 EphA2 Receptor Proteins 0.000 description 1
- 102100030340 Ephrin type-A receptor 2 Human genes 0.000 description 1
- 102000009024 Epidermal Growth Factor Human genes 0.000 description 1
- 101100011800 Escherichia coli (strain K12) epmA gene Proteins 0.000 description 1
- 241001524679 Escherichia virus M13 Species 0.000 description 1
- 208000000461 Esophageal Neoplasms Diseases 0.000 description 1
- QTANTQQOYSUMLC-UHFFFAOYSA-O Ethidium cation Chemical compound C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CC)=C1C1=CC=CC=C1 QTANTQQOYSUMLC-UHFFFAOYSA-O 0.000 description 1
- 208000001382 Experimental Melanoma Diseases 0.000 description 1
- 208000017259 Extragonadal germ cell tumor Diseases 0.000 description 1
- 101150089023 FASLG gene Proteins 0.000 description 1
- 229940123583 Factor Xa inhibitor Drugs 0.000 description 1
- 101710189104 Fibritin Proteins 0.000 description 1
- 102000027487 Fructose-Bisphosphatase Human genes 0.000 description 1
- 108010017464 Fructose-Bisphosphatase Proteins 0.000 description 1
- 241000605986 Fusobacterium nucleatum Species 0.000 description 1
- 108090000045 G-Protein-Coupled Receptors Proteins 0.000 description 1
- 102000003688 G-Protein-Coupled Receptors Human genes 0.000 description 1
- 108010033708 GFE-1 peptide Proteins 0.000 description 1
- 208000022072 Gallbladder Neoplasms Diseases 0.000 description 1
- 102000004862 Gastrin releasing peptide Human genes 0.000 description 1
- 108090001053 Gastrin releasing peptide Proteins 0.000 description 1
- 102100030671 Gastrin-releasing peptide receptor Human genes 0.000 description 1
- 241000626621 Geobacillus Species 0.000 description 1
- 241000827781 Geobacillus sp. Species 0.000 description 1
- 241001135750 Geobacter Species 0.000 description 1
- 208000032612 Glial tumor Diseases 0.000 description 1
- 206010018338 Glioma Diseases 0.000 description 1
- 102100031132 Glucose-6-phosphate isomerase Human genes 0.000 description 1
- 108010070600 Glucose-6-phosphate isomerase Proteins 0.000 description 1
- 108010024636 Glutathione Proteins 0.000 description 1
- 102000005720 Glutathione transferase Human genes 0.000 description 1
- 108010070675 Glutathione transferase Proteins 0.000 description 1
- 229930186217 Glycolipid Natural products 0.000 description 1
- 206010018612 Gonorrhoea Diseases 0.000 description 1
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 description 1
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 description 1
- 108050003624 Granzyme M Proteins 0.000 description 1
- 108010078321 Guanylate Cyclase Proteins 0.000 description 1
- 102000014469 Guanylate cyclase Human genes 0.000 description 1
- QXZGBUJJYSLZLT-UHFFFAOYSA-N H-Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg-OH Natural products NC(N)=NCCCC(N)C(=O)N1CCCC1C(=O)N1C(C(=O)NCC(=O)NC(CC=2C=CC=CC=2)C(=O)NC(CO)C(=O)N2C(CCC2)C(=O)NC(CC=2C=CC=CC=2)C(=O)NC(CCCN=C(N)N)C(O)=O)CCC1 QXZGBUJJYSLZLT-UHFFFAOYSA-N 0.000 description 1
- 108010061875 HN-1 peptide Proteins 0.000 description 1
- 241000606790 Haemophilus Species 0.000 description 1
- 241000193159 Hathewaya histolytica Species 0.000 description 1
- 244000020551 Helianthus annuus Species 0.000 description 1
- 235000003222 Helianthus annuus Nutrition 0.000 description 1
- 101000864812 Helianthus annuus Trypsin inhibitor 1 Proteins 0.000 description 1
- 241000237369 Helix pomatia Species 0.000 description 1
- 208000002250 Hematologic Neoplasms Diseases 0.000 description 1
- 101710147195 Hemolysin A Proteins 0.000 description 1
- 208000009889 Herpes Simplex Diseases 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 108010093488 His-His-His-His-His-His Proteins 0.000 description 1
- 101000897405 Homo sapiens B-lymphocyte antigen CD20 Proteins 0.000 description 1
- 101100325746 Homo sapiens BAK1 gene Proteins 0.000 description 1
- 101000934356 Homo sapiens CD70 antigen Proteins 0.000 description 1
- 101000856022 Homo sapiens Complement decay-accelerating factor Proteins 0.000 description 1
- 101000851181 Homo sapiens Epidermal growth factor receptor Proteins 0.000 description 1
- 101001013150 Homo sapiens Interstitial collagenase Proteins 0.000 description 1
- 101000777628 Homo sapiens Leukocyte antigen CD37 Proteins 0.000 description 1
- 101000917826 Homo sapiens Low affinity immunoglobulin gamma Fc region receptor II-a Proteins 0.000 description 1
- 101000917824 Homo sapiens Low affinity immunoglobulin gamma Fc region receptor II-b Proteins 0.000 description 1
- 101000990908 Homo sapiens Neutrophil collagenase Proteins 0.000 description 1
- 101000741967 Homo sapiens Presequence protease, mitochondrial Proteins 0.000 description 1
- 101001012157 Homo sapiens Receptor tyrosine-protein kinase erbB-2 Proteins 0.000 description 1
- 240000005979 Hordeum vulgare Species 0.000 description 1
- 235000007340 Hordeum vulgare Nutrition 0.000 description 1
- 108010070875 Human Immunodeficiency Virus tat Gene Products Proteins 0.000 description 1
- 206010020843 Hyperthermia Diseases 0.000 description 1
- 208000003623 Hypoalbuminemia Diseases 0.000 description 1
- 206010021042 Hypopharyngeal cancer Diseases 0.000 description 1
- 206010056305 Hypopharyngeal neoplasm Diseases 0.000 description 1
- 208000001953 Hypotension Diseases 0.000 description 1
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 1
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 102000008070 Interferon-gamma Human genes 0.000 description 1
- 108010074328 Interferon-gamma Proteins 0.000 description 1
- 102000003816 Interleukin-13 Human genes 0.000 description 1
- 108090000176 Interleukin-13 Proteins 0.000 description 1
- 108090000862 Ion Channels Proteins 0.000 description 1
- 102000004310 Ion Channels Human genes 0.000 description 1
- 102000001626 Kazal Pancreatic Trypsin Inhibitor Human genes 0.000 description 1
- 108010093811 Kazal Pancreatic Trypsin Inhibitor Proteins 0.000 description 1
- 208000008839 Kidney Neoplasms Diseases 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- 108010021290 LHRH Receptors Proteins 0.000 description 1
- 102000008238 LHRH Receptors Human genes 0.000 description 1
- 108010054278 Lac Repressors Proteins 0.000 description 1
- 241000186610 Lactobacillus sp. Species 0.000 description 1
- 241000194036 Lactococcus Species 0.000 description 1
- 241000282838 Lama Species 0.000 description 1
- 201000005099 Langerhans cell histiocytosis Diseases 0.000 description 1
- 206010023825 Laryngeal cancer Diseases 0.000 description 1
- 241001627205 Leuconostoc sp. Species 0.000 description 1
- 108010014603 Leukocidins Proteins 0.000 description 1
- 102100031586 Leukocyte antigen CD37 Human genes 0.000 description 1
- 101710170970 Leukotoxin Proteins 0.000 description 1
- 206010061523 Lip and/or oral cavity cancer Diseases 0.000 description 1
- 206010062038 Lip neoplasm Diseases 0.000 description 1
- 102000019298 Lipocalin Human genes 0.000 description 1
- 108050006654 Lipocalin Proteins 0.000 description 1
- 241000186779 Listeria monocytogenes Species 0.000 description 1
- 206010067125 Liver injury Diseases 0.000 description 1
- 102100029204 Low affinity immunoglobulin gamma Fc region receptor II-a Human genes 0.000 description 1
- 235000002262 Lycopersicon Nutrition 0.000 description 1
- 235000007688 Lycopersicon esculentum Nutrition 0.000 description 1
- 241001521394 Maackia amurensis Species 0.000 description 1
- 102000018721 Macroglobulins Human genes 0.000 description 1
- 108010091934 Macroglobulins Proteins 0.000 description 1
- 208000006644 Malignant Fibrous Histiocytoma Diseases 0.000 description 1
- 208000030070 Malignant epithelial tumor of ovary Diseases 0.000 description 1
- 208000032271 Malignant tumor of penis Diseases 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 102000000380 Matrix Metalloproteinase 1 Human genes 0.000 description 1
- 102000002274 Matrix Metalloproteinases Human genes 0.000 description 1
- 108010000684 Matrix Metalloproteinases Proteins 0.000 description 1
- 102000018697 Membrane Proteins Human genes 0.000 description 1
- 108010052285 Membrane Proteins Proteins 0.000 description 1
- 208000002030 Merkel cell carcinoma Diseases 0.000 description 1
- 206010027406 Mesothelioma Diseases 0.000 description 1
- 206010027476 Metastases Diseases 0.000 description 1
- 108010059724 Micrococcal Nuclease Proteins 0.000 description 1
- 229930192392 Mitomycin Natural products 0.000 description 1
- 101100346221 Mus musculus Mpi gene Proteins 0.000 description 1
- 101100276041 Mycolicibacterium smegmatis (strain ATCC 700084 / mc(2)155) ctpD gene Proteins 0.000 description 1
- 201000003793 Myelodysplastic syndrome Diseases 0.000 description 1
- 208000014767 Myeloproliferative disease Diseases 0.000 description 1
- 201000007224 Myeloproliferative neoplasm Diseases 0.000 description 1
- NWIBSHFKIJFRCO-WUDYKRTCSA-N Mytomycin Chemical compound C1N2C(C(C(C)=C(N)C3=O)=O)=C3[C@@H](COC(N)=O)[C@@]2(OC)[C@@H]2[C@H]1N2 NWIBSHFKIJFRCO-WUDYKRTCSA-N 0.000 description 1
- 108010072610 N-acetyl-gamma-glutamyl-phosphate reductase Proteins 0.000 description 1
- 108050000637 N-cadherin Proteins 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 108091007491 NSP3 Papain-like protease domains Proteins 0.000 description 1
- 241001440871 Neisseria sp. Species 0.000 description 1
- 241000231286 Neottia Species 0.000 description 1
- 208000012902 Nervous system disease Diseases 0.000 description 1
- 102400000058 Neuregulin-1 Human genes 0.000 description 1
- 108090000556 Neuregulin-1 Proteins 0.000 description 1
- 206010029266 Neuroendocrine carcinoma of the skin Diseases 0.000 description 1
- 208000025966 Neurological disease Diseases 0.000 description 1
- 102000035092 Neutral proteases Human genes 0.000 description 1
- 108091005507 Neutral proteases Proteins 0.000 description 1
- 102100030411 Neutrophil collagenase Human genes 0.000 description 1
- 108091092724 Noncoding DNA Proteins 0.000 description 1
- YJQPYGGHQPGBLI-UHFFFAOYSA-N Novobiocin Natural products O1C(C)(C)C(OC)C(OC(N)=O)C(O)C1OC1=CC=C(C(O)=C(NC(=O)C=2C=C(CC=C(C)C)C(O)=CC=2)C(=O)O2)C2=C1C YJQPYGGHQPGBLI-UHFFFAOYSA-N 0.000 description 1
- 102000007399 Nuclear hormone receptor Human genes 0.000 description 1
- 108020005497 Nuclear hormone receptor Proteins 0.000 description 1
- 101710163270 Nuclease Proteins 0.000 description 1
- 241000517769 Odorrana Species 0.000 description 1
- 206010030113 Oedema Diseases 0.000 description 1
- 206010030155 Oesophageal carcinoma Diseases 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 206010053159 Organ failure Diseases 0.000 description 1
- 206010031096 Oropharyngeal cancer Diseases 0.000 description 1
- 206010057444 Oropharyngeal neoplasm Diseases 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 208000007571 Ovarian Epithelial Carcinoma Diseases 0.000 description 1
- 206010033128 Ovarian cancer Diseases 0.000 description 1
- 206010061328 Ovarian epithelial cancer Diseases 0.000 description 1
- 206010033268 Ovarian low malignant potential tumour Diseases 0.000 description 1
- 206010061535 Ovarian neoplasm Diseases 0.000 description 1
- 108010064983 Ovomucin Proteins 0.000 description 1
- 108090000854 Oxidoreductases Proteins 0.000 description 1
- 102000004316 Oxidoreductases Human genes 0.000 description 1
- 239000012661 PARP inhibitor Substances 0.000 description 1
- 229930012538 Paclitaxel Natural products 0.000 description 1
- 235000021314 Palmitic acid Nutrition 0.000 description 1
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 1
- 241000282320 Panthera leo Species 0.000 description 1
- 108010078471 Panton-Valentine leukocidin Proteins 0.000 description 1
- 108090000526 Papain Proteins 0.000 description 1
- 208000000821 Parathyroid Neoplasms Diseases 0.000 description 1
- 101710123753 Parathyroid hormone-related protein Proteins 0.000 description 1
- 241000604136 Pediococcus sp. Species 0.000 description 1
- 208000002471 Penile Neoplasms Diseases 0.000 description 1
- 206010034299 Penile cancer Diseases 0.000 description 1
- CWRVKFFCRWGWCS-UHFFFAOYSA-N Pentrazole Chemical compound C1CCCCC2=NN=NN21 CWRVKFFCRWGWCS-UHFFFAOYSA-N 0.000 description 1
- 101710176384 Peptide 1 Proteins 0.000 description 1
- 241000711850 Peptococcus sp. Species 0.000 description 1
- 241000191992 Peptostreptococcus Species 0.000 description 1
- 108010056995 Perforin Proteins 0.000 description 1
- 102000004503 Perforin Human genes 0.000 description 1
- 206010057249 Phagocytosis Diseases 0.000 description 1
- 208000009565 Pharyngeal Neoplasms Diseases 0.000 description 1
- 206010034811 Pharyngeal cancer Diseases 0.000 description 1
- 241001148062 Photorhabdus Species 0.000 description 1
- 241000178953 Photorhabdus sp. Species 0.000 description 1
- 208000007913 Pituitary Neoplasms Diseases 0.000 description 1
- 206010035148 Plague Diseases 0.000 description 1
- 108010089814 Plant Lectins Proteins 0.000 description 1
- 208000007452 Plasmacytoma Diseases 0.000 description 1
- 229940122791 Plasmin inhibitor Drugs 0.000 description 1
- 102000010752 Plasminogen Inactivators Human genes 0.000 description 1
- 108010077971 Plasminogen Inactivators Proteins 0.000 description 1
- 201000008199 Pleuropulmonary blastoma Diseases 0.000 description 1
- 229940121906 Poly ADP ribose polymerase inhibitor Drugs 0.000 description 1
- 241000605894 Porphyromonas Species 0.000 description 1
- 102100038632 Presequence protease, mitochondrial Human genes 0.000 description 1
- 241000605861 Prevotella Species 0.000 description 1
- 101710098940 Pro-epidermal growth factor Proteins 0.000 description 1
- 101710184309 Probable sucrose-6-phosphate hydrolase Proteins 0.000 description 1
- 101710149951 Protein Tat Proteins 0.000 description 1
- 108010052646 Protein Translocation Systems Proteins 0.000 description 1
- 102000018819 Protein Translocation Systems Human genes 0.000 description 1
- 101000781681 Protobothrops flavoviridis Disintegrin triflavin Proteins 0.000 description 1
- 101100108623 Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1) algA gene Proteins 0.000 description 1
- 241000184246 Pseudoramibacter alactolyticus Species 0.000 description 1
- 101100372762 Rattus norvegicus Flt1 gene Proteins 0.000 description 1
- 102100030086 Receptor tyrosine-protein kinase erbB-2 Human genes 0.000 description 1
- 208000015634 Rectal Neoplasms Diseases 0.000 description 1
- 206010038389 Renal cancer Diseases 0.000 description 1
- 206010061481 Renal injury Diseases 0.000 description 1
- 208000008938 Rhabdoid tumor Diseases 0.000 description 1
- 206010073334 Rhabdoid tumour Diseases 0.000 description 1
- 101000933133 Rhizopus niveus Rhizopuspepsin-1 Proteins 0.000 description 1
- 101000910082 Rhizopus niveus Rhizopuspepsin-2 Proteins 0.000 description 1
- 101000910079 Rhizopus niveus Rhizopuspepsin-3 Proteins 0.000 description 1
- 101000910086 Rhizopus niveus Rhizopuspepsin-4 Proteins 0.000 description 1
- 101000910088 Rhizopus niveus Rhizopuspepsin-5 Proteins 0.000 description 1
- 241000606701 Rickettsia Species 0.000 description 1
- 108010005173 SERPIN-B5 Proteins 0.000 description 1
- 230000027151 SOS response Effects 0.000 description 1
- 101000898773 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) Saccharopepsin Proteins 0.000 description 1
- 208000004337 Salivary Gland Neoplasms Diseases 0.000 description 1
- 206010061934 Salivary gland cancer Diseases 0.000 description 1
- 241000596091 Salmonella enterica subsp. enterica serovar Anatum Species 0.000 description 1
- 241000266403 Salmonella enterica subsp. enterica serovar Choleraesuis Species 0.000 description 1
- 241001355131 Salmonella enterica subsp. enterica serovar Hadar Species 0.000 description 1
- 241000607128 Salmonella enterica subsp. enterica serovar Infantis Species 0.000 description 1
- 241001437644 Salmonella enterica subsp. enterica serovar Kentucky Species 0.000 description 1
- 241001222774 Salmonella enterica subsp. enterica serovar Minnesota Species 0.000 description 1
- 241000531795 Salmonella enterica subsp. enterica serovar Paratyphi A Species 0.000 description 1
- 241000577475 Salmonella enterica subsp. enterica serovar Paratyphi C Species 0.000 description 1
- 241000607683 Salmonella enterica subsp. enterica serovar Pullorum Species 0.000 description 1
- 101100408179 Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) phoQ gene Proteins 0.000 description 1
- 241000239226 Scorpiones Species 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- 241000287219 Serinus canaria Species 0.000 description 1
- 102100030333 Serpin B5 Human genes 0.000 description 1
- 241000607715 Serratia marcescens Species 0.000 description 1
- 241000607714 Serratia sp. Species 0.000 description 1
- 241000607768 Shigella Species 0.000 description 1
- 241000607758 Shigella sp. Species 0.000 description 1
- 206010041067 Small cell lung cancer Diseases 0.000 description 1
- 208000021712 Soft tissue sarcoma Diseases 0.000 description 1
- 108050001286 Somatostatin Receptor Proteins 0.000 description 1
- 102000011096 Somatostatin receptor Human genes 0.000 description 1
- 206010041925 Staphylococcal infections Diseases 0.000 description 1
- 241000191967 Staphylococcus aureus Species 0.000 description 1
- 101000777492 Stichodactyla helianthus DELTA-stichotoxin-She4b Proteins 0.000 description 1
- 241000193998 Streptococcus pneumoniae Species 0.000 description 1
- 241000193987 Streptococcus sobrinus Species 0.000 description 1
- 241001505901 Streptococcus sp. 'group A' Species 0.000 description 1
- 241000187747 Streptomyces Species 0.000 description 1
- 101100120969 Streptomyces coelicolor (strain ATCC BAA-471 / A3(2) / M145) pgi1 gene Proteins 0.000 description 1
- 101710151905 Subtilisin inhibitor Proteins 0.000 description 1
- 101710112652 Sucrose-6-phosphate hydrolase Proteins 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 241001455617 Sula Species 0.000 description 1
- 206010042971 T-cell lymphoma Diseases 0.000 description 1
- 208000027585 T-cell non-Hodgkin lymphoma Diseases 0.000 description 1
- 108700042805 TRU-015 Proteins 0.000 description 1
- 102100036221 Tax1-binding protein 3 Human genes 0.000 description 1
- 101710193790 Tax1-binding protein 3 Proteins 0.000 description 1
- 101710192266 Tegument protein VP22 Proteins 0.000 description 1
- 206010043276 Teratoma Diseases 0.000 description 1
- 208000024313 Testicular Neoplasms Diseases 0.000 description 1
- 206010057644 Testis cancer Diseases 0.000 description 1
- 241000270666 Testudines Species 0.000 description 1
- 108010092220 Tetraacyldisaccharide 4'-kinase Proteins 0.000 description 1
- 206010043515 Throat cancer Diseases 0.000 description 1
- 208000007536 Thrombosis Diseases 0.000 description 1
- 102000002938 Thrombospondin Human genes 0.000 description 1
- 108060008245 Thrombospondin Proteins 0.000 description 1
- 201000009365 Thymic carcinoma Diseases 0.000 description 1
- 208000024770 Thyroid neoplasm Diseases 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 108010009583 Transforming Growth Factors Proteins 0.000 description 1
- 206010044407 Transitional cell cancer of the renal pelvis and ureter Diseases 0.000 description 1
- 241000589886 Treponema Species 0.000 description 1
- 235000021307 Triticum Nutrition 0.000 description 1
- 244000098338 Triticum aestivum Species 0.000 description 1
- 108010058153 Twin-Arginine-Translocation System Proteins 0.000 description 1
- 108010069584 Type III Secretion Systems Proteins 0.000 description 1
- 241001467018 Typhis Species 0.000 description 1
- 208000015778 Undifferentiated pleomorphic sarcoma Diseases 0.000 description 1
- 206010046431 Urethral cancer Diseases 0.000 description 1
- 206010046458 Urethral neoplasms Diseases 0.000 description 1
- 208000002495 Uterine Neoplasms Diseases 0.000 description 1
- 241000607284 Vibrio sp. Species 0.000 description 1
- 235000010726 Vigna sinensis Nutrition 0.000 description 1
- 244000042314 Vigna unguiculata Species 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 206010047741 Vulval cancer Diseases 0.000 description 1
- 208000004354 Vulvar Neoplasms Diseases 0.000 description 1
- 208000021017 Weight Gain Diseases 0.000 description 1
- 208000008383 Wilms tumor Diseases 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 108010038900 X-Pro aminopeptidase Proteins 0.000 description 1
- 241000607757 Xenorhabdus Species 0.000 description 1
- 241000500606 Xenorhabdus sp. Species 0.000 description 1
- 241000607734 Yersinia <bacteria> Species 0.000 description 1
- 241000131891 Yersinia sp. Species 0.000 description 1
- 101150085516 ZWF1 gene Proteins 0.000 description 1
- 241000981595 Zoysia japonica Species 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- MIQWEMDDUPSLRW-UHFFFAOYSA-N [O].O=C=O Chemical compound [O].O=C=O MIQWEMDDUPSLRW-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 230000033289 adaptive immune response Effects 0.000 description 1
- 238000011374 additional therapy Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 239000000910 agglutinin Substances 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 229940100198 alkylating agent Drugs 0.000 description 1
- 239000002168 alkylating agent Substances 0.000 description 1
- 229940024142 alpha 1-antitrypsin Drugs 0.000 description 1
- QIGJYVCQYDKYDW-VZGRRIPQSA-N alpha-D-Galp-(1->3)-beta-D-Galp Chemical group O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@H]1[C@@H](O)[C@@H](CO)O[C@@H](O)[C@@H]1O QIGJYVCQYDKYDW-VZGRRIPQSA-N 0.000 description 1
- QIGJYVCQYDKYDW-SDOYDPJRSA-N alpha-D-galactosyl-(1->3)-D-galactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@H]1[C@@H](O)[C@@H](CO)OC(O)[C@@H]1O QIGJYVCQYDKYDW-SDOYDPJRSA-N 0.000 description 1
- 229940124650 anti-cancer therapies Drugs 0.000 description 1
- 230000002022 anti-cellular effect Effects 0.000 description 1
- 230000001455 anti-clotting effect Effects 0.000 description 1
- 230000002391 anti-complement effect Effects 0.000 description 1
- 230000006023 anti-tumor response Effects 0.000 description 1
- 238000011319 anticancer therapy Methods 0.000 description 1
- 108010008730 anticomplement Proteins 0.000 description 1
- 229940019748 antifibrinolytic proteinase inhibitors Drugs 0.000 description 1
- 239000004599 antimicrobial Substances 0.000 description 1
- 201000011165 anus cancer Diseases 0.000 description 1
- 208000021780 appendiceal neoplasm Diseases 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 229960003272 asparaginase Drugs 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-M asparaginate Chemical compound [O-]C(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-M 0.000 description 1
- 239000003696 aspartic proteinase inhibitor Substances 0.000 description 1
- 229940120638 avastin Drugs 0.000 description 1
- 208000022362 bacterial infectious disease Diseases 0.000 description 1
- 244000052616 bacterial pathogen Species 0.000 description 1
- 229960001212 bacterial vaccine Drugs 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 108700000707 bcl-2-Associated X Proteins 0.000 description 1
- UUQMNUMQCIQDMZ-UHFFFAOYSA-N betahistine Chemical compound CNCCC1=CC=CC=N1 UUQMNUMQCIQDMZ-UHFFFAOYSA-N 0.000 description 1
- 125000002619 bicyclic group Chemical group 0.000 description 1
- 208000026900 bile duct neoplasm Diseases 0.000 description 1
- 108091008324 binding proteins Proteins 0.000 description 1
- 229960000074 biopharmaceutical Drugs 0.000 description 1
- 230000006696 biosynthetic metabolic pathway Effects 0.000 description 1
- DNDCVAGJPBKION-DOPDSADYSA-N bombesin Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(N)=O)NC(=O)CNC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](CC=1NC2=CC=CC=C2C=1)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)CNC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H]1NC(=O)CC1)C(C)C)C1=CN=CN1 DNDCVAGJPBKION-DOPDSADYSA-N 0.000 description 1
- 208000012172 borderline epithelial tumor of ovary Diseases 0.000 description 1
- GXJABQQUPOEUTA-RDJZCZTQSA-N bortezomib Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)B(O)O)NC(=O)C=1N=CC=NC=1)C1=CC=CC=C1 GXJABQQUPOEUTA-RDJZCZTQSA-N 0.000 description 1
- 229960001467 bortezomib Drugs 0.000 description 1
- QXZGBUJJYSLZLT-FDISYFBBSA-N bradykinin Chemical compound NC(=N)NCCC[C@H](N)C(=O)N1CCC[C@H]1C(=O)N1[C@H](C(=O)NCC(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CO)C(=O)N2[C@@H](CCC2)C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)CCC1 QXZGBUJJYSLZLT-FDISYFBBSA-N 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 210000000481 breast Anatomy 0.000 description 1
- 210000004900 c-terminal fragment Anatomy 0.000 description 1
- 101150008667 cadA gene Proteins 0.000 description 1
- 238000002619 cancer immunotherapy Methods 0.000 description 1
- 239000012830 cancer therapeutic Substances 0.000 description 1
- 230000000711 cancerogenic effect Effects 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- CURLTUGMZLYLDI-UHFFFAOYSA-N carbon dioxide Natural products O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 1
- 230000021523 carboxylation Effects 0.000 description 1
- 238000006473 carboxylation reaction Methods 0.000 description 1
- 231100000315 carcinogenic Toxicity 0.000 description 1
- 208000002458 carcinoid tumor Diseases 0.000 description 1
- 238000010370 cell cloning Methods 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 238000012832 cell culture technique Methods 0.000 description 1
- 230000005779 cell damage Effects 0.000 description 1
- 208000037887 cell injury Diseases 0.000 description 1
- 230000012292 cell migration Effects 0.000 description 1
- 210000003169 central nervous system Anatomy 0.000 description 1
- 201000007455 central nervous system cancer Diseases 0.000 description 1
- 208000025997 central nervous system neoplasm Diseases 0.000 description 1
- 108010060552 cereolysin Proteins 0.000 description 1
- 229960005395 cetuximab Drugs 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- 208000012191 childhood neoplasm Diseases 0.000 description 1
- QPAKKWCQMHUHNI-GQIQPHNSSA-N chlorotoxin Chemical compound C([C@H]1C(=O)NCC(=O)N2CCC[C@H]2C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@H]2CSSC[C@H]3C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@H]4CSSC[C@@H](C(N[C@@H](CCSC)C(=O)N5CCC[C@H]5C(=O)N[C@@H](CSSC[C@@H](C(=O)N1)NC(=O)[C@H](CCCCN)NC(=O)CNC(=O)[C@H](CCCNC(N)=N)NC(=O)CNC(=O)[C@H](CCCCN)NC(=O)CNC(=O)CNC(=O)[C@H](CSSC[C@H](NC(=O)[C@H](CC(C)C)NC2=O)C(=O)N[C@@H](CCCNC(N)=N)C(N)=O)NC4=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1N=CNC=1)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCCN)C(=O)N3)=O)NC(=O)[C@@H](N)CCSC)C1=CC=C(O)C=C1 QPAKKWCQMHUHNI-GQIQPHNSSA-N 0.000 description 1
- 229960005534 chlorotoxin Drugs 0.000 description 1
- 208000006990 cholangiocarcinoma Diseases 0.000 description 1
- 229940107200 chondroitin sulfates Drugs 0.000 description 1
- 108010086192 chymostatin Proteins 0.000 description 1
- 238000002983 circular dichroism Methods 0.000 description 1
- DQLATGHUWYMOKM-UHFFFAOYSA-L cisplatin Chemical compound N[Pt](N)(Cl)Cl DQLATGHUWYMOKM-UHFFFAOYSA-L 0.000 description 1
- 229960004316 cisplatin Drugs 0.000 description 1
- 229960002286 clodronic acid Drugs 0.000 description 1
- ACSIXWWBWUQEHA-UHFFFAOYSA-N clodronic acid Chemical compound OP(O)(=O)C(Cl)(Cl)P(O)(O)=O ACSIXWWBWUQEHA-UHFFFAOYSA-N 0.000 description 1
- 230000003366 colagenolytic effect Effects 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 230000001332 colony forming effect Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000024203 complement activation Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 101150006779 crp gene Proteins 0.000 description 1
- 208000017763 cutaneous neuroendocrine carcinoma Diseases 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 239000002852 cysteine proteinase inhibitor Substances 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 239000002254 cytotoxic agent Substances 0.000 description 1
- 229940127071 cytotoxic antineoplastic agent Drugs 0.000 description 1
- 239000003145 cytotoxic factor Substances 0.000 description 1
- 238000002784 cytotoxicity assay Methods 0.000 description 1
- 231100000263 cytotoxicity test Toxicity 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000008260 defense mechanism Effects 0.000 description 1
- 101150018266 degP gene Proteins 0.000 description 1
- 230000002999 depolarising effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- JNSGIVNNHKGGRU-JYRVWZFOSA-N diethoxyphosphinothioyl (2z)-2-(2-amino-1,3-thiazol-4-yl)-2-methoxyiminoacetate Chemical compound CCOP(=S)(OCC)OC(=O)C(=N/OC)\C1=CSC(N)=N1 JNSGIVNNHKGGRU-JYRVWZFOSA-N 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 238000006471 dimerization reaction Methods 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229960004679 doxorubicin Drugs 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 235000014103 egg white Nutrition 0.000 description 1
- 210000000969 egg white Anatomy 0.000 description 1
- 229920002549 elastin Polymers 0.000 description 1
- 238000001493 electron microscopy Methods 0.000 description 1
- 208000014616 embryonal neoplasm Diseases 0.000 description 1
- 230000002357 endometrial effect Effects 0.000 description 1
- 230000003511 endothelial effect Effects 0.000 description 1
- 239000007920 enema Substances 0.000 description 1
- 229940095399 enema Drugs 0.000 description 1
- 230000000369 enteropathogenic effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 108010062797 equistatin Proteins 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- 201000004101 esophageal cancer Diseases 0.000 description 1
- 101150031422 espC gene Proteins 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 231100000776 exotoxin Toxicity 0.000 description 1
- 239000002095 exotoxin Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 201000008819 extrahepatic bile duct carcinoma Diseases 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 238000007421 fluorometric assay Methods 0.000 description 1
- 230000003325 follicular Effects 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 201000010175 gallbladder cancer Diseases 0.000 description 1
- 229940044627 gamma-interferon Drugs 0.000 description 1
- FMIHGWZLPSIAFY-WGFKALLTSA-N gastrin-34 Chemical compound C([C@@H](C(=O)NCC(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(O)=O)NC(=O)[C@H](C)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H]1N(CCC1)C(=O)CNC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CO)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H]1N(CCC1)C(=O)[C@H]1N(CCC1)C(=O)CNC(=O)[C@H](CCC(N)=O)NC(=O)[C@H]1N(CCC1)C(=O)CNC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCC(N)=O)C(C)C)C1=CC=C(O)C=C1 FMIHGWZLPSIAFY-WGFKALLTSA-N 0.000 description 1
- PUBCCFNQJQKCNC-XKNFJVFFSA-N gastrin-releasingpeptide Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(N)=O)NC(=O)CNC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H](CC(N)=O)NC(=O)CNC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CCSC)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@@H](NC(=O)CNC(=O)CNC(=O)CNC(=O)[C@H](C)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC(C)C)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](N)C(C)C)[C@@H](C)O)C(C)C)[C@@H](C)O)C(C)C)C1=CNC=N1 PUBCCFNQJQKCNC-XKNFJVFFSA-N 0.000 description 1
- 201000011243 gastrointestinal stromal tumor Diseases 0.000 description 1
- 238000012239 gene modification Methods 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 230000005017 genetic modification Effects 0.000 description 1
- 235000013617 genetically modified food Nutrition 0.000 description 1
- 201000007116 gestational trophoblastic neoplasm Diseases 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- 229960003180 glutathione Drugs 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 230000013595 glycosylation Effects 0.000 description 1
- 238000006206 glycosylation reaction Methods 0.000 description 1
- YMAWOPBAYDPSLA-UHFFFAOYSA-N glycylglycine Chemical compound [NH3+]CC(=O)NCC([O-])=O YMAWOPBAYDPSLA-UHFFFAOYSA-N 0.000 description 1
- 208000001786 gonorrhea Diseases 0.000 description 1
- 230000009643 growth defect Effects 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 125000001475 halogen functional group Chemical group 0.000 description 1
- 210000003128 head Anatomy 0.000 description 1
- 201000010536 head and neck cancer Diseases 0.000 description 1
- 230000002949 hemolytic effect Effects 0.000 description 1
- 231100000234 hepatic damage Toxicity 0.000 description 1
- 201000008298 histiocytosis Diseases 0.000 description 1
- 101150079947 hlyB gene Proteins 0.000 description 1
- 230000006801 homologous recombination Effects 0.000 description 1
- 238000002744 homologous recombination Methods 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 101150007310 htrA gene Proteins 0.000 description 1
- 244000052637 human pathogen Species 0.000 description 1
- 229940014041 hyaluronate Drugs 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 230000036031 hyperthermia Effects 0.000 description 1
- 201000006866 hypopharynx cancer Diseases 0.000 description 1
- 230000036543 hypotension Effects 0.000 description 1
- 230000001146 hypoxic effect Effects 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 230000008105 immune reaction Effects 0.000 description 1
- 229940127121 immunoconjugate Drugs 0.000 description 1
- 230000000415 inactivating effect Effects 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 230000001524 infective effect Effects 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- 230000035987 intoxication Effects 0.000 description 1
- 231100000566 intoxication Toxicity 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 238000007913 intrathecal administration Methods 0.000 description 1
- 229960004768 irinotecan Drugs 0.000 description 1
- 210000004153 islets of langerhan Anatomy 0.000 description 1
- 108010075476 isoleucyl-glutamyl-leucyl-leucyl-glutaminyl-alanyl-arginine Proteins 0.000 description 1
- 201000010982 kidney cancer Diseases 0.000 description 1
- 238000011005 laboratory method Methods 0.000 description 1
- 210000001821 langerhans cell Anatomy 0.000 description 1
- 206010023841 laryngeal neoplasm Diseases 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 210000000265 leukocyte Anatomy 0.000 description 1
- 201000006721 lip cancer Diseases 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000008818 liver damage Effects 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- 230000000527 lymphocytic effect Effects 0.000 description 1
- 229940124302 mTOR inhibitor Drugs 0.000 description 1
- 201000000564 macroglobulinemia Diseases 0.000 description 1
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 description 1
- 208000026045 malignant tumor of parathyroid gland Diseases 0.000 description 1
- 239000003628 mammalian target of rapamycin inhibitor Substances 0.000 description 1
- 101150026430 manA gene Proteins 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 201000008203 medulloepithelioma Diseases 0.000 description 1
- 210000000716 merkel cell Anatomy 0.000 description 1
- 230000009401 metastasis Effects 0.000 description 1
- 230000001394 metastastic effect Effects 0.000 description 1
- 206010061289 metastatic neoplasm Diseases 0.000 description 1
- 208000037970 metastatic squamous neck cancer Diseases 0.000 description 1
- 208000015688 methicillin-resistant staphylococcus aureus infectious disease Diseases 0.000 description 1
- 244000000010 microbial pathogen Species 0.000 description 1
- 108010079904 microcin Proteins 0.000 description 1
- 229960004857 mitomycin Drugs 0.000 description 1
- 238000001823 molecular biology technique Methods 0.000 description 1
- 210000000214 mouth Anatomy 0.000 description 1
- 206010051747 multiple endocrine neoplasia Diseases 0.000 description 1
- 208000017869 myelodysplastic/myeloproliferative disease Diseases 0.000 description 1
- 208000025113 myeloid leukemia Diseases 0.000 description 1
- 229940097496 nasal spray Drugs 0.000 description 1
- 239000007922 nasal spray Substances 0.000 description 1
- 230000001338 necrotic effect Effects 0.000 description 1
- 201000008026 nephroblastoma Diseases 0.000 description 1
- 210000000653 nervous system Anatomy 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000001937 non-anti-biotic effect Effects 0.000 description 1
- 210000004882 non-tumor cell Anatomy 0.000 description 1
- 229960002950 novobiocin Drugs 0.000 description 1
- YJQPYGGHQPGBLI-KGSXXDOSSA-N novobiocin Chemical compound O1C(C)(C)[C@H](OC)[C@@H](OC(N)=O)[C@@H](O)[C@@H]1OC1=CC=C(C(O)=C(NC(=O)C=2C=C(CC=C(C)C)C(O)=CC=2)C(=O)O2)C2=C1C YJQPYGGHQPGBLI-KGSXXDOSSA-N 0.000 description 1
- 238000007899 nucleic acid hybridization Methods 0.000 description 1
- 101150016228 nuoG gene Proteins 0.000 description 1
- 239000006916 nutrient agar Substances 0.000 description 1
- 108010032563 oligopeptidase Proteins 0.000 description 1
- 101150091444 ompR gene Proteins 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 201000005443 oral cavity cancer Diseases 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 201000006958 oropharynx cancer Diseases 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 201000008968 osteosarcoma Diseases 0.000 description 1
- 230000002611 ovarian Effects 0.000 description 1
- 208000021284 ovarian germ cell tumor Diseases 0.000 description 1
- 101150072510 pabA gene Proteins 0.000 description 1
- 229960001592 paclitaxel Drugs 0.000 description 1
- 201000002528 pancreatic cancer Diseases 0.000 description 1
- 208000008443 pancreatic carcinoma Diseases 0.000 description 1
- 229940055729 papain Drugs 0.000 description 1
- 235000019834 papain Nutrition 0.000 description 1
- 208000003154 papilloma Diseases 0.000 description 1
- 208000029211 papillomatosis Diseases 0.000 description 1
- 244000045947 parasite Species 0.000 description 1
- 230000000849 parathyroid Effects 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 108010011903 peptide receptors Proteins 0.000 description 1
- 102000014187 peptide receptors Human genes 0.000 description 1
- 101150053253 pgi gene Proteins 0.000 description 1
- 108700010839 phage proteins Proteins 0.000 description 1
- 230000008782 phagocytosis Effects 0.000 description 1
- 210000000680 phagosome Anatomy 0.000 description 1
- 101150028857 phoP gene Proteins 0.000 description 1
- 101150086617 phoQ gene Proteins 0.000 description 1
- 108010071189 phosphoenolpyruvate-glucose phosphotransferase Proteins 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 208000010916 pituitary tumor Diseases 0.000 description 1
- 239000003726 plant lectin Substances 0.000 description 1
- 239000002806 plasmin inhibitor Substances 0.000 description 1
- 239000002797 plasminogen activator inhibitor Substances 0.000 description 1
- 108010069594 plasminostreptin Proteins 0.000 description 1
- 210000004180 plasmocyte Anatomy 0.000 description 1
- 101150082349 pmi gene Proteins 0.000 description 1
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 101150002399 poxA gene Proteins 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 101150093386 prfA gene Proteins 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000000770 proinflammatory effect Effects 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 229940121649 protein inhibitor Drugs 0.000 description 1
- 239000012268 protein inhibitor Substances 0.000 description 1
- 238000000734 protein sequencing Methods 0.000 description 1
- 230000018883 protein targeting Effects 0.000 description 1
- 101150045242 ptsH gene Proteins 0.000 description 1
- 101150118630 ptsI gene Proteins 0.000 description 1
- 230000002685 pulmonary effect Effects 0.000 description 1
- 101150076045 purF gene Proteins 0.000 description 1
- 101150008241 purT gene Proteins 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 101150079601 recA gene Proteins 0.000 description 1
- 101150027417 recU gene Proteins 0.000 description 1
- 206010038038 rectal cancer Diseases 0.000 description 1
- 201000001275 rectum cancer Diseases 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000003488 releasing hormone Substances 0.000 description 1
- 208000030859 renal pelvis/ureter urothelial carcinoma Diseases 0.000 description 1
- BOLDJAUMGUJJKM-LSDHHAIUSA-N renifolin D Natural products CC(=C)[C@@H]1Cc2c(O)c(O)ccc2[C@H]1CC(=O)c3ccc(O)cc3O BOLDJAUMGUJJKM-LSDHHAIUSA-N 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- 210000002345 respiratory system Anatomy 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 201000009410 rhabdomyosarcoma Diseases 0.000 description 1
- 101150076849 rpoS gene Proteins 0.000 description 1
- 229960001860 salicylate Drugs 0.000 description 1
- YGSDEFSMJLZEOE-UHFFFAOYSA-M salicylate Chemical compound OC1=CC=CC=C1C([O-])=O YGSDEFSMJLZEOE-UHFFFAOYSA-M 0.000 description 1
- 230000009962 secretion pathway Effects 0.000 description 1
- 238000010187 selection method Methods 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000011669 selenium Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 101150003830 serC gene Proteins 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 201000008261 skin carcinoma Diseases 0.000 description 1
- 208000000587 small cell lung carcinoma Diseases 0.000 description 1
- 201000002314 small intestine cancer Diseases 0.000 description 1
- 239000001589 sorbitan tristearate Substances 0.000 description 1
- 101150065015 spa gene Proteins 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 206010062261 spinal cord neoplasm Diseases 0.000 description 1
- 206010041823 squamous cell carcinoma Diseases 0.000 description 1
- 208000037969 squamous neck cancer Diseases 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 229940031000 streptococcus pneumoniae Drugs 0.000 description 1
- 230000019635 sulfation Effects 0.000 description 1
- 238000005670 sulfation reaction Methods 0.000 description 1
- 230000009747 swallowing Effects 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 1
- 238000011191 terminal modification Methods 0.000 description 1
- 201000003120 testicular cancer Diseases 0.000 description 1
- 229940072172 tetracycline antibiotic Drugs 0.000 description 1
- ZRKFYGHZFMAOKI-QMGMOQQFSA-N tgfbeta Chemical class C([C@H](NC(=O)[C@H](C(C)C)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCSC)C(C)C)[C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O)C1=CC=C(O)C=C1 ZRKFYGHZFMAOKI-QMGMOQQFSA-N 0.000 description 1
- 229960003433 thalidomide Drugs 0.000 description 1
- 201000002510 thyroid cancer Diseases 0.000 description 1
- 101150083559 tlyA gene Proteins 0.000 description 1
- 101150092975 tlyC gene Proteins 0.000 description 1
- 230000007888 toxin activity Effects 0.000 description 1
- 210000003437 trachea Anatomy 0.000 description 1
- 238000001890 transfection Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 208000029387 trophoblastic neoplasm Diseases 0.000 description 1
- 101150118060 trxA gene Proteins 0.000 description 1
- 241001515965 unidentified phage Species 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 206010046766 uterine cancer Diseases 0.000 description 1
- 206010046885 vaginal cancer Diseases 0.000 description 1
- 208000013139 vaginal neoplasm Diseases 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 229940118696 vibrio cholerae Drugs 0.000 description 1
- 108700026220 vif Genes Proteins 0.000 description 1
- 229960004528 vincristine Drugs 0.000 description 1
- OGWKCGZFUXNPDA-XQKSVPLYSA-N vincristine Chemical compound C([N@]1C[C@@H](C[C@]2(C(=O)OC)C=3C(=CC4=C([C@]56[C@H]([C@@]([C@H](OC(C)=O)[C@]7(CC)C=CCN([C@H]67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)C[C@@](C1)(O)CC)CC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-XQKSVPLYSA-N 0.000 description 1
- OGWKCGZFUXNPDA-UHFFFAOYSA-N vincristine Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(OC(C)=O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-UHFFFAOYSA-N 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
- 210000001835 viscera Anatomy 0.000 description 1
- 108010047303 von Willebrand Factor Proteins 0.000 description 1
- 102100036537 von Willebrand factor Human genes 0.000 description 1
- 229960001134 von willebrand factor Drugs 0.000 description 1
- 201000005102 vulva cancer Diseases 0.000 description 1
- 230000004584 weight gain Effects 0.000 description 1
- 235000019786 weight gain Nutrition 0.000 description 1
- 238000002424 x-ray crystallography Methods 0.000 description 1
- 101150075472 ycf27 gene Proteins 0.000 description 1
- 101150078419 zwf gene Proteins 0.000 description 1
- 101150026856 zwf2 gene Proteins 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/74—Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/164—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/55—Protease inhibitors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/81—Protease inhibitors
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/81—Protease inhibitors
- C07K14/8107—Endopeptidase (E.C. 3.4.21-99) inhibitors
- C07K14/811—Serine protease (E.C. 3.4.21) inhibitors
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K7/00—Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
- C07K7/04—Linear peptides containing only normal peptide links
- C07K7/06—Linear peptides containing only normal peptide links having 5 to 11 amino acids
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K7/00—Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
- C07K7/04—Linear peptides containing only normal peptide links
- C07K7/08—Linear peptides containing only normal peptide links having 12 to 20 amino acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/16—Hydrolases (3) acting on ester bonds (3.1)
- C12N9/22—Ribonucleases [RNase]; Deoxyribonucleases [DNase]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
- A61K48/005—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/01—Fusion polypeptide containing a localisation/targetting motif
- C07K2319/02—Fusion polypeptide containing a localisation/targetting motif containing a signal sequence
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/33—Fusion polypeptide fusions for targeting to specific cell types, e.g. tissue specific targeting, targeting of a bacterial subspecies
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/50—Fusion polypeptide containing protease site
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Definitions
- This invention is generally in the field of therapeutic delivery systems, systems and methods for providing co-expression of protease inhibitors with genetically engineered protease sensitive therapeutic constructs, and chimeric proteins.
- Tumor-targeted bacteria offer tremendous potential advantages for the treatment of solid tumors, including the targeting from a distant inoculation site and the ability to express therapeutic agents directly within the tumor (Pawelek et al., 1997, Tumor-targeted Salmonella as a novel anticancer agent, Cancer Research 57: 4537-4544; Low et al., 1999, Lipid A mutant salmonella with suppressed virulence and TNF-alpha induction retain tumor-targeting in vivo, Nature Biotechnol. 17: 37-41).
- coli cytosine deaminase gene in refractory cancer patients Cancer Gene Therapy 10: 737-7444
- One method of increasing the ability of the bacteria to kill tumor cells is to engineer the bacteria to express conventional bacterial toxins (e.g., WO 2009/126189, WO 03/014380, WO/2005/018332, WO/2008/073148, US 2003/0059400 U.S. Pat. Nos.
- Enhancing toxin specificity which offers the potential to eliminate side effect, has been achieved by several different means, such as attachment of a specific antibodies or peptide ligand (e.g., Pseudomonas endotoxin A (PE-ToxA) antibody conjugate, known as an immunotoxin). Based upon the binding specificity of the attached antibody moiety for a specific target, enhanced specificity of the target is achieved.
- Pseudomonas endotoxin A (PE-ToxA) antibody conjugate known as an immunotoxin.
- PE-ToxA Pseudomonas endotoxin A
- Other toxins have been engineered to achieve specificity based upon their sight of activation. For example, proaerolysin requires proteolytic activation to become the cytotoxic protein aerolysin.
- Substitution of the natural protease cleavage site for a tumor-specific protease cleavage site results in a toxin selectively activated within tumors (Denmeade et al. WO 03/018611 and Denmeade et al. U.S. Pat. No. 7,635,682).
- Another similar activation system has utilized ubiquitin fusion, coupled with a hydrolysable tumor protease (e.g., PSA) sequence and a toxin (e.g., saporin), as described by Tschrniuk et al.
- VLS Vascular leakage syndrome
- Renal injury has occurred in some patients treated with immunotoxins, which may be due to micro-aggregates of the immunotoxin (Frankel et al., 2001, Blood 98: 722a). Liver damage from immunotoxins is a frequent occurrence that is believed to be multifactorial (Frankel, 2002, Clinical Cancer Research 8: 942-944). To date, antibodies linked to proteinaceous toxins have limited success clinically.
- One explanation for the off target toxicity is that although a specific agent is targeted to the tumor and/or specifically activated there, the agent is also toxic if it diffuses out of the tumor, which is likely to occur due to the high osmotic pressure that occurs within tumors (Jain, R.
- protease proteinase
- WO/2009/014650 have suggested the fusion of proteases with Vibrio cholerae exotoxins. These authors suggest that protease (proteinase) inhibitors may hamper the activity of the fusions. They teach ways to maintain fusion protein activity and conclude for example: “Thus, it is possible to keep granzyme fusion proteins active in plasma through formulations using chondroitin sulfates”. In the context of delivery by a tumor-localized vector, such activity would be expected to contribute to toxic side effects since the toxin would remain active in the blood and reach other organs of the body.
- fusion of the Lpp protein amino acids 1-9 with the transmembrane region B3-B7 of OmpA has been used for surface display (Samuelson et al., 2002, Display of proteins on bacteria, J. Biotechnology 96: 129-154, expressly incorporated by reference in its entirety herein).
- the autotransporter surface display has been described by Berthet et al., WO/2002/070645, expressly incorporated by reference herein.
- the multimerization domains are used to create, bi-specific, tri-specific, and quatra-specific targeting agents, whereby each individual agent is expressed with a multimerization tag, each of which may have the same or separate targeting peptide, such that following expression, surface display, secretion and/or release, they form multimers with multiple targeting domains.
- the present invention consists of known and/or novel chimeric proteins, or combination of proteins, that are expressed, secreted, suface displayed and/or released by bacteria and result in anti-cancer activity or have direct inhibitory or cytotoxic anti-neoplastic activity.
- the bacterial delivery vector may be attenuated, non-pathogenic, low pathogenic (including wild type), or a probiotic bacterium.
- the bacteria are introduced either systemically (e.g., parentral, intravenous (IV), intramuscular (IM), intralymphatic (IL), intradermal (ID), subcutaneously (sub-q), local-reagionally (e.g., intralesionally, intratumorally (IT), intrapaeritoneally (IP), topically, intathecally (intrathecal), by inhailer or nasal spray) or to the mucosal system through oral, nasal, pulmonary intravessically, enema or suppository administration where they are able to undergo limited replication, express, surface display, secrete and/or release the anti-cancer inhibitory proteins or a combination thereof, and thereby provide a therapeutic benefit by reducing or eliminating the disease, malignancy and/or neoplasia.
- IV intravenous
- IM intramuscular
- IL intradermal
- sub-q subcutaneously
- local-reagionally e.g., intralesionally, intratumorally (
- the present invention further consists of the co-expression by a bacterial expression system, or a combination of bacterial expression systems, of one or more protease inhibitors together with one or more protease sensitive therapeutic agent.
- the therapeutic agent may be inherently sensitive to proteases, or engineered to have enhanced sensitivity.
- the protease inhibitor prevents the degradation of the therapeutic agent that is therapeutically active against the target tissue such as colon cancer cells within a tumor, lymphoma cells within a lymph node, or leukemic cells within the lumen of a bone.
- Tumor Systemic Composition Efficacy Toxicity Unmodified toxins +++ +++ Protease activated and/or insensitive toxin +++ ++ e.g., prostate protease activated Aerolysin Protease sensitive (i.e., deactivated) toxin + — Protease sensitive toxin + protease inhibitor +++++ —
- the types of cancers or neoplasias to which the present invention is directed include all neoplastic malignancies, including solid tumors such as those of colon, lung, breast, prostate, sarcomas, carcinomas, head and neck tumors, melanoma, as well as hematological, non-solid or diffuse cancers such as leukemia and lymphomas, myelodysplastic cells, plasma cell myeloma, plasmacytomas, and multiple myelomas.
- cancers include acute lymphoblastic leukemia, acute myeloid leukemia, adrenocortical carcinoma adrenocortical carcinoma, aids-related cancers, aids-related lymphoma, anal cancer, appendix cancer, astrocytomas, childhood, teratoid/rhabdoid tumor, childhood, central nervous system tumors, basal cell carcinoma, bile duct cancer, extrahepatic bladder cancer, bladder cancer, bone cancer, osteosarcoma and malignant fibrous histiocytoma, brain stem glioma, brain tumor, brain stem glioma, central nervous system atypical teratoid/rhabdoid tumor, central nervous system embryonal tumors, brain tumor, astrocytomas, craniopharyngioma, ependymoblastoma, ependymoma, medulloblastoma, medulloepithelioma, pineal parenchymal tumors,
- the therapeutic agent can be a peptide or protein, toxin, chimeric toxin, cytokine, antibody, bispecific antibody including single chain antibodies, camel antibodies and nanobodies chemokine, prodrug converting enzyme or metabolite-degrading enzyme such as thiaminase, methionase (methioninase, L-methionine ⁇ -lyase) or asperaginase.
- the therapeutic agent is a toxin, or modified toxin.
- Toxins, therapeutic cytokines and other molecules, homologues or fragments thereof useful in conjunction with the present invention include small lyitic peptides, larger lytic peptides, pore-forming toxins, protein inhibitors, extracellular DNAases (DNase), intracellular DNAases, apoptosis inducing peptides, cytokines, prodrug converting enzymes, metabolite destroying enzymes, ribonucleases, antibody inactivating toxins and other anticancer peptides.
- DNase extracellular DNAases
- the toxins include those that are naturally secreted, released and/or surface displayed, or heterologously secreted, released and/or surface displayed, and that can be modified uniquely to suit the delivery by a bacterium and may be further engineered to have the tumor, lymphoma, leukemic bone marrow or proximity-selective targeting system described herein, including but not limited to the proteins azurin, carboxyesterase Est55 (a prodrug converting enzyme from Geobacillus that activates CPT-11 to SN-38), thiaminase (e.g., from Bacillus ), methionase (methioninase), asparaginase, apoptin, bax, bim, p53, BAK, BH3 peptide (BCL2 homology domain 3), cytochrome C, thrombospondin, platelet factor 4 (PF4) peptide, Bacillus sp.
- the proteins azurin a prodrug converting enzyme from
- cytolysins Bacillus sp. nheABC toxins, cytolethal distending toxins (cldt), typhoid toxins (pertussis like toxin) (pltAB), pertussis toxin, cldt:plt hybrids, actAB, cytotoxic nectrotic factor (cnf), dermonecrotic factor (dnf), shiga toxins and shiga-like toxins, bacteriocins, (colicins and microcins; Hen and Jack, Chapter 13 Microcins, in Kastin (ed), 2006, Handbook of Biologically Active Peptides, Academic Press; Nes et al., Chapter 17, The nonantibiotic heat-stable bacteriocins in gram-positive bacteria, in Kastin (ed), 2006, Handbook of Biologically Active Peptides, Academic Press; Sharma et al., Chapter 18 in Kastin (ed), 2006, Handbook of Biologically Active Peptides
- RNAases including but not limited colicin A, colicin D, colicin E5, colicin E492, microcin M24, colE1, colE2, colE3, colE5 colE7, coleE8, colE9, col-Ia, colicin N and colicin B, membrane lytic peptides from Staphalococcus (listed below) and sea anemones, P15 peptide and other TGF-beta mimics, repeat in toxin (RTX) family members (together with the necessary acylation and secretion genes) including Actinobacillus leucotoxins, a leucotoxin: E.
- colicin A colicin D
- colicin E5 colicin E492, microcin M24, colE1, colE2, colE3, colE5 colE7, coleE8, colE9
- col-Ia colicin N and colicin B
- membrane lytic peptides from Staphalococcus listed below
- coli HlyA hybrid E. coli HlyA hemolysin, Bordetella adenylate cyclase toxin, heat stable enterotoxins from E. coli and Vibrio sp.
- autotransporter toxins including but not limited to IgA protease, picU espC, and sat, Staphalococcus protein A, chlostridium enterotoxin, Clostridium difficile toxin A, scorpion chlorotoxin, aerolysin, subtilase, cereolysin, Staphalococcus leukotoxins (e.
- LukF-PV LukF-R
- LukF-I LukM
- HlgB LukS-PV
- LukS-R LukS-I
- HlgA HlgC
- HlgC HlgC
- aureus ⁇ -haemolysins, HlgA/HlgB and HlgC/HlgB and leukocidin Panton-Valentine, LukS-PV/LukF-PV (Luk-PV, PVL)) TRAIL, fasL, IL-18, CCL-21, human cyokine LIGHT, agglutinins ( Maackia amurensis , wheat germ, Datura stramonium, Lycopersicon (tomato) plant lectin, leukoagglutinin (L-PHA, Helix pomatia ) saporin, ricin, pertussus toxin, and porB, as well as other toxins and petides (Kastin (ed), 2006, Handbook of Biologically Active Peptides, Academic Press; Alouf and Popoff (eds), 2006, Comprehensive Sourcebook of Bacterial Protein Toxins, Third Edition, Academic Press; each of which is
- Metabolite toxins such as the Chromobacterium violacium dipsepeptides (Shigeatsu et al., 1994, FR901228, a novel antitumor bicyclic depsipeptide produced by Chromobacterium violaceum No. 968. II. Structure determination. J Antibiot (Tokyo) 47(3):311-4) or those from Serratia are also of use in the present invention.
- Bacterial collagenases useful in the invention include but not limited to those from Actinobacillus actinomycetemcomitans, Acinomadura ( Streptomyces ) madurae, Bacillus cereus, Bacteroides spp., Bifidobacterium sp., Bruecella melitensis, Capnocytophaga ochracea, Clostridium spp., Enterococcus faecalis, Echerichia coli, Eubacterium alactolyticum, Flavobacterium meningosepticum, Fusobacterium nucleatum , Peptococcus sp., Peptostreptococcus spp., Porphyromoas ( Bacteroides ) spp., Prevotella ( Bacteroides ) spp., Proteus mirabilis, Pseudomaons a
- mutans 6715 Treponema spp. and Vibro vulnificus
- those described in the MEROPS Database including but not limited to those from Clostridium histolyticum (bacterial collagenase G/A), Cytophaga (cytophagalysin), Empedobacter collagenolyticum (Empdeobacter collagenase), Helicobacter ( Helicobacter -type collagenase), Porphyromonas (Porphyromonase-type collagenase), Geobacillus sp.
- MO-1 collagenolytic endopeptidase
- Salmonella sp. Salmonella -type collegenase, including the collagenase from Salmonella DT-104
- an endogenouse collagenase may be activated by a transactivator, such as SlyA. (Carlson 2006, Microbial Pathogenesis 38: 181-187).
- the chimeras may be further modified by addition of one or more multimerization domains, such as the T4 foldon trimerization domain (Meier et al., 2004, Journal of Molecular Biology, 344: 1051-1069; Bhardwaj et al., Protein Sci. 2008 17: 1475-1485) or tetramerization domains such as VASP (Kühnel et al., 2004 PNAS 101: 17027-17032).
- Chimeric toxins may be further modified by the addition of known cell penetrating (ferry) peptide which further improves their entry into target cells.
- Cell penetrating peptides include those derived from the HIV TAT protein (e.g., TAT-apoptin, TAT-bim, TAT-p53), the antennapedia homeodomain (penetraxin), Kaposi fibroblast growth factor (FGF) membrane-translocating sequence (MTS), herpes simplex virus VP22, hexahistidine, hexalysine, hexaarginine or “Chariot” (Active Motif, Carlsbad, Calif.; U.S. Pat. No. 6,841,535).
- HIV TAT protein e.g., TAT-apoptin, TAT-bim, TAT-p53
- the antennapedia homeodomain penetraxin
- FGF Kaposi fibroblast growth factor
- MTS membrane-translocating sequence
- herpes simplex virus VP22 hexahistidine, hexalysine, hexaarginine or “Chariot” (Active Motif,
- Nuclear localization signals may also be added, including but not limited to that from herpes simplex virus thymidine kinase, the SV40 large T antigen (PPKKKRKV SEQ ID NO:1) monopartite NLS, or the nucleoplamin bipartite NLS (KR[PAATKKAGQA]KKKK SEQ ID NO:2, or more preferably, the NLS from apoptin, a tumor associated (tumor-selective) NLS.
- PPKKKRKV SEQ ID NO:1 the SV40 large T antigen
- KR[PAATKKAGQA]KKKK SEQ ID NO:2 the nucleoplamin bipartite NLS from apoptin, a tumor associated (tumor-selective) NLS.
- the tumor-selective nuclear export signal from apoptin may be used alone or together with NLS from apoptin (Heckl et al., 2008, Value of apoptin's 40-amino-acid C-terminal fragment for the differentiation between human tumor and non-tumor cells, Apoptosis 13: 495-508; Backendor et al., 2008, Apoptin: Therapeutic potential of an early sensor of carcinogenic transformation, Ann Rev Pharmacol Toxicol 48: 143-69).
- the toxin may be further modified by addition of one or more protease cleavage sites that enhance its degradation outside of the tumor.
- Preferred protease cleavage sites are those for proteases that are under-expressed within the tumor compared to normal tissues (rather than over-expressed within the tumor as utilized for aerolysin activation).
- the expression levels of many proteases are elevated within tumors (e.g., Edwards et al., (eds) 2008, The Cancer Degradome: Proteases and Cancer Biology, Springer, expressly incorporated in its entirety herin).
- proteases for which inhibitory peptides may be coexpressed including but not limited to furin, tissue plasminogen activator, activated protein C, factor Xa, granzymes (A, B & M), cathepsins (A, B, C, D, E, F, G, H, K, L, S, W & X), thrombin, plasmin, urokinase, matrix metaloproteaes (1-28) membrane matrix metaloproteases (1-4), prostate specific antigen (PSA) and kallikrein 2.
- furin for example, recognizes a number of specific cleavage sites, including RXKR ⁇ SX SEQ ID NO:3.
- the presence of this cleavage site may be compensated for within the target tissue by co-expression of a furin inhibitor, stabilizing its activity unless it escapes the target tissue such as a tumor, lymph node or lumen of a bone whereupon the inhibitor concentration drops and the effector protein is degraded.
- a furin inhibitor alone or in combination by bacterial delivery vectors has not previously been suggested. Indeed, Wang et al. 2008 (Acta Biochim Biophys Sin (Shanghai). 2008 October; 40(10):848-54) suggested furin inhibitors could be used as antibiotics to suppress bacterial infection which would thereby interfere with delivery by a bacterial vector. Therefore, it has not been considered desirable to use a furin inhibitor or other protease inhibitors to have a positive effect on the bacteria and/or the therapeutics they release.
- the peptide inhibitors are engineered to be secreted from the gram negative bacteria secretion signals known to those skilled in the arts, including E. coli cytolethal distending toxin, Shiga toxin, LPP:OmpA, M13pIII, M13pVIII, zirS (Finlay et al., 2008, PLoS Pathogens 4 (4), e100003), heat-stable (ST; thermostable) toxins from Escherichia and Vibrio (U.S. Pat. No. 5,399,490), E. coli enterotoxin II (Kwon et al., U.S. Pat. No.
- N-terminal signal sequences or hlyA C-terminal signal sequence (requires addition of hlyBD and TolC), or by colicin fusions together with colicin lysis proteins, or using autotransporter (autodisplay) fusions. Fusion to to the M13 pIX may also be used (WO 2009/086116) or fusions to typeIII secretion system of Salmonella or other bacteria (Wilmaier et al., 2009 Mol Sys Biol 5: 309. The inhibitors can be further modified to have the protease cleavage signal of the protease that they inhibit or for a different protease.
- Secretion signal from gram positive bacteria include that from listerialysin O (LLO), alkaline phosphatase (phoZ) (Lee et al., 1999, J Bacteriol. 181: 5790-5799), CITase gene (Shiroza and Kuramitsu 1998, Methods in Cell Science, 20: 127-136) or the twin arginine translocation system (Berks et al., 2005, Protein targeting by the bacterial twin-arginine translocation (Tat) pathway, Current Opinion in Microbiology 8: 174-181). Enhanced secrection may be achieved as described in U.S. Pat. No.
- the chimeric proteins may have one or more additional features or protein domains known to those skilled in the arts which are designed to be active or catalytic domains that result in the death of the cell, allow or facilitate them being secreted or released by autolytic peptides such as those associated with colicins or bacteriophage release peptides have targeting peptides that direct them to the target cells, and protease cleavage sites for activation (e.g., release from parent peptide), and thoredoxin or glutation S-transferase (GST) fusions that improve solubility.
- autolytic peptides such as those associated with colicins or bacteriophage release peptides have targeting peptides that direct them to the target cells, and protease cleavage sites for activation (e.g., release from parent peptide), and thoredoxin or glutation S-transferase (GST) fusions that improve solubility.
- GST glut
- the present invention also provides in accordance with some embodiments, unique chimeric modifications of the above listed toxins that contain specific combinations of components resulting in secretion by selective anti-tumor activity.
- the invention also provides extracellular protease sensitivity (deactivation) that may include the addition of protease cleavage sites and may be co-expressed with a protease inhibitor.
- the chimeric proteins may have one or more additional features or protein domains known to those skilled in the arts which are designed to 1) be active or catalytic domains that result in the death of the cell or make them susceptible to other known anticancer agents, 2) allow or facilitate them being secreted or released by autolytic peptides such as colicin release peptides, 3) membrane protein transduction (ferry) peptides, 4) autotransporter domains, 5) have targeting peptides that direct them to the target cells, and 6) protease cleavage sites for activation (e.g., release from parent peptide).
- autolytic peptides such as colicin release peptides
- membrane protein transduction (ferry) peptides such as colicin release peptides
- autotransporter domains such as colicin release peptides
- autotransporter domains such as colicin release peptides
- 5) have targeting peptides that direct them to the target cells
- a unique composition in accordance with one embodiment of the present invention is the co-expression of the C-terminal amidating enzyme, which results in amidating these peptides in order for them to confer their targeting specificity.
- Small lytic peptides (less than 50 amino acids) are used to construct chimeric proteins for more than one purpose.
- the chimeric proteins containing lytic peptides may be directly cytotoxic for the cancer cells, and/or other cells of the tumor including the tumor matrix cells and immune cells which may diminish the effects of the bacteria by eliminating them.
- the lytic peptides are useful in chimeric proteins for affecting release from the endosome. Small lytic peptides have been used in the experimental treatment of cancer.
- Small lytic peptides useful in the invention are those derived from Staphaloccus aureus, S. epidermidis and related species, including the phenol-soluble modulin (PSM) peptides and delta-lysin (Wang et al., 2007 Nature Medicine 13: 1510-1514, expressly incorporated herein by reference).
- PSM phenol-soluble modulin
- lytic peptides that may be used includes the actinoporins from sea anemones or other coelenterates, such as SrcI, FraC equinatoxin-II and sticholysin-II (Anderluh and Macek 2002, Toxicon 40: 111-124).
- the selection of the lytic peptide depends upon the primary purpose of the construct, which may be used in combination with other constructs providing other anticancer features.
- Construct designed to be directly cytotoxic to cells employ the more cytoxic peptides, particularly PSM-alpha-3 and actinoporins.
- Constructs which are designed to use the lytic peptide to affect escape from the endosome use the peptides with the lower level of cytotoxicity, such as PSM-alpha-1, PSM-alpha-2 or delta-lysin.
- Promoters i.e., genetic regulatory elements that control the expression of the genes encoding the therapeutic molecules described above that are useful in the present invention include constitutive and inducible promoters.
- a preferred constitutive promoter is that from the vector pTrc99a (Promega).
- Preferred inducible promoters include the tetracycline inducible promoter (TET promoter), SOS-response promoters responsive to DNA damaging agents such as mitomycin, alkylating agents, X-rays and ultraviolet (UV) light such as the recA promoter, colicin promoters, sulA promoters and hypoxic-inducible promoters including but not limited to the PepT promoter (Bermudes et al., WO 01/25397), the arabinose inducible promoter (Ara BAD ) (Lossner et al., 2007, Cell Microbiol.
- TAT promoter tetracycline inducible promoter
- recA promoter colicin promoters
- sulA promoters sulA promoters and hypoxic-
- a single promoter may be used to drive the expression of more than one gene, such as a protease sensitive toxin and a protease inhibitor.
- the genes may be part of a single synthetic operon (polycistronic), or may be separate, monocystronic constructs, with separate individual promoters of the same type used to drive the expression of their respective genes.
- the promoters may also be of different types, with different genes expressed by different constitutive or inducible promoters. Use of two separate inducible promoter for more than one cytotoxin or other effector type peptide allows, when sufficient X-ray, tetracycline, arabinose or salicylic acid is administered following administration of the bacterial vector, their expression to occur simultaneously, sequentially, or alternatingly (repeated).
- the present invention provides, according to some embodiments, a composition that would minimize the effect of bacteria released into the environment by eliminating the ability of the bacteria to exchange genetic information with related bacteria, as well as provide a delivery enhancing bacteria resulting in a greater therapeutic effect.
- Conjugative transfer is a major genetic exchange mechanism that may occur between Salmonella and the normal commensal gut bacterium E. coli , requiring the presence of an F′ factor.
- the present invention provides gram-negative bacteria including E. coli, Vibrio, Shigella and Salmonella that are genetically modified in one or more ways to eliminate conjugative transfer of DNA with closely related species including E. coli . One of the modifications works on both male (F′+) and female (F′ ⁇ ) bacteria.
- the F′ factor provides functions which may be undesirable in conjunction with aspects of the present invention, including mating stabilization and DNA transfer.
- the present invention therefore provides, according to one aspect, a composition lacking these features by their genetic disruption on the F′ factor or by the cloning of the pilus factor genes into the tumor-targeted bacterium in the absence of the other factors, and hence, resulting in a strain which is non-conjugative and significantly less likely to transfer DNA to other bacteria.
- the invention may also incorporate entry exclusion into the bacteria and the fertility inhibition complex (finO and finP) and/or TraO, alone or in combination, and thus, even in tumor-targeted bacterial strains in which the pilus factors are not incorporated (i.e., F—), the bacterial strain will remain resistant to mating with F′ bacteria.
- fir A is a mutation within the gene that encodes the enzyme UDP-3-O(R-30 hydroxymyristoyl)-glycocyamine N-acyltransferase, that regulates the third step in endotoxin biosynthesis (Kelley et al., 1993, J. Biol. Chem. 268:19866-19874). Salmonella typhimurium and E. coli strains bearing this type of mutation produce a lipid A that differs from wild type lipid A in that it contains a seventh fatty acid, a hexadecanoic acid (Roy and Coleman, 1994, J. Bacteriol. 176:1639-1646).
- SH7622-64 A derivative of Salmonella typhimurium firA′ strain SH7622 was picked, designated SH7622-64, and used as the firA′ strain for the experiments. SH7622-64 was selected for its supersensitivity to the antibiotic novobiocin and temperature-sensitive growth, characteristics of the firA′ SH7622 strain.
- Pawelek et al. found Salmonella /g tissue: Primary Tumor of M27 lung cancer, 2.9 ⁇ 10 6 per gram and in B16 melanoma, 3.2 ⁇ 10 5 per gram, yet retaining a similar 3200:1 tumor to liver targeting ratio. This strain, while never used in any subsequent studies represents a surprising solution to translating murine to human studies, wherein both systems tend to have the same number of bacteria per gram of target tissue.
- bacterial mutants are selected for suboptimal or low antitumor effects.
- the bacterial mutants can be generated by any standard method of mutation (e.g., UV, nitrosoguanadine, Tn10, Tn5), or can be a spontaneous mutation such as a suppressor mutation (e.g., Murray et al., 2001, Extragenic suppressors of growth defects in msbB Salmonella , J. Bacteriol. 183: 5554-5561).
- the present invention provides, according to one embodiment, live attenuated therapeutic bacterial strains that express one or more therapeutic molecules together with one or more protease inhibitor polypeptides that inhibit local proteases that could deactivate the therapeutic molecules.
- live attenuated tumor-targeted bacterial strains may include Salmonella , group B Streptococcus or Listeria vectoring chimeric anti-tumor toxins to an individual to elicit a therapeutic response against cancer.
- Another aspect of the invention relates to live attenuated tumor-targeted bacterial strains that may include Salmonella , group B Streptococcus or Listeria vectoring chimeric anti-tumor toxin molecules to an individual to elicit a therapeutic response against cancer including cancer stem cells.
- the toxins may also be targeted to tumor matrix cells, and/or immune cells.
- the invention provides, according to some embodiments, methods and compositions comprising bacterial vectors that express, secrete, surface display and/or release protease inhibitors that protect coexpressed protease sensitive antitumor molecules that are also secreted, surface displayed and/or released into the tumor, lymphoma-containing lymphnode, leukemic bone lumen, or proximally or topically on a carcinoma or precancerous lesion for the treatment of the neoplasia.
- the bacteria according to a preferred embodiment of the present invention include those modified to have little or no ability to undergo bacterial conjugation, limiting incoming and outgoing exchange of genetic material, whereas the prior art fails to limit exchange of genetic material.
- certain of the therapeutic molecules have co-transmission requirements (e.g., colicin proteins and colicin immunity) that are distal (i.e., genetically dissected and separated) to the therapeutic molecule location further limiting known forms of genetic exchange.
- aspects of the present invention also provide bacteria with antibody deactivating proteins that minimize the neutralizing effect of any vector specific antibodies and/or complement at the time of injection, or thereafter.
- the neutralizing proteins may be induced prior to injection into the host using known inducible promoters such that the bacteria are only temporarily antibody resistant, and may be optionally continuously produced thereafter at low level.
- the bacteria Upon reaching the tumor site where the antibody penetration is poor, the bacteria no longer make the protein in sufficient quantity to have substantial spread to other tissues, except other tumor tissues and are controlled by neutralizing antibodies systemically, maintaining the safety of the bacteria.
- aspects of the present invention also provide novel chimeric bacterial toxins particularly suited for expression by gram-negative bacteria.
- the toxins may have added targeting ligands that render them selectively cytotoxic for tumor cells, tumor stem cells and/or matrix and tumor-infiltrating immune cells.
- the invention also provides means to determine optimal toxin combinations which are preferably additive or more preferably synergistic.
- the invention also provides means to determine the optimal combination of protein toxin with conventional cancer chemotherapeutics, liposomal agents or biologics, including immunosuppressive anti-complement agents (e.g., anti-C5B).
- administration to an individual, of a live Salmonella bacterial vector, in accordance with an aspect of the present invention, that is genetically engineered to express one or more protease inhibitors as described herein co-expressed with one or more cytotoxic proteins has the ability to establish a population in the tumor, kill tumor cells, tumor stem cells as well as tumor matrix and immune infiltrating cells, resulting in a therapeutic benefit.
- aspects of the present invention also provide novel methods to test the efficacy of the protease inhibitor and effector gene combinations described herein.
- the methods employ bacteria with low tumor colonization capability in order to establish the ability of low numbers of tumor-targeted bacteria to result in the desired effect, and bacteria with low inherent antitumor activity, such that the innate antitumor activity of a bacterial strain is minimized, and therefore less likely to mask the results of the effector systems.
- a preferred composition will contain, for example, a sufficient amount of live bacteria expressing the protease inhibitors and cytotoxin(s) or effector proteins/peptides to produce a therapeutic response in the patient.
- the attenuated Salmonella strains described herein are both safe and useful as live bacterial vectors that can be orally administered to an individual to provide therapeutic benefit for the treatment of cancer.
- an effective antitumor response in humans by administration of genetically engineered, attenuated strains of Salmonella strains as described herein may be due to the ability of such mutant strains to persist within the tumor, lymphoma or leukemic bone marrow and to supply their own nutrient needs by killing tumor cells, tumor matrix and or immune infiltrating cells and further expanding the zone of the tumor that they occupy.
- Bacterial strains useful in accordance with a preferred aspect of the invention may carry the ability to produce a therapeutic molecule expressing plasmid or chromosomally integrated cassette that encodes and directs expression of one or more therapeutic molecules together with one or more protease inhibitors, as described herein.
- the protease inhibitors serve to prevent the destruction of the therapeutic molecule while within the tumor.
- the protease inhibitor may also have an anticlotting effect, wherein a blood clot may prevent spread of the bacteria throughout the tumor.
- the protease inhibitor may also have direct or indirect anticancer effects. If the cytotoxin and protease inhibitor diffuse outside of the tumor, lymph node, bone lumen, proximity to a carcinoma or other neoplasia-localized distribution, they fall below the protease inhibitory concentration, no longer inhibit proteolysis of the cytotoxins or effector genes, and are then inactivated. Thus the protease inhibitor system both increases activity and provides tumor specificity.
- the serovars of S. enterica that may be used as the attenuated bacterium of the live compositions described in accordance with various embodiments herein include, without limitation, Salmonella enterica serovar Typhimurium (“ S. typhimurium ”), Salmonella montevideo, Salmonella enterica serovar Typhi (“ S. typhi ”), Salmonella enterica serovar Paratyphi B (“S. paratyphi 13”), Salmonella enterica serovar Paratyphi C (“S. paratyphi C”), Salmonella enterica serovar Hadar (“S. hadar”), Salmonella enterica serovar Enteriditis (“ S. enteriditis ”), Salmonella enterica serovar Kentucky (“S.
- Salmonella enterica serovar Infantis (“S. infantis ”), Salmonella enterica serovar Pullorurn (“S. pullorum ”), Salmonella enterica serovar Gallinarum (“ S. gallinarum ”), Salmonella enterica serovar Muenchen (“S. muenchen”), Salmonella enterica serovar Anaturn (“S. anatum”), Salmonella enterica serovar Dublin (“S. dublin”), Salmonella enterica serovar Derby (“S. derby”), Salmonella enterica serovar Choleraesuis var. kunzendorf (“S. cholerae kunzendorf”), and Salmonella enterica serovar minnesota ( S. minnesota ).
- a preferred serotype for the treatment of bone marrow related diseases is S dublin.
- live bacteria in accordance with aspects of the invention include known strains of S. enterica serovar Typhimurium ( S. typhimurium ) and S. enterica serovar Typhi ( S. typhi ) which are further modified as provided by the invention to form vectors for the prevention and/or treatment of neoplasia.
- Such Strains include Ty21a, CMV906, CMV908, CMV906-htr, CMV908-htr, Ty800, aroA ⁇ /serC ⁇ , holavax, M01ZH09, VNP20009. These strains contain defined mutations within specific serotypes of bacteria.
- the invention also includes the use of these same mutational combinations contained within alternate serotypes or strains in order to avoid immune reactions which may occur in subsequent administrations.
- S. Typhimurium, S. motevidio , and S. typhi which have non-overlapping O-antigen presentation (e.g., S. typhimurium is O-1, 4, 5, 12 and S. typhi is Vi, S. montevideo is O-6, 7) may be used.
- S. typhimurium is a suitable serotype for a first injection and another serotype such as S. typhi or S. montivideo are used for a second injection and third injections.
- flagellar antigens are also selected for non-overlapping antigenicity between different injections.
- the flagellar antigen may be H1 or H2 or no flagellar antigen, which, when combined with the three different 0-antigen serotypes, provides three completely different antigentic profiles.
- Novel strains of Salmonella are also encompassed that are, for example, attenuated in virulence by mutations in a variety of metabolic and structural genes.
- the invention therefore may provide a live composition for treating cancer comprising a live attenuated bacterium that is a serovar of Salmonella enterica comprising an attenuating mutation in a genetic locus of the chromosome of said bacterium that attenuates virulence of said bacterium and wherein said attenuating mutation is a combinations of other known attenuating mutations.
- Attenuating mutation useful in the Salmonella bacterial strains described herein may be in a genetic locus selected from the group consisting of phoP, phoQ, edt, cya, crp, poxA, rpoS, htrA, nuoG, pmi, pabA, pts, damA, met, cys, pur, purA , purB, purl, purF, leu, ilv, arg, lys, zwf, aroA, aroB, aroC, aroD, serC, gua, cadA, rfc, rjb, rfa, ompR, msbB, pfkAB, crr, glk, ptsG, ptsHl, manXYZ and combinations thereof.
- the strain may also contain a mutation known as “Suwwan”, which is an approximately 100 kB deletion between two IS200 elements.
- the strain may also carry a defective thioredoxin gene (trxA ⁇ ; which may be used in combination with a TrxA fusion), a defective glutathione oxidoreductase (gor ⁇ ) and optionally, overexpress a protein disulfide bond isomerase (DsbA).
- the strain may also be engineered to express invasion and/or escape genes tlyA, tlyC patl and pld from Rickettsia , whereby the bacteria exhibit enhanced invasion and/or excape from the phagolysosome (Witworth et al., 2005, Infect. Immun.
- the strain may also be engineered to be deleted in an avirulence (anti-virulence) gene, such as zirTS, grvA and/or pcgL, or express the E. coli lac repressor, which is also an avirulence gene in order to compensate for over-attenuation.
- the strain may also express SlyA, a known transcriptional activator.
- the Salmonella strains are msbB mutants (msbB ⁇ ). In a more preferred embodiment, the strains are msbB- and Suwwan.
- the strains are msbB ⁇ , Suwwan and zwf ⁇ .
- Zwf has recently been shown to provide resistance to CO2, acidic pH and osmolarity (Karsten et al., 2009, BMC Microbiology August 18; 9:170).
- Use of the msbB zwf genetic combination is also particularly preferred for use in combination with administered carbogen (an oxygen carbon dioxide mixture that may enhance delivery of therapeutic agents to a tumor).
- the strains are msbB ⁇ , Suwwan, zwf ⁇ and trxA ⁇ .
- the strains are msbB ⁇ , Suwwan, zwf ⁇ , trxA ⁇ and gor ⁇ .
- the invention also encompasses according to a preferred embodiment, gram-positive bacteria.
- Preferred bacteria of the invention are group B Streptococcus including S. agalaciae , and Listeria species including L. monocytogenes . It is known to those skilled in the arts that minor variations in molecular biology techniques such as use of gram-positive origins of replication, gram-positive signal sequences gram-positive promoters (e.g., Lactococcus expression, Mohamadzadeh et al., PNAS Mar. 17, 2009 vol. 106 no.
- Mutational backgrounds of the group B Streptococcus, S. agalactiae include wild type (no mutations), of any of the nine serotypes that depend on the immunologic reactivity of the polysaccharide capsule and among nine serotypes, preferably types Ia, Ib, II, III, and V capable of being invasive in humans.
- the strain may be deleted in the beta-heolysin/cytolysin (beta-H/C), including any member of the cly opperon (clyXDGZAEFLJK SEQ ID NO:4), preferably the clyE gene, or the CspA protease associated with virulence (Shelver and Bryan, 2008, J Bacteriol.
- the strains may further have mutations in metabolic genes pur, purA, aroA, aroB, aroC, aroD, pgi (glucose-6-phosphate isomerase), fructose-1,6-bisphosphatase, ptsH, ptsI, and/or one or more amino acid transporters and/or amino acid permeases.
- the strain is clyE deficient.
- E. coli strains include E. coli strains, Bacteriodies, Bifidobacterium and Bacillus , attenuated pathogenic strains of E. coli including enteropathogenic and uropathogenic isolates, Enterococcus sp. and Serratia sp. as well as attenuated Shigella sp., Yersinia sp., Streptococcus sp. and Listeria sp.
- Bacteria of low pathogenic potential to humans such as Clostridium spp.
- Clostridium spp., Proteus mirabilis , insect pathogenic Xenorhabdus sp., Photorhabdus sp. and human wound Photorhabdus ( Xenorhabdus ) are also encompassed.
- Probiotic strains of bacteria are also encompassed, including Lactobacillus sp., Lactococcus sp., Leuconostoc sp., Pediococcus sp., Streptococcus sp., Streptococcus agalactiae, Lactococcus sp., Bacillus sp., Bacillus natto, Bifidobacterium sp., Bacteroides sp., and Escherichia coli such as the 1917 Nissel strain.
- the invention also provides, according to one embodiment, a process for preparing genetically stable therapeutic bacterial strains comprising genetically engineering the therapeutic genes of interest into a bacterially codon optimized expression sequence within a bacterial plasmid expression vector, endogenous virulence (VIR) plasmid (of Salmonella sp), or chromosomal localization expression vector for any of the deleted genes or IS200 genes, defective phage or intergenic regions within the strain and further containing engineered restriction endonuclease sites such that the bacterially codon optimized expression gene contains subcomponents which are easily and rapidly exchangeable, and the bacterial strains so produced.
- VIR virulence
- chromosomal localization expression vector for any of the deleted genes or IS200 genes, defective phage or intergenic regions within the strain and further containing engineered restriction endonuclease sites such that the bacterially codon optimized expression gene contains subcomponents which are easily and rapidly exchangeable, and the bacterial strains so produced.
- the present invention provides, for example, and without limitation, live bacterial compositions that are genetically engineered to express one or more protease inhibitors combined with antitumor effector molecules for the treatment of cancers or neoplasias.
- the invention provides pharmaceutical compositions comprising pharmaceutically acceptable carriers and one or more bacterial mutants.
- the invention also provides pharmaceutical compositions comprising pharmaceutically acceptable carriers and one or more bacterial mutants comprising nucleotide sequences encoding one or more therapeutic molecules.
- the pharmaceutical compositions of the invention may be used in accordance with the methods of the invention for the prophylaxis or treatment of neoplastic disease.
- the bacterial mutants are attenuated by introducing one or more mutations in one or more genes in the lipopolysaccharide (LPS) biosynthetic pathway (for gram-negative bacteria), and optionally one or more mutations to auxotrophy for one or more nutrients or metabolites.
- LPS lipopolysaccharide
- a pharmaceutical composition comprises a pharmaceutically acceptable carrier and one or more bacterial mutants, wherein said attenuated bacterial mutants are facultative anaerobes or facultative aerobes.
- a pharmaceutical composition comprises a pharmaceutically acceptable carrier and one or more attenuated bacterial mutants, wherein said attenuated bacterial mutants are facultative anaerobes or facultative aerobes and comprise one or more nucleic acid molecules encoding one or more therapeutic molecules where the therapeutic molecule is chimeric toxin.
- a pharmaceutical composition comprises a pharmaceutically acceptable carrier and one or more bacterial mutants, wherein said attenuated bacterial mutants are facultative anaerobes or facultative aerobes.
- a pharmaceutical composition comprises a pharmaceutically acceptable carrier and one or more attenuated bacterial mutants, wherein said attenuated bacterial mutants are facultative anaerobes or facultative aerobes and comprise one or more nucleic acid molecules encoding one or more therapeutic molecules where the therapeutic molecule is a molecule with direct anti-cancer lytic capability.
- a pharmaceutical composition comprises a pharmaceutically acceptable carrier and one or more bacterial mutants, wherein said attenuated bacterial mutants are facultative anaerobes or facultative aerobes.
- a pharmaceutical composition comprises a pharmaceutically acceptable carrier and one or more attenuated bacterial mutants, wherein said attenuated bacterial mutants are facultative anaerobes or facultative aerobes and comprise one or more nucleic acid molecules encoding one or more therapeutic molecules where the therapeutic molecule has direct anti-cancer cytotoxic or inhibitory ability.
- a pharmaceutical composition comprises a pharmaceutically acceptable carrier and one or more bacterial mutants, wherein said attenuated bacterial mutants are facultative anaerobes or facultative aerobes.
- a pharmaceutical composition comprises a pharmaceutically acceptable carrier and one or more attenuated bacterial mutants, wherein said attenuated bacterial mutants are facultative anaerobes or facultative aerobes and comprise one or more nucleic acid molecules encoding one or more therapeutic molecules where the therapeutic molecule has direct anti-cellular activity against other cells of a tumor, including neutrophils, macrophages, T-cells, stromal cells, endothelial cells (tumor vasculature) and/or cancer stem cells.
- a pharmaceutical composition comprises a pharmaceutically acceptable carrier and one or more bacterial mutants, wherein said attenuated bacterial mutants are facultative anaerobes or facultative aerobes.
- a pharmaceutical composition comprises a pharmaceutically acceptable carrier and one or more attenuated bacterial mutants, wherein said attenuated bacterial mutants are facultative anaerobes or facultative aerobes and comprise one or more nucleic acid molecules encoding one or more therapeutic molecules co-expressed with a protease inhibitor.
- a pharmaceutical composition comprises a pharmaceutically acceptable carrier and one or more attenuated bacterial mutants, wherein the bacterial mutants are a Salmonella sp.
- a pharmaceutical composition comprises a pharmaceutically acceptable carrier and one or more attenuated stress-resistant gram-negative bacterial mutants, wherein the attenuated stress-resistant gram-negative bacterial mutants are a Salmonella sp.
- the attenuated stress-resistant gram-negative bacterial mutants comprise one or more nucleic acid molecules encoding one or more therapeutic molecules, prodrug converting enzymes, metabolite degrading enzymes, lytic peptides, DNAases or anti-cancer peptides.
- a pharmaceutical composition comprises a pharmaceutically acceptable carrier and one or more attenuated bacterial mutants, wherein the bacterial mutants are a Streptococcus sp.
- a pharmaceutical composition comprises a pharmaceutically acceptable carrier and one or more attenuated gram-positive bacterial mutants, wherein the attenuated gram-positive bacterial mutants are a Streptococcus sp., and the attenuated gram-positive bacterial mutants comprise one or more nucleic acid molecules encoding one or more therapeutic molecules, prodrug converting enzymes, metabolite degrading enzyme, lytic peptides, DNAases or anti-cancer peptides.
- a pharmaceutical composition comprises a pharmaceutically acceptable carrier and one or more attenuated bacterial mutants, wherein the bacterial mutants are a Listeria sp.
- a pharmaceutical composition comprises a pharmaceutically acceptable carrier and one or more attenuated bacterial mutants, wherein the attenuated gram-positive bacterial mutants are a Listeria sp., and the attenuated gram-positive bacterial mutants comprise one or more nucleic acid molecules encoding one or more therapeutic molecules, prodrug converting enzymes, metabolite degrading enzyme, lytic peptides, DNAases or anti-cancer peptides.
- the present invention encompasses treatment protocols that provide a better therapeutic effect than current existing anticancer therapies.
- the present invention provides methods for prophylaxis or treatment of neoplastic diseases in a subject comprising administering to said subject and one or more bacterial mutants.
- the present invention also provides methods for the prophylaxis or treatment of neoplastic diseases in a subject comprising administering to said subject one or more bacterial mutants, wherein said bacterial mutants comprise one or more nucleic acid molecules encoding one or more therapeutic molecules together with one or more protease inhibitors.
- the methods of the present invention permit lower dosages and/or less frequent dosing of the bacterial mutants to be administered to a subject for prophylaxis or treatment of neoplastic disease to achieve a therapeutically effective amount of one or more therapeutic molecules.
- the genetically modified bacteria are used in animals, including humans, dogs, cats, and/or horses for protection or treatment against neoplastic diseases.
- a live Salmonella, Listeria or Streptococcus bacterial vector or therapeutic in accordance with the present invention, that is genetically engineered to express one or more anti-neoplastic disease molecules or molecules against other cells within the neoplastic milieu in combination with a protease inhibitor and have improved stability due to the presence of the protease inhibitor and result in anti-neoplastic activity.
- Attenuated refers to elimination or reduction of the natural virulence of a bacterium in a particular host organism, such as a mammal.
- “Virulence” is the degree or ability of a pathogenic microorganism to produce disease in a host organism.
- a bacterium may be virulent for one species of host organism (e.g., a mouse) and not virulent for another species of host organism (e.g., a human).
- an “attenuated” bacterium or strain of bacteria is attenuated in virulence toward at least one species of host organism that is susceptible to infection and disease by a virulent form of the bacterium or strain of the bacterium.
- the term “genetic locus” is a broad term and comprises any designated site in the genome (the total genetic content of an organism) or in a particular nucleotide sequence of a chromosome or replicating nucleic acid molecule (e.g., a plasmid), including but not limited to a gene, nucleotide coding sequence (for a protein or RNA), operon, regulon, promoter, inducible promoters (including tetracycline, arabinose, (EP1,655,370 A1, expressly incorporated in its entirety herein), salicylic acid, hypoxic, tumor cell specific inducible promoters) regulatory site (including transcriptional terminator sites, ribosome binding sites, transcriptional inhibitor binding sites, transcriptional activator binding sites), origin of replication, intercistronic region, and portions therein.
- a genetic locus may be identified and characterized by any of a variety of in vivo and/or in vitro methods available in the art, including but not limited to, conjugation studies, crossover frequencies, transformation analysis, transfection analysis, restriction enzyme mapping protocols, nucleic acid hybridization analyses, polymerase chain reaction (PCR) protocols, nuclease protection assays, and direct nucleic acid sequence analysis
- oral refers to administration of a compound or composition to an individual by a route or mode along the alimentary canal.
- oral routes of administration of a vaccine composition include, without limitation, swallowing liquid or solid forms of a vaccine composition from the mouth, administration of a vaccine composition through a nasojejunal or gastrostomy tube, intraduodenal administration of a vaccine composition, and rectal administration, e.g., using suppositories that release a live bacterial vaccine strain described herein to the lower intestinal tract of the alimentary canal.
- recombinant is used to describe non-naturally altered or manipulated nucleic acids, cells transformed, electroporated, or transfected with exogenous nucleic acids, and polypeptides expressed non-naturally, e.g., through manipulation of isolated nucleic acids and transformation of cells.
- the term “recombinant” specifically encompasses nucleic acid molecules that have been constructed, at least in part, in vitro using genetic engineering techniques, and use of the term “recombinant” as an adjective to describe a molecule, construct, vector, cell, polypeptide, or polynucleotide specifically excludes naturally existing forms of such molecules, constructs, vectors, cells, polypeptides, or polynucleotides.
- Cassette, or expression cassette is used to describe a nucleic acid sequence comprising (i) a nucleotide sequence encoding a promoter, (ii) a first unique restriction enzyme cleavage site located 5′ of the nucleotide sequence encoding the promoter, and (iii) a second unique restriction enzyme cleavage site located 3′ of the nucleotide sequence encoding the promoter.
- the cassette may also contain a multiple cloning site (MCS) and transcriptional terminator within the 5′ and 3′ restriction endonuclease cleavage sites.
- the cassette may also contain cloned genes of interest.
- salmonella (plural, “salmonellae”) and “ Salmonella ” refers to a bacterium that is a serovar of Salmonella enterica .
- Salmonella enterica serovar Typhimurium (“ S. typhimurium ”) and serovar Typhi (“ S. typhi ”) as described herein.
- strain and “isolate” are synonymous and refer to a particular isolated bacterium and its genetically identical progeny. Actual examples of particular strains of bacteria developed or isolated by human effort are indicated herein by specific letter and numerical designations (e.g. strains Ty21a, CMV906, CMV908, CMV906-htr, CMV908-htr, Ty800, holavax, M01ZH09, VNP20009).
- homology and “identity” are used interchangeably, but homology for proteins can include conservative amino acid changes.
- sequences of amino acids are aligned so that the highest order match is obtained (see, e.g.: Computational Molecular Biology, Lesk, A. M., ed., Oxford University Press, New York, 1988; Biocomputing: Informatics and Genome Projects, Smith, D. W., ed., Academic Press, New York, 1993; Computer Analysis of Sequence Data, Part I, Griffin, A. M., and Griffin, H.
- sequence identity refers to the number of identical amino acids (or nucleotide bases) in a comparison between a test and a reference polypeptide or polynucleotide.
- Homologous polypeptides refer to a pre-determined number of identical or homologous amino acid residues. Homology includes conservative amino acid substitutions as well identical residues. Sequence identity can be determined by standard alignment algorithm programs used with default gap penalties established by each supplier.
- Homologous nucleic acid molecules refer to a pre-determined number of identical or homologous nucleotides. Homology includes substitutions that do not change the encoded amino acid (i.e., “silent substitutions”) as well identical residues.
- Substantially homologous nucleic acid molecules hybridize typically at moderate stringency or at high stringency all along the length of the nucleic acid or along at least about 70%, 80% or 90% of the full-length nucleic acid molecule of interest. Also contemplated are nucleic acid molecules that contain degenerate codons in place of codons in the hybridizing nucleic acid molecule. (For determination of homology of proteins, conservative amino acids can be aligned as well as identical amino acids; in this case, percentage of identity and percentage homology vary).
- nucleic acid molecules have nucleotide sequences (or any two polypeptides have amino acid sequences) that are at least 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% “identical” can be determined using known computer algorithms such as the “FAST A” program, using for example, the default parameters as in Pearson et al. Proc. Natl. Acad. Sci. USA 85: 2444 (1988) (other programs include the GCG program package (Devereux, J., et al., Nucleic Acids Research 12(1): 387 (1984)), BLASTP, BLASTN, FASTA (Atschul, S. F., et al., J. Molec. Biol.
- a GAP program defines similarity as the number of aligned symbols (i.e., nucleotides or amino acids) which are similar, divided by the total number of symbols in the shorter of the two sequences.
- Default parameters for the GAP program can include: (1) a unary comparison matrix (containing a value of 1 for identities and 0 for non identities) and the weighted comparison matrix of Gribskov et al. Nucl. Acids Res. 14: 6745 (1986), as described by Schwartz and Dayhoff, eds., Atlas of Protein Sequence and Structure, National Biomedical Research Foundation, pp. 353-358 (1979); (2) a penalty of 3.0 for each gap and an additional 0.10 penalty for each symbol in each gap; and (3) no penalty for end gaps.
- the term “identity” represents a comparison between a test and a reference polypeptide or polynucleotide.
- “at least 90% identical to” refers to percent identities from 90 to 100% relative to the reference polypeptides. Identity at a level of 90% or more is indicative of the fact that, assuming for exemplification purposes a test and reference polynucleotide length of 100 amino acids are compared, no more than 10% (i.e., 10 out of 100) of amino acids in the test polypeptide differs from that of the reference polypeptides. Similar comparisons can be made between a test and reference polynucleotides.
- differences can be represented as point mutations randomly distributed over the entire length of an amino acid sequence or they can be clustered in one or more locations of varying length up to the maximum allowable, e.g., 10/100 amino acid difference (approximately 90% identity). Differences are defined as nucleic acid or amino acid substitutions, insertions or deletions. At the level of homologies or identities above about 85-90%, the result should be independent of the program and gap parameters set; such high levels of identity can be assessed readily, often without relying on software.
- substantially identical or “homologous” or similar varies with the context as understood by those skilled in the relevant art and generally means at least 60% or 70%, preferably means at least 80%, more preferably at least 90%, and most preferably at least 95%, 96%, 97%, 98%, 99% or greater identity.
- substantially identical to a product means sufficiently similar so that the property of interest is sufficiently unchanged so that the substantially identical product can be used in place of the product.
- Salmonella encompasses all Salmonella species, including: Salmonella typhi, Salmonella choleraesuis , and Salmonella enteritidis . Serotypes of Salmonella are also encompassed herein, for example, typhimurium , a subgroup of Salmonella enteritidis , commonly referred to as Salmonella typhimurium.
- analog refers to a polypeptide that possesses a similar or identical function as a primary or secondary effector molecule but does not necessarily comprise a similar or identical amino acid sequence of a primary or secondary effector molecule, or possess a similar or identical structure of a primary or secondary effector molecule.
- a polypeptide that has a similar amino acid sequence refers to a polypeptide that satisfies at least one of the following: (a) a polypeptide having an amino acid sequence that is at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least .sup.85%, at least 90%, at least 95% or at least 99% identical to the amino acid sequence of a primary or secondary effector molecule described herein; (b) a polypeptide encoded by a nucleotide sequence that hybridizes under stringent conditions to a nucleotide sequence encoding a primary or secondary effector molecule described herein of at least 5 contiguous amino acid residues, at least 10 contiguous amino acid residues, at least 15 contiguous amino acid residues, at least 20 contiguous amino acid residues, at least 25 contiguous amino acid residues, at least 40 contiguous amino
- a polypeptide with similar structure to a primary or secondary effector molecule described herein refers to a polypeptide that has a similar secondary, tertiary or quaternary structure of primary or secondary effector molecule described herein.
- the structure of a polypeptide can be determined by methods known to those skilled in the art, including but not limited to, peptide sequencing, X-ray crystallography, nuclear magnetic resonance, circular dichroism, and crystallographic electron microscopy.
- anti-angiogenic factor relates to any proteinaceous molecule which has anti-angiogenic activity, or a nucleic acid encoding such a proteinaceous molecule.
- the anti-angiogenic factor is a peptide fragment or cleavage fragment of a larger protein.
- Attenuation relates to a modification so that a microorganism or vector is less pathogenic.
- the end result of attenuation is that the risk of toxicity as well as other side-effects is decreased, when the microorganism or vector is administered to the patient.
- Bacteriocin relates to a bacterial proteinaceous toxin with selective activity, in that the bacterial host is immune to the toxin.
- Bacteriocins may be encoded by the bacterial host genome or by a plasmid, may be toxic to a broad or narrow range of other bacteria, and may have a simple structure comprising one or two subunits or may be a multi-subunit structure.
- a host expressing a bacteriocin has immunity against the bacteriocin.
- Bacteriocins include a number of bacterial antibiotics, including colicins and microcins.
- chelating agent sensitivity is defined as the effective concentration at which bacteria proliferation is affected, or the concentration at which the viability of bacteria, as determined by recoverable colony forming units (c.f.u.), is reduced.
- derivative in the context of a “derivative of a polypeptide” refers to a polypeptide that comprises an amino acid sequence of a polypeptide, such as a primary or secondary effector molecule, which has been altered by the introduction of amino acid residue substitutions, deletions or additions, or by the covalent attachment of any type of molecule to the polypeptide.
- derivative refers to a primary or secondary effector molecule which has been so modified, e.g., by the covalent attachment of any type of molecule to the primary or secondary molecule.
- a primary or secondary effector molecule may be modified, e.g., by proteolytic cleavage, linkage to a cellular ligand or other protein, etc.
- a derivative of a primary or secondary effector molecule may be modified by chemical modifications using techniques known to those of skill in the art (e.g., by acylation, phosphorylation, carboxylation, glycosylation, selenium modification and sulfation). Further, a derivative of a primary or secondary effector molecule may contain one or more non-classical amino acids. A polypeptide derivative possesses a similar or identical function as a primary or secondary effector molecule described herein.
- msbB.sup.-attenuated tumor-targeted Salmonella mutant refers to a modified msbB Salmonella mutant as defined in International Publication No. WO 99/13053 at page 17, incorporated herein by reference in its entirety.
- fragment refers to a peptide or polypeptide comprising an amino acid sequence of at least 2 contiguous amino acid residues, at least 5 contiguous amino acid residues, at least 10 contiguous amino acid residues, at least 15 contiguous amino acid residues, at least 20 contiguous amino acid residues, at least 25 contiguous amino acid residues, at least 40 contiguous amino acid residues, at least 50 contiguous amino acid residues, at least 60 contiguous amino residues, at least 70 contiguous amino acid residues, at least contiguous 80 amino acid residues, at least contiguous 90 amino acid residues, at least contiguous 100 amino acid residues, at least contiguous 125 amino acid residues, at least 150 contiguous amino acid residues, at least contiguous 175 amino acid residues, at least contiguous 200 amino acid residues, at least contiguous 250 amino acid residues, at least contiguous 300 amino acid residues, at least contiguous 500 amino acid residues, or at least con
- the term “functional fragment” refers to a fragment of a primary or secondary effector molecule that retains at least one function of the primary or secondary effector molecule (e.g., enzymatic activity, anti-angiogenic activity, or anti-tumor activity of the effector molecule).
- fusion protein refers to a polypeptide that comprises an amino acid sequence of primary or secondary effector molecule, or functional fragment or derivative thereof, and an amino acid sequence of a heterologous polypeptide (e.g., a non-primary or non-secondary effector molecule).
- purified attenuated tumor-targeted bacterial strain is substantially free of contaminating proteins or amino acids (e.g., debris from dead bacteria), or media.
- An attenuated tumor-targeted bacterial strain that is substantially free of contaminating proteins or amino acids includes preparations of attenuated tumor-targeted bacteria having less than about 30%, 20%, 10%, or 5% (by dry weight) of contaminating protein or amino acid.
- a “release factor” includes any protein, or functional portion thereof which enhances release of bacterial components.
- a release factor is a bacteriocin release protein.
- Release factors include, but are not limited to, the bacteriocin release protein (BRP) encoded by the cloacin D13 plasmid, the BRPs encoded by the colicin E1-E9 plasmids, or BRPs encoded by the colicin A, N or D plasmids.
- Septic shock is a state of internal organ failure due to a complex cytokine cascade, initiated by TNF- ⁇ .
- the relative ability of a microorganism or vector to elicit TNF- ⁇ . is used as one measure to indicate its relative ability to induce septic shock.
- Tumor-targeted is defined as the ability to preferentially localize to a cancerous or neoplastic target cell or tissue relative to a non-cancerous counterpart cell or tissue and replicate.
- a tumor-targeted bacteria such as Salmonella preferentially attaches to, infects and/or remains viable in the cancerous target cell or the tumor, carcinoma, lymphoma or leukemic bone marrow environment.
- “Virulence” is a relative term describing the general ability to cause disease, including the ability to kill normal cells or the ability to elicit septic shock (see specific definition below).
- strain designations VNP20009 International Publication No. WO 99/13053
- YS1646 and 41.2.9 are used interchangeably and each refer to the strain deposited with the American Type Culture Collection and assigned Accession No. 202165.
- strain designations YS1456 and 8.7 are used interchangeably and each refer to the strain deposited with the American Type Culture Collection and assigned Accession No. 202164.5.
- FIG. 1A shows a tumor-protease activated toxin and FIG. 1B shows a tumor protease inhibitor and protease sensitive toxin expression system.
- FIG. 2 shows secreted protease inhibitors.
- FIG. 3 shows chimeric colicins.
- FIG. 4 shows colicin TRC chimeras.
- FIG. 5 shows lytic peptide chimeras.
- FIG. 6 shows protease activated lytic peptide chimera prodrugs.
- FIG. 7 shows apoptotic peptide and toxic peptide chimeras.
- FIG. 8 shows cytolethal distending toxin subunit B (cldtB) chimeras.
- FIG. 9 shows repeat in toxin (RTX) family members and hybrid operons.
- FIG. 10 shows cytoplasmic expressed proteins, hlyA fusions thereof, and non-chimeric surface (autotransporter) expressed proteins.
- FIG. 11 shows a non-conjugative bacterium with and without the F′ factor.
- FIG. 12 shows segregation of required colicin toxin and immunity factors.
- the present invention provides, according to various embodiments, live attenuated therapeutic bacterial strains that express one or more therapeutic molecules together with one or more protease inhibitor polypeptides that inhibit local proteases that could deactivate the therapeutic molecules.
- live attenuated tumor-targeted bacterial strains may include Salmonella, Streptococcus or Listeria vectoring novel chimeric anti-tumor toxins to an individual to elicit a therapeutic response against cancer.
- the types of cancer may generally include solid tumors, carcinomas, leukemias, lymphomas and multiple myelomas.
- certain of the therapeutic molecules have co-transmission requirements that are genetically unlinked to the therapeutic molecule(s), limiting certain forms of genetic exchange, i.e., distal to rather than adjacent to).
- Another aspect of the invention relates to live attenuated tumor-targeted bacterial strains that may include Salmonella, Streptococcus , and Listeria that encode anti-neoplastic molecules to an individual to elicit a therapeutic response against cancers including cancer stem cells, immune infiltrating cells and or tumor matrix cells.
- the therapeutic agents also relates to reducing or eliminating the bacteria's ability to undergo conjugation, further limiting incoming and outgoing exchange of genetic material.
- protease sensitivity protease inhibitors
- targeting ligands lytic peptides
- antibody deactivating proteins chimeric bacterial toxins
- expression of proteins without generating chimeras limiting bacterial conjugation
- expression of DNase, or colicin DNase as active extracellular enzymes
- co-expression of protease inhibitors with bacterial toxins co-expression of protease inhibitors with bacterial toxins; segregation of required colicin cofactors; characteristics of therapeutic bacteria.
- proteases are sensitive to extracellular proteases (in contrast pro-aerolysin or urokinase chimeric toxins that are activated by proteases).
- Proteases may be classified by several different systems, for example, into six groups: serine proteases, threonine proteases, cysteine proteases, aspartate proteases, metalloproteases and glutamic acid proteases.
- proteases may be classified by the optimal pH in which they are active: acid proteases, neutral proteases, and basic proteases (or alkaline proteases).
- Protease digestion sites may be added to the therapeutic agent to enhance protease sensitivity when coexpressed with a corresponding protease inhibitor as discussed below within the localized confines of the bacteria and its surroundings, e.g., within a solid tumor, carcinoma, lymphoma or leukemic bone marrow, the extracellular protease sensitive protein is protected from degradation whereas if it and its protective inhibitor leak outside the confines, the inhibitor falls below the level necessary to cause inhibition and the effector molecule is degraded.
- Preferred proteases for conferring greater sensitivity are those that are under-expressed in tumors and over-expressed in normal tissues. However, many proteases are over-expressed within tumors.
- Proteases for which sensitivity sights may be added and for which protease inhibitors may be co-expressed include but are not limited to those described by Edwards et al. (eds) 2008 (The Cancer Degradome: Proteases and Cancer Biology, Springer, 926 pp).
- proteases of lysosomes and the gut such as tissue plasminogen activator, activated protein C, factor Xa, granzyme (A, B, M), cathepsins (e.g., cathepsin B and S), thrombin, plasmin, urokinase, matrix metaloproteaes (types 1-28) membrane matrix metalloproteases (types 1-4), prostate specific antigens (PSA; kallikrein 3-related peptidase), kallikrein 2, elastin, trypsin, chymotrypsin.
- protease assays are known to those skilled in the arts.
- protease assays are commercially available, such as the QuantiCleave Fluorescent Protease Assay Kit, and QuantiCleave Protease Assay Kit II (Thermo/Fisher, Rockford, Ill.), Protease Assay Kit (G Biosciences, Maryland Heights, Mo.), PepTag Protease Assay (Promega, Madison, Wis.; 1993 Promega Notes Magazine 44: 2), Viral Protease Assay Kits (AnaSpec, Fremont, Calif.), Protease Assay Kit from Calbiochem (Calbiochem, San Diego, Calif.).
- Standard laboratory techniques to measure protease activity, and thus the reduced activity of protease inhibitors include densitometric, spectrophotometric, colorometric and fluorometric assays, sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis (PAGE), two dimensional SDS-PAGE, high pressure liquid chromatography (HPLC) and mass spectroscopy (mass-spec). High sensitivity methods have also been described US Patent Pub. 2009/0294288.
- Protease sensitivity may be enhance either by the complete addition of protease cleavage sites, or minor alteration of the amino acid sequence by making amino acid changes that are “conservative” or “tolerated”, resulting in addition or enhancement of a cleavage site.
- PAM percent absent mutations
- PMB probablility matrix from blocks
- BLOSUM blocks of amino acid substitution matrix
- Addition of cleavage sites by minor sequence alteration is conducted preferably in knowledge of the protein 3 dimensional crystal structure, and/or based on multiple sequence alignments that establish protein domains and variable regions between domains such that it is understood that those changes in the amino acid sequence might normally occur and/or be tolerated, in addition to SIFT or other analyses.
- Protein domain information is used to select interdomain regions.
- 3D information is also used to select regions of the protein that are exposed externally, and thus more sensitive to proteases.
- colicin E3 the crystal structure of a number of colicins
- Colicins have also been the subject of multiple sequence alignments (e.g., FIG. 18.2 in Sharma et al., Chapter 18 in Kastin (ed), 2006, Handbook of Biologically Active Peptides, Academic Press), and distinct protein domains have been established which correlate with the crystal structure (Sharma et al., 2006, Handbook of Biologically Active Peptides, Chapter 18, Colicins: Bacterial/Antibiotic Peptides, pp 115-123).
- colicin E3 there are 3 domains, an N-terminal “T”, or translocation domain, an internal “R” or receptor domain, and C-terminal “C” or catalytic domain.
- a furin cleaveage sequence (designated R/-/Kr/R + s/-/-/-; also designated RXKR ⁇ SX SEQ ID NO:149 can be added by conservative changes.
- the sequence NKPRGK SEQ ID NO:150 within colE3 can be conservatively changed to NKPRKs SEQ ID NO:151 which adds weak furin site, and further modified conservatively to NrPRKs SEQ ID NO:152 which results in a strong furin site which, using the ProP algorithm (e.g., ProP 1.0, Duckert et al., 2004, Prediction of proprotein convertase cleavage sites, Protein Engineering Design and Selection 17: 107-122) is predicted to be cleaved by furin.
- Biochemical confirmation can be conducted by standard techniques such as 1D and 2D SDS-PAGE gel electrophoresis on the secreted proteins in the media in the presence of furin.
- Protease cleavage sites are defined in the Merops database (Rawlings et al., 2010, MEROPS: The Peptidase Database, Nucleic Acids Res. 2010 (Database issue):D227-33. It will be understood to those skilled in the arts that many proteases do not have strict sequence recognition sites, but rather have sequence preferences and/or frequencies.
- the MEROPS site depicts the preferences with a weighted pictogram and a table which lists frequencies of occurrence within a cleavage sequence.
- the table a non-limiting list proteases of tumors, the MEROPS sequence specification, and a simplified representative of an amino acid one letter code recognition sequence (where X is any amino acid) and the cleavage signal is given by a downward arrow) is presented in Table 2.
- MEROPS Sequence Simplified Representative Protease Designation Sequence Designation Factor Xa ia/e/Gfp/R + sti/vfs/-/g (IEGR ⁇ SV) SEQ ID NO:153 Furin R/-/Kr/R + s/-/-/- (RXKR ⁇ SX) SEQ ID NO:154 Plasminogen -/-/-/R + R/iv/N/- (XXR ⁇ RIN) SEQ ID NO:155 activator Urokinase -/sg/Gs/Rk + -/r/-/- (XSGR ⁇ XR) SEQ ID NO:156 MMP1 -/pa/g + li/-/-/- (GPXG ⁇ LXG) SEQ ID NO:157 MMP8 g/Pas/-/g + 1/-///
- the MEROPS database can be used to identify which proteases to inhibit, by analysis of a particular effector protein and the cleavage sites it contains. Comparison with the target tissue, eg Edwards et al. (eds) 2008, The Cancer Degradome: Proteases and Cancer Biology, Springer, 926 pp is also used to inform the choice. Alternatively, 2-dimentional gel electrophoresis and protein sequencing of radiolabled peptides incubated with the target tumor can be used to identify which aminoacids are being cleaved in a therapeutic protein, and therefore which protease inhibitors to use.
- Protease inhibitors of the invention are preferably based on known polypeptide inhibitors.
- the inhibitors include both synthetic peptides and naturally occurring, endogenous peptides.
- Classes of protease inhibitors include: cysteine protease inhibitors, serine protease inhibitors (serpins), trypsin inhibitors, Kunitz STI protease inhibitor, threonine protease inhibitors, aspartic protease inhibitors, metalloprotease inhibitors.
- Protease inhibitors can also be classified by mechanism of action as suicide inhibitors, transition state inhibitors, protein protease inhibitor (see serpins) and chelating agents.
- the protease inhibitors of the invention are protein or polypeptide inhibitors encoded by DNA contained within the bacteria.
- the peptides should be surface displayed, released or secreted outside of the bacteria. Accordingly, the peptides are modified by fusing them to secretion signals.
- the secretion signals may be either N-terminal (LPP:OmpA, M13pIII, M13pVIII, zirS (Finlay et al., 2008, PLoS Pathogens 4 (4), e100003), heat-stable (ST; thermostable) toxins from Escherichia and Vibrio (U.S. Pat. No. 5,399,490), E. coli enterotoxin II (Kwon et al., U.S. Pat. No.
- hlyA C-terminal signal sequence last 60 amino acids of the E. coli HlyA hemolysin, together with the required HlyBD supplied in trans and endogenous tolC as shown in FIG. 2 .
- the N-terminal signal sequences are well known and characterized by the presence of a protease cleavage site for an endogenous bacterial protease. Thus, N-terminal signal sequences provide free protease inhibitors, free from the signal sequence.
- the C-terminal signal sequence may be further engineered to have a protease cleavage site in between the protease inhibitory peptide and the signal sequence.
- the cleaveage site may be for the same protease that the peptide inactivates. Thus, the protease activates its own inhibitor.
- the protease cleavage site may also be for a protease other than for the protease inhibitor, thus deactivating another protease.
- Multiple protease inhibitor peptides may be used in-frame with multiple protease cleavage signals (polymeric protease activated protease inhibitors), where the inhibitors alternate with cleavage sites.
- the polymeric protease activated protease inhibitors can be homo- or hetero-inhibitor polymers (i.e., have inhibitors for the same or different proteases, respectively), and/or homo- or hetero-protease cleavage polymers (i.e., have the same or different protease cleavage sites).
- Proteases upregulated within tumors for which protease cleavage sites may be engineered include: tissue plasminogen activator, activated protein C, factor Xa, granzyme (A, B, M), cathepsin, thrombin, plasmin, urokinase, matrix metaloproteaes, prostate specific antigen (PSA) and kallikrein 2 (e.g., Edwards et al. (eds) 2008, The Cancer Degradome: Proteases and Cancer Biology, Springer, 926 pp), as well as proteases of lysosomes and the gut.
- tissue plasminogen activator activated protein C
- factor Xa granzyme
- A, B, M granzyme
- PSA prostate specific antigen
- kallikrein 2 e.g., Edwards et al. (eds) 2008, The Cancer Degradome: Proteases and Cancer Biology, Springer, 926 pp
- Protease inhibitors have been reviewed by Laskowski and Kato, 1980, (Annual Review of Biochemistry 49: 593-626), expressly incorporated by reference herein.
- Serine proteases inhibitors include 1) bovine pancreatic trypsin inhibitor (Kunitz) family, 2) pancreatic secretory trypsin inhibitor (Kazal) family, 3) Streptomyces subtilisin inhibitor family, 4) soybean trypsin inhibitor (Kunitz) family, 5) soybean proteinase inhibitor (Bowman-Birk) family 6) potato I inhibitor family, 7) potato II inhibitor family, 8) Ascaris trypsin inhibitor family, and 9) others.
- Protease inhibitors have also been grouped within the MEROPS peptidase database (Rawlings et al., 2008 Nucleic Acids Res. 36 Database issue, D320-325).
- protease inhibitors that may be expressed as complete proteins or peptide fragments corresponding to the active inhibitory site include but are not limited to aprotinin, autodisplay aprotinin (Jose J, Zangen D (2005) Autodisplay of the protease inhibitor aprotinin in Escherichia coli . Biochem Biophys Res Commun 333:1218-1226; Jose, 2006, Autodisplay: efficient bacterial surface display of reombinant proteins, Appl Microbiol Biotechnol 69: 607-614).
- cathepsin inhibitor peptide sc-3130 Niserria protease inhibitor, lympocyte protease inhibitor, maspin, matrix metalloprotease inhibitors, macroglobulins, antithrombin, equistatin, Bowman-Birk inhbitor family, ovomucoid, ovoinhibitor-proteinase inhibitors from avian serum, dog submandibular inhibitors, inter-a-trypsin inhibitors from mammalian serum, chelonianin from turtle egg white, soybean trypsin inhibitor (Kunitz), secretory trypsin inhibitors (Kazal) a i -proteinase inhibitor, Streptomyces subtilisin inhibitor, plasminostreptin, plasmin inhibitor, factor Xa inhibitor, coelenterate protease inhibitors, protease inhibitor anticoagulants, ixolaris, human Serpins (SerpinA1(alpha 1-antitrypsin), Serpin
- Short peptide inhibitors of protease are preferred. Many protease inhibitors have one or more disulfide bonds. Fusion to thioredoxin (trxA) is known to improve protease inhibitor activity (e.g., Furuki et al., 2007, Fukuoka University Science Reports 37: 37-44). Fusion to glutathione-S transferase (GST) and co-expression with disulfide bond isomerase (DsbA) or nusA (Harrison 2000, Expression of soluble heterologous proteins via fusion with NusA protein. inNovations 11: 4-7) are also known to improve solubility. Methods to isolate novel protease inhibitors using M13 phage display have been described by Roberts et al., 1992 (Gene 121: 9-15). Examples of the peptide sequences of short peptide inhibitors is shown in Table 3.
- Urokinase Urokinase, Urokinase, Markowska et al., 2008, Effect of tripeptides on the thrombin, thrombin, amindolytic activities of urokinase, thrombin, plasmin and plasmin and plasmin and trypsin.
- Targeting ligands have specificity for the target cell and are used to both confer specificity to chimeric proteins, and to direct attachment and/or internalization into the target cell.
- the ligands are known ligands or may be novel ligands isolated through standard means such as phage display (Barbass III et al., 2004, Phage Display, A Laboratory Manual, Cold Spring Harbor Press) including the use of commercially available kits (Ph.D-7 Phage Display Library Kit, New England Biolabs, Ipswich, Mass.; Li et al., 2006. Molecular addresses of tumors: selection by in vivo phage display. Arch Immunol Ther Exp 54: 177-181).
- the ligands of various aspects of the present invention are peptides that can be expressed as fusions with other bacterially-expressed proteins.
- the peptides may be further modified, as for gastrin and bombisin, in being amidated by a peptidylglycine-alpha-amidating monoxygenase or C-terminal amidating enzyme, which is co-expressed in the bacteria that use these peptides using standard molecular genetic techniques. Examples of targeting peptides are shown in Table 4.
- CD33 binding peptides CD-33 AML Myelodysplastic cells (MDS) CD37 bnding peptides Leukemia and lymphoma CD40 binding peptides CD40 Multiple myeloma, non-Hodgkin lymphoma, cronic lympocytic leukemia (CLL), Hodgkin lympoma and acute lympoblastic leukemia (ALL), diffuse large B-cell lympoma, refractory non- hodgkin lymoma, including follicular lympoma CD52 binding peptides CLL CD55 binding peptides CD70 binding peptides Hematological malignancies, Non-Hodgkin's lymphoma Also, killing activated T and B immune cells that would eliminate the bacterial vector CD123 binding peptides AML RGD-containing peptides De V Amsterdam et al., 2008, e.g., GRDGS S
- Vasculature Hallahan Binds irradiated tumors i.e., ones responding to therapy CGFECVRQCPERC Lung vasculature - Mori 2004, Current SEQ ID NO:171 MOSE Pharmaceutical Design 10: Binds membrane 2335-2343 dipeptidase (MDP) SMSIARL MURINE Mori 2004, Current SEQ ID NO:51 PROSTATE Pharmacetical Design 10: VASCULATURE 2335-2343 VSFLEYR MURINE Mori 2004 Current SEQ ID NO:52 PROSTATE Pharmaceutical Design 10: VASCULATURE 2335-2343 Fragment 3 of the high mobility group (HMG)N2 CKDEPQRRSARLSAKPAPP KPEPKPKKAPAKK SEQ ID NO:53 H-VEPNCDIHVMW VEGF BINDING (WO/2006/116545) EWECFERL-NH2 PEPTIDE SPATIAL CONTROL OF SEQ ID NO:54 SIGNAL TRANSDUCTION RLLDTNRPLLPY L-PEPT
- ALRPSGEWL AIMASGQWL human chronic 2002, QILASGRWL, RRPSHAMAR lymphocytic Therapeutic Cancer DNNRPANSM, LQDRLRFAT lymphoma (CLL) Targeting PLSGDKSST Peptides, Biopolymers SEQ ID NO:76 66: 184-199 FDDARL SEQ ID NO:77, Human multiple Reviewed by Aina et al.
- FSDARL SEQ ID NO:78 myeloma M 2002 FSDMRL SEQ ID NO:79, protein FVDVRL SEQ ID NO:80, FTDIRL SEQ ID NO:81, FNDYRL SEQ ID NO:82 FSDTRL SEQ ID NO:83, PIHYIF SEQ ID NO:84, YIHYIF SEQ ID NO:85, RIHYIF SEQ ID NO:86 IELLQAR SEQ ID NO:87 HL 60 human Reviewed by Aina et al. lymphoma & B-16 2002 mouse melanoma CVFXXXYXXC SEQ ID NO:88, Prostate-specific Reviewed by Aina et al.
- SEQ ID NO:97 2002 ACDCRGDCFCG Tumor vasculature Reviewed by Aina et al.
- CVCNGRMEC SEQ ID NO:100, Vasculature of Reviewed by Aina et al. NGRAHA SEQ ID NO:101, various tumors 2002 TAASGVRSMH SEQ ID NO:102, LTLRWVGLMS SEQ ID NO:103 LRIKRKRRKRKKTRK SEQ ID NO:104, IC-12 rat trachea Reviewed by Aina et al. NRSTHI SEQ ID NO:105 2002 SMSIARL SEQ ID NO:106, Mouse prostate Reviewed by Aina et al. VSFLEYR SEQ ID NO:107 2002 CPGPEGAGC SEQ ID NO:108 Aminopeptidase P Reviewed by Aina et al.
- RWFD SEQ ID NO:117 279 murine 2002 lymphoma cell line LNNIVSVNGRHX SEQ ID NO:118, Alpha-6-beta 1 Reviewed by Aina et al.
- DNRIRLQAKXX SEQ ID NO:119 integrin of 2002 DU145 prostate cancer cell line Leukemia stem cell binding peptides Stem cells Leukemia and lymphoma stem cell binding Barbass III et al., 2004, peptides isolated by phage display Phage Display, A Laboratory Manual, Cold Spring Harbor Press; Ph.D- 7 Phage Display Library Kit, New England Biolabs, Ipswich, MA).
- Macrophage cell binding peptides Macrophage cell binding peptides isolated Barbass III et al., 2004, by phage display Phage Display, A Laboratory Manual, Cold Spring Harbor Press; Ph.D- 7 Phage Display Library Kit, New England Biolabs, Ipswich, MA).
- T-cell binding peptides T-cell binding peptides isolated by phage Barbass III et al., 2004, display Phage Display, A Laboratory Manual, Cold Spring Harbor Press; Ph.D- 7 Phage Display Library Kit, New England Biolabs, Ipswich, MA).
- Neutrophil binding peptides Neutrophil binding peptides isolated by Barbass III et al., 2004, phage display Phage Display, A Laboratory Manual, Cold Spring Harbor Press; Ph.D- 7 Phage Display Library Kit, New England Biolabs, Ipswich, MA). Tumor stromal matrix cell binding peptides Tumor stromal matrix cell binding peptides Barbass III et al., 2004, isolated by phage display Phage Display, A Laboratory Manual, Cold Spring Harbor Press; Ph.D- 7 Phage Display Library Kit, New England Biolabs, Ipswich, MA).
- the desirability of combining protease inhibitors with lytic peptides has not previously been recognized as a means of improving both activity and specificity of proteins delivered by targeted bacteria.
- Small lytic peptides (less than 50 amino acids) are used to construct chimeric proteins for more than one purpose.
- the chimeric proteins containing lytic peptides may be directly cytotoxic for neoplasias. In order to be cytotoxic they must be released, surface displayed and/or secreted ( FIG. 3 ) and may be provided with cell specificity by the addition of a targeting ligand.
- Small lytic peptides have been proposed for use in the experimental treatment of neoplastic diseases.
- Small lytic peptides useful in the invention are those derived from Staphylococcus aureus, S. epidermidis and related species, including the phenol-soluble modulin (PSM) peptides and delta-lysin (Wang et al., 2007 Nature Medicine 13: 1510-1514, expressly incorporated herein by reference).
- PSM phenol-soluble modulin
- the selection of the lytic peptide depends upon the primary purpose of the construct, which may be used in combination with other constructs providing other anticancer features. That is, the therapies provided in accordance with aspects of the present invention need not be provided in isolation, and the bacteria may be engineered to provide additional therapies or advantageous attributes.
- Constructs designed to be directly cytotoxic to cells employ the more cytoxic peptides, particularly PSM-alpha-3.
- Constructs which are designed to use the lytic peptide to affect escape from the endosome use the peptides with the lower level of cytotoxicity, such as PSM-alpha-1, PSM-alpha-2 or delta-lysin.
- lytic peptides that may be used includes the actinoporins and equinatoxins from sea anemones or other coelenterates such as FraC, Sticholysins StsI and StsII (Anderluh and Macek 2002, Toxicon 40: 111-124), are generally more potent than the bacterially-derived peptides, and are selected for use in being directly cytotoxic to parasites. Assay of lytic peptides is known to those skilled in the arts. Examples of lytic peptides useful in the invention are shown in Table 5.
- Antibody deactivating proteins are useful for limiting the effective immune response against the bacteria vector such that the vector is not eliminated prior to its effective treatment of the neoplastic disease, or during (i.e., following administration but prior to arrival at the target site) and after multiple injections of the same vector at later points in time when an adaptive immune response my have occurred.
- Antibody deactivating proteins have been suggested to be potentially useful therapeutics for treatment of antibody-based diseases, such as autoimmunity (Nandakumar and Holmadh. 2008, Trends in Immunology 29: 173-178).
- the IgG-degrading enzyme of S. pyogenes IdeS is a cysteine endopeptidase, secreted by group A streptococcal strains during infection. It cleaves the heavy chains of IgG with a unique specificity by binding and cleaving in the hinge region, thus generating an Fc and a F(ab′)2 fragment that can be detected by protein G capture and mass spectrometry.
- IgG proteolytic degradation disables opsonophagocytosis and interferes with the killing of group A Streptococcus .
- IdeS bestows a local protective effect for the bacteria.
- Another IgG degrading enzyme of Streptococcus pyogenes is endo-b-N-acetylglucosaminidase (EndoS) which cleavage sites on the IgG molecule.
- Protein G the aforementioned protein used in biochemical purification, has IgG antibody deactivation properties Bjork and Kronvall 1984 J Immunol 133: 969-974).
- Other antibody deactivating proteins include Shistosome IgE proteases and the antibody binding protein A peptides from Staphalococcus (e.g., spa gene).
- the IgA protease of Neisseria sp. is an autotrasporter protein. Streptococcus PspA inhibits complement activation (Anh-Hue, T et al., 1999. Infect. Immun 67: 4720-4724).
- Each of these proteins may be expressed individually or in combination in tumor-targeting strains of bacteria.
- Chimeric toxins are toxins that may contain combinations of additional elements including targeting peptides, lytic peptides, nuclear localization signals, blocking peptides, protease cleavage (deactivation) sites, N- or C-terminal secretion signals, autotransporter constructs, used to adapt the proteins to provide therapeutic molecules that are effective in treating neoplastic cells, stromal cells, neoplastic stem cells as well as immune infiltrating cells.
- Targeting to a particular cell type uses the appropriate ligand from the Table 2 above or from other known sources.
- Toxin activity is determined using standard methods known to those skilled in the arts such as Aktories (ed) 1997 (Bacterial Toxins, Tools In Cell Biology and Parmacology, Laboratory Companion, Chapman & Hall).
- the colicin targeting domain is replaced with a tumor-specific targeting domain ( FIG. 4 ).
- the targeting domain is attached to the C-terminus.
- Further C-terminal modification can include the addition of a NLS, preferably from apoptin, and/or a lytic peptide ( FIGS. 3 and 4 ).
- the tumor-selective nuclear export signal of apoptin may also be used alone or in combination with the NLS.
- Cytolethal distending toxin is a three component toxin of E. coli, Citrobacter, Helicobacter and other genera. Cldt is an endonuclease toxin and has a nuclear localization signal on the B subunit. Chimeric toxins are provided that utilize fusion to apoptin, a canary virus protein that has a tumor-specific nuclear localization signal, a normal cell nuclear export signal ( FIG. 8 ).
- the cytolethal distending toxin B and chimeric cltdB may be expressed as a polycistronic construct consiting of cldtABC.
- the cytolethal distending toxin B and chimeric cltdB may be expressed as a polycistronic construct consisting containing the typhoid pertussis-like toxin (plt) AB genes.
- E coli HlyA(s) operon hlyCABD (+TolC), Actinobacillus actinomycetemcomitans leukotoxin 1txCABD, and a hybrid CABD operon are shown in FIG. 9 .
- They may activate/release liposomal agents when used in combination.
- the ltxA may be generated as a chimera wherein it contains the C-terminal 60 amino acids of the E. coli HlyA.
- the ltx genes and chimeras may be expressed together with prtF and/or cyaE.
- Hybrid RTX toxins may be further constructed from known RTX toxins to confer species specificity to multiple species, such as both mouse and human, such that the safety and efficacy testing can occur in multiple speices.
- Multiple sequence alignments of RTX toxins with various species specificites (Ludwig and Goebel, Chapter 29, Structure and mode of action of RTX toxins, Alouf and Popoff (eds), 2006, Comprehensive Sourcebook of Bacterial Protein Toxins, Third Edition, Academic Press; Frey Chapter 30, Genetics and phylogeny of RTX cytolysins, in Kastin (ed), 2006, Alouf and Popoff (eds), 2006, Comprehensive Sourcebook of Bacterial Protein Toxins, Third Edition, Academic Press) are used in the analysis using computer based algorithms such as ClustalW, Muscle 3DCoffee and others (Larkin et al., 2007, ClustalW and ClustalX version 2.
- Saporin and ricin chimeras can be replaced for the active portion of the colicin chimeras. It can also be generated as a targeting peptide, saporin, HlyA C-terminus ( FIG. 10 ).
- Cytotoxic necrotic factor (cnf) and Bordetella dermonecrotic factor (dnf) chimeras Cnf and dnf can be expressed as chimeras, where the N-terminal binding domain (amino acids 53 to 190 of cnf) is replaced with a tumor cell binding ligand, such as TGF-alpha.
- ST and SLT chimeras are generated wherein the GB3-binding domain is replaced with a tumor cell binding ligand, such as TGF-alpha.
- Subtilase toxin chimeras are generated by replacing the binding domain with a tumor cell binding ligand, such as TGF-alpha.
- Nhe non-hemolytic toxins from Bacillus chimeras are generated by replacing the targeting domain with a tumor cell binding ligand and may be made protease sensitive by addition of a protease cleavage site.
- Collagenase is fused with a targeting peptide that directs its activity towards tumor cells, and may be made protease sensitive by the addition of a protease cleavage site.
- Lytic chimeras are shown in FIGS. 5 and 6 .
- Certain proteins of the invention augment the effector gene and protease inhibitor combination without requiring chimeric modification.
- These proteins include the Geobacter carboxyesterase, the bacillus thiaminase and the Neisseria IgA protease.
- the carboxyesterase and thiaminase may also be expressed as hlyA fusion proteins. These proteins may be expressed using constitutive or inducible promoters ( FIG. 10 ).
- the fertility inhibition complex (finO and finP), are cloned onto the chromosome using standard genetic techniques such that strains either with or without the pilus resistant to mating with F′ bacteria ( FIG. 11 ). Other known inhibitory factors may also be used.
- the F′ pilus factors in a Salmonella strain needed for phage to be able to infect the cell are provided by the F′ plasmid using standard mating techniques from an F′ E coli .
- the F′ factor provides other functions such as traD and the mating stabilization which are deleted using standard techniques.
- Colicins have innate potential to harm the host that produces them.
- colicins are naturally co-produced with an “immunity” protein which protects it from the action of the colicin.
- the immunity proteins are generally specific for each individual colicin, and each has a high affinity for the colicin.
- the immunity protein When colicins are expressed by the bacteria, the immunity protein immediately binds to the colicin preventing it from harming the host. When colicins are released, the immunity protein may remain bound. Thus, a DNAase colicin may not be expected to have extracellular activity.
- colicins are internalized into the target cell the immunity protein remains extracellular, and the colicin thus becomes activated inside the target cell.
- the present invention presents a novel combination of DNAase colicin, such as colE9, co-expressed with a non-matching DNAase colicin immunity protein, such as that from colE2, colE7, or colE8, which have higher dissociation constants for colE9 (James et al., 1996, Microbiology 142: 1569-1580).
- a non-matching DNAase colicin immunity protein such as that from colE2, colE7, or colE8 which have higher dissociation constants for colE9 (James et al., 1996, Microbiology 142: 1569-1580).
- multiple copies of the non-cognate immunity protein are expressed.
- the colicin E9 is released, the immunity proteins partially dissociate, resulting in extracellular DNAase activity.
- the immunity protein in another method of producing an immunity protein that dissociates extracellularly, thus activating the colicin such as a DNAase colicin, the immunity protein, such as colE9 immunity, is subjected to error-prone PCR (e.g., Cirino et al., 2003, Generating mutant libraries using error-prone PCR, Methods in Molecular Biology 231: 3-9; Arnold and Georgiou (eds) 2003, Directed Evolution Library Creation, Humana Press). The library is then cloned into a DNAase colicin-containing plasmid, such as the colE9 colicin, and transformed into a suitable E. coli or Salmonella . The bacteria are plated to appropriate nutrient agar plates containing DNA.
- error-prone PCR e.g., Cirino et al., 2003, Generating mutant libraries using error-prone PCR, Methods in Molecular Biology 231: 3-9; Arnold and Georgiou (eds) 2003, Directe
- the plates are stained for DNA, e.g., ethidium brimode, and viewed under fluorescent light for “halos”; clear or lighter regions around colonies where the DNA has been digested.
- Such colonies will contain the colE9 colicin, and an immunity protein that is sufficiently stable intracellularly such that it protects the bacterial cell, allowing it to grow, and is capable of dissociating under extracellular conditions, allowing the DNAase colicin to degrade extracellular DNA.
- the assay may be further modified to alter the agar plate conditions to match conditions of the target site, such as lower pH that is known to occur in solid tumors. The process would then select for functional immunity proteins that dissociate under acidic pH, such as occurs in solid tumors, allowing the degradation of extracellular DNA, such as may occur from infiltrating neutrophils.
- Each of the bacterial toxins and therapeutic peptides and proteins listed herein may be improved in its therapeutic activity by co-expression with a protease inhibitor.
- Inhibitors are expressed as secreted proteins as described above.
- the effect of the protease inhibitor on in vitro cytotoxicity is determined using standard cell culture techniques and cytotoxicity assays such as MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, a tetrazol; Mosmann 1983; J. Immunol Methods 65:55-63) known to those skilled in the arts.
- MTT 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, a tetrazol; Mosmann 1983; J. Immunol Methods 65:55-63
- the contribution of the protein cytotoxin and protease inhibitors is determined individually and in combination.
- Purified protease of types known to occur in the target tissue may be added to the assay.
- Combinatin effects, including antagonism, addititiy or synergy may be determined using the median effect analysis (Chou and Talaly 1981 Eur. J. Biochem. 115: 207-216) or other standard methods (White et al., 1996, Antimicrobial Agents and Chemotherapy 40: 1914-1918; Brenner, 2002, Annals of Oncology 13: 1697-1698; Berenbaum MC. 1989. What is synergy? Pharmacol Rev.
- the assay may also be used to determine synergy, additivity or antagonism of two or more bacterial cytotoxins.
- the assay may also be used to determine synergy, additivity or antagonism a bacterial cytotoxin together with a conventional small molecule cytotoxin (e.g., cisplatin, doxorubicin, irinotecan, paclitaxel or vincristine), targeted therapeutic (e.g., imatinib, irissa, cetuximab), proteosome inhibitors (e.g., bortezomib), mTOR inhibitors or PARP inhibitors.
- a conventional small molecule cytotoxin e.g., cisplatin, doxorubicin, irinotecan, paclitaxel or vincristine
- targeted therapeutic e.g., imatinib, irissa, cetuximab
- proteosome inhibitors e.g., bortezomib
- mTOR inhibitors or PARP inhibitors e.g., bortezo
- In vivo studies may also be performed with antiangiogenic inhibitors such as Avastin, combrettastatin, thalidomide.
- RES reticuloendothelial system
- vacular permeability inducing agents such as bradykinin, hyperthermia or carbogen which have the potential to improve the permeability of the tumor enhancing entry of the bacteria or aldose reductase ihibitors.
- Preferred genetic backgrounds for msbB mutant Salmonella in combination with corbogen (carbon dioxide oxygen mixture) includes zwf, which confers resistance to CO 2 (Karsten et
- the chimeric colicin toxins have active colicin components that require their respective immunity proteins, which are usually genetically linked. By unlinking the two genes and separating them on the chromosome, a single fragment or phage transduction is highly unlikely to contain both elements. In order to separate the elements from co-transmission by a transducing phage such as P22, separation by 50 kB or greater is preferred. Without both elements, the toxin portion cannot be carried and will kill most bacteria. Any additional genes such as other chimeric therapeutic molecules genetically linked to the colicin will also be inhibited from being transferred to other bacteria ( FIG. 12 )
- the primary characteristic of the bacteria of the invention is the enhanced effect of the effector molecule such as a toxin, lytic peptide etc. relative to the parental strain of bacteria without expressing one or more protease inhibitors.
- the percent increase in effect is approximately 2% to approximately 95%, approximately 2% to approximately 75%, approximately 2% to approximately 50%, approximately 2% to about 40%, approximately 2% to about 30%, approximately 2% to about 25%, approximately 2% to about 20% or about 2% to approximately 10% greater than the parental strain of bacteria without expressing one or more protease inhibitors under the same conditions.
- a second characteristic of the bacteria of the invention is that they carry novel chimeric proteins that prevent their elimination by antibodies compared to other chimeric protein expression systems.
- the percent improvement is approximately 2% to approximately 95%, approximately 2% to approximately 75%, approximately 2% to approximately 50%, approximately 2% to about 40%, approximately 2% to about 30%, approximately 2% to about 25%, approximately 2% to about 20% or about 2% to approximately 10% that of another expression system under the same conditions.
- a third characteristic of the bacteria of the invention is that they carry novel chimeric proteins that improve their function compared to other chimeric protein expression systems.
- the percent improvement is approximately 2% to approximately 95%, approximately 2% to approximately 75%, approximately 2% to approximately 50%, approximately 2% to about 40%, approximately 2% to about 30%, approximately 2% to about 25%, approximately 2% to about 20% or about 2% to approximately 10% that of another expression system under the same conditions.
- a fourth charateristic of the bacteria of the invention is that they carry heterologous proteins that suppress features of the immune system that include antibody binding and/or deactivating proteins, targeted peptides against activated T and B cells, extracellular DNases that prevent destruction by neutrophil nets, and antitumor toxins with cross-over anti-neutrophil activity (dual antitumor and anti-neutrophil activity).
- the Yersinia pestis secreted protein LcrV that triggers the release of interleukin 10 (IL-10) by host immune cells and suppresses proinflammatory cytokines such as tumor necrosis factor alpha and gamma interferon as well as innate defense mechanisms required to combat the pathogenesis of plague.
- IL-10 interleukin 10
- the immunosuppressive features together with the antibody and complement deactivation proteins allow repeated injections of the bacteria without elimination form the immune system, where improvement is defined as the percentage of bacteria present at the target site after between 1 to 21 days compared to the parental strain in a murine model.
- the percent improvement is approximately 2% to approximately 95%, approximately 2% to approximately 75%, approximately 2% to approximately 50%, approximately 2% to about 40%, approximately 2% to about 30%, approximately 2% to about 25%, approximately 2% to about 20% or about 2% to approximately 10% that of another expression system under the same conditions.
- Overall improvement is defined as an increase in effect, such as the ability to kill a neoplastic cells in vitro by the bacteria, or inhibit or reduce the volume or cell number of a solid tumor, carcinoma, lymphoma or leukemia in vivo following administration with the bacteria expressing a therapeutic molecule, with and without the protease inhibitor, and/or with and without an antibody inhibiting peptide.
- the effect of the protease inhibitor on protein therapeutic activity is determined using standard techniques and assays known to those skilled in the arts. Inhibitors are expressed as secreted, surface displayed and/or released proteins as described above. Likewise, the effect of the antibody inhibitory protein on therapeutic activity is determined using standard techniques and assays known to those skilled in the arts.
- Antibody inhibitors are expressed as native proteins (e.g., IgA protease in gram negative bacteria for vectors such as those using Salmonella , or spa, IdeS and EndoS in gram positive bacteria for vectors such as those using Streptococcus ) or as secreted protein chimeras as described above such as a fusion with hlyA.
- the contribution of the therapeutic protein, protease inhibitors and/or antibody inhibitory proteins is determined individually and in combination. Additivity, synergy or antagonism may determined using the median effect analysis (Chou and Talaly 1981 Eur. J. Biochem. 115: 207-216) or other standard methods.
- FIG. 1 Comparison of tumor-protease activated toxin with tumor protease inhibitor and protease sensitive toxin expression.
- FIG. 2 Secreted protease inhibitors (PIs).
- Multiple protease inhibitor peptides may be used in-frame with multiple protease cleavage signals (polymeric protease activated protease inhibitors), where the inhibitors alternate with cleavage sites.
- the polymeric protease activated protease inhibitors can be homo- or hetero-inhibitor polymers (i.e., have multiple inhibitors for the same or different proteases, respectively), and/or homo- or hetero-protease cleavage polymers (i.e., have multiple of the same or different protease cleavage sites).
- protease inhibitors 1, 2 and 3 can be the same protease inhibitor or different protease inhibitors
- the protease cleavage sites (downward arrows) can be the same protease cleavage side or different protease cleavage sites.
- G) A pINIIIompA leader with a protease inhibitor Longstaff et al., Biochemistry 1990 29: 7339-7347).
- H A colicin N-terminal domain with a protease inhibitor.
- I A thioredoxin (TrxA) fusion with a PI followed by the hlyA C-terminal signal sequence.
- J A thioredoxin (TrxA) fusion with a PI followed by an intervening protease cleavage site (downward arrow) and the hlyA C-terminal signal sequence.
- K A blocking peptide followed by a thioredoxin (TrxA) fusion with an intervening protease cleavage site (downward arrow) and then the hlyA C-terminal signal sequence.
- FIG. 3 Chimeric phage pIII protein colicins.
- TGF-alpha targeting peptide
- ribonuclease ribonuclease
- the colicin is secreted, the signal sequence cleaved and the targeting peptide targets the EGFR-expressing cancer cell.
- a ColE7 (DNAase) chimera may be added at the C-terminus.
- a NLS preferably from apoptin
- a NLS preferably from apoptin
- a NLS may be added at the C-terminus.
- FIG. 4 Colicin TRC fusions.
- Colicin TRC fusions utilize the entire colicin with its three domains, T (translocation), R (receptor), and C (catalytic), and fuse active moities to the C-terminal catalytic domain.
- the lytic peptide may be engineered to have protease cleavage sites, such as those from cathepsin, that effect its release and aid in escape from an endosome.
- the CD22 peptide is disulfide bonded (S—S) loop.
- a peptide library such as are used in phage display, including those using disulfide bonding may be used.
- Such libraries are may be first selected using phage, or may alternatively first be selected by screening of colicins for target cell specificity and then transferred to the colicin receptor region.
- a library of the “tol box” penta peptide (DGSGW SEQ ID NO:133) variations and/or extended tolB box (DGSGWSSENNPWGGGSGSIHW SEQ ID NO:134; Hands et al., 2005, Interactions of To1B with the translocation domain of colicin E9 require and extended tolB box, J Bacteriol. 187: 6733-6741) variations may be screened alone or in combination with individual receptor peptides such as the CD22 binding peptide, or a library of receptor peptides and a library of tol box or extended tol box peptides may be screened in combination.
- the lytic peptide may be engineered to have protease cleavage sites, such as those from cathepsin, that affects its release and aids in escape of the colicin chimera from an endosome.
- F TRC of colicin E3, a ribonuclease colicin active in the cytoplasm, where a targeting peptide, such as CD22 binding peptide, is inserted into the targeting domain between amino acids 374 and 391 and a lytic peptide is engineered in-frame.
- the lytic peptide may be engineered to have a protease cleavage site, such as those from a cathepsin, that affects its release and aids in escape of the colicin chimera from an endosome.
- a lytic peptide is engineered in-frame.
- the lytic peptide may be engineered to have a protease cleavage site, such as those from a cathepsin, that affects its release and aids in escape of the colicin chimera from an endosome.
- FIG. 5 Lytic effector peptide chimeras.
- A) A lytic peptide followed by the hlyA signal sequence.
- B) A lytic peptide, targeting peptide (TGF-alpha), hlyA signal peptide chimera.
- C) The M13 pIII signal sequence followed by a lytic peptide, the membrane anchor truncated M13 pIII amino acids 19 to 372 and a targeting peptide (TGF-alpha).
- D The M13 pIII signal sequence followed by a lytic peptide and a targeting peptide (TGF-alpha).
- FIG. 6 Protease activated lytic peptide chimera prodrugs (for which the active portion is not sensitive and for which a protease inhibitor is not being co-expressed).
- A) A blocking peptide followed by a tumor protease cleavage site, a lytic peptide followed by the hlyA signal sequence. The bracket underneath shows the active portion of the chimera following proteolytic cleavage.
- B) A blocking peptide followed by a tumor protease cleavage site, a lytic peptide, targeting peptide (TGF-alpha) followed by a second tumor protease cleavage site and the hlyA signal peptide.
- FIG. 7 Proapoptotic and cytotoxic peptide fusions.
- A) Proapoptotic (“apop”) peptides, such as BH3 peptide, BAX, BIM, BAD, p53 peptide, or apoptin are engineered with signal sequence such as that from ZirT and a ferry peptide, such as the HIV TAT peptide.
- the chimeras may be expressed together with a release factor such as a colicin lysis protein.
- Proapoptitic (apop) peptides such as BH3 peptide, BAX, BIM, BAD, p53 peptide, or apoptin
- an N-terminal signal sequence e.g., ZirT
- a C-terminal targeting peptide such as TGF-alpha. May be expressed together with a release factor such as a colicin lysis protein.
- C) Proapoptitic (apop) peptides, such as BH3 peptide, BAX, BIM, BAD, p53 peptide, or apoptin) are engineered with an N-terminal signal sequence, a lytic peptide and a targeting peptide such as TGF-alpha.
- the lytic peptide may be engineered to have protease cleavage sites, such as those from a cathepsin, that affects its release and aids in escape of the apoptotic peptide chimera from an endosome. May be expressed together with a release factor such as a colicin lysis protein.
- An N-terminal ferry peptide such as HIV TAT peptide is engineered in-frame with an apoptotic peptide with a C-terminal signal sequence from an RTX toxin such as HlyA.
- a targeting peptide such as TGF-alpha engineered in-frame with an apoptotic peptide and a C-terminal signal sequence from an RTX toxin such as HlyA.
- the lytic peptide may be engineered to have protease cleavage sites, such as those from a cathepsin, that affects its release and aids in escape of the colicin chimera from an endosome.
- G An N-terminal signal sequence, such as that from ZirT, a toxic peptide (e.g., ricin, soporin), and a targeting peptide such as TGF-alpha.
- H An N-terminal signal sequence, such as that from ZirT, a toxic peptide (e.g., ricin, soporin), a lytic peptide and a targeting peptide such as TGF-alpha.
- the lytic peptide may be engineered to have protease cleavage sites, such as those from a cathepsin, that affects its release and aids in escape of the colicin chimera from an endosome.
- a targeting peptide such as TGF-alpha, a toxic peptide, and the hlyA C-terminal signal sequence.
- the lytic peptide may be engineered to have protease cleavage sites, such as those from a cathepsin, that affects its release and aids in escape of the colicin chimera from an endosome.
- FIG. 8 Cytolethal distending toxin subunit B (cldtB) chimeras. It is understood that full functionality requires cltdA and cltdC.
- FIG. 9 Repeat in toxin (RTX) family members and hybrid operons.
- FIG. 10 Non-chimeric effector proteins which may be optionally expressed as secretion fusions in combination with protease inhibitors.
- A) An inducible promoter e.g., TET which drives the expression of a metabolic degrading enzyme such as thiaminase, methionase (methioninase L-methionine ⁇ -lyase) or asperaginase.
- An inducible promoter e.g., TET which drives the expression of a prodrug converting enzyme (e.g., carboxyesterase; CE).
- a prodrug converting enzyme e.g., carboxyesterase; CE
- An inducible promoter e.g., TET
- a prodrug converting enzyme e.g., carboxyesterase; CE
- An inducible promoter e.g., TET
- An inducible promoter e.g., TET which drives the expression of an antibody degrading autotransporter (IgA protease from Neisseria ).
- FIG. 11 A non-conjugative bacterium with and without the F′ factor.
- the bacterial chromosome contains a secreted protease inhibitor constuct (PI) that results in a secreted protease inhibitor.
- the chromosome also contains the FinO and FinP genes in order to inhibit conjugation.
- the F′ factor containing the pilus genes with deletions relating to conjugation in traD and the mating stabilization (MS) results in a pilus expressed by the bacterium.
- FIG. 12 Segregation of colicin toxin and required immunity factor(s).
- the bacterial chromosome has a colicin immunity protein integrated into a neutral sight (e.g., attenuating mutation or IS200 element).
- the colicin, or colicin hybrid is not linked to the immunity protein, but is distal to it.
- Other therapeutic molecules may be in the same proximity, such as in a polycistronic organization. Based on this organization, a random DNA fragment, or a portion of the genome packaged by a transducing phage, could not contain the immunity protein. If such a fragment were transferred to another bacterium, expression of the colicin without the immunity protein would kill the cell.
- a second colicin set, with another distal colicin immunity protein and a corresponding colicin on the other flanking side of the effector system may also be used.
- a first step in selection of an appropriate strain based upon the known species specificity e.g., S. typhi is human specific and S. typhimurium has broad species specificity including humans, birds, pigs and many other vertebrates.
- S. typhi would be appropriate.
- S. motevidio which have non-overlapping O-antigen presentation (e.g., S. typhimurium is O-1, 4, 5, 12 and S. typhi is Vi, S. montevideo is O-6, 7) are representative examples.
- S. typhimurium is a suitable serotype for a prime/boost strategy where S. typhimurium is either the primary vaccine, or the booster vaccine where the primary vaccine is another serotype such as S. typhi or S. montivideo .
- both S. typhimurium and S. montivideo are suitable for humans, cats, dogs, or horses.
- a second step follows serotype selection where the first genetic mutation is introduced which may involve the use of antibiotic resistance markers and where any antibiotic resistance makers are then eliminated, followed by a third step where a second genetic mutation is introduced which may involve the use of antibiotic resistance markers and where any antibiotic resistance makers are then also eliminated.
- Reiteration of genetic deletion and antibiotic marker elimination can be used to supply additional mutations.
- Methods for reiterative chromosomal deletion and elimination of antibiotic resistance markers are known to those skilled in the arts, including Tn10 transposon deletion followed by “Bochner” selection (Bochner et al., 1980, J Bacteriol.
- the starting strain can be a wild type Salmonella such as ATCC 14028, and the Suwwan, IS200 deletion selected for using chlorate (Murray et al., 2004, Journal of Bacteriology, 186: 8516-8523).
- a second mutation in msbB can be introduced using pCVD442 as described by Low et al., 2004, Methods Mol Med. 2004; 90:47-60).
- a third mutation can be generated in zwf as described by Karsten et al., 2009, BMC Microbiol. BMC Microbiol. 2009 Aug. 18; 9:170.
- the strain generated has deletions in the Suwwan region, msbB and zwf. In S.
- a pCVD442 vector is used to generate the equivalent mutation, together with the same procedures above (altered as necessary for DNA sequence variations in the DNA portions used for homologous recombination), resulting in a pair of strains having the same mutational background together with different bacterial antigens.
- These strains alone or used for alternating doses, form a basic platform into which the effector genes and protease inhibitor gene constructs are inserted.
- Chimeric cytotoxins are generated using standard molecular genetic techniques, including synthetic biology (e.g., chemically synthesized oligonucleotides annealed into larger constructs forming entire genes based on the nucleic acid and/or amino acid sequence selected, including codon optimization) and expressed in bacteria using methods known to those skilled in the arts, operably linking a promoter, ribosomal binding site and initiating methionine if not provided by the first portion of the construct.
- the upstream and downstream regions may contain a transcriptional termination signal (terminator).
- the construct may be inserted into an exogenous plasmid or a chromosomal or virulence (VIR; pSLT) plasmid integration vector, for which many different integration sites exist, including but not limited to any of the attenuation mutations or any defective (incomplete) phage elements, intergenic regions or the IS200 elements.
- VIR chromosomal or virulence
- the constructs may also be polycistronic, having multiple genes and/or gene products separated by ribosomal binding sites.
- the colicin colE3 immunity protein is first synthesized as an expression cassette and cloned into a chromosomal localization vector for an integration site distal to the that of the intended site for the chimeric effector gene vector ( FIG. 12 ) as described below, e.g., an IS200 deletion vector at location.
- the amino acid sequence of the immunity protein is given as:
- the sequence is reverse translated using codons optimal for Salmonella .
- the entire chimeric effector protein and expression cassette components are synthesized using standard DNA synthesis techniques at a contract DNA synthesis facility and integrated into the chromosome (Donnenberg and Kaper, 1991 Infect Immun 59: 4310-4317, Low et al., 2004,
- the recipient stain can be any tumor-targeted bacterium.
- This example of a chimeric colicin follows the pattern shown in FIG. 3A .
- This chimera is targeted to cancer cells over-expressing EGFR via a TGF-alpha ligand.
- the chimera consists of the M13 filimenous phage pIII protein 18 amino acid signal sequence, followed by the natural alanine and a 3 glycine spacer. The spacer is followed by the mature 50 amino acid peptide for TGF-alpha, the remaining pIII protein truncated after amino acid 372 of pIII, followed by the enzymatically active (ribonuclease) C-terminus of colicin E3, followed by a stop signal.
- the complete amino acid sequence is:
- the entire chimeric effector protein and expression cassette components are synthesized using standard DNA synthesis techniques, for example, at a contract DNA synthesis facility, and cloned into a chromosomal localization vector, e.g., an IS200 deletion vector, and integrated into the chromosome (Donnenberg and Kaper, 1991, Low et al., 2003, each of which is expressly incorporated herein by reference).
- a chromosomal localization vector e.g., an IS200 deletion vector
- the lytic peptide PSM-alpha-3 is inserted between the pIII signal sequence and the TGF-alpha ( FIG. 3B ).
- the complete sequence of the construct is as follows:
- the colicin colE7 immunity protein is synthesized as an expression cassette and cloned into a chromosomal localization vector for an integration site distal to the that of the chimeric effector gene vector described below, e.g., an IS200 deletion vector at location.
- the genetic construct of the first colicin E7 chimera follows the same pattern as shown in FIG. 3A , except that the ColE3 C-terminus is replaced with the colE7 (a DNAase) C-terminus comprising amino acids 444 to 576 ( FIG. 3 C).
- Nuclear localization signals may also be added, including but not limited to that from herpes simplex virus thymidine kinase, the SV40 large T antigen (PPKKKRKV SEQ ID NO:1) monopartite NLS, or the nucleoplamin bipartite NLS (KR[PAATKKAGQA]KKKK SEQ ID NO:2, or more preferably, the NLS from apoptin, a tumor associated (tumor-selective) NLS.
- the tumor-selective nuclear export signal from apoptin may be used alone or together with NLS from apoptin.
- the genetic construct of the second colicin E7 chimera follows the same pattern as shown in FIG. 3C , except that the lysis peptide is inserted between the M13pIII signal sequence and the targeting peptide (TGF-alpha) ( FIG. 3D ).
- Nuclear localization signals may also be added, including but not limited to that from herpes simplex virus thymidine kinase, the SV40 large T antigen (PPKKKRKV SEQ ID NO:1) monopartite NLS, or the nucleoplamin bipartite NLS (KR[PAATKKAGQA]KKKK SEQ ID NO:2, or more preferably, the NLS from apoptin, a tumor associated (tumor-selective) NLS.
- the tumor-selective nuclear export signal from apoptin may be used alone or together with NLS from apoptin.
- the colicin Ia immunity protein is synthesized as an expression cassette and cloned into a chromosomal localization vector for an integration site distal to the that of the chimeric effector gene vector described below, e.g., an IS200 deletion vector at location.
- the genetic construct of the first colicin Ia chimera follows the same pattern as shown in FIG. 3A , except that the ColE3 C-terminus is replaced with the Ia (pore forming) C-terminus comprising amino acids 450 to 626 ( FIG. 3 E).
- the genetic construct of the second colicin Ia chimera follows the same pattern as shown in FIG. 3B , except that the lysis peptide is inserted between the M13pIII signal sequence and the targeting peptide (TGF-alpha) ( FIG. 3F ).
- Colicin TRC fusions utilize the entire colicin with its three domains, T (translocation), R (receptor), and C (catalytic), and fuse active moities to the C-terminal catalytic domain ( FIG. 4 ).
- the lytic peptide may be engineered to have protease cleavage sites, such as those from cathepsin, that effect its release and aid in escape from an endosome.
- the CD22 peptide is disulfide bonded (S—S) loop.
- a peptide library such as are used in phage display, including those using disulfide bonding may be used.
- Such libraries are may be first selected using phage, or may alternatively first be selected by screening of colicins for target cell specificity and then transferred to the colicin receptor region.
- a library of the “tol box” penta peptide (DGSGW SEQ ID NO:133) variations and/or extended tolB box (DGSGWSSENNPWGGGSGSIHW SEQ ID NO:134; Hands et al., 2005, Interactions of TolB with the translocation domain of colicin E9 require and extended tolB box, J Bacteriol. 187: 6733-6741) variations may be screened alone or in combination with individual receptor peptides such as the CD22 binding peptide, or a library of receptor peptides and a library of tol box or extended tol box peptides may be screened in combination.
- the lytic peptide may be engineered to have protease cleavage sites, such as those from cathepsin, that affects its release and aids in escape of the colicin chimera from an endosome.
- F TRC of colicin E3, a ribonuclease colicin active in the cytoplasm, where a targeting peptide, such as CD22 binding peptide, is inserted into the targeting domain between amino acids 374 and 391 and a lytic peptide is engineered in-frame.
- the lytic peptide may be engineered to have a protease cleavage site, such as those from a cathepsin, that affects its release and aids in escape of the colicin chimera from an endosome.
- a lytic peptide is engineered in-frame.
- the lytic peptide may be engineered to have a protease cleavage site, such as those from a cathepsin, that affects its release and aids in escape of the colicin chimera from an endosome.
- Protease inhibitors are generated using knowledge of the predicted proteolytic cleavage of the effector molecule (e.g., ProP 1.0, Duckert et al., 2004, Prediction of proprotein convertase cleavage sites, Protein Engineering Design and Selection 17: 107-122; ExPASy PeptideCutter tool, Gasteiger et al. Protein Identification and Analysis Tools on the ExPASy Server, In: John M. Walker (ed): The Proteomics Protocols Handbook, Humana Press, 2005), and may be used to test the predicted proteolytic sensitivity of the effector molecule.
- ProP 1.0 Duckert et al., 2004, Prediction of proprotein convertase cleavage sites, Protein Engineering Design and Selection 17: 107-122
- ExPASy PeptideCutter tool Gasteiger et al. Protein Identification and Analysis Tools on the ExPASy Server, In: John M. Walker (ed): The Proteomics Protocols Handbook, Humana Press, 2005
- the Duckert et al. method predicts a furin cleavage at amino acid 509.
- furin represent a protease target for which inhibition could improve the effectiveness or activity of a co-expressed molecule by inhibiting its destruction by proteolytic degradation
- Factor Xa is identified by ProP as a cleavage site that is not present, does not need to be inhibited, and who's cleavage recognition site could be added between protein domains where removal of a domain by proteolysis is desirable.
- Secreted protease inhibitors are generated using standard molecular genetic techniques and expressed in bacteria using methods known to those skilled in the arts, operably linking a promoter, ribosomal binding site and initiating methionine if not provided by the first portion of the construct.
- the construct may either be a plasmid or a chromosomal virulence (VIR) plasmid integration vector, for which many different integration sites exist, including but not limited to any of the attenuation mutations, intergenic regions or any of the IS200 elements.
- VIR chromosomal virulence
- the constructs may also be polycistronic, having multiple genes and/or gene products separated by ribosomal binding sites. The different forms of the protease inhibitor constructs are shown in FIG. 2 .
- constructs used have multiple forms, for example: 1) An N-terminal signal sequence, such as that from M13pIII MKKLLFAIPLVVPFYSHS SEQ ID NO:135, followed by a protease inhibitor such as the furin inhibitor GKRPRAKRA SEQ ID NO:11; 2) a protease inhibitor such as the furin inhibitor GKRPRAKRA SEQ ID NO:11followed by the C-terminal signal sequence of hlyA
- a protease inhibitor such as the furin inhibitor GKRPRAKRA SEQ ID NO:11, followed by a furin cleavage signal RXKR ⁇ SX SEQ ID NO:137 followed by the C-terminal signal sequence of hlyA
- a C-terminal amidating enzyme composition known form serum or plasma which comprises a C-terminal amidating enzyme capable of amidating a C-terminal glycine which amidates the carboxy terminus of the C-terminal glycine of a peptide terminating in Gly-Gly.
- the enzyme participating in such amidation is called peptidylglycine- ⁇ -amidating monoxygenase (C-terminal amidating enzyme) (EC.1.14.17.3) (Bradbury et al, Nature, 298, 686, 1982: Glembotski et al, J. Biol, Chem., 259, 6385, 1984; and U.S. Pat. No. 5,354,675, expressly incorporated herein by reference), is considered to catalyze the following reaction: —CHCONHCH 2 COOH—CHCONH 2 +glyoxylic acid
- antitumor lytic peptides examples are shown in FIG. 5 . It is understood that those peptides utilizing the hlyA signal sequence requires hlyBD in trans together with a functional tolC.
- the lytic peptide constructs consist of A) lytic peptide joined to the HlyA signal sequence, B) lytic peptide, targeting peptide, signals sequence, C) M13 pIII signal sequence, lytic peptide, M13 pIII amino acids 19 to 372, targeting peptide, D) M13 signal sequence, lytic peptide, targeting peptide, M13 pIII amino acids 19 to 372.
- the lytic peptide prodrug constructs consist of A) a neutral (e.g., beta sheet) blocking peptide of 50 amino acids, a protease cleavage site shown by downward arrow (for a protease not being blocked by a protease inhibitor), a lytic peptide, and the hlyA signal sequence, which may contain the same protease cleavage site shown by a downward arrow, B) a neutral (e.g., beta sheet) blocking peptide of 50 amino acids, a lytic peptide, a targeting peptide (e.g., TGF-alpha), a protease cleavage site shown by downward arrow (for a protease not being blocked by a protease inhibitor), and the lytic peptide prodrug constructs consist of A) a neutral (e.g., beta sheet) blocking peptide of 50 amino acids, a protease cleavage site shown by downward arrow (for a prote
- a cytolethal distending toxin subunit B with tumor-specific nuclear localization and normal cell nuclear export is generated by a fusion with apoptin containing a five glycine linker in between ( FIG. 6A ).
- the complete sequence of the construct is as follows:
- a cytolethal distending toxin subunit B with tumor-specific nuclear localization and normal cell nuclear export is generated by a fusion with a truncated apoptin amino acids 33 to 121 containing a five glycine linker in between ( FIG. 6B ).
- the complete sequence of the construct is as follows:
- a cytolethal distending toxin subunit B with tumor-specific nuclear retention signal is generated by a fusion with a truncated apoptin amino acids 33 to 46 containing a five glycine linker in between ( FIG. 6C ).
- the complete sequence of the construct is as follows:
- a cytolethal distending toxin subunit B with a normal cell nuclear export signal is generated by a fusion with a truncated apoptin amino acids 81 to 121 containing a five glycine linker in between ( FIG. 6D ).
- the complete sequence of the construct is as follows:
- amino acid sequence FRDSRDPVHQAL SEQ ID NO:143 which is associated with dimerization and inactivation can be exchanged for the loop NSSSSPPERRVY SEQ ID NO:144 from Haemophilus which is associated with stabile retention of cytotoxicty.
- RTX family members including E. coli hemolysin operon hlyCABD and Actinobacillus actinomycetemcomitans leucotoxin ltxCABD are expressed in coordination with protease inhibitors as shown in FIG. 7 .
- E coli hemolysin operon hlyCABD is expressed as a non-chimera ( FIG. 7A ).
- Actinobacillus actinomycetemcomitans leucotoxin 1txCABD operon is expressed as either a non-hybrid ( FIG. 7B ) or as a hybrid ( FIG. 7C ). It is understood that a functional tolC gene is required in the gram-negative bacterial strain for functional expression of each of these operons, or that homologs such as prtF and/or cyaE may be used.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Medicinal Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biochemistry (AREA)
- Gastroenterology & Hepatology (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Epidemiology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Biophysics (AREA)
- Immunology (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Microbiology (AREA)
- Plant Pathology (AREA)
- Physics & Mathematics (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Peptides Or Proteins (AREA)
Abstract
Bacteria which co-express protease inhibitors and protease sensitive therapeutic agents, which are surface displayed, secreted and/or released and result in their localized production and maintenance within a target tissue and inactivation outside of the target tissue, thereby increasing therapeutic activity and reducing the systemic toxicity. The bacteria may be attenuated, non-pathogenic, low pathogenic or a probiotic. Protease sensitivity may be further accomplished by engineering protease degradation sites within the therapeutic agents, further enhancing the inactivation outside of the target tissue while retaining activity within the target tissue through co-expression of a protease inhibitor. Novel chimeric proteins secreted by bacteria, including chimeric toxins targeted to neoplastic cells, tumor matrix cells and cells of the immune system, and combination therapies of these protease inhibitor:chimeric toxin-expressing bacteria together with small-molecule and biologic agents are also described. Non-conjugative bacteria limiting exchange of genetic material, and antibody resistant bacteria are also provided.
Description
The present application is a Division of U.S. patent application Ser. No. 13/024,172, filed Feb. 9, 2011, now U.S. Pat. No. 8,524,220, issued Sep. 3, 2013, which is a non-provisional of U.S. Provisional Patent Application No. 61/302,938, filed Feb. 9, 2010, each of which is expressly incorporated herein by reference in its entirety.
This invention is generally in the field of therapeutic delivery systems, systems and methods for providing co-expression of protease inhibitors with genetically engineered protease sensitive therapeutic constructs, and chimeric proteins.
Citation or identification of any reference herein, or any section of this application shall not be construed as an admission that such reference is available as prior art to the present application. The disclosures of each of these publications and patents are hereby incorporated by reference in their entirety in this application, and shall be treated as if the entirety thereof forms a part of this application.
Tumor-targeted bacteria offer tremendous potential advantages for the treatment of solid tumors, including the targeting from a distant inoculation site and the ability to express therapeutic agents directly within the tumor (Pawelek et al., 1997, Tumor-targeted Salmonella as a novel anticancer agent, Cancer Research 57: 4537-4544; Low et al., 1999, Lipid A mutant salmonella with suppressed virulence and TNF-alpha induction retain tumor-targeting in vivo, Nature Biotechnol. 17: 37-41). However, the primary shortcoming of tumor-targeted bacteria investigated in the human clinical trials (Salmonella strain VNP20009 and its derivative TAPET-CD; Toso et al., 2002, Phase I study of the intravenous administration of attenuated Salmonella typhimurium to patients with metastatic melanoma, J. Clin, Oncol. 20: 142-152; Meir et al., 2001, Phase 1 trial of a live, attenuated Salmonella Typhimurium (VNP20009) administered by direct Intra-tumoral (IT) injection, Proc Am Soc Clin Oncol 20: abstr 1043); Nemunaitis et al., 2003, Pilot trial of genetically modified, attenuated Salmonella expressing the E. coli cytosine deaminase gene in refractory cancer patients, Cancer Gene Therapy 10: 737-744) is that no significant antitumor activity has been observed, even in patients where the bacteria was documented to target the tumor. One method of increasing the ability of the bacteria to kill tumor cells is to engineer the bacteria to express conventional bacterial toxins (e.g., WO 2009/126189, WO 03/014380, WO/2005/018332, WO/2008/073148, US 2003/0059400 U.S. Pat. Nos. 7,452,531, 7,354,592, 6,962,696, 6,923,972, 6,863,894, 6,685,935, 6,475,482, 6,447,784, 6,190,657 and 6,080,849, each of which is expressly incorporated herein by reference), but these approaches pose risks of systemic toxicity.
Use of protein toxins for treatment of various disorders including inflammation, autoimmunity, neurological disorders and cancer has long-suffered from off-target toxicity. Enhancing toxin specificity, which offers the potential to eliminate side effect, has been achieved by several different means, such as attachment of a specific antibodies or peptide ligand (e.g., Pseudomonas endotoxin A (PE-ToxA) antibody conjugate, known as an immunotoxin). Based upon the binding specificity of the attached antibody moiety for a specific target, enhanced specificity of the target is achieved. Other toxins have been engineered to achieve specificity based upon their sight of activation. For example, proaerolysin requires proteolytic activation to become the cytotoxic protein aerolysin. Substitution of the natural protease cleavage site for a tumor-specific protease cleavage site (e.g., that of the prostate specific antigen (PSA) protease or urokinase) results in a toxin selectively activated within tumors (Denmeade et al. WO 03/018611 and Denmeade et al. U.S. Pat. No. 7,635,682). Another similar activation system has utilized ubiquitin fusion, coupled with a hydrolysable tumor protease (e.g., PSA) sequence and a toxin (e.g., saporin), as described by Tschrniuk et al. 2005 (Construction of tumor-specific toxins using ubiquitin fusion technique, Molecular Therapy 11: 196-204). However, while some specificity is engendered and thus these activated protein types are useful in the present invention as modified herein, in these types of engineered toxins, off-target toxicity can occur. In the case of the Pseudomonas immunotoxin, several dose-limiting toxicities have been identified. Vascular leakage syndrome (VLS) is associated with hypoalbuminemia, edema, weight gain, hypotension and occasional dyspnea, which is suggested to occur by immunotoxin-mediated endothelial cell injury (Baluna et al., 2000, Exp. Cell Res. 258: 417-424), resulting in a dose-limiting toxicity. Renal injury has occurred in some patients treated with immunotoxins, which may be due to micro-aggregates of the immunotoxin (Frankel et al., 2001, Blood 98: 722a). Liver damage from immunotoxins is a frequent occurrence that is believed to be multifactorial (Frankel, 2002, Clinical Cancer Research 8: 942-944). To date, antibodies linked to proteinaceous toxins have limited success clinically. One explanation for the off target toxicity is that although a specific agent is targeted to the tumor and/or specifically activated there, the agent is also toxic if it diffuses out of the tumor, which is likely to occur due to the high osmotic pressure that occurs within tumors (Jain, R. K., 1994, Barriers to drug delivery in solid tumors, Scientific American 271 (11): 58-65). Once activated inside the tumor and having diffused back outside, toxins such as aerolysin remain active and are able to contribute to non-target toxicity. Never-the-less, delivery of targeted pro-toxins is of interest by targeted bacteria if systemic toxicity can be overcome and the toxin remains active only at the target site.
Seed et al., WO/2009/014650 have suggested the fusion of proteases with Vibrio cholerae exotoxins. These authors suggest that protease (proteinase) inhibitors may hamper the activity of the fusions. They teach ways to maintain fusion protein activity and conclude for example: “Thus, it is possible to keep granzyme fusion proteins active in plasma through formulations using chondroitin sulfates”. In the context of delivery by a tumor-localized vector, such activity would be expected to contribute to toxic side effects since the toxin would remain active in the blood and reach other organs of the body.
Use of secreted proteins in live bacterial vectors has been demonstrated by several authors. Holland et al. (U.S. Pat. No. 5,143,830, expressly incorporated in its entirety herein by reference) have illustrated the use of fusions with the C-terminal portion of the hemolysin A (hlyA) gene, a member of they type I secretion system. When co-expressed in the presence of the hemolysin protein secretion channel (hlyBD) and a functional TolC, heterologous fusions are readily secreted from the bacteria. The type I secretion system that has been utilized most widely, and although it is currently considered the best system available, is thought to have limitations for delivery by attenuated bacteria (Hahn and Specht, 2003, FEMS Immunology and Medical Microbiology, 37: 87-98). Those limitations include the amount of protein secreted and the ability of the protein fused to it to interfere with secretion. Improvements of the type I secretion system have been demonstrated by Sugamata and Shiba (2005 Applied and Environmental Micobiology 71: 656-662) using a modified hlyB, and by Gupta and Lee (2008 Biotechnology and Bioengineering, 101: 967-974) by addition of rare codons to the hlyA gene, each of which is expressly incorporated by reference in their entirety herein. Fusion to the gene ClyA (Galen et al., 2004, Infection and Immunity, 72: 7096-7106 and Type III secretion proteins have also been used. Surface display has been used to export proteins outside of the bacteria. For example, fusion of the Lpp protein amino acids 1-9 with the transmembrane region B3-B7 of OmpA has been used for surface display (Samuelson et al., 2002, Display of proteins on bacteria, J. Biotechnology 96: 129-154, expressly incorporated by reference in its entirety herein). The autotransporter surface display has been described by Berthet et al., WO/2002/070645, expressly incorporated by reference herein. Other heterologous protein secretion systems utilizing the autotransporter family can be modulated to result in either surface display or complete release into the medium (see Henderson et al., 2004, Type V secretion pathway: the autotransporter story, Microbiology and Molecular Biology Reviews 68: 692-744; Jose, 2006 Applied Microbiol. Biotechnol. 69: 607-614; Jose J, Zangen D (2005) Autodisplay of the protease inhibitor aprotinin in Escherichia coli. Biochem Biophys Res Commun 333:1218-1226 and Rutherford and Mourez 2006 Microbial Cell Factories 5: 22). For example, Veiga et al. (2003 Journal of Bacteriology 185: 5585-5590 and Klauser et al., 1990 EMBO Journal 9: 1991-1999) demonstrated hybrid proteins containing the β-autotransporter domain of the immunoglogulin A (IgA) protease of Nisseria gonorrhea. Fusions to flagellar proteins have been demonstrated. The peptide, usually of 15 to 36 amino acids in length, is inserted into the central, hypervariable region of the FliC gene such as that from Salmonella muenchen (Verma et al. 1995 Vaccine 13: 235-24; Wu et al., 1989 Proc. Natl. Acad. Sci. USA 86: 4726-4730; Cuadro et al., 2004 Infect. Immun. 72: 2810-2816; Newton et al., 1995, Res. Microbiol. 146: 203-216, expressly incorporated by reference in their entirety herein). Multihybrid FliC insertions of up to 302 amino acids have also been prepared (Tanskanen et al. 2000, Appl. Env. Microbiol. 66: 4152-4156, expressly incorporated by reference in its entirety herein). Trimerization of antigens can be achieved using the T4 fibritin foldon trimerization sequence (Wei et al. 2008 J. Virology 82: 6200-6208) and VASP tetramerization domains (Kühnel et al., 2004 PNAS 101: 17027-17032), expressly incorporated by reference in their entirety herein. The multimerization domains are used to create, bi-specific, tri-specific, and quatra-specific targeting agents, whereby each individual agent is expressed with a multimerization tag, each of which may have the same or separate targeting peptide, such that following expression, surface display, secretion and/or release, they form multimers with multiple targeting domains.
Surprisingly, although bacteria have been used vectors for neoplastic disease and several authors have suggested delivering cytotoxins and other agents, no means of conferring safety and specificity of the actual cytotoxic agent has been developed within the delivery platform itself. Therapeutic protein activity proximal to the delivery vector at the target site, such as a solid tumor, lymphoma or leukemic bone marrow, and inactivation distal to the delivery vector, has remained to be achieved.
3.1 Therapeutic Molecules and Protease Inhibitors
The present invention consists of known and/or novel chimeric proteins, or combination of proteins, that are expressed, secreted, suface displayed and/or released by bacteria and result in anti-cancer activity or have direct inhibitory or cytotoxic anti-neoplastic activity. The bacterial delivery vector may be attenuated, non-pathogenic, low pathogenic (including wild type), or a probiotic bacterium. The bacteria are introduced either systemically (e.g., parentral, intravenous (IV), intramuscular (IM), intralymphatic (IL), intradermal (ID), subcutaneously (sub-q), local-reagionally (e.g., intralesionally, intratumorally (IT), intrapaeritoneally (IP), topically, intathecally (intrathecal), by inhailer or nasal spray) or to the mucosal system through oral, nasal, pulmonary intravessically, enema or suppository administration where they are able to undergo limited replication, express, surface display, secrete and/or release the anti-cancer inhibitory proteins or a combination thereof, and thereby provide a therapeutic benefit by reducing or eliminating the disease, malignancy and/or neoplasia.
The present invention further consists of the co-expression by a bacterial expression system, or a combination of bacterial expression systems, of one or more protease inhibitors together with one or more protease sensitive therapeutic agent. The therapeutic agent may be inherently sensitive to proteases, or engineered to have enhanced sensitivity. Within the local high-concentration of the targeted tissue or cells such as the confines of a solid tumor, lymph node or lumen of a bone, the protease inhibitor prevents the degradation of the therapeutic agent that is therapeutically active against the target tissue such as colon cancer cells within a tumor, lymphoma cells within a lymph node, or leukemic cells within the lumen of a bone. Upon egress from the confined space of the targeted tissue, the inhibitor falls below the inhibitory concentration, and the therapeutic agent which is protease sensitive is freely degraded, thus deactivating it outside the target site, resulting in cell or tissue-specific activity as well as increased activity and inactivation in non-target cell or tissues (Table I). A schematic diagram comparing the relative effect of co-expression is shown in FIG. 1 . This surprising solution to the problem of off target toxicity by a tumor targeting vector stems from the unique localized production of therapeutic agents by tumor-targeted vectors, wherein the active agent is produced locally and subsequently diffuses out resulting in systemic exposure rather than being injected peripherally with intent to treat distal sites.
| TABLE 1 |
| Projected relative effects of toxin forms with and |
| without protease sensitivity and protease inhibitor(s). |
| Tumor | Systemic | |
| Composition | Efficacy | Toxicity |
| Unmodified toxins | +++ | +++ |
| Protease activated and/or insensitive toxin | +++ | ++ |
| e.g., prostate protease activated Aerolysin | ||
| Protease sensitive (i.e., deactivated) toxin | + | — |
| Protease sensitive toxin + protease inhibitor | +++++ | — |
The types of cancers or neoplasias to which the present invention is directed include all neoplastic malignancies, including solid tumors such as those of colon, lung, breast, prostate, sarcomas, carcinomas, head and neck tumors, melanoma, as well as hematological, non-solid or diffuse cancers such as leukemia and lymphomas, myelodysplastic cells, plasma cell myeloma, plasmacytomas, and multiple myelomas. Specific types of cancers include acute lymphoblastic leukemia, acute myeloid leukemia, adrenocortical carcinoma adrenocortical carcinoma, aids-related cancers, aids-related lymphoma, anal cancer, appendix cancer, astrocytomas, childhood, teratoid/rhabdoid tumor, childhood, central nervous system tumors, basal cell carcinoma, bile duct cancer, extrahepatic bladder cancer, bladder cancer, bone cancer, osteosarcoma and malignant fibrous histiocytoma, brain stem glioma, brain tumor, brain stem glioma, central nervous system atypical teratoid/rhabdoid tumor, central nervous system embryonal tumors, brain tumor, astrocytomas, craniopharyngioma, ependymoblastoma, ependymoma, medulloblastoma, medulloepithelioma, pineal parenchymal tumors, supratentorial primitive neuroectodermal tumors and pineoblastoma, spinal cord tumors, breast cancer (female), breast cancer (male), bronchial tumors, burkitt lymphoma, carcinoid tumor, gastrointestinal, nervous system atypical teratoid/rhabdoid tumor, central nervous system embryonal tumors, central nervous system lymphoma, primary cervical cancer, cervical cancer, chordoma, chronic lymphocytic leukemia, chronic myelogenous leukemia, chronic myeloproliferative disorders, colon cancer, colorectal cancer, craniopharyngioma, cutaneous T-cell lymphoma, embryonal tumors, endometrial cancer, ependymoblastoma, ependymoma, esophageal cancer, ewing sarcoma family of tumors, extracranial germ cell tumor, extrahepatic bile duct cancer, eye cancer, intraocular melanoma, eye cancer, retinoblastoma gallbladder cancer, gastric (stomach) cancer, gastrointestinal carcinoid tumor, gastrointestinal stromal tumor (gist), gastrointestinal stromal cell tumor, germ cell tumor, extracranial germ cell tumor, extragonadal germ cell tumor, ovarian gestational trophoblastic tumor, glioma, hairy cell leukemia, head and neck cancer, hepatocellular (liver) cancer, primary hepatocellular (liver) cancer, histiocytosis, langerhans cell, hodgkin lymphoma, hypopharyngeal cancer, intraocular melanoma, islet cell tumors (endocrine pancreas), kaposi sarcoma, kidney (renal cell) cancer, kidney cancer, langerhans cell histiocytosis, laryngeal cancer, leukemia, acute lymphoblastic leukemia, acute myeloid leukemia, chronic lymphocytic leukemia, chronic myelogenous leukemia, hairy cell leukemia, lip and oral cavity cancer, liver cancer, adult (primary) liver cancer, (primary) lung cancer, non-small cell lung cancer, small cell lymphoma, aids-related lymphoma, burkitt lymphoma, cutaneous T-cell lymphoma, hodgkin lymphoma, non-hodgkin lymphoma, primary central nervous system lymphoma, macroglobulinemia, Waldenström malignant fibrous histiocytoma of bone and osteosarcoma, medulloblastoma, melanoma, intraocular (eye) melanoma, merkel cell carcinoma, mesothelioma, metastatic squamous neck cancer with occult primary, mouth cancer, multiple endocrine neoplasia syndrome, childhood multiple myeloma/plasma cell neoplasm, mycosis fungoides, myelodysplastic syndromes, myelodysplastic/myeloproliferative diseases, myelogenous leukemia, chronic myeloid leukemia, adult acute myeloid leukemia, childhood acute myeloma, multiple myeloproliferative disorders, nasal cavity and paranasal sinus cancer, nasopharyngeal cancer, nasopharyngeal cancer, neuroblastoma, non-hodgkin lymphoma, non-small cell lung cancer, oral cancer, oral cavity cancer, lip and oropharyngeal cancer, osteosarcoma and malignant fibrous histiocytoma of bone, ovarian cancer, ovarian epithelial cancer, ovarian germ cell tumor, ovarian low malignant potential tumor, pancreatic cancer, islet cell tumors, papillomatosis, paranasal sinus and nasal cavity cancer, parathyroid cancer, penile cancer, pharyngeal cancer, pineal parenchymal tumors of intermediate differentiation, pineoblastoma and supratentorial primitive neuroectodermal tumors, pituitary tumor, plasma cell neoplasm/multiple myeloma, pleuropulmonary blastoma, primary central nervous system lymphoma, prostate cancer, rectal cancer, renal cell (kidney) cancer, renal pelvis and ureter, transitional cell cancer, respiratory tract carcinoma involving the nut gene on chromosome 15, retinoblastoma, rhabdomyosarcoma, salivary gland cancer, sarcoma, ewing sarcoma family of tumors, kaposi sarcoma, soft tissue sarcoma, uterine sarcoma, Sézary syndrome, skin cancer (nonmelanoma), melanoma, skin carcinoma, merkel cell, small cell lung cancer, small intestine cancer, soft tissue sarcoma, squamous cell carcinoma, see skin cancer (nonmelanoma), squamous neck cancer with occult primary, metastatic stomach (gastric) cancer, stomach (gastric) cancer, supratentorial primitive neuroectodermal tumors, T-cell lymphoma, cutaneous T-cell lymphoma, mycosis fungoides and Sézary syndrome, testicular cancer, throat cancer, thymoma and thymic carcinoma, thyroid cancer, transitional cell cancer of the renal pelvis and ureter, trophoblastic tumor, (gestational), unknown primary site, carcinoma of, unknown primary site carcinoma, ureter and renal pelvis, transitional cell cancer, urethral cancer, uterine cancer, endometrial uterine sarcoma, vaginal cancer, vulvar cancer, Waldenström macroglobulinemia, and Wilms tumor.
The therapeutic agent can be a peptide or protein, toxin, chimeric toxin, cytokine, antibody, bispecific antibody including single chain antibodies, camel antibodies and nanobodies chemokine, prodrug converting enzyme or metabolite-degrading enzyme such as thiaminase, methionase (methioninase, L-methionine γ-lyase) or asperaginase. In a preferred embodiment the therapeutic agent is a toxin, or modified toxin.
Toxins, therapeutic cytokines and other molecules, homologues or fragments thereof useful in conjunction with the present invention include small lyitic peptides, larger lytic peptides, pore-forming toxins, protein inhibitors, extracellular DNAases (DNase), intracellular DNAases, apoptosis inducing peptides, cytokines, prodrug converting enzymes, metabolite destroying enzymes, ribonucleases, antibody inactivating toxins and other anticancer peptides. In a preferred embodiment, the toxins include those that are naturally secreted, released and/or surface displayed, or heterologously secreted, released and/or surface displayed, and that can be modified uniquely to suit the delivery by a bacterium and may be further engineered to have the tumor, lymphoma, leukemic bone marrow or proximity-selective targeting system described herein, including but not limited to the proteins azurin, carboxyesterase Est55 (a prodrug converting enzyme from Geobacillus that activates CPT-11 to SN-38), thiaminase (e.g., from Bacillus), methionase (methioninase), asparaginase, apoptin, bax, bim, p53, BAK, BH3 peptide (BCL2 homology domain 3), cytochrome C, thrombospondin, platelet factor 4 (PF4) peptide, Bacillus sp. cytolysins, Bacillus sp. nheABC toxins, cytolethal distending toxins (cldt), typhoid toxins (pertussis like toxin) (pltAB), pertussis toxin, cldt:plt hybrids, actAB, cytotoxic nectrotic factor (cnf), dermonecrotic factor (dnf), shiga toxins and shiga-like toxins, bacteriocins, (colicins and microcins; Hen and Jack, Chapter 13 Microcins, in Kastin (ed), 2006, Handbook of Biologically Active Peptides, Academic Press; Nes et al., Chapter 17, The nonantibiotic heat-stable bacteriocins in gram-positive bacteria, in Kastin (ed), 2006, Handbook of Biologically Active Peptides, Academic Press; Sharma et al., Chapter 18 in Kastin (ed), 2006, Handbook of Biologically Active Peptides, Academic Press) including membrane depolarizing (or pore-forming), DNAases (including colicin DNase, Staphylococcal Nuclease A:OmpA fusions (Takahara et al., 1985 J Biol. Chem 260: 2670-2674), Serratia marcescens DNase (Clegg and Allen, 1985, FEMS Microbiology Letters 27: 257-262; Vibrio DNase Newland et al., 1985 Infect Immun 47: 691-696) or other bacterial DNase), RNAases, and tRNAases, including but not limited colicin A, colicin D, colicin E5, colicin E492, microcin M24, colE1, colE2, colE3, colE5 colE7, coleE8, colE9, col-Ia, colicin N and colicin B, membrane lytic peptides from Staphalococcus (listed below) and sea anemones, P15 peptide and other TGF-beta mimics, repeat in toxin (RTX) family members (together with the necessary acylation and secretion genes) including Actinobacillus leucotoxins, a leucotoxin:E. coli HlyA hybrid, E. coli HlyA hemolysin, Bordetella adenylate cyclase toxin, heat stable enterotoxins from E. coli and Vibrio sp. (Dubreuil 2006, Chapter 48, Eschericia coli, Vibrio and Yersinia species heat stable enterotoxins, Alouf and Popoff (eds), 2006, Comprehensive Sourcebook of Bacterial Protein Toxins, Third Edition, Academic Press), autotransporter toxins including but not limited to IgA protease, picU espC, and sat, Staphalococcus protein A, chlostridium enterotoxin, Clostridium difficile toxin A, scorpion chlorotoxin, aerolysin, subtilase, cereolysin, Staphalococcus leukotoxins (e. g. LukF-PV, LukF-R, LukF-I, LukM, HlgB) and the other, to class S (e. g. LukS-PV, LukS-R, LukS-I, HlgA, HlgC). Best known are the toxins produced by S. aureus: γ-haemolysins, HlgA/HlgB and HlgC/HlgB and leukocidin Panton-Valentine, LukS-PV/LukF-PV (Luk-PV, PVL)) TRAIL, fasL, IL-18, CCL-21, human cyokine LIGHT, agglutinins (Maackia amurensis, wheat germ, Datura stramonium, Lycopersicon (tomato) plant lectin, leukoagglutinin (L-PHA, Helix pomatia) saporin, ricin, pertussus toxin, and porB, as well as other toxins and petides (Kastin (ed), 2006, Handbook of Biologically Active Peptides, Academic Press; Alouf and Popoff (eds), 2006, Comprehensive Sourcebook of Bacterial Protein Toxins, Third Edition, Academic Press; each of which is expressly incorporated by reference in their entirety herein).
Metabolite toxins such as the Chromobacterium violacium dipsepeptides (Shigeatsu et al., 1994, FR901228, a novel antitumor bicyclic depsipeptide produced by Chromobacterium violaceum No. 968. II. Structure determination. J Antibiot (Tokyo) 47(3):311-4) or those from Serratia are also of use in the present invention.
Bacterial collagenases (Harrington, 1996, Infect. Immun. 64: 1885-1891) useful in the invention include but not limited to those from Actinobacillus actinomycetemcomitans, Acinomadura (Streptomyces) madurae, Bacillus cereus, Bacteroides spp., Bifidobacterium sp., Bruecella melitensis, Capnocytophaga ochracea, Clostridium spp., Enterococcus faecalis, Echerichia coli, Eubacterium alactolyticum, Flavobacterium meningosepticum, Fusobacterium nucleatum, Peptococcus sp., Peptostreptococcus spp., Porphyromoas (Bacteroides) spp., Prevotella (Bacteroides) spp., Proteus mirabilis, Pseudomaons aeruginosa, Serratia marsescensm Serratia, spp., Staphalococcus spp., Streptococcus agalactiae (group B streptococcus), Streptococcus mutans, Streptococcus sobrinus (S. mutans 6715), Treponema spp. and Vibro vulnificus), and those described in the MEROPS Database (Rawlings et al., 2010, MEROPS: The Peptidase Database, Nucleic Acids Res. 2010 (Database issue):D227-33.) including but not limited to those from Clostridium histolyticum (bacterial collagenase G/A), Cytophaga (cytophagalysin), Empedobacter collagenolyticum (Empdeobacter collagenase), Helicobacter (Helicobacter-type collagenase), Porphyromonas (Porphyromonase-type collagenase), Geobacillus sp. MO-1 (collagenolytic endopeptidase) and Salmonella sp. (Salmonella-type collegenase, including the collagenase from Salmonella DT-104), Alternatively, an endogenouse collagenase may be activated by a transactivator, such as SlyA. (Carlson 2006, Microbial Pathogenesis 38: 181-187).
The chimeras may be further modified by addition of one or more multimerization domains, such as the T4 foldon trimerization domain (Meier et al., 2004, Journal of Molecular Biology, 344: 1051-1069; Bhardwaj et al., Protein Sci. 2008 17: 1475-1485) or tetramerization domains such as VASP (Kühnel et al., 2004 PNAS 101: 17027-17032). Chimeric toxins may be further modified by the addition of known cell penetrating (ferry) peptide which further improves their entry into target cells. Cell penetrating peptides include those derived from the HIV TAT protein (e.g., TAT-apoptin, TAT-bim, TAT-p53), the antennapedia homeodomain (penetraxin), Kaposi fibroblast growth factor (FGF) membrane-translocating sequence (MTS), herpes simplex virus VP22, hexahistidine, hexalysine, hexaarginine or “Chariot” (Active Motif, Carlsbad, Calif.; U.S. Pat. No. 6,841,535). Nuclear localization signals (NLSs) may also be added, including but not limited to that from herpes simplex virus thymidine kinase, the SV40 large T antigen (PPKKKRKV SEQ ID NO:1) monopartite NLS, or the nucleoplamin bipartite NLS (KR[PAATKKAGQA]KKKK SEQ ID NO:2, or more preferably, the NLS from apoptin, a tumor associated (tumor-selective) NLS. The tumor-selective nuclear export signal from apoptin may be used alone or together with NLS from apoptin (Heckl et al., 2008, Value of apoptin's 40-amino-acid C-terminal fragment for the differentiation between human tumor and non-tumor cells, Apoptosis 13: 495-508; Backendor et al., 2008, Apoptin: Therapeutic potential of an early sensor of carcinogenic transformation, Ann Rev Pharmacol Toxicol 48: 143-69).
The toxin may be further modified by addition of one or more protease cleavage sites that enhance its degradation outside of the tumor. Preferred protease cleavage sites are those for proteases that are under-expressed within the tumor compared to normal tissues (rather than over-expressed within the tumor as utilized for aerolysin activation). However, the expression levels of many proteases are elevated within tumors (e.g., Edwards et al., (eds) 2008, The Cancer Degradome: Proteases and Cancer Biology, Springer, expressly incorporated in its entirety herin). Preferred examples of proteases for which inhibitory peptides may be coexpressed including but not limited to furin, tissue plasminogen activator, activated protein C, factor Xa, granzymes (A, B & M), cathepsins (A, B, C, D, E, F, G, H, K, L, S, W & X), thrombin, plasmin, urokinase, matrix metaloproteaes (1-28) membrane matrix metaloproteases (1-4), prostate specific antigen (PSA) and kallikrein 2. Furin, for example, recognizes a number of specific cleavage sites, including RXKR↓SX SEQ ID NO:3. In accordance with the present invention, the presence of this cleavage site, whether naturally occurring or introduced through genetic modification, may be compensated for within the target tissue by co-expression of a furin inhibitor, stabilizing its activity unless it escapes the target tissue such as a tumor, lymph node or lumen of a bone whereupon the inhibitor concentration drops and the effector protein is degraded. Use of protease inhibitors alone or in combination by bacterial delivery vectors has not previously been suggested. Indeed, Wang et al. 2008 (Acta Biochim Biophys Sin (Shanghai). 2008 October; 40(10):848-54) suggested furin inhibitors could be used as antibiotics to suppress bacterial infection which would thereby interfere with delivery by a bacterial vector. Therefore, it has not been considered desirable to use a furin inhibitor or other protease inhibitors to have a positive effect on the bacteria and/or the therapeutics they release.
The peptide inhibitors are engineered to be secreted from the gram negative bacteria secretion signals known to those skilled in the arts, including E. coli cytolethal distending toxin, Shiga toxin, LPP:OmpA, M13pIII, M13pVIII, zirS (Finlay et al., 2008, PLoS Pathogens 4 (4), e100003), heat-stable (ST; thermostable) toxins from Escherichia and Vibrio (U.S. Pat. No. 5,399,490), E. coli enterotoxin II (Kwon et al., U.S. Pat. No. 6,605,697) N-terminal signal sequences, or hlyA C-terminal signal sequence (requires addition of hlyBD and TolC), or by colicin fusions together with colicin lysis proteins, or using autotransporter (autodisplay) fusions. Fusion to to the M13 pIX may also be used (WO 2009/086116) or fusions to typeIII secretion system of Salmonella or other bacteria (Wilmaier et al., 2009 Mol Sys Biol 5: 309. The inhibitors can be further modified to have the protease cleavage signal of the protease that they inhibit or for a different protease. Secretion signal from gram positive bacteria include that from listerialysin O (LLO), alkaline phosphatase (phoZ) (Lee et al., 1999, J Bacteriol. 181: 5790-5799), CITase gene (Shiroza and Kuramitsu 1998, Methods in Cell Science, 20: 127-136) or the twin arginine translocation system (Berks et al., 2005, Protein targeting by the bacterial twin-arginine translocation (Tat) pathway, Current Opinion in Microbiology 8: 174-181). Enhanced secrection may be achieved as described in U.S. Pat. No. 7,358,084, WO/2009/139985 Methods and materials for gastrointestinal delivery of a pathogentoxin binding agent; van Asseldonk, M et al. 1990, Cloning of usp45, a gene encoding a secreted protein from Lacotococcs lactis subsp. lactis MG1363 Gene 95, 15-160; Kim et al., Display of heterologous proteins on the surface of Lactococcus lactis using the H and W domain of PrtB from Lactobacillus delburueckii subsp. bulgaricus as an anchoring matrix J Appl Microbiol. 2008 June; 104(6):1636-43. Epub 2008 Feb. 19).
The chimeric proteins may have one or more additional features or protein domains known to those skilled in the arts which are designed to be active or catalytic domains that result in the death of the cell, allow or facilitate them being secreted or released by autolytic peptides such as those associated with colicins or bacteriophage release peptides have targeting peptides that direct them to the target cells, and protease cleavage sites for activation (e.g., release from parent peptide), and thoredoxin or glutation S-transferase (GST) fusions that improve solubility.
The present invention also provides in accordance with some embodiments, unique chimeric modifications of the above listed toxins that contain specific combinations of components resulting in secretion by selective anti-tumor activity. The invention also provides extracellular protease sensitivity (deactivation) that may include the addition of protease cleavage sites and may be co-expressed with a protease inhibitor. The chimeric proteins may have one or more additional features or protein domains known to those skilled in the arts which are designed to 1) be active or catalytic domains that result in the death of the cell or make them susceptible to other known anticancer agents, 2) allow or facilitate them being secreted or released by autolytic peptides such as colicin release peptides, 3) membrane protein transduction (ferry) peptides, 4) autotransporter domains, 5) have targeting peptides that direct them to the target cells, and 6) protease cleavage sites for activation (e.g., release from parent peptide). However, the specific organization and combination of these domains is unique and specific to the invention.
Bombisin and gastrin are amidated peptides. Amidation of these peptides would not be expected to occur in gram-negative bacteria. A unique composition in accordance with one embodiment of the present invention is the co-expression of the C-terminal amidating enzyme, which results in amidating these peptides in order for them to confer their targeting specificity.
Small lytic peptides (less than 50 amino acids) are used to construct chimeric proteins for more than one purpose. The chimeric proteins containing lytic peptides may be directly cytotoxic for the cancer cells, and/or other cells of the tumor including the tumor matrix cells and immune cells which may diminish the effects of the bacteria by eliminating them. Furthermore, the lytic peptides are useful in chimeric proteins for affecting release from the endosome. Small lytic peptides have been used in the experimental treatment of cancer. However, it is evident that most, if not all, of the commonly used antitumor small lytic peptides have strong antibacterial activity, and thus are not compatible with delivery by a bacterium (see Table 1 of Leschner and Hansel, 2004 Current Pharmaceutical Design 10: 2299-2310, the entirety of which is expressly incorporated herein by reference). Small lytic peptides useful in the invention are those derived from Staphaloccus aureus, S. epidermidis and related species, including the phenol-soluble modulin (PSM) peptides and delta-lysin (Wang et al., 2007 Nature Medicine 13: 1510-1514, expressly incorporated herein by reference). Larger lytic peptides that may be used includes the actinoporins from sea anemones or other coelenterates, such as SrcI, FraC equinatoxin-II and sticholysin-II (Anderluh and Macek 2002, Toxicon 40: 111-124). The selection of the lytic peptide depends upon the primary purpose of the construct, which may be used in combination with other constructs providing other anticancer features. Construct designed to be directly cytotoxic to cells employ the more cytoxic peptides, particularly PSM-alpha-3 and actinoporins. Constructs which are designed to use the lytic peptide to affect escape from the endosome use the peptides with the lower level of cytotoxicity, such as PSM-alpha-1, PSM-alpha-2 or delta-lysin.
Promoters, i.e., genetic regulatory elements that control the expression of the genes encoding the therapeutic molecules described above that are useful in the present invention include constitutive and inducible promoters. A preferred constitutive promoter is that from the vector pTrc99a (Promega). Preferred inducible promoters include the tetracycline inducible promoter (TET promoter), SOS-response promoters responsive to DNA damaging agents such as mitomycin, alkylating agents, X-rays and ultraviolet (UV) light such as the recA promoter, colicin promoters, sulA promoters and hypoxic-inducible promoters including but not limited to the PepT promoter (Bermudes et al., WO 01/25397), the arabinose inducible promoter (AraBAD) (Lossner et al., 2007, Cell Microbiol. 9: 1529-1537; WO/2006/048344) the salicylate (asprin) derivatives inducible promoter (Royo et al., 2007, Nature Methods 4: 937-942; WO/2005/054477), or a tumor-specific promoter (Arrach et al., 2008, Cancer Research 68: 4827-4832; WO/2009/152480). A single promoter may be used to drive the expression of more than one gene, such as a protease sensitive toxin and a protease inhibitor. The genes may be part of a single synthetic operon (polycistronic), or may be separate, monocystronic constructs, with separate individual promoters of the same type used to drive the expression of their respective genes. The promoters may also be of different types, with different genes expressed by different constitutive or inducible promoters. Use of two separate inducible promoter for more than one cytotoxin or other effector type peptide allows, when sufficient X-ray, tetracycline, arabinose or salicylic acid is administered following administration of the bacterial vector, their expression to occur simultaneously, sequentially, or alternatingly (repeated).
3.2 Non-Conjugative, Bacteria
The present invention provides, according to some embodiments, a composition that would minimize the effect of bacteria released into the environment by eliminating the ability of the bacteria to exchange genetic information with related bacteria, as well as provide a delivery enhancing bacteria resulting in a greater therapeutic effect. Conjugative transfer is a major genetic exchange mechanism that may occur between Salmonella and the normal commensal gut bacterium E. coli, requiring the presence of an F′ factor. The present invention provides gram-negative bacteria including E. coli, Vibrio, Shigella and Salmonella that are genetically modified in one or more ways to eliminate conjugative transfer of DNA with closely related species including E. coli. One of the modifications works on both male (F′+) and female (F′−) bacteria. These modifications facilitate the safety of a bacteria carrying expressing chimeric toxins. The F′ factor provides functions which may be undesirable in conjunction with aspects of the present invention, including mating stabilization and DNA transfer. The present invention therefore provides, according to one aspect, a composition lacking these features by their genetic disruption on the F′ factor or by the cloning of the pilus factor genes into the tumor-targeted bacterium in the absence of the other factors, and hence, resulting in a strain which is non-conjugative and significantly less likely to transfer DNA to other bacteria. The invention may also incorporate entry exclusion into the bacteria and the fertility inhibition complex (finO and finP) and/or TraO, alone or in combination, and thus, even in tumor-targeted bacterial strains in which the pilus factors are not incorporated (i.e., F—), the bacterial strain will remain resistant to mating with F′ bacteria.
3.3. Novel Methods for Testing the Efficacy of Engineered Effector Proteins Using Strains with Low-Level Tumor Targeting and/or Lower Antitumor Effects.
As cited above, the primary shortcoming of tumor-targeted bacteria investigated in the human clinical trials (Salmonella strain VNP20009 and its derivative TAPET-CD; Toso et al., 2002, Phase I study of the intravenous administration of attenuated Salmonella typhimurium to patients with metastatic melanoma, J. Clin, Oncol. 20: 142-152; Meir et al., 2001, Phase 1 trial of a live, attenuated Salmonella Typhimurium (VNP20009) administered by direct Intra-tumoral (IT) injection, Proc Am Soc Clin Oncol 20: abstr 1043; Nemunaitis et al., 2003, Pilot trial of genetically modified, attenuated Salmonella expressing the E. coli cytosine deaminase gene in refractory cancer patients, Cancer Gene Therapy 10: 737-744). However, one of the main differences between the murine studies (e.g., Pawelek et al., 1997, Tumor-targeted Salmonella as a novel anticancer agent, Cancer Research 57: 4537-4544; Low et al., 1999, Lipid A mutant salmonella with suppressed virulence and TNF-alpha induction retain tumor-targeting in vivo, Nature Biotechnol. 17: 37-41), is that in most patients, the levels of the bacteria were significantly lower. For example, whereas in the murine models the bacteria frequently achieved levels of 1×109 per gram of tumor tissue, in humans the levels were significantly lower, e.g., 1×106 was achieved in 3 patients (Meir et al., 2001). Generally, it has been perceived that the murine studies should precede using bacteria with the greatest amount of tumor targeting. For example, Pawelek et al., WO/1996/040238 selected “super infective” bacteria by cycling through tumors. The novel cycling and selection procedure they employed selected for increased targeting numbers which was correlated with a greater antitumor effect. A similar study was performed by Zhao et al., 2005, (Tumor-targeting bacterial therapy with amino acid auxotrophs of GFP-expressing Salmonella typhimurium. Proc Natl Acad Sci USA. 102: 755-760). In the isolation of the Salmonella strain A1-R by re-isolation form a tumor, as described by the same group in a later study (Hayashi et al., 2009, Cancer metatastasis directly eradicated by targeted therapy with a modified Salmonella Typhimurium, Journal of Cellular Biochemistry 106: 992-998). “The idea was to increase the tumor targeting capability of the bacteria.” Thus, developing and testing bacteria with enhanced tumor targeting has been a focus within the field. However, while it is desirable to find ways to improve the levels of bacteria within tumors, including the present invention, the importance of selecting an appropriate model to assess the contribution that an effector system might have in a human, or how it might improve tumor colonization levels, wherein the model should provide lower (rather than higher) levels of tumor colonization, has not been appreciated. It has not been understood that to evaluate how an effector system such as the herpes simplex thymidine kinase or cytosine deaminase described by Pawelek et al., WO/1996/040238, or those provided in the present invention, would function in humans where lower targeting numbers might be expected (at least at the outset; greater number could be achieved if the effector system is effective), such that the murine system where the tumor-targeting level is similar to the level achieved in humans represents an appropriate model.
As described by Pawelek et al., fir A is a mutation within the gene that encodes the enzyme UDP-3-O(R-30 hydroxymyristoyl)-glycocyamine N-acyltransferase, that regulates the third step in endotoxin biosynthesis (Kelley et al., 1993, J. Biol. Chem. 268:19866-19874). Salmonella typhimurium and E. coli strains bearing this type of mutation produce a lipid A that differs from wild type lipid A in that it contains a seventh fatty acid, a hexadecanoic acid (Roy and Coleman, 1994, J. Bacteriol. 176:1639-1646). Roy and Coleman demonstrated that in addition to blocking the third step in endotoxin biosynthesis, the firA′ mutation also decreases enzymatic activity of lipid A 4′ kinase that regulates the sixth step of lipid A biosynthesis. Salmonella typhimurium strain SHSO14 and its firA′ derivative SH7622 are described in Hirvas et al, 1991, EMBO J. 10:1017-1023. The genotypes of these strains are as follows: strain SHSO14 ilv-1178 thr-914 {acute over (η)}is-6116 metA22 metE551 trpB2 xyl-404 HI-b H2-e, n, x flaA66 rpsL120 rfaJ4041; strain SH7622 ilv-1178 thr-914 his-6116 metA22 metE551 trpB2 xyl-404 H1-b H2-e, n, x flahββ rpsL120 rfaJ4041, ssc-1 (firAts). A derivative of Salmonella typhimurium firA′ strain SH7622 was picked, designated SH7622-64, and used as the firA′ strain for the experiments. SH7622-64 was selected for its supersensitivity to the antibiotic novobiocin and temperature-sensitive growth, characteristics of the firA′ SH7622 strain. When studies in two different tumor models, Pawelek et al. found Salmonella/g tissue: Primary Tumor of M27 lung cancer, 2.9×106 per gram and in B16 melanoma, 3.2×105 per gram, yet retaining a similar 3200:1 tumor to liver targeting ratio. This strain, while never used in any subsequent studies represents a surprising solution to translating murine to human studies, wherein both systems tend to have the same number of bacteria per gram of target tissue.
In an alternative approach, as opposed to selecting bacteria with optimal antitumor effects as is commonly applied (Zhao et al., 2005 (Tumor-targeting bacterial therapy with amino acid auxotrophs of GFP-expressing Salmonella typhimurium. Proc Natl Acad Sci USA. 102: 755-760).), bacterial mutants are selected for suboptimal or low antitumor effects. The bacterial mutants can be generated by any standard method of mutation (e.g., UV, nitrosoguanadine, Tn10, Tn5), or can be a spontaneous mutation such as a suppressor mutation (e.g., Murray et al., 2001, Extragenic suppressors of growth defects in msbB Salmonella, J. Bacteriol. 183: 5554-5561).
The present invention provides, according to one embodiment, live attenuated therapeutic bacterial strains that express one or more therapeutic molecules together with one or more protease inhibitor polypeptides that inhibit local proteases that could deactivate the therapeutic molecules. In particular, one aspect of the invention relates to live attenuated tumor-targeted bacterial strains that may include Salmonella, group B Streptococcus or Listeria vectoring chimeric anti-tumor toxins to an individual to elicit a therapeutic response against cancer. Another aspect of the invention relates to live attenuated tumor-targeted bacterial strains that may include Salmonella, group B Streptococcus or Listeria vectoring chimeric anti-tumor toxin molecules to an individual to elicit a therapeutic response against cancer including cancer stem cells. The toxins may also be targeted to tumor matrix cells, and/or immune cells.
Whereas the prior strains of Salmonella studied in human clinical trails used either no heterologous antitumor protein (i.e., VNP20009) or an antitumor protein located within the cytoplasm of the bacterium (i.e., cytosine deaminase expressed by TAPET-CD), or secreted proteins (Bermudes et al., WO 2001/025397) the invention provides, according to some embodiments, methods and compositions comprising bacterial vectors that express, secrete, surface display and/or release protease inhibitors that protect coexpressed protease sensitive antitumor molecules that are also secreted, surface displayed and/or released into the tumor, lymphoma-containing lymphnode, leukemic bone lumen, or proximally or topically on a carcinoma or precancerous lesion for the treatment of the neoplasia.
The bacteria according to a preferred embodiment of the present invention include those modified to have little or no ability to undergo bacterial conjugation, limiting incoming and outgoing exchange of genetic material, whereas the prior art fails to limit exchange of genetic material. In addition, certain of the therapeutic molecules have co-transmission requirements (e.g., colicin proteins and colicin immunity) that are distal (i.e., genetically dissected and separated) to the therapeutic molecule location further limiting known forms of genetic exchange.
Aspects of the present invention also provide bacteria with antibody deactivating proteins that minimize the neutralizing effect of any vector specific antibodies and/or complement at the time of injection, or thereafter. The neutralizing proteins may be induced prior to injection into the host using known inducible promoters such that the bacteria are only temporarily antibody resistant, and may be optionally continuously produced thereafter at low level. Upon reaching the tumor site where the antibody penetration is poor, the bacteria no longer make the protein in sufficient quantity to have substantial spread to other tissues, except other tumor tissues and are controlled by neutralizing antibodies systemically, maintaining the safety of the bacteria.
Aspects of the present invention also provide novel chimeric bacterial toxins particularly suited for expression by gram-negative bacteria. The toxins may have added targeting ligands that render them selectively cytotoxic for tumor cells, tumor stem cells and/or matrix and tumor-infiltrating immune cells. The invention also provides means to determine optimal toxin combinations which are preferably additive or more preferably synergistic. The invention also provides means to determine the optimal combination of protein toxin with conventional cancer chemotherapeutics, liposomal agents or biologics, including immunosuppressive anti-complement agents (e.g., anti-C5B). Accordingly, administration to an individual, of a live Salmonella bacterial vector, in accordance with an aspect of the present invention, that is genetically engineered to express one or more protease inhibitors as described herein co-expressed with one or more cytotoxic proteins has the ability to establish a population in the tumor, kill tumor cells, tumor stem cells as well as tumor matrix and immune infiltrating cells, resulting in a therapeutic benefit.
Aspects of the present invention also provide novel methods to test the efficacy of the protease inhibitor and effector gene combinations described herein. The methods employ bacteria with low tumor colonization capability in order to establish the ability of low numbers of tumor-targeted bacteria to result in the desired effect, and bacteria with low inherent antitumor activity, such that the innate antitumor activity of a bacterial strain is minimized, and therefore less likely to mask the results of the effector systems.
A preferred composition will contain, for example, a sufficient amount of live bacteria expressing the protease inhibitors and cytotoxin(s) or effector proteins/peptides to produce a therapeutic response in the patient. Accordingly, the attenuated Salmonella strains described herein are both safe and useful as live bacterial vectors that can be orally administered to an individual to provide therapeutic benefit for the treatment of cancer.
Although not wishing to be bound by any particular mechanism, an effective antitumor response in humans by administration of genetically engineered, attenuated strains of Salmonella strains as described herein may be due to the ability of such mutant strains to persist within the tumor, lymphoma or leukemic bone marrow and to supply their own nutrient needs by killing tumor cells, tumor matrix and or immune infiltrating cells and further expanding the zone of the tumor that they occupy. Bacterial strains useful in accordance with a preferred aspect of the invention may carry the ability to produce a therapeutic molecule expressing plasmid or chromosomally integrated cassette that encodes and directs expression of one or more therapeutic molecules together with one or more protease inhibitors, as described herein. The protease inhibitors serve to prevent the destruction of the therapeutic molecule while within the tumor. The protease inhibitor may also have an anticlotting effect, wherein a blood clot may prevent spread of the bacteria throughout the tumor. The protease inhibitor may also have direct or indirect anticancer effects. If the cytotoxin and protease inhibitor diffuse outside of the tumor, lymph node, bone lumen, proximity to a carcinoma or other neoplasia-localized distribution, they fall below the protease inhibitory concentration, no longer inhibit proteolysis of the cytotoxins or effector genes, and are then inactivated. Thus the protease inhibitor system both increases activity and provides tumor specificity.
The serovars of S. enterica that may be used as the attenuated bacterium of the live compositions described in accordance with various embodiments herein include, without limitation, Salmonella enterica serovar Typhimurium (“S. typhimurium”), Salmonella montevideo, Salmonella enterica serovar Typhi (“S. typhi”), Salmonella enterica serovar Paratyphi B (“S. paratyphi 13”), Salmonella enterica serovar Paratyphi C (“S. paratyphi C”), Salmonella enterica serovar Hadar (“S. hadar”), Salmonella enterica serovar Enteriditis (“S. enteriditis”), Salmonella enterica serovar Kentucky (“S. kentucky”), Salmonella enterica serovar Infantis (“S. infantis”), Salmonella enterica serovar Pullorurn (“S. pullorum”), Salmonella enterica serovar Gallinarum (“S. gallinarum”), Salmonella enterica serovar Muenchen (“S. muenchen”), Salmonella enterica serovar Anaturn (“S. anatum”), Salmonella enterica serovar Dublin (“S. dublin”), Salmonella enterica serovar Derby (“S. derby”), Salmonella enterica serovar Choleraesuis var. kunzendorf (“S. cholerae kunzendorf”), and Salmonella enterica serovar minnesota (S. minnesota). A preferred serotype for the treatment of bone marrow related diseases is S dublin.
By way of example, live bacteria in accordance with aspects of the invention include known strains of S. enterica serovar Typhimurium (S. typhimurium) and S. enterica serovar Typhi (S. typhi) which are further modified as provided by the invention to form vectors for the prevention and/or treatment of neoplasia. Such Strains include Ty21a, CMV906, CMV908, CMV906-htr, CMV908-htr, Ty800, aroA−/serC−, holavax, M01ZH09, VNP20009. These strains contain defined mutations within specific serotypes of bacteria. The invention also includes the use of these same mutational combinations contained within alternate serotypes or strains in order to avoid immune reactions which may occur in subsequent administrations. In a preferred embodiment, S. Typhimurium, S. motevidio, and S. typhi which have non-overlapping O-antigen presentation (e.g., S. typhimurium is O-1, 4, 5, 12 and S. typhi is Vi, S. montevideo is O-6, 7) may be used. Thus, for example, S. typhimurium is a suitable serotype for a first injection and another serotype such as S. typhi or S. montivideo are used for a second injection and third injections. Likewise, the flagellar antigens are also selected for non-overlapping antigenicity between different injections. The flagellar antigen may be H1 or H2 or no flagellar antigen, which, when combined with the three different 0-antigen serotypes, provides three completely different antigentic profiles.
Novel strains of Salmonella are also encompassed that are, for example, attenuated in virulence by mutations in a variety of metabolic and structural genes. The invention therefore may provide a live composition for treating cancer comprising a live attenuated bacterium that is a serovar of Salmonella enterica comprising an attenuating mutation in a genetic locus of the chromosome of said bacterium that attenuates virulence of said bacterium and wherein said attenuating mutation is a combinations of other known attenuating mutations. Other attenuating mutation useful in the Salmonella bacterial strains described herein may be in a genetic locus selected from the group consisting of phoP, phoQ, edt, cya, crp, poxA, rpoS, htrA, nuoG, pmi, pabA, pts, damA, met, cys, pur, purA, purB, purl, purF, leu, ilv, arg, lys, zwf, aroA, aroB, aroC, aroD, serC, gua, cadA, rfc, rjb, rfa, ompR, msbB, pfkAB, crr, glk, ptsG, ptsHl, manXYZ and combinations thereof. The strain may also contain a mutation known as “Suwwan”, which is an approximately 100 kB deletion between two IS200 elements. The strain may also carry a defective thioredoxin gene (trxA−; which may be used in combination with a TrxA fusion), a defective glutathione oxidoreductase (gor−) and optionally, overexpress a protein disulfide bond isomerase (DsbA). The strain may also be engineered to express invasion and/or escape genes tlyA, tlyC patl and pld from Rickettsia, whereby the bacteria exhibit enhanced invasion and/or excape from the phagolysosome (Witworth et al., 2005, Infect. Immun. 73: 6668-6673), thereby enhancing the activity of the effector genes described below. The strain may also be engineered to be deleted in an avirulence (anti-virulence) gene, such as zirTS, grvA and/or pcgL, or express the E. coli lac repressor, which is also an avirulence gene in order to compensate for over-attenuation. The strain may also express SlyA, a known transcriptional activator. In a preferred embodiment, the Salmonella strains are msbB mutants (msbB−). In a more preferred embodiment, the strains are msbB- and Suwwan. In a more preferred embodiment the strains are msbB−, Suwwan and zwf−. Zwf has recently been shown to provide resistance to CO2, acidic pH and osmolarity (Karsten et al., 2009, BMC Microbiology August 18; 9:170). Use of the msbB zwf genetic combination is also particularly preferred for use in combination with administered carbogen (an oxygen carbon dioxide mixture that may enhance delivery of therapeutic agents to a tumor). In a more preferred embodiment, the strains are msbB−, Suwwan, zwf− and trxA−. In a most preferred embodiment, the strains are msbB−, Suwwan, zwf−, trxA− and gor−.
The invention also encompasses according to a preferred embodiment, gram-positive bacteria. Preferred bacteria of the invention are group B Streptococcus including S. agalaciae, and Listeria species including L. monocytogenes. It is known to those skilled in the arts that minor variations in molecular biology techniques such as use of gram-positive origins of replication, gram-positive signal sequences gram-positive promoters (e.g., Lactococcus expression, Mohamadzadeh et al., PNAS Mar. 17, 2009 vol. 106 no. 11 4331-4336; Geertsma and Poolman, 2007, High-throughput cloning and expression in recalcitrant bacteria, Nature Methds 4: 705-707; Prudhomme et al., 2006, Antibiotic stress induces genetic transformability in the human pathogen Streptococcus pneumoniae, Science 313: 89-92; WO/2009/139985 Methods and materials for gastrointestinal delivery of a pthogentoxin binding agent; van Asseldonk, M et al. 1990, Cloning of usp45, a gene encoding a secreted protein from Lacotococcs lactis subsp. lactis MG1363 Gene 95, 15-160; Kim et al., J Appl Microbiol. 2008 June; 104(6):1636-43. Epub 2008 Feb. 19. Display of heterologous proteins on the surface of Lactococcus lactis using the H and W domain of PrtB from Lactobacillus delburueckii subsp. bulgaricus as an anchoring matrix; Lee et al., 1999, Characterization of Enterococcus faecalis alkaline phosphatase and use in identifying Streptococcus agalactiae secreted proteins, J. Bacteriol 181(18):5790-9.) are required and substituted as needed.
Mutational backgrounds of Listeria vectors include those previously isolated, including the delta-actA strain 142 (Wallecha et al., 2009, Construction and characterization of an attenuated Listera monocytogenes strain for clinical use in cancer immunotherapy, Clin Vaccine Immunol 16: 96-103), the double D-alanine (D-ala) strain described by Jiang et al., 2007, Vaccine 16: 7470-7479, Yoshimura et al., 2006, Cancer Research 66: 1096-1104, Lenz et al., 2008, Clinical and Vaccine Immunology 15: 1414-1419, Roberts et al., 2005, Definition of genetically distinct attenuation mechanisms in naturally virulent Listeria monotytogenes by comparative cell culture and molecular characterization, Appl. Environ. Microbiol 71: 3900-3910, the actA, prfA strain by Yan et al., Infect Immun 76: 3439-3450, and those described by Portnoy et al., EP1513924 and Portnoy et al., WO/2003/102168.
Mutational backgrounds of the group B Streptococcus, S. agalactiae, include wild type (no mutations), of any of the nine serotypes that depend on the immunologic reactivity of the polysaccharide capsule and among nine serotypes, preferably types Ia, Ib, II, III, and V capable of being invasive in humans. The strain may be deleted in the beta-heolysin/cytolysin (beta-H/C), including any member of the cly opperon (clyXDGZAEFLJK SEQ ID NO:4), preferably the clyE gene, or the CspA protease associated with virulence (Shelver and Bryan, 2008, J Bacteriol. 136: 129-134), or the hyaluronate lyse C5a peptidase CAMP factor, oligopeptidase (Liu and Nizet 2004, Frontiers in Biosci 9: 1794-1802; Doran and Nizet 2004, Mol Microbiol 54: 23-31; Herbert et al., 2004, Curr Opin Infect Dis 17: 225-229). The strains may further have mutations in metabolic genes pur, purA, aroA, aroB, aroC, aroD, pgi (glucose-6-phosphate isomerase), fructose-1,6-bisphosphatase, ptsH, ptsI, and/or one or more amino acid transporters and/or amino acid permeases. In a preferred embodiment, the strain is clyE deficient.
Other bacterial strains are also encompassed, including non-pathogenic bacteria of the gut such as E. coli strains, Bacteriodies, Bifidobacterium and Bacillus, attenuated pathogenic strains of E. coli including enteropathogenic and uropathogenic isolates, Enterococcus sp. and Serratia sp. as well as attenuated Shigella sp., Yersinia sp., Streptococcus sp. and Listeria sp. Bacteria of low pathogenic potential to humans such as Clostridium spp. and attenuated Clostridium spp., Proteus mirabilis, insect pathogenic Xenorhabdus sp., Photorhabdus sp. and human wound Photorhabdus (Xenorhabdus) are also encompassed. Probiotic strains of bacteria are also encompassed, including Lactobacillus sp., Lactococcus sp., Leuconostoc sp., Pediococcus sp., Streptococcus sp., Streptococcus agalactiae, Lactococcus sp., Bacillus sp., Bacillus natto, Bifidobacterium sp., Bacteroides sp., and Escherichia coli such as the 1917 Nissel strain.
The invention also provides, according to one embodiment, a process for preparing genetically stable therapeutic bacterial strains comprising genetically engineering the therapeutic genes of interest into a bacterially codon optimized expression sequence within a bacterial plasmid expression vector, endogenous virulence (VIR) plasmid (of Salmonella sp), or chromosomal localization expression vector for any of the deleted genes or IS200 genes, defective phage or intergenic regions within the strain and further containing engineered restriction endonuclease sites such that the bacterially codon optimized expression gene contains subcomponents which are easily and rapidly exchangeable, and the bacterial strains so produced. Administration of the strain to the patient is therapeutic for the treatment of cancer.
The present invention provides, for example, and without limitation, live bacterial compositions that are genetically engineered to express one or more protease inhibitors combined with antitumor effector molecules for the treatment of cancers or neoplasias.
According to various embodiments, the invention provides pharmaceutical compositions comprising pharmaceutically acceptable carriers and one or more bacterial mutants. The invention also provides pharmaceutical compositions comprising pharmaceutically acceptable carriers and one or more bacterial mutants comprising nucleotide sequences encoding one or more therapeutic molecules. The pharmaceutical compositions of the invention may be used in accordance with the methods of the invention for the prophylaxis or treatment of neoplastic disease. Preferably, the bacterial mutants are attenuated by introducing one or more mutations in one or more genes in the lipopolysaccharide (LPS) biosynthetic pathway (for gram-negative bacteria), and optionally one or more mutations to auxotrophy for one or more nutrients or metabolites.
In one embodiment, a pharmaceutical composition comprises a pharmaceutically acceptable carrier and one or more bacterial mutants, wherein said attenuated bacterial mutants are facultative anaerobes or facultative aerobes. In another embodiment, a pharmaceutical composition comprises a pharmaceutically acceptable carrier and one or more attenuated bacterial mutants, wherein said attenuated bacterial mutants are facultative anaerobes or facultative aerobes and comprise one or more nucleic acid molecules encoding one or more therapeutic molecules where the therapeutic molecule is chimeric toxin.
In one embodiment, a pharmaceutical composition comprises a pharmaceutically acceptable carrier and one or more bacterial mutants, wherein said attenuated bacterial mutants are facultative anaerobes or facultative aerobes. In another embodiment, a pharmaceutical composition comprises a pharmaceutically acceptable carrier and one or more attenuated bacterial mutants, wherein said attenuated bacterial mutants are facultative anaerobes or facultative aerobes and comprise one or more nucleic acid molecules encoding one or more therapeutic molecules where the therapeutic molecule is a molecule with direct anti-cancer lytic capability.
In one embodiment, a pharmaceutical composition comprises a pharmaceutically acceptable carrier and one or more bacterial mutants, wherein said attenuated bacterial mutants are facultative anaerobes or facultative aerobes. In another embodiment, a pharmaceutical composition comprises a pharmaceutically acceptable carrier and one or more attenuated bacterial mutants, wherein said attenuated bacterial mutants are facultative anaerobes or facultative aerobes and comprise one or more nucleic acid molecules encoding one or more therapeutic molecules where the therapeutic molecule has direct anti-cancer cytotoxic or inhibitory ability.
In one embodiment, a pharmaceutical composition comprises a pharmaceutically acceptable carrier and one or more bacterial mutants, wherein said attenuated bacterial mutants are facultative anaerobes or facultative aerobes. In another embodiment, a pharmaceutical composition comprises a pharmaceutically acceptable carrier and one or more attenuated bacterial mutants, wherein said attenuated bacterial mutants are facultative anaerobes or facultative aerobes and comprise one or more nucleic acid molecules encoding one or more therapeutic molecules where the therapeutic molecule has direct anti-cellular activity against other cells of a tumor, including neutrophils, macrophages, T-cells, stromal cells, endothelial cells (tumor vasculature) and/or cancer stem cells.
In one embodiment, a pharmaceutical composition comprises a pharmaceutically acceptable carrier and one or more bacterial mutants, wherein said attenuated bacterial mutants are facultative anaerobes or facultative aerobes. In another embodiment, a pharmaceutical composition comprises a pharmaceutically acceptable carrier and one or more attenuated bacterial mutants, wherein said attenuated bacterial mutants are facultative anaerobes or facultative aerobes and comprise one or more nucleic acid molecules encoding one or more therapeutic molecules co-expressed with a protease inhibitor.
In a specific embodiment, a pharmaceutical composition comprises a pharmaceutically acceptable carrier and one or more attenuated bacterial mutants, wherein the bacterial mutants are a Salmonella sp. In another specific embodiment, a pharmaceutical composition comprises a pharmaceutically acceptable carrier and one or more attenuated stress-resistant gram-negative bacterial mutants, wherein the attenuated stress-resistant gram-negative bacterial mutants are a Salmonella sp., and the attenuated stress-resistant gram-negative bacterial mutants comprise one or more nucleic acid molecules encoding one or more therapeutic molecules, prodrug converting enzymes, metabolite degrading enzymes, lytic peptides, DNAases or anti-cancer peptides.
In a specific embodiment, a pharmaceutical composition comprises a pharmaceutically acceptable carrier and one or more attenuated bacterial mutants, wherein the bacterial mutants are a Streptococcus sp. In another specific embodiment, a pharmaceutical composition comprises a pharmaceutically acceptable carrier and one or more attenuated gram-positive bacterial mutants, wherein the attenuated gram-positive bacterial mutants are a Streptococcus sp., and the attenuated gram-positive bacterial mutants comprise one or more nucleic acid molecules encoding one or more therapeutic molecules, prodrug converting enzymes, metabolite degrading enzyme, lytic peptides, DNAases or anti-cancer peptides.
In a specific embodiment, a pharmaceutical composition comprises a pharmaceutically acceptable carrier and one or more attenuated bacterial mutants, wherein the bacterial mutants are a Listeria sp. In another specific embodiment, a pharmaceutical composition comprises a pharmaceutically acceptable carrier and one or more attenuated bacterial mutants, wherein the attenuated gram-positive bacterial mutants are a Listeria sp., and the attenuated gram-positive bacterial mutants comprise one or more nucleic acid molecules encoding one or more therapeutic molecules, prodrug converting enzymes, metabolite degrading enzyme, lytic peptides, DNAases or anti-cancer peptides.
The present invention encompasses treatment protocols that provide a better therapeutic effect than current existing anticancer therapies. In particular, the present invention provides methods for prophylaxis or treatment of neoplastic diseases in a subject comprising administering to said subject and one or more bacterial mutants. The present invention also provides methods for the prophylaxis or treatment of neoplastic diseases in a subject comprising administering to said subject one or more bacterial mutants, wherein said bacterial mutants comprise one or more nucleic acid molecules encoding one or more therapeutic molecules together with one or more protease inhibitors.
The methods of the present invention permit lower dosages and/or less frequent dosing of the bacterial mutants to be administered to a subject for prophylaxis or treatment of neoplastic disease to achieve a therapeutically effective amount of one or more therapeutic molecules. In a preferred embodiment, the genetically modified bacteria are used in animals, including humans, dogs, cats, and/or horses for protection or treatment against neoplastic diseases.
Accordingly, when administered to an individual, a live Salmonella, Listeria or Streptococcus bacterial vector or therapeutic, in accordance with the present invention, that is genetically engineered to express one or more anti-neoplastic disease molecules or molecules against other cells within the neoplastic milieu in combination with a protease inhibitor and have improved stability due to the presence of the protease inhibitor and result in anti-neoplastic activity.
In order that the invention may be more fully understood, the following terms are defined.
As used herein, “attenuated”, “attenuation”, and similar terms refer to elimination or reduction of the natural virulence of a bacterium in a particular host organism, such as a mammal.
“Virulence” is the degree or ability of a pathogenic microorganism to produce disease in a host organism. A bacterium may be virulent for one species of host organism (e.g., a mouse) and not virulent for another species of host organism (e.g., a human). Hence, broadly, an “attenuated” bacterium or strain of bacteria is attenuated in virulence toward at least one species of host organism that is susceptible to infection and disease by a virulent form of the bacterium or strain of the bacterium.
As used herein, the term “genetic locus” is a broad term and comprises any designated site in the genome (the total genetic content of an organism) or in a particular nucleotide sequence of a chromosome or replicating nucleic acid molecule (e.g., a plasmid), including but not limited to a gene, nucleotide coding sequence (for a protein or RNA), operon, regulon, promoter, inducible promoters (including tetracycline, arabinose, (EP1,655,370 A1, expressly incorporated in its entirety herein), salicylic acid, hypoxic, tumor cell specific inducible promoters) regulatory site (including transcriptional terminator sites, ribosome binding sites, transcriptional inhibitor binding sites, transcriptional activator binding sites), origin of replication, intercistronic region, and portions therein. It is understood that all protein expression constructs require a stop signal. A genetic locus may be identified and characterized by any of a variety of in vivo and/or in vitro methods available in the art, including but not limited to, conjugation studies, crossover frequencies, transformation analysis, transfection analysis, restriction enzyme mapping protocols, nucleic acid hybridization analyses, polymerase chain reaction (PCR) protocols, nuclease protection assays, and direct nucleic acid sequence analysis
The terms “oral”, “enteral”, “enterally”, “orally”, “non-parenteral”, “non-parenterally”, and the like, refer to administration of a compound or composition to an individual by a route or mode along the alimentary canal. Examples of “oral” routes of administration of a vaccine composition include, without limitation, swallowing liquid or solid forms of a vaccine composition from the mouth, administration of a vaccine composition through a nasojejunal or gastrostomy tube, intraduodenal administration of a vaccine composition, and rectal administration, e.g., using suppositories that release a live bacterial vaccine strain described herein to the lower intestinal tract of the alimentary canal.
The term “recombinant” is used to describe non-naturally altered or manipulated nucleic acids, cells transformed, electroporated, or transfected with exogenous nucleic acids, and polypeptides expressed non-naturally, e.g., through manipulation of isolated nucleic acids and transformation of cells. The term “recombinant” specifically encompasses nucleic acid molecules that have been constructed, at least in part, in vitro using genetic engineering techniques, and use of the term “recombinant” as an adjective to describe a molecule, construct, vector, cell, polypeptide, or polynucleotide specifically excludes naturally existing forms of such molecules, constructs, vectors, cells, polypeptides, or polynucleotides.
Cassette, or expression cassette is used to describe a nucleic acid sequence comprising (i) a nucleotide sequence encoding a promoter, (ii) a first unique restriction enzyme cleavage site located 5′ of the nucleotide sequence encoding the promoter, and (iii) a second unique restriction enzyme cleavage site located 3′ of the nucleotide sequence encoding the promoter. The cassette may also contain a multiple cloning site (MCS) and transcriptional terminator within the 5′ and 3′ restriction endonuclease cleavage sites. The cassette may also contain cloned genes of interest.
As used herein, the term “salmonella” (plural, “salmonellae”) and “Salmonella” refers to a bacterium that is a serovar of Salmonella enterica. A number of serovars of S. enterica are known. Particularly preferred salmonella bacteria useful in the invention are attenuated strains of Salmonella enterica serovar Typhimurium (“S. typhimurium”) and serovar Typhi (“S. typhi”) as described herein.
As used herein, the terms “strain” and “isolate” are synonymous and refer to a particular isolated bacterium and its genetically identical progeny. Actual examples of particular strains of bacteria developed or isolated by human effort are indicated herein by specific letter and numerical designations (e.g. strains Ty21a, CMV906, CMV908, CMV906-htr, CMV908-htr, Ty800, holavax, M01ZH09, VNP20009).
The definitions of other terms used herein are those understood and used by persons skilled in the art and/or will be evident to persons skilled in the art from usage in the text.
As used herein, the terms “homology” and “identity” are used interchangeably, but homology for proteins can include conservative amino acid changes. In general, to identify corresponding positions, the sequences of amino acids are aligned so that the highest order match is obtained (see, e.g.: Computational Molecular Biology, Lesk, A. M., ed., Oxford University Press, New York, 1988; Biocomputing: Informatics and Genome Projects, Smith, D. W., ed., Academic Press, New York, 1993; Computer Analysis of Sequence Data, Part I, Griffin, A. M., and Griffin, H. G., eds., Humana Press, New Jersey, 1994; Sequence Analysis in Molecular Biology, von Heinje, G., Academic Press, 1987; and Sequence Analysis Primer. Gribskov, M. and Devereux, J., eds., M Stockton Press, New York, 1991; Carillo et al. (1988) SIAM J Applied Math 48:1073).
As use herein, “sequence identity” refers to the number of identical amino acids (or nucleotide bases) in a comparison between a test and a reference polypeptide or polynucleotide. Homologous polypeptides refer to a pre-determined number of identical or homologous amino acid residues. Homology includes conservative amino acid substitutions as well identical residues. Sequence identity can be determined by standard alignment algorithm programs used with default gap penalties established by each supplier. Homologous nucleic acid molecules refer to a pre-determined number of identical or homologous nucleotides. Homology includes substitutions that do not change the encoded amino acid (i.e., “silent substitutions”) as well identical residues. Substantially homologous nucleic acid molecules hybridize typically at moderate stringency or at high stringency all along the length of the nucleic acid or along at least about 70%, 80% or 90% of the full-length nucleic acid molecule of interest. Also contemplated are nucleic acid molecules that contain degenerate codons in place of codons in the hybridizing nucleic acid molecule. (For determination of homology of proteins, conservative amino acids can be aligned as well as identical amino acids; in this case, percentage of identity and percentage homology vary). Whether any two nucleic acid molecules have nucleotide sequences (or any two polypeptides have amino acid sequences) that are at least 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% “identical” can be determined using known computer algorithms such as the “FAST A” program, using for example, the default parameters as in Pearson et al. Proc. Natl. Acad. Sci. USA 85: 2444 (1988) (other programs include the GCG program package (Devereux, J., et al., Nucleic Acids Research 12(1): 387 (1984)), BLASTP, BLASTN, FASTA (Atschul, S. F., et al., J. Molec. Biol. 215:403 (1990); Guide to Huge Computers, Martin J. Bishop, ed., Academic Press, San Diego (1994), and Carillo et al. SIAM J Applied Math 48: 1073 (1988)). For example, the BLAST function of the National Center for Biotechnology Information database can be used to determine identity. Other commercially or publicly available programs include, DNAStar “MegAlign” program (Madison, Wis.) and the University of Wisconsin Genetics Computer Group (UWG) “Gap” program (Madison Wis.)). Percent homology or identity of proteins and/or nucleic acid molecules can be determined, for example, by comparing sequence information using a GAP computer program (e.g., Needleman et al. J. MoI. Biol. 48: 443 (1970), as revised by Smith and Waterman (Adv. Appl. Math. 2: 482 (1981)). Briefly, a GAP program defines similarity as the number of aligned symbols (i.e., nucleotides or amino acids) which are similar, divided by the total number of symbols in the shorter of the two sequences. Default parameters for the GAP program can include: (1) a unary comparison matrix (containing a value of 1 for identities and 0 for non identities) and the weighted comparison matrix of Gribskov et al. Nucl. Acids Res. 14: 6745 (1986), as described by Schwartz and Dayhoff, eds., Atlas of Protein Sequence and Structure, National Biomedical Research Foundation, pp. 353-358 (1979); (2) a penalty of 3.0 for each gap and an additional 0.10 penalty for each symbol in each gap; and (3) no penalty for end gaps.
Therefore, as used herein, the term “identity” represents a comparison between a test and a reference polypeptide or polynucleotide. In one non-limiting example, “at least 90% identical to” refers to percent identities from 90 to 100% relative to the reference polypeptides. Identity at a level of 90% or more is indicative of the fact that, assuming for exemplification purposes a test and reference polynucleotide length of 100 amino acids are compared, no more than 10% (i.e., 10 out of 100) of amino acids in the test polypeptide differs from that of the reference polypeptides. Similar comparisons can be made between a test and reference polynucleotides. Such differences can be represented as point mutations randomly distributed over the entire length of an amino acid sequence or they can be clustered in one or more locations of varying length up to the maximum allowable, e.g., 10/100 amino acid difference (approximately 90% identity). Differences are defined as nucleic acid or amino acid substitutions, insertions or deletions. At the level of homologies or identities above about 85-90%, the result should be independent of the program and gap parameters set; such high levels of identity can be assessed readily, often without relying on software.
The phrase or term “substantially identical” or “homologous” or similar varies with the context as understood by those skilled in the relevant art and generally means at least 60% or 70%, preferably means at least 80%, more preferably at least 90%, and most preferably at least 95%, 96%, 97%, 98%, 99% or greater identity. As used herein, substantially identical to a product means sufficiently similar so that the property of interest is sufficiently unchanged so that the substantially identical product can be used in place of the product.
As used herein, Salmonella encompasses all Salmonella species, including: Salmonella typhi, Salmonella choleraesuis, and Salmonella enteritidis. Serotypes of Salmonella are also encompassed herein, for example, typhimurium, a subgroup of Salmonella enteritidis, commonly referred to as Salmonella typhimurium.
As used herein, the term “analog” refers to a polypeptide that possesses a similar or identical function as a primary or secondary effector molecule but does not necessarily comprise a similar or identical amino acid sequence of a primary or secondary effector molecule, or possess a similar or identical structure of a primary or secondary effector molecule. A polypeptide that has a similar amino acid sequence refers to a polypeptide that satisfies at least one of the following: (a) a polypeptide having an amino acid sequence that is at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least .sup.85%, at least 90%, at least 95% or at least 99% identical to the amino acid sequence of a primary or secondary effector molecule described herein; (b) a polypeptide encoded by a nucleotide sequence that hybridizes under stringent conditions to a nucleotide sequence encoding a primary or secondary effector molecule described herein of at least 5 contiguous amino acid residues, at least 10 contiguous amino acid residues, at least 15 contiguous amino acid residues, at least 20 contiguous amino acid residues, at least 25 contiguous amino acid residues, at least 40 contiguous amino acid residues, at least 50 contiguous amino acid residues, at least 60 contiguous amino residues, at least 70 contiguous amino acid residues, at least 80 contiguous amino acid residues, at least 90 contiguous amino acid residues, at least 100 contiguous amino acid residues, at least 125 contiguous amino acid residues, at least 150 contiguous amino acid residues, at least 200 contiguous amino acid residues, at least 300 contiguous amino acid residues, at least 500 contiguous amino acid residues, or at least 1000 contiguous amino acid residues; and (c) a polypeptide encoded by a nucleotide sequence that is at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95% or at least 99% identical to the nucleotide sequence encoding a primary or secondary effector molecule described herein. A polypeptide with similar structure to a primary or secondary effector molecule described herein refers to a polypeptide that has a similar secondary, tertiary or quaternary structure of primary or secondary effector molecule described herein. The structure of a polypeptide can be determined by methods known to those skilled in the art, including but not limited to, peptide sequencing, X-ray crystallography, nuclear magnetic resonance, circular dichroism, and crystallographic electron microscopy.
The phrase “anti-angiogenic factor” relates to any proteinaceous molecule which has anti-angiogenic activity, or a nucleic acid encoding such a proteinaceous molecule. In a preferred embodiment, the anti-angiogenic factor is a peptide fragment or cleavage fragment of a larger protein.
The term “attenuation” relates to a modification so that a microorganism or vector is less pathogenic. The end result of attenuation is that the risk of toxicity as well as other side-effects is decreased, when the microorganism or vector is administered to the patient.
The term “bacteriocin” relates to a bacterial proteinaceous toxin with selective activity, in that the bacterial host is immune to the toxin. Bacteriocins may be encoded by the bacterial host genome or by a plasmid, may be toxic to a broad or narrow range of other bacteria, and may have a simple structure comprising one or two subunits or may be a multi-subunit structure. In addition, a host expressing a bacteriocin has immunity against the bacteriocin. Bacteriocins include a number of bacterial antibiotics, including colicins and microcins.
The phrase “chelating agent sensitivity” is defined as the effective concentration at which bacteria proliferation is affected, or the concentration at which the viability of bacteria, as determined by recoverable colony forming units (c.f.u.), is reduced.
As used herein, the term “derivative” in the context of a “derivative of a polypeptide” refers to a polypeptide that comprises an amino acid sequence of a polypeptide, such as a primary or secondary effector molecule, which has been altered by the introduction of amino acid residue substitutions, deletions or additions, or by the covalent attachment of any type of molecule to the polypeptide.
The term “derivative” as used herein in the context of a “derivative of a primary or a secondary effector molecule” refers to a primary or secondary effector molecule which has been so modified, e.g., by the covalent attachment of any type of molecule to the primary or secondary molecule. For example, but not by way of limitation, a primary or secondary effector molecule may be modified, e.g., by proteolytic cleavage, linkage to a cellular ligand or other protein, etc. A derivative of a primary or secondary effector molecule may be modified by chemical modifications using techniques known to those of skill in the art (e.g., by acylation, phosphorylation, carboxylation, glycosylation, selenium modification and sulfation). Further, a derivative of a primary or secondary effector molecule may contain one or more non-classical amino acids. A polypeptide derivative possesses a similar or identical function as a primary or secondary effector molecule described herein.
The term “derivative” in the context of a “derivative of an msbB.sup.-attenuated tumor-targeted Salmonella mutant” refers to a modified msbB Salmonella mutant as defined in International Publication No. WO 99/13053 at page 17, incorporated herein by reference in its entirety.
As used herein, the term “fragment” refers to a peptide or polypeptide comprising an amino acid sequence of at least 2 contiguous amino acid residues, at least 5 contiguous amino acid residues, at least 10 contiguous amino acid residues, at least 15 contiguous amino acid residues, at least 20 contiguous amino acid residues, at least 25 contiguous amino acid residues, at least 40 contiguous amino acid residues, at least 50 contiguous amino acid residues, at least 60 contiguous amino residues, at least 70 contiguous amino acid residues, at least contiguous 80 amino acid residues, at least contiguous 90 amino acid residues, at least contiguous 100 amino acid residues, at least contiguous 125 amino acid residues, at least 150 contiguous amino acid residues, at least contiguous 175 amino acid residues, at least contiguous 200 amino acid residues, at least contiguous 250 amino acid residues, at least contiguous 300 amino acid residues, at least contiguous 500 amino acid residues, or at least contiguous 1000 amino acid residues of the amino acid sequence of a primary or secondary effector molecule.
As used herein, the term “functional fragment” refers to a fragment of a primary or secondary effector molecule that retains at least one function of the primary or secondary effector molecule (e.g., enzymatic activity, anti-angiogenic activity, or anti-tumor activity of the effector molecule).
As used herein, the term “fusion protein” refers to a polypeptide that comprises an amino acid sequence of primary or secondary effector molecule, or functional fragment or derivative thereof, and an amino acid sequence of a heterologous polypeptide (e.g., a non-primary or non-secondary effector molecule).
As used herein, “purified” attenuated tumor-targeted bacterial strain is substantially free of contaminating proteins or amino acids (e.g., debris from dead bacteria), or media. An attenuated tumor-targeted bacterial strain that is substantially free of contaminating proteins or amino acids includes preparations of attenuated tumor-targeted bacteria having less than about 30%, 20%, 10%, or 5% (by dry weight) of contaminating protein or amino acid.
As used herein, a “release factor” includes any protein, or functional portion thereof which enhances release of bacterial components. In one embodiment a release factor is a bacteriocin release protein. Release factors include, but are not limited to, the bacteriocin release protein (BRP) encoded by the cloacin D13 plasmid, the BRPs encoded by the colicin E1-E9 plasmids, or BRPs encoded by the colicin A, N or D plasmids.
“Septic shock” is a state of internal organ failure due to a complex cytokine cascade, initiated by TNF-α. The relative ability of a microorganism or vector to elicit TNF-α. is used as one measure to indicate its relative ability to induce septic shock.
“Tumor-targeted” is defined as the ability to preferentially localize to a cancerous or neoplastic target cell or tissue relative to a non-cancerous counterpart cell or tissue and replicate. Thus, a tumor-targeted bacteria such as Salmonella preferentially attaches to, infects and/or remains viable in the cancerous target cell or the tumor, carcinoma, lymphoma or leukemic bone marrow environment.
“Virulence” is a relative term describing the general ability to cause disease, including the ability to kill normal cells or the ability to elicit septic shock (see specific definition below).
As used herein, the strain designations VNP20009 (International Publication No. WO 99/13053), YS1646 and 41.2.9 are used interchangeably and each refer to the strain deposited with the American Type Culture Collection and assigned Accession No. 202165. As used herein, the strain designations YS1456 and 8.7 are used interchangeably and each refer to the strain deposited with the American Type Culture Collection and assigned Accession No. 202164.5.
The present invention provides, according to various embodiments, live attenuated therapeutic bacterial strains that express one or more therapeutic molecules together with one or more protease inhibitor polypeptides that inhibit local proteases that could deactivate the therapeutic molecules. In particular, one aspect of the invention relates to live attenuated tumor-targeted bacterial strains that may include Salmonella, Streptococcus or Listeria vectoring novel chimeric anti-tumor toxins to an individual to elicit a therapeutic response against cancer. The types of cancer may generally include solid tumors, carcinomas, leukemias, lymphomas and multiple myelomas. In addition, certain of the therapeutic molecules have co-transmission requirements that are genetically unlinked to the therapeutic molecule(s), limiting certain forms of genetic exchange, i.e., distal to rather than adjacent to). Another aspect of the invention relates to live attenuated tumor-targeted bacterial strains that may include Salmonella, Streptococcus, and Listeria that encode anti-neoplastic molecules to an individual to elicit a therapeutic response against cancers including cancer stem cells, immune infiltrating cells and or tumor matrix cells. The therapeutic agents also relates to reducing or eliminating the bacteria's ability to undergo conjugation, further limiting incoming and outgoing exchange of genetic material.
For reasons of clarity, the detailed description is divided into the following subsections: protease sensitivity; protease inhibitors; targeting ligands; lytic peptides; antibody deactivating proteins; chimeric bacterial toxins; expression of proteins without generating chimeras; limiting bacterial conjugation; expression of DNase, or colicin DNase as active extracellular enzymes; co-expression of protease inhibitors with bacterial toxins; co-expression of protease inhibitors with bacterial toxins; segregation of required colicin cofactors; characteristics of therapeutic bacteria.
6.1. Protease Sensitivity.
The therapeutic proteins of the invention are sensitive to extracellular proteases (in contrast pro-aerolysin or urokinase chimeric toxins that are activated by proteases). Proteases may be classified by several different systems, for example, into six groups: serine proteases, threonine proteases, cysteine proteases, aspartate proteases, metalloproteases and glutamic acid proteases. Alternatively, proteases may be classified by the optimal pH in which they are active: acid proteases, neutral proteases, and basic proteases (or alkaline proteases). Protease digestion sites may be added to the therapeutic agent to enhance protease sensitivity when coexpressed with a corresponding protease inhibitor as discussed below within the localized confines of the bacteria and its surroundings, e.g., within a solid tumor, carcinoma, lymphoma or leukemic bone marrow, the extracellular protease sensitive protein is protected from degradation whereas if it and its protective inhibitor leak outside the confines, the inhibitor falls below the level necessary to cause inhibition and the effector molecule is degraded. Preferred proteases for conferring greater sensitivity are those that are under-expressed in tumors and over-expressed in normal tissues. However, many proteases are over-expressed within tumors. Proteases for which sensitivity sights may be added and for which protease inhibitors may be co-expressed include but are not limited to those described by Edwards et al. (eds) 2008 (The Cancer Degradome: Proteases and Cancer Biology, Springer, 926 pp). as well as proteases of lysosomes and the gut such as tissue plasminogen activator, activated protein C, factor Xa, granzyme (A, B, M), cathepsins (e.g., cathepsin B and S), thrombin, plasmin, urokinase, matrix metaloproteaes (types 1-28) membrane matrix metalloproteases (types 1-4), prostate specific antigens (PSA; kallikrein 3-related peptidase), kallikrein 2, elastin, trypsin, chymotrypsin. A variety of protease assays are known to those skilled in the arts. Many protease assays are commercially available, such as the QuantiCleave Fluorescent Protease Assay Kit, and QuantiCleave Protease Assay Kit II (Thermo/Fisher, Rockford, Ill.), Protease Assay Kit (G Biosciences, Maryland Heights, Mo.), PepTag Protease Assay (Promega, Madison, Wis.; 1993 Promega Notes Magazine 44: 2), Viral Protease Assay Kits (AnaSpec, Fremont, Calif.), Protease Assay Kit from Calbiochem (Calbiochem, San Diego, Calif.). Standard laboratory techniques to measure protease activity, and thus the reduced activity of protease inhibitors, include densitometric, spectrophotometric, colorometric and fluorometric assays, sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis (PAGE), two dimensional SDS-PAGE, high pressure liquid chromatography (HPLC) and mass spectroscopy (mass-spec). High sensitivity methods have also been described US Patent Pub. 2009/0294288.
Protease sensitivity may be enhance either by the complete addition of protease cleavage sites, or minor alteration of the amino acid sequence by making amino acid changes that are “conservative” or “tolerated”, resulting in addition or enhancement of a cleavage site. Determination of conservative or tolerated amino acids is generally known to those skilled in the arts by their chemistry, whereby amino acids are grouped into hydrophilic [ala, pro, gly, glu, asp, gln, asn, ser, thr], sulphhydryl [cys], aliphatic [val, ile, leu, met], basic [lys, arg, his], and aromatic [phe, tyr, trp] (French and Robson, What is a conservative substitution? J. Mol. Evol. 19: 171-175), but may also be determined by methods such as SIFT (Ng and Henikoff 2003, SIFT: predicting amino acids changes that affect protein function, Nucleic Acids Research 31: 3812-3814; Kumar et al., 2009, Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm, Nat Protoc 4: 1073-1081; Altschul 1991, Amino acid substitutions matrices from an information theoretic perspective, Journal of Molecular Biology 219: 555-665; Henikoff and Henikoff, 1992, Amino acid substitution matrices from protein blocks, Proceedings of the National Academy of Sciences USA 89: 10915-10919). PAM (percent absent mutations), PMB (probablility matrix from blocks) and BLOSUM (blocks of amino acid substitution matrix) matrices are well known and may be used. Addition of cleavage sites by minor sequence alteration is conducted preferably in knowledge of the protein 3 dimensional crystal structure, and/or based on multiple sequence alignments that establish protein domains and variable regions between domains such that it is understood that those changes in the amino acid sequence might normally occur and/or be tolerated, in addition to SIFT or other analyses. Protein domain information is used to select interdomain regions. 3D information is also used to select regions of the protein that are exposed externally, and thus more sensitive to proteases. For example, the crystal structure of a number of colicins are known (e.g., colicin E3, Soelaiman et al., 2001, Molecular Cell 8: 1053-1062). Colicins have also been the subject of multiple sequence alignments (e.g., FIG. 18.2 in Sharma et al., Chapter 18 in Kastin (ed), 2006, Handbook of Biologically Active Peptides, Academic Press), and distinct protein domains have been established which correlate with the crystal structure (Sharma et al., 2006, Handbook of Biologically Active Peptides, Chapter 18, Colicins: Bacterial/Antibiotic Peptides, pp 115-123). In colicin E3, there are 3 domains, an N-terminal “T”, or translocation domain, an internal “R” or receptor domain, and C-terminal “C” or catalytic domain. Examination of the “hinge” sequence between domains R and C of colE3, amino acids 451 to 456 (NKPRKG SEQ ID NO:147), shows that these amino acids are variable compared to other homologous colicins such as colE7 (KRNKPG SEQ ID NO:148), colE2 (KRNKPG SEQ ID NO:148) and are thus identified as candidates for sequence alteration. For example, a furin cleaveage sequence (designated R/-/Kr/R+s/-/-/-; also designated RXKR↓SX SEQ ID NO:149 can be added by conservative changes. Thus for example, the sequence NKPRGK SEQ ID NO:150 within colE3 can be conservatively changed to NKPRKs SEQ ID NO:151 which adds weak furin site, and further modified conservatively to NrPRKs SEQ ID NO:152 which results in a strong furin site which, using the ProP algorithm (e.g., ProP 1.0, Duckert et al., 2004, Prediction of proprotein convertase cleavage sites, Protein Engineering Design and Selection 17: 107-122) is predicted to be cleaved by furin. Biochemical confirmation can be conducted by standard techniques such as 1D and 2D SDS-PAGE gel electrophoresis on the secreted proteins in the media in the presence of furin.
Protease cleavage sites are defined in the Merops database (Rawlings et al., 2010, MEROPS: The Peptidase Database, Nucleic Acids Res. 2010 (Database issue):D227-33. It will be understood to those skilled in the arts that many proteases do not have strict sequence recognition sites, but rather have sequence preferences and/or frequencies. The MEROPS site depicts the preferences with a weighted pictogram and a table which lists frequencies of occurrence within a cleavage sequence. The table a non-limiting list proteases of tumors, the MEROPS sequence specification, and a simplified representative of an amino acid one letter code recognition sequence (where X is any amino acid) and the cleavage signal is given by a downward arrow) is presented in Table 2.
| TABLE 2 |
| Examples of protease cleavage sequences usable to guide |
| protease sensitivity modifiction of effector proteins. |
| MEROPS Sequence | Simplified Representative | |
| Protease | Designation | Sequence Designation |
| Factor Xa | ia/e/Gfp/R+sti/vfs/-/g | (IEGR↓SV) SEQ ID NO:153 |
| Furin | R/-/Kr/R+s/-/-/- | (RXKR↓SX) SEQ ID NO:154 |
| Plasminogen | -/-/-/R+R/iv/N/- | (XXR↓RIN) SEQ ID NO:155 |
| activator | ||
| Urokinase | -/sg/Gs/Rk+-/r/-/- | (XSGR↓XR) SEQ ID NO:156 |
| MMP1 | -/pa/g+li/-/-/- | (GPXG↓LXG) SEQ ID NO:157 |
| MMP8 | g/Pas/-/g+1/-/g/- | (GPQG↓LRG) SEQ ID NO:158 |
| MMP 13 | g/P/-/g+1/-/ga/- | (GPPG↓LXG) SEQ ID NO:159 |
| Membrane | -/p/-/-+1/-/-/- | (LPAG↓LVLX) SEQ ID NO:160 |
| matrix | ||
| metallo- | ||
| protease 1 | ||
| PSA | si/sq/-/yq+s/s/-/- | (SSQY↓SSN) SEQ ID NO:161 |
| Kallikrein 2 | g/-/-/R+-/-/-/gs | (GGLR↓SGGG) SEQ ID NO:162 |
| Granzyme A | t/-/-/RK+sa/-/-/- | (TXXPR↓SX) SEQ ID NO:163 |
| Granzyme B | v/-/-/D+-/-/-/- | (VEXD↓SX) SEQ ID NO:164 |
| Granzyme M | Ka/vaye/Pa/LM+-/-/-/- | (KVPL↓X) SEQ ID NO:165 |
| Cathepsin B | -/-/l/r+-/-/g/- | (XLR↓XXGG) SEQ ID NO:166 |
| Cathepsin S | -/-/flv/r+-/-/-/- | (SGFR↓SXG) SEQ ID NO:167 |
| Thrombin | -/-/pla/R+sag/-/-/- | (AGPR↓SLX) SEQ ID NO:168 |
| Plasmin | -/-/-/KR+-/-/-/- | (AXLK↓SX) SEQ ID NO:169 |
| Plasminogen | /-/-/KR+-/-/-/- | (AXLK↓SX) SEQ ID NO:170 |
The MEROPS database can be used to identify which proteases to inhibit, by analysis of a particular effector protein and the cleavage sites it contains. Comparison with the target tissue, eg Edwards et al. (eds) 2008, The Cancer Degradome: Proteases and Cancer Biology, Springer, 926 pp is also used to inform the choice. Alternatively, 2-dimentional gel electrophoresis and protein sequencing of radiolabled peptides incubated with the target tumor can be used to identify which aminoacids are being cleaved in a therapeutic protein, and therefore which protease inhibitors to use.
6.2 Protease inhibitors
Protease inhibitors of the invention are preferably based on known polypeptide inhibitors. The inhibitors include both synthetic peptides and naturally occurring, endogenous peptides. Classes of protease inhibitors include: cysteine protease inhibitors, serine protease inhibitors (serpins), trypsin inhibitors, Kunitz STI protease inhibitor, threonine protease inhibitors, aspartic protease inhibitors, metalloprotease inhibitors. Protease inhibitors can also be classified by mechanism of action as suicide inhibitors, transition state inhibitors, protein protease inhibitor (see serpins) and chelating agents. The protease inhibitors of the invention are protein or polypeptide inhibitors encoded by DNA contained within the bacteria.
To result in the desired activity, the peptides should be surface displayed, released or secreted outside of the bacteria. Accordingly, the peptides are modified by fusing them to secretion signals. The secretion signals may be either N-terminal (LPP:OmpA, M13pIII, M13pVIII, zirS (Finlay et al., 2008, PLoS Pathogens 4 (4), e100003), heat-stable (ST; thermostable) toxins from Escherichia and Vibrio (U.S. Pat. No. 5,399,490), E. coli enterotoxin II (Kwon et al., U.S. Pat. No. 6,605,697), or by colicin fusions together with colicin lysis proteins, or using autotransporter fusions, fusion to the M13 pIX may also be used (WO 2009/086116). or hlyA C-terminal signal sequence last 60 amino acids of the E. coli HlyA hemolysin, together with the required HlyBD supplied in trans and endogenous tolC as shown in FIG. 2 . The N-terminal signal sequences are well known and characterized by the presence of a protease cleavage site for an endogenous bacterial protease. Thus, N-terminal signal sequences provide free protease inhibitors, free from the signal sequence. The C-terminal signal sequence may be further engineered to have a protease cleavage site in between the protease inhibitory peptide and the signal sequence. The cleaveage site may be for the same protease that the peptide inactivates. Thus, the protease activates its own inhibitor. The protease cleavage site may also be for a protease other than for the protease inhibitor, thus deactivating another protease. Multiple protease inhibitor peptides may be used in-frame with multiple protease cleavage signals (polymeric protease activated protease inhibitors), where the inhibitors alternate with cleavage sites. The polymeric protease activated protease inhibitors can be homo- or hetero-inhibitor polymers (i.e., have inhibitors for the same or different proteases, respectively), and/or homo- or hetero-protease cleavage polymers (i.e., have the same or different protease cleavage sites). Proteases upregulated within tumors for which protease cleavage sites may be engineered include: tissue plasminogen activator, activated protein C, factor Xa, granzyme (A, B, M), cathepsin, thrombin, plasmin, urokinase, matrix metaloproteaes, prostate specific antigen (PSA) and kallikrein 2 (e.g., Edwards et al. (eds) 2008, The Cancer Degradome: Proteases and Cancer Biology, Springer, 926 pp), as well as proteases of lysosomes and the gut.
Protease inhibitors have been reviewed by Laskowski and Kato, 1980, (Annual Review of Biochemistry 49: 593-626), expressly incorporated by reference herein. Serine proteases inhibitors, the largest group, include 1) bovine pancreatic trypsin inhibitor (Kunitz) family, 2) pancreatic secretory trypsin inhibitor (Kazal) family, 3) Streptomyces subtilisin inhibitor family, 4) soybean trypsin inhibitor (Kunitz) family, 5) soybean proteinase inhibitor (Bowman-Birk) family 6) potato I inhibitor family, 7) potato II inhibitor family, 8) Ascaris trypsin inhibitor family, and 9) others. Protease inhibitors have also been grouped within the MEROPS peptidase database (Rawlings et al., 2008 Nucleic Acids Res. 36 Database issue, D320-325).
Specific examples of protease inhibitors that may be expressed as complete proteins or peptide fragments corresponding to the active inhibitory site include but are not limited to aprotinin, autodisplay aprotinin (Jose J, Zangen D (2005) Autodisplay of the protease inhibitor aprotinin in Escherichia coli. Biochem Biophys Res Commun 333:1218-1226; Jose, 2006, Autodisplay: efficient bacterial surface display of reombinant proteins, Appl Microbiol Biotechnol 69: 607-614). cathepsin inhibitor peptide sc-3130, Niserria protease inhibitor, lympocyte protease inhibitor, maspin, matrix metalloprotease inhibitors, macroglobulins, antithrombin, equistatin, Bowman-Birk inhbitor family, ovomucoid, ovoinhibitor-proteinase inhibitors from avian serum, dog submandibular inhibitors, inter-a-trypsin inhibitors from mammalian serum, chelonianin from turtle egg white, soybean trypsin inhibitor (Kunitz), secretory trypsin inhibitors (Kazal) ai-proteinase inhibitor, Streptomyces subtilisin inhibitor, plasminostreptin, plasmin inhibitor, factor Xa inhibitor, coelenterate protease inhibitors, protease inhibitor anticoagulants, ixolaris, human Serpins (SerpinA1(alpha 1-antitrypsin), SerpinA2, SerpinA3, SerpinA4, SerpinA5, SerpinA6, SerpinA7, SerpinA8, SerpinA9, SerpinA10, SerpinA11, SerpinA12, SerpinA13, SerpinB1, SerpinB2, SerpinB3, SerpinB4, SerpinB5, SerpinB6, SerpinB7, SerpinB8, SerpinC1 (antithrombin), SerpinD1, SerpinE1, SerpinE2, SerpinF1, SerpinF2, SerpinG1, SerpinN11, SerpinN12), cowpea trypsin inhibitor, onion trypsin inhibitor, alpha 1-antitrypsin, Ascaris trypsin and pepsin inhibitors, lipocalins, CI inhibiotor, plasminogen-activator inhibitor, collegenase inhibitor, Acp62F from Drosophila, bombina trypsin inhibitor, bombyx subtilisin inhibitor, von Willebrand factor, leukocyte secretory protease inhibitor. Short peptide inhibitors of protease are preferred. Many protease inhibitors have one or more disulfide bonds. Fusion to thioredoxin (trxA) is known to improve protease inhibitor activity (e.g., Furuki et al., 2007, Fukuoka University Science Reports 37: 37-44). Fusion to glutathione-S transferase (GST) and co-expression with disulfide bond isomerase (DsbA) or nusA (Harrison 2000, Expression of soluble heterologous proteins via fusion with NusA protein. inNovations 11: 4-7) are also known to improve solubility. Methods to isolate novel protease inhibitors using M13 phage display have been described by Roberts et al., 1992 (Gene 121: 9-15). Examples of the peptide sequences of short peptide inhibitors is shown in Table 3.
| TABLE 3 |
| Sequences of short peptide protease inhibitors |
| Protease | Protease(s) | |
| Inhibitor | inhibited | Protein/Peptide Name and/or Peptide Sequence |
| Leupeptin | calpain, | Leupeptin |
| plasmin, | ||
| trypsin, papain, | ||
| and cathepsin | ||
| B | ||
| Aprotinin | Trypsin | RPDFC LEPPY TGPCK ARIIR YFYNA KAGLC QTFVY |
| Plasmin | GGCRA KRNNF KSAED CMRTC GGA | |
| Tissue kallikrei | SEQ ID NO:5 | |
| Jose J, Zangen D (2005) Autodisplay of the protease inhibitor | ||
| aprotinin in Escherichia coli. Biochem Biophys Res Commun | ||
| 333:1218-1226 | ||
| Aprotinin | Variable | Brinkmann et al, 1991 Eur J. Biochem 202: 95-99 |
| homologues | ||
| Protease | Trypsin | Synthetic peptide: CFPGVTSNYLYWFK SEQ ID NO:6, |
| Inhibitor 15 | corresponding to amino acids 245-258 of human protease | |
| inhibitor. | ||
| Tissue | Serine protease | DSLGREAKCYNELNGCTKIYDPVCGTDGNTYPNECVL |
| protease | inhibitor, | CFENRKRQTSILIQKSGPC |
| inhibitor | Kazal type 1, | SEQ ID NO:7 |
| mature | ||
| Furin | Furin | PAAATVTKKVAKSPKKAKAAKPKKAAKSAAKAVKPK |
| inhibitors | SEQ ID NO:8 | |
| TKKVAKRPRAKRAA | SEQ ID NO:9 | ||
| TKKVAKRPRAKRDL | SEQ ID NO:10 | ||
| GKRPRAKRA | SEQ ID NO:11 | ||
| CKRPRAKRDL | SEQ ID NO:12 | ||
| CVAKRPRAKRDL | SEQ ID NO:13 | ||
| CKKVAKRPRAKRDL | SEQ ID NO:14 | ||
| RRRRRR L6R (hexa-L-arginine) | SEQ ID NO:15 | ||
| Kallikrein | Kallikrein 2 | SRFKVWWAAG | SEQ ID NO:16 |
| Inhibitors | AARRPFPAPS | SEQ ID NO:17 | |
| PARRPFPVTA | SEQ ID NO:18 | ||
| Pepsinogen | Pepsin | LVKVPLVRKKSLRQNL | SEQ ID NO:19 |
| 1-16 | Dunn et al., 1983 Biochem J 209: 355-362 |
| Pepsinogen | Pepsin | LVKVPLVRKKSL | SEQ ID NO:20 |
| 1-12 | Dunn et al., 1983 Biochem J 209: 355-362 |
| Pepsinogen | Pepsin | LVKGGLVRKKSL (II) [Gly4,5] | SEQ ID NO:21 |
| 1-12 4-7 | LVKVPGGRKKSL (III) [Gly6,7] | SEQ ID NO:22 | |
| substitution | LVKGGGGRKKSL (IV) [GIy4-7] | SEQ ID NO:23 |
| Dunn et al., 1983 Biochem J 209: 355-362 |
| Sunflower | Trypsin | GRCTKSIPPICFPD | SEQ ID NO:24 |
| trysin | ||
| inhibitor | ||
| SFTI-1 | ||
| Odorrana | Trypsin | AVNIPFKVHFRCKAAFC SEQ ID NO:25 |
| trypsin | ||
| inhibitor | ||
| Ascaris | Chymtrypsin | GQESCGPNEV WTECTGCEMK CGPDENTPCP |
| chymotrypsin | Elastase | LMCRRPSCEC SPGRGMRRTN DGKCIPASQCP |
| elastase | SEQ ID NO:26 | |
| inhibitor | ||
| Ascaris | Trypsin | EAEKCBZZPG WTKGGCETCG CAQKIVPCTR |
| trypsin | ETKPNPQCPR KQCCIASAGF VRDAQGNCIK FEDCPK | |
| inhibitor | SEQ ID NO:27 | |
| Ascaris | Trypsin | EAEKCTKPNE QWTKCGGCEG TCAQKIVPCT |
| trypsin | RECKPPRCEC IASAGFVRDA QGNCIKFEDC PK | |
| inhibitor | SEQ ID NO:28 | |
| Onion trypsin | Trypsin | MKAALVIFLL IAMLGVLAAE AYPNLRQVVV |
| inhibitor | TGDEEEGGCC DSCGSCDRRA PDLARCECRD | |
| VVTSCGPGCK | ||
| RCEEADLDLN PPRYVCKDMS FHSCQTRCSI L | ||
| SEQ ID NO:29 | ||
| Barley | Chymotrypsin | MSSMEKKPEGVNIGAGDRQNQKTEWPELVGKSVEEA |
| chymotrypsin | KKVILQDK | |
| inhibitor 2 | PAAQIIVLPVGTIVTMEYRIDRVRLFVDRLDNIAQVPRV | |
| G | ||
| SEQ ID NO:30 |
| Thrombin | Thrombin | IQPR | SEQ ID NO:31 |
| inhibitors | GSAVPR | SEQ ID NO:32 |
| Feng et al., (WO 2004/076484) PEPTIDE INHIBITORS OF | ||
| THROMBIN AS POTENT ANTICOAGULANTS) |
| Tumor cell | Gelatinase | CTTHWGFTLC | SEQ IN NO:111 |
| and | Li et al., 2006. Molecular addresses of tumors: selection by in | |
| endothelial | vivo phage display. Arch Immunol Ther Exp 54: 177-181 | |
| cell | ||
| migration | ||
| inhibitor | ||
| Proteosome | Proteosome | |
| inhibitors | subunit 3 | |
| Chymostatin | ‘chymotryptic- | |
| Clasto- | like’ (beta5), | |
| tactastatin | ‘tryptic-like’ | |
| (beta2) and | ||
| ‘peptidyl- | ||
| glutamyl | ||
| peptide | ||
| hydrolyzing’ | ||
| (beta1). | ||
| Urokinase, | Urokinase, | Markowska et al., 2008, Effect of tripeptides on the |
| thrombin, | thrombin, | amindolytic activities of urokinase, thrombin, plasmin and |
| plasmin and | plasmin and | trypsin. Int. J. Peptide Research and Therapeutics 14: 215- |
| trypsin | trypsin | 218. |
| inhibitors | ||
6.3 Targeting Ligands
Targeting ligands have specificity for the target cell and are used to both confer specificity to chimeric proteins, and to direct attachment and/or internalization into the target cell. The ligands are known ligands or may be novel ligands isolated through standard means such as phage display (Barbass III et al., 2004, Phage Display, A Laboratory Manual, Cold Spring Harbor Press) including the use of commercially available kits (Ph.D-7 Phage Display Library Kit, New England Biolabs, Ipswich, Mass.; Li et al., 2006. Molecular addresses of tumors: selection by in vivo phage display. Arch Immunol Ther Exp 54: 177-181). The ligands of various aspects of the present invention are peptides that can be expressed as fusions with other bacterially-expressed proteins. The peptides may be further modified, as for gastrin and bombisin, in being amidated by a peptidylglycine-alpha-amidating monoxygenase or C-terminal amidating enzyme, which is co-expressed in the bacteria that use these peptides using standard molecular genetic techniques. Examples of targeting peptides are shown in Table 4.
| TABLE 4 |
| Examples of targeting peptides |
| Receptor | ||
| Peptide sequence or ligand name | Target | Reference |
| MNSDSECPLSHDGYCLHDGVCMYIEA | EGFR | |
| LDKYACNCVVGYIGERCQYRDLKWW | ||
| ELR | ||
| SEQ ID NO:172 | ||
| ERRP | Marciniak et al., 2004, | |
| Epidermal growth facor receptor related | Molecular Cancer | |
| peptide | Therapeutics 3: 1615-1621 | |
| Wu et al., 1989, J. Biol. | ||
| Chem 246: 17469-17475. | ||
| Marciniak et al., 2003, | ||
| Gastroenterology 124: | ||
| 1337-1347. | ||
| TGF-alpha | EGFR | Schmidt and Wells 2002, |
| Replacement of N-termian | ||
| portions of TGF-alpha with | ||
| corresponding heregulin | ||
| sequences affects ligand- | ||
| induced receptor sigaling | ||
| and intoxication of tumor | ||
| cells by chimeric growth- | ||
| factor toxins. In. J. Cancer | ||
| 97: 349-356. | ||
| SYAVALSCQCALCRR | Rivero-Muller et al., | |
| CG-beta | Moleclar and Cellular | |
| SEQ ID NO:33 | Endocrinology 2007: 17-25 | |
| Morbeck et al., 1993 | ||
| HAVDI and INPISGQ and dimeric versions | N-cadherin | Williams et al., 2002, |
| prostate | Journal of Biological | |
| Chemistry 277: 4361-4367. | ||
| laminin-411 binding peptides | Brain | Ding et al., (2010) Proc. |
| neovasculature | Natl. Acad. Sci. U. S. A. | |
| 107:18143-18148 | ||
| Pertussis toxin S3 subunit | cancer cells | |
| Peptides described by Li et al., 2006. | Tumor | Li et al., 2006. Molecular |
| Molecular addresses of tumors: selection by | vasculature, | addresses of tumors: |
| in vivo phage display. Arch Immunol Ther | VEGF-R (Flt-1), | selection by in vivo phage |
| Exp 54: 177-181 | VCAM, EphA2, | display. Arch Immunol Ther |
| Aminopeptidase | Exp 54: 177-181 | |
| DUP-1 peptide FRPNRAQDYNTN | Prostate cancer | Zitzmann et al., Clinical |
| SEQ ID NO:173 | Cancer Research January | |
| 2005 11; 139 | ||
| DARPins | HER2 | Stumpp and Amstutz 2007, |
| SEQ ID NO:34 | DARPins: a true alternative | |
| to antibodies, | ||
| Curr Opin Drug Discov | ||
| Devel. 10:153-159. | ||
| AVALSCQCALCRR | Jia et al., Journal of | |
| CG-beta (ala truncation) | Pharmacy and | |
| SEQ ID NO:35 | Pharmacology 2008; 60: | |
| 1441-1448 | ||
| Leuteinizing hormone-releasing hormone | LHRH receptor | |
| (LHRH) | ||
| pyroGlu-His-Trp-Ser-Tyr-Gly-Leu-Arg- | ||
| Pro-Gly CONH2 | ||
| SEQ ID NO:36 | ||
| IL2 | IL2R | Frankel et al. 2000, Clinical |
| Cancer Research 6: 326- | ||
| 334. | ||
| Tf | TfR | Frankel et al. 2000, Clinical |
| Cancer Research 6: 326- | ||
| 334. | ||
| IL4 | IL4R | Frankel et al. 2000, Clinical |
| Cancer Research 6: 326- | ||
| 334. | ||
| IL13 | IL13R | Kawakami et al., 2002, J. |
| Immunol., 169: 7119-7126 | ||
| GM-CSF | GM-CSFR | Frankel et al. 2000, Clinical |
| Cancer Research 6: 326- | ||
| 334. | ||
| CAYHRLRRC | Lymphnode | Nishimura et al., 2008 JBC |
| SEQ ID NO:174 | homing and cell | 283: 11752-11762 |
| Lymph node homing Cys-Ala-Tyr and cell | penetrating | |
| penetrating Arg-Leu-Arg-Arg, proceeds | ||
| thorugh macripinocytosis | ||
| A33 antigen-binding peptide | A33 | U.S. Pat. No. 5,712,369 |
| CLTA-4 (CD152) | Melanoma | Specific antibodies and |
| antibody fragments | ||
| U.S. Pat. No. 6,207,156 | ||
| CD19 binding peptides | specific for | Pamejer et al., 2007, Cancer |
| 12-mer peptide (Bpep) | alpha(v) beta(6) | Gene Therapy 14: 91-97. |
| integrin (αvβ6) | ||
| non-Hodgkin | ||
| lymphoma, | ||
| chronic | ||
| lympocytic | ||
| leukemia (CLL) | ||
| and acute | ||
| lympocytic | ||
| leukemia (ALL) | ||
| CD20 binding peptides | CD-20; B-cell | WO/2004/103404 Watkins |
| malignancies | et al. “CD-20 binding | |
| molecules” | ||
| CD22 binding peptides | B lymphocytes; | Pearson et al. Int. J. Peptide |
| hairy cell leukemia | Research and Therapeutics | |
| 14: 237-246. | ||
| CD25 binding peptides | Chemotherapy- | Saito et al., 2010, Science |
| resistant human | Translational Medicine 2: | |
| leukemia stem | 17ra9; Jordan | |
| cells. | Sci Transl Med 12 May | |
| 2010 2:31ps21 | ||
| TRU-015 | CD-20 | Hayden-Ledbetter et al., |
| 2009 Clin Cancer Res 15: | ||
| 2739-2746; Burge et al.. | ||
| 2008, Clin Ther. 30:1806- | ||
| 16. | ||
| CD30 binding peptides | CD-30 | |
| Hodgkin lympoma | ||
| CD32 binding peptides | Chemotherapy- | Saito et al., 2010, Science |
| resistant human | Translational Medicine 2: | |
| leukemia stem | 17ra9; Jordan | |
| cells. | Sci Transl Med 12 May | |
| 2010 2:31ps21 | ||
| CD33 binding peptides | CD-33 | |
| AML | ||
| Myelodysplastic | ||
| cells (MDS) | ||
| CD37 bnding peptides | Leukemia and | |
| lymphoma | ||
| CD40 binding peptides | CD40 | |
| Multiple myeloma, | ||
| non-Hodgkin | ||
| lymphoma, cronic | ||
| lympocytic | ||
| leukemia (CLL), | ||
| Hodgkin lympoma | ||
| and acute | ||
| lympoblastic | ||
| leukemia (ALL), | ||
| diffuse large B-cell | ||
| lympoma, | ||
| refractory non- | ||
| hodgkin lymoma, | ||
| including follicular | ||
| lympoma | ||
| CD52 binding peptides | CLL | |
| CD55 binding peptides | ||
| CD70 binding peptides | Hematological | |
| malignancies, | ||
| Non-Hodgkin's | ||
| lymphoma | ||
| Also, killing | ||
| activated T and B | ||
| immune cells that | ||
| would eliminate | ||
| the bacterial vector | ||
| CD123 binding peptides | AML | |
| RGD-containing peptides | De Villiers et al., 2008, | |
| e.g., GRDGS SEQ ID NO:132, | Nanotechnology in drig | |
| ACDCRGDCFCG (RGD4C) | delivery, Springer. | |
| SEQ ID NO:174 | ||
| Nanobodies derived from camels and llamas | Cancer | Rothbauer, et al. 2006. Nat. |
| (camelids), including humanized | Methods 3: 887-889; | |
| nanobodies and VHH recognition domains | Kirchhoferet al. 2010. Nat. | |
| Struct. Mol. Biol. 17:133- | ||
| 138 | ||
| Bombesin | Gastrin releasing | Dyba et al., 2004 Crrent |
| peptide receptor | Pharmacetical Design 10: | |
| 2311-2334 | ||
| Gastrin releasing peptide | Gastrin releasing | |
| peptide receptor | ||
| somatostatin octapeptide RC-121 | ||
| (D-Phe-Cys-Tyr-D-Trp-Lys-Val-Cys-Thr- | ||
| NH2 | ||
| SEQ ID NO:37 | ||
| somatostatin | ||
| Vasoactive intestinal peptide (VIP | ||
| Neurtensin) | ||
| Parathyroid hormone-related protein PTHrP | Parathyroid | |
| N-terminal 36 residues also has nuclear | hormone receptor | |
| targeting | G-protein coupled | |
| receptor | ||
| KLAKLAKKLALKLA | Proapoptotic | |
| SEQ ID NO:38 | peptide | |
| EGFR binding peptides | EGFR | |
| Mesothelin binding peptides | Mesothelin | |
| Heat stable enterotoxin (ST) | Guanylyl cyclase | |
| NSSNYCCELCCNPACTGCY | C | |
| Mature peptide | ||
| SEQ ID NO:39 | ||
| VLSFSPFAQD AKPVESSKEK | Heat stable | Sieckman et al., |
| ITLESKKCNI AKKSNKSDPE | enterotoxin | WO/2003/072125 |
| SMNSSNYCCE LCCNPACTGC | unprocessed | |
| SEQ ID NO:40 | ||
| CM-CSF | AML | |
| Alfa(V)Beta(3) | ||
| integrin | ||
| STEAP-1 (six | ||
| transmembrane | ||
| antigen of the | ||
| prostate) | ||
| CDCRGDCFC | RGD 4C: active | Line et al. 46 (9): 1552. |
| SEQ ID NO:41 | peptide targeting | (2005) Journal of Nuclear |
| the vβ3 integrin) | Medicine | |
| LGPQGPPHLVADPSKKQGP | bind to the gastrin | |
| WLEEEEEAYGWMDF (gastrin-34) or big | receptor, also | |
| gastrin | known in the art as | |
| SEQ ID NO:42 | the | |
| cholecystokinin B | ||
| (CCKB) receptor | ||
| MGWMDF N-terminal truncation of gastrin | ||
| SEQ ID NO:43 | ||
| VPLPAGGGTVLTKM | Gastrin releasing | |
| SEQ ID NO:44 | peptide | |
| YPRGNHWAVGHLM | ||
| SEQ ID NO:45 | ||
| CAYHLRRC | AML | Nishimra et al., 2008. J Biol |
| SEQ ID NO:46 | Chem 283: 11752-11762 | |
| CAY (cys-ala-tyr) | Lymph node | Nishimra et al., 2008. J Biol |
| SEQ ID NO:47 | homing | Chem 283: 11752-11762 |
| RLRR (arg-leu-arg-arg) | Cell penetrating | Nishimra et al., 2008. J Biol |
| SEQ ID NO:48 | Chem 283: 11752-11762 | |
| VRPMPLQ | Colonic dysplasia | Hsi u ng et al, Natre |
| SEQ ID NO:49 | Medicin 14: 454-458 | |
| HVGGSSV | 2622 Radiation- | International Journal of |
| SEQ ID NO:50 | Induced | Radiation |
| Expression of Tax- | OncologyBiologyPhysics, | |
| Interacting Protein | Volume 66, |
|
| 1 (TIP-1) in | S555-S556 | |
| Tumor | H. Wang, A. Fu, Z. Han, D. | |
| Vasculature | Hallahan | |
| Binds irradiated | ||
| tumors i.e., ones | ||
| responding to | ||
| therapy | ||
| CGFECVRQCPERC | Lung vasculature - | Mori 2004, Current |
| SEQ ID NO:171 | MOSE | Pharmaceutical Design 10: |
| Binds membrane | 2335-2343 | |
| dipeptidase (MDP) | ||
| SMSIARL | MURINE | Mori 2004, Current |
| SEQ ID NO:51 | PROSTATE | Pharmacetical Design 10: |
| VASCULATURE | 2335-2343 | |
| VSFLEYR | MURINE | Mori 2004 Current |
| SEQ ID NO:52 | PROSTATE | Pharmaceutical Design 10: |
| VASCULATURE | 2335-2343 | |
| |
||
| (HMG)N2 | ||
| CKDEPQRRSARLSAKPAPP | ||
| KPEPKPKKAPAKK | ||
| SEQ ID NO:53 | ||
| H-VEPNCDIHVMW | VEGF BINDING | (WO/2006/116545) |
| EWECFERL-NH2 | PEPTIDE | SPATIAL CONTROL OF |
| SEQ ID NO:54 | SIGNAL | |
| TRANSDUCTION | ||
| RLLDTNRPLLPY | L-PEPTIDE | Let al., 2004. Cancer |
| SEQ ID NO:55 | Nasopharyngeal | Research 64: 8002-8008. |
| Phage derived - | ||
| causes | ||
| internalization of | ||
| phage | ||
| RGDLATL truncated | Alfa(v) beta (6) | Shunzi et al. (Kathyll C |
| RGDLATLRQLAQEDGVVGVR | integrin | Brown |
| SEQ ID NO:56 | ||
| HAIYPRH | Transferrin | U.S. Pat. No. |
| SEQ ID NO:57 | 6,743,893 | |
| and | ||
| THRPPMWSPVWP | ||
| SEQ ID NO:58 | ||
| Peptide 1 CKASQSVTNDVAC (CDR1) | CD-22 | Pearson et al., 2008, Int J |
| SEQ ID NO:59 | Pept Res Ther (2008) | |
| Peptide 2 CYASNRYTC (CDR2) | 14:237-246 | |
| SEQ ID NO:60 | ||
| Peptide 3 CQQDYRSPLTFC (CDR3) | ||
| SEQ ID NO:61 | ||
| Peptide 4 CSDYGVNWVC (CDR1) | ||
| SEQ ID NO:62 | ||
| Peptide 5 CLGIIWGDGRTDYNSALKSRC | ||
| (CDR2) | ||
| SEQ ID NO:63 | ||
| Cancer stem cell targeting peptides | Cancer stem cells | Cripe et al., 2009, |
| Molecular Therapy (2009) | ||
| 17 10,1677-1682 | ||
| Short and Curiel 2009, | ||
| Molecular Cancer | ||
| Therapeutics 8: 2096-2102 | ||
| Chronic Lymphocytic leukemia binding | CLL | Takahashi et al., Cancer |
| peptides | Research 63: 5213-5217 | |
| LTVXPWY | Breast cancer | Shadidi and Sioudm 2003, |
| SEQ ID NO:64 | The FASEB Journal 17: | |
| 256-258 | ||
| Leukemia binding peptides | Leukemia | Fairlie et al., 2003, |
| Biochemistry 42: 13193- | ||
| 13202 | ||
| Jaalouk et al., | ||
| WO/2006/010070 | ||
| “Compositions and methods | ||
| related to peptides that | ||
| selectively bind leukemia | ||
| cells” | ||
| Adebahr et al., | ||
| CPLDIDFYC | AML | Jager et al., Leukemia 21: |
| SEQ ID NO:65 | 411-420 | |
| Lymphoma binding peptides | Lymphoma | Lam and Zhao, 1997 |
| Targeted Therapy for | ||
| Lymphoma with Peptides, | ||
| Hmatology/Onoclogy | ||
| Lcinincs of North America | ||
| 11: 1007-1019, | ||
| Lymphoma stem cell targeting peptides | Hodgkins | Newcom et al., 1988, Inj. J. |
| CD 20 and CD19 binding peptides; see | lymphoma; | Cell Cloning 6: 417-431; |
| above | Hodgkin Reed- | Jones et al.k 2009, Blood, |
| Sternberg (HRS) | 113: 5920-5926. | |
| cells | ||
| Leukemia stem cell targeting peptides | ||
| ADGACLRSGRGCGAAK | Hematological | Berntzen et al., 2006, |
| SEQ ID NO:66 | malignancies | Protein Engineering , |
| Designa do Selection, doi: | ||
| 10.1093/protein/gzj011 | ||
| Somatostatin receptor-binding peptide | Renal cell | Shih et al., 2004, J. Nucl. |
| metastasis | Med. Technol 32: 19-21 | |
| GFLGEDPGFFNVE | Lymphoma | Tang et al., 2000, |
| SEQ ID NO:67 | Bioconjugate Chem 11: | |
| 363-371 | ||
| The cysteine modified F3-peptide sequence | Tumor | Henke et al., 2008, Nature |
| is 5'- | neovasculature | Biotechnology 26: 91-100. |
| CKDEPQRRSARLSAKPAPPKPEPKPKK | ||
| APAKK-3'. | ||
| SEQ ID NO:68 | ||
| Transferrin | Treansferrin | |
| receptor | ||
| Binding peptides for tumor-specific | for tumor-specific | Dyba et al, 2004, Current |
| receptors | receptors | Pharmaceutical Design 10: |
| PTHrP, LHRH, |
PTHrP, LHRH, | 2311-2334; Tarasova et al., |
| STEAP, Mesothelin, Endoglin (CD105), | |
WO/2003;072754 |
| KCNK9, EGF receptors (Her1, Her2, Her3, | integrin, STEAP, | |
| Her4), human mucin (CD19, CD22, CD25, | Mesothelin, | |
| CD33, IL2R, CD2, CD3, CD5, CD7, CD30, | Endoglin (CD105), | |
| GM-CSFR, IL4R IL6R, urkinasee receptor, | KCNK9, EGF | |
| IL13R, transferring receptor), guanylly | receptors (Her1, | |
| cyclase C | Her2, Her3, Her4), | |
| human mucin | ||
| (CD19, CD22, | ||
| CD25, CD33, | ||
| IL2R, CD2, CD3, | ||
| CD5, CD7, CD30, | ||
| GM-CSFR, IL4R | ||
| IL6R, urkinasee | ||
| receptor, IL13R, | ||
| transferring | ||
| recepor), guanylly | ||
| cyclase C | ||
| Transferrin | Treansferrin | |
| receptor | ||
| P15 peptide | Type II receptor | Bhatnagar et al., U.S. |
| GTPGPQGIAGQRGVV | Pat. No. 6,638,912 | |
| SEQ ID NO:69 | ||
| ANVAENA peptide | ||
| SEQ ID NO:70 | ||
| CQTIDGKKYYFN | Kushnaryov et al., | |
| SEQ ID NO:71 | U.S. Pat. No. 5,466,672 | |
| Peptide from Clostridium | ||
| Clostridium difficile toxin A | Gal alpha 1-3Gal | Clark et al., 1987, Toxin A |
| beta 1-4G1cNAc. | from Clostridium difficile | |
| binds to rabbit erythrocyte | ||
| glycolipids with terminal | ||
| Gal alpha 1-3Gal beta 1- | ||
| 4G1cNAc sequences Arch | ||
| Biochem Biophys 15: 257: | ||
| 217-229 | ||
| KNGPWYAYTGRO | Surface idiotype of | Reviewed by Aina et al. |
| SEQ ID NO:72 | SUP-88 human B- | Therapeutic Cancer |
| NWAVWXKR, | cell lympoma | Targeting Peptides, |
| SEQ ID NO:73 | Biopolymers 66: 184-199 | |
| YXXEDLRRR | ||
| SEQ ID NO:74 | ||
| XXPVDHGL | ||
| SEQ ID NO:75 | ||
| LVRSTGQFV, LVSPSGSWT | Surface idiotype of | Reviewed by Aina et al. |
| ALRPSGEWL, AIMASGQWL | human chronic | 2002, |
| QILASGRWL, RRPSHAMAR | lymphocytic | Therapeutic Cancer |
| DNNRPANSM, LQDRLRFAT | lymphoma (CLL) | Targeting |
| PLSGDKSST | Peptides, Biopolymers | |
| SEQ ID NO:76 | 66: 184-199 | |
| FDDARL SEQ ID NO:77, | Human multiple | Reviewed by Aina et al. |
| FSDARL SEQ ID NO:78, | myeloma M | 2002 |
| FSDMRL SEQ ID NO:79, | protein | |
| FVDVRL SEQ ID NO:80, | ||
| FTDIRL SEQ ID NO:81, | ||
| FNDYRL SEQ ID NO:82 | ||
| FSDTRL SEQ ID NO:83, | ||
| PIHYIF SEQ ID NO:84, | ||
| YIHYIF SEQ ID NO:85, | ||
| RIHYIF SEQ ID NO:86 | ||
| IELLQAR SEQ ID NO:87 | HL 60 human | Reviewed by Aina et al. |
| lymphoma & B-16 | 2002 | |
| mouse melanoma | ||
| CVFXXXYXXC SEQ ID NO:88, | Prostate-specific | Reviewed by Aina et al. |
| CXFXXXYXYLMC SEQ ID NO:89 | antigen (PSA) | 2002 |
| CVXYCXXXXCYVC SEQ ID NO:90 | ||
| CVXYCXXXXCWXC SEQ ID NO:91 | ||
| DPRATPGS | LNCaP prostate | Reviewed by Aina et al. |
| SEQ ID NO:92 | cancer | 2002 |
| HLQLQPWYPQIS | WAC-2 human | Reviewed by Aina et al. |
| SEQ ID NO:93 | neuroblastoma | 2002 |
| VPWMEPAYQRFL | MDA-MB435 | Reviewed by Aina et al. |
| SEQ ID NO:94 | breast cancer | 2002 |
| TSPLNIHNGQKL | Head and neck | Reviewed by Aina et al. |
| SEQ ID NO:95 | cancer lines | 2002 |
| SPL W/F,R/K,N/H,S, V/H, L | ECV304 | Reviewed by Aina et al. |
| endothelial cell | 2002 | |
| line | ||
| RLTGGKGVG | HEp-2 human | Reviewed by Aina et al. |
| SEQ ID NO:96 | larygeal carcinoma | 2002 |
| CDCRGDCFC (RGD-4C) | Tumor vasculature | Reviewed by Aina et al. |
| SEQ ID NO:97 | 2002 | |
| ACDCRGDCFCG | Tumor vasculature | Reviewed by Aina et al. |
| SEQ ID NO:98 | 2002 | |
| CNGRCVSGCAGRC | Aminopeptidase N | Reviewed by Aina et al. |
| SEQ ID NO:99 | 2002 | |
| CVCNGRMEC SEQ ID NO:100, | Vasculature of | Reviewed by Aina et al. |
| NGRAHA SEQ ID NO:101, | various tumors | 2002 |
| TAASGVRSMH SEQ ID NO:102, | ||
| LTLRWVGLMS SEQ ID NO:103 | ||
| LRIKRKRRKRKKTRK SEQ ID NO:104, | IC-12 rat trachea | Reviewed by Aina et al. |
| NRSTHI SEQ ID NO:105 | 2002 | |
| SMSIARL SEQ ID NO:106, | Mouse prostate | Reviewed by Aina et al. |
| VSFLEYR SEQ ID NO:107 | 2002 | |
| CPGPEGAGC SEQ ID NO:108 | Aminopeptidase P | Reviewed by Aina et al. |
| 2002 | ||
| ATWLPPR SEQ ID NO:109, | VEGF | Reviewed by Aina et al. |
| RRKRRR SEQ ID NO:110 | 2002 | |
| CTTHWGFTLC | Gelatinase | Reviewed by Aina et al. |
| SEQ ID NO:111 | 2002 | |
| -WYD- SEQ ID NO:112, | idiotype of WEHI- | Reviewed by Aina et al. |
| -WYDD- SEQ ID NO:113, | 231 murine | 2002 |
| -WYT- SEQ ID NO:114, | lymphoma cell line | |
| -WYV- SEQ ID NO:115 | ||
| RWID SEQ ID NO:116, | idiotype of WEHI- | Reviewed by Aina et al. |
| RWFD SEQ ID NO:117 | 279 murine | 2002 |
| lymphoma cell line | ||
| LNNIVSVNGRHX SEQ ID NO:118, | Alpha-6-beta 1 | Reviewed by Aina et al. |
| DNRIRLQAKXX SEQ ID NO:119 | integrin of | 2002 |
| DU145 prostate | ||
| cancer | ||
| cell line | ||
| Leukemia stem cell binding peptides | Stem cells | |
| Leukemia and lymphoma stem cell binding | Barbass III et al., 2004, | |
| peptides isolated by phage display | Phage Display, A | |
| Laboratory Manual, Cold | ||
| Spring Harbor Press; Ph.D- | ||
| 7 Phage Display Library | ||
| Kit, New England Biolabs, | ||
| Ipswich, MA). | ||
| Macrophage cell binding peptides | ||
| Macrophage cell binding peptides isolated | Barbass III et al., 2004, | |
| by phage display | Phage Display, A | |
| Laboratory Manual, Cold | ||
| Spring Harbor Press; Ph.D- | ||
| 7 Phage Display Library | ||
| Kit, New England Biolabs, | ||
| Ipswich, MA). | ||
| T-cell binding peptides | ||
| T-cell binding peptides isolated by phage | Barbass III et al., 2004, | |
| display | Phage Display, A | |
| Laboratory Manual, Cold | ||
| Spring Harbor Press; Ph.D- | ||
| 7 Phage Display Library | ||
| Kit, New England Biolabs, | ||
| Ipswich, MA). | ||
| Neutrophil binding peptides | ||
| Neutrophil binding peptides isolated by | Barbass III et al., 2004, | |
| phage display | Phage Display, A | |
| Laboratory Manual, Cold | ||
| Spring Harbor Press; Ph.D- | ||
| 7 Phage Display Library | ||
| Kit, New England Biolabs, | ||
| Ipswich, MA). | ||
| Tumor stromal matrix cell binding peptides | ||
| Tumor stromal matrix cell binding peptides | Barbass III et al., 2004, | |
| isolated by phage display | Phage Display, A | |
| Laboratory Manual, Cold | ||
| Spring Harbor Press; Ph.D- | ||
| 7 Phage Display Library | ||
| Kit, New England Biolabs, | ||
| Ipswich, MA). | ||
6.4 Lytic peptides
The desirability of combining protease inhibitors with lytic peptides has not previously been recognized as a means of improving both activity and specificity of proteins delivered by targeted bacteria. Small lytic peptides (less than 50 amino acids) are used to construct chimeric proteins for more than one purpose. The chimeric proteins containing lytic peptides may be directly cytotoxic for neoplasias. In order to be cytotoxic they must be released, surface displayed and/or secreted (FIG. 3 ) and may be provided with cell specificity by the addition of a targeting ligand. Small lytic peptides have been proposed for use in the experimental treatment of neoplastic diseases. However, it is evident that most, if not all, of the commonly used small lytic peptides have strong antibacterial activity, and thus are not compatible with delivery by a bacterium (see Table 1 of Leschner and Hansel, 2004 Current Pharmaceutical Design 10: 2299-2310, expressly incorporated herein by reference). Small lytic peptides useful in the invention are those derived from Staphylococcus aureus, S. epidermidis and related species, including the phenol-soluble modulin (PSM) peptides and delta-lysin (Wang et al., 2007 Nature Medicine 13: 1510-1514, expressly incorporated herein by reference). The selection of the lytic peptide depends upon the primary purpose of the construct, which may be used in combination with other constructs providing other anticancer features. That is, the therapies provided in accordance with aspects of the present invention need not be provided in isolation, and the bacteria may be engineered to provide additional therapies or advantageous attributes. Constructs designed to be directly cytotoxic to cells employ the more cytoxic peptides, particularly PSM-alpha-3. Constructs which are designed to use the lytic peptide to affect escape from the endosome use the peptides with the lower level of cytotoxicity, such as PSM-alpha-1, PSM-alpha-2 or delta-lysin. Larger lytic peptides that may be used includes the actinoporins and equinatoxins from sea anemones or other coelenterates such as FraC, Sticholysins StsI and StsII (Anderluh and Macek 2002, Toxicon 40: 111-124), are generally more potent than the bacterially-derived peptides, and are selected for use in being directly cytotoxic to parasites. Assay of lytic peptides is known to those skilled in the arts. Examples of lytic peptides useful in the invention are shown in Table 5.
| TABLE 5 |
| Membrane lytic peptides useful in the invention |
| Peptide and source | Peptide Sequence or name | ||
| Processed | MAQDIISTISDLVKWIIDTVNKFTKK | ||
| <<short>> active | SEQ ID NO:120 | ||
| delta lysin | |||
| S aureus | |||
| Delta lysin processed | MMAADIISTI GDLVKWIIDTVNKFKK | ||
| S epidermitidis | SEQ ID NO:121 | ||
| Delta lysin from CA- | MAQDIISTISDLVKWIIDTVNKFTKK | ||
| MRSA | SEQ ID NO:122 | ||
| PSM-alpha-1 | MGIIAGIIKVIKSLIEQFTGK | ||
| SEQ ID NO:123 | |||
| PSM-alpha-2 | MGIIAGIIKFIKGLIEKFTGK | ||
| SEQ ID NO:124 | |||
| PSM-alpha-3 | MEFVAKLFKFFKDLLGKFLGNN | ||
| SEQ ID NO:125 | |||
| PSM-alpha-4 | MAI VGTIIKIIKAIIDIFAK | ||
| SEQ ID NO:126 | |||
| PSM-beta-1 | MEGLFNAIKDTVTAAINNDGAKLG- | ||
| TSIVSIVENGVGLLGKLFGF | |||
| SEQ ID NO:127 | |||
| PSM-beta-2 | MTGLAEAIANTVQAAQQHDSVKLG- | ||
| TSIVDIVANGVGLLGKLFGF | |||
| SEQ ID NO:128 | |||
| Actinoporins | Lytic peptides from sea anemones and | ||
| Equinatoxins | other coelenterates (e.g., SrcI, | ||
| FraC, Sticholysins StsI and StsII) | |||
6.5 Antibody and Complement Deactivating Proteins.
Antibody deactivating proteins are useful for limiting the effective immune response against the bacteria vector such that the vector is not eliminated prior to its effective treatment of the neoplastic disease, or during (i.e., following administration but prior to arrival at the target site) and after multiple injections of the same vector at later points in time when an adaptive immune response my have occurred. Antibody deactivating proteins have been suggested to be potentially useful therapeutics for treatment of antibody-based diseases, such as autoimmunity (Nandakumar and Holmadh. 2008, Trends in Immunology 29: 173-178). However, it has not been recognized that expression of these proteins would be desirable in a tumor-targeting bacterial vector as an alternative to serotype variation (as described above), which does not require the generation of multiple strains, each of which require separate testing alone as well as in combination (i.e., succession). The IgG-degrading enzyme of S. pyogenes IdeS is a cysteine endopeptidase, secreted by group A streptococcal strains during infection. It cleaves the heavy chains of IgG with a unique specificity by binding and cleaving in the hinge region, thus generating an Fc and a F(ab′)2 fragment that can be detected by protein G capture and mass spectrometry. By removing the Fc section from the antigen recognizing Fab, immune responses such as complement deposition and Fc-mediated phagocytosis are blocked. This IgG proteolytic degradation disables opsonophagocytosis and interferes with the killing of group A Streptococcus. IdeS bestows a local protective effect for the bacteria. Another IgG degrading enzyme of Streptococcus pyogenes is endo-b-N-acetylglucosaminidase (EndoS) which cleavage sites on the IgG molecule. Protein G, the aforementioned protein used in biochemical purification, has IgG antibody deactivation properties Bjork and Kronvall 1984 J Immunol 133: 969-974). Other antibody deactivating proteins include Shistosome IgE proteases and the antibody binding protein A peptides from Staphalococcus (e.g., spa gene). The IgA protease of Neisseria sp. is an autotrasporter protein. Streptococcus PspA inhibits complement activation (Anh-Hue, T et al., 1999. Infect. Immun 67: 4720-4724). Each of these proteins may be expressed individually or in combination in tumor-targeting strains of bacteria.
6.6 Chimeric Bacterial Toxins
Chimeric toxins are toxins that may contain combinations of additional elements including targeting peptides, lytic peptides, nuclear localization signals, blocking peptides, protease cleavage (deactivation) sites, N- or C-terminal secretion signals, autotransporter constructs, used to adapt the proteins to provide therapeutic molecules that are effective in treating neoplastic cells, stromal cells, neoplastic stem cells as well as immune infiltrating cells. Targeting to a particular cell type uses the appropriate ligand from the Table 2 above or from other known sources. Toxin activity is determined using standard methods known to those skilled in the arts such as Aktories (ed) 1997 (Bacterial Toxins, Tools In Cell Biology and Parmacology, Laboratory Companion, Chapman & Hall).
6.6.1 Chimeric colicins with phage proteins. Colicins lack tumor cell targeting. In the present invention, the colicin targeting and translocation domains are replaced with an M13pIII-derived signal sequence and truncated membrane anchor together with a targeting ligand. A lytic peptide may also be added. Examples of the unique organization for chimeric colE3, colE7 and col-Ia are shown in FIG. 3 .
6.6.2 In another version of chimeric colicins, the colicin targeting domain is replaced with a tumor-specific targeting domain (FIG. 4 ).
6.6.3 In another version of chimeric colicins, the targeting domain is attached to the C-terminus. Further C-terminal modification can include the addition of a NLS, preferably from apoptin, and/or a lytic peptide (FIGS. 3 and 4 ). The tumor-selective nuclear export signal of apoptin may also be used alone or in combination with the NLS.
6.6.4 Chimeric cytolethal distending toxin. Cytolethal distending toxin (cldt) is a three component toxin of E. coli, Citrobacter, Helicobacter and other genera. Cldt is an endonuclease toxin and has a nuclear localization signal on the B subunit. Chimeric toxins are provided that utilize fusion to apoptin, a canary virus protein that has a tumor-specific nuclear localization signal, a normal cell nuclear export signal (FIG. 8 ). The cytolethal distending toxin B and chimeric cltdB may be expressed as a polycistronic construct consiting of cldtABC. The cytolethal distending toxin B and chimeric cltdB may be expressed as a polycistronic construct consisting containing the typhoid pertussis-like toxin (plt) AB genes.
6.6.5 RTX toxins and hybrid operons. E coli HlyA(s) operon hlyCABD (+TolC), Actinobacillus actinomycetemcomitans leukotoxin 1txCABD, and a hybrid CABD operon are shown in FIG. 9 . In addition to direct antitumor activity, they may activate/release liposomal agents when used in combination. The ltxA may be generated as a chimera wherein it contains the C-terminal 60 amino acids of the E. coli HlyA. The ltx genes and chimeras may be expressed together with prtF and/or cyaE. Hybrid RTX toxins may be further constructed from known RTX toxins to confer species specificity to multiple species, such as both mouse and human, such that the safety and efficacy testing can occur in multiple speices. Multiple sequence alignments of RTX toxins with various species specificites (Ludwig and Goebel, Chapter 29, Structure and mode of action of RTX toxins, Alouf and Popoff (eds), 2006, Comprehensive Sourcebook of Bacterial Protein Toxins, Third Edition, Academic Press; Frey Chapter 30, Genetics and phylogeny of RTX cytolysins, in Kastin (ed), 2006, Alouf and Popoff (eds), 2006, Comprehensive Sourcebook of Bacterial Protein Toxins, Third Edition, Academic Press) are used in the analysis using computer based algorithms such as ClustalW, Muscle 3DCoffee and others (Larkin et al., 2007, ClustalW and ClustalX version 2. Bioinformatics 2007 23(21): 2947-2948 MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5: 113; MUSCLE: multiple sequence alignment with high accuracy and high throughput Nucleic Acids Research 32(5): 1792-1797; 3DCoffee: Combining Protein Sequences and Structures within Multiple Sequence Alignments, Journal of Molecular Biology 340: 385-395; Notredame e al., 2000, T-Coffee: A novel method for multiple sequence alignments, Journal of Molecular Biology 302: 205-217; Zdobnov E. M. and Apweiler R. (2001), InterProScan—an integration platform for the signature-recognition methods in InterPro. Bioinformatics 17(9): 847-848; Las smann T. and Sonnhammer E. L. L. (2006), Kalign, Kalignvu and Mumsa: web servers for multiple sequence alignment, Nucleic Acids Research 34: W596-W59).
6.6.6 Saporin and ricin chimeras. Saporin and ricin can be replaced for the active portion of the colicin chimeras. It can also be generated as a targeting peptide, saporin, HlyA C-terminus (FIG. 10 ).
6.6.7 Cytotoxic necrotic factor (cnf) and Bordetella dermonecrotic factor (dnf) chimeras. Cnf and dnf can be expressed as chimeras, where the N-terminal binding domain (amino acids 53 to 190 of cnf) is replaced with a tumor cell binding ligand, such as TGF-alpha.
6.6.8 Shiga toxin (ST) and shiga-like toxin (SLT) chimeras. ST and SLT chimeras are generated wherein the GB3-binding domain is replaced with a tumor cell binding ligand, such as TGF-alpha.
6.6.9 Subtilase toxin chimeras. Subtilase chimeras are generated by replacing the binding domain with a tumor cell binding ligand, such as TGF-alpha.
6.6.10 Nhe (non-hemolytic toxins from Bacillus) chimeras are generated by replacing the targeting domain with a tumor cell binding ligand and may be made protease sensitive by addition of a protease cleavage site.
6.6.11 Clostridium Tox A binding domain replacements (Rupnik and Just, Chapter 21 in: Alouf and Popoff (eds), 2006, Comprehensive Sourcebook of Bacterial Protein Toxins, Third Edition, Academic Press).
6.6.12 Collagenase chimeras. Collagenase is fused with a targeting peptide that directs its activity towards tumor cells, and may be made protease sensitive by the addition of a protease cleavage site.
6.6.13. Lytic chimeras. Lytic chimeras are shown in FIGS. 5 and 6 .
6.7 Expression of Proteins without Generating Chimeras.
Certain proteins of the invention augment the effector gene and protease inhibitor combination without requiring chimeric modification. These proteins include the Geobacter carboxyesterase, the bacillus thiaminase and the Neisseria IgA protease. The carboxyesterase and thiaminase may also be expressed as hlyA fusion proteins. These proteins may be expressed using constitutive or inducible promoters (FIG. 10 ).
6.8 Limiting Bacterial Conjugation.
The fertility inhibition complex (finO and finP), are cloned onto the chromosome using standard genetic techniques such that strains either with or without the pilus resistant to mating with F′ bacteria (FIG. 11 ). Other known inhibitory factors may also be used.
The F′ pilus factors in a Salmonella strain needed for phage to be able to infect the cell are provided by the F′ plasmid using standard mating techniques from an F′ E coli. The F′ factor provides other functions such as traD and the mating stabilization which are deleted using standard techniques.
6.9 Expression of DNAase Colicins as Active Extracellular Enzymes.
Colicins have innate potential to harm the host that produces them. In order to protect the host, colicins are naturally co-produced with an “immunity” protein which protects it from the action of the colicin. The immunity proteins are generally specific for each individual colicin, and each has a high affinity for the colicin. When colicins are expressed by the bacteria, the immunity protein immediately binds to the colicin preventing it from harming the host. When colicins are released, the immunity protein may remain bound. Thus, a DNAase colicin may not be expected to have extracellular activity. When colicins are internalized into the target cell the immunity protein remains extracellular, and the colicin thus becomes activated inside the target cell.
In order to generate colicins with extracellular DNAase activity capable of deactivating DNA from neutrophils capable of trapping bacteria (neutrophil nets), the present invention presents a novel combination of DNAase colicin, such as colE9, co-expressed with a non-matching DNAase colicin immunity protein, such as that from colE2, colE7, or colE8, which have higher dissociation constants for colE9 (James et al., 1996, Microbiology 142: 1569-1580). In order to compensate for the reduced amount of protection expected to occur, multiple copies of the non-cognate immunity protein are expressed. Thus, when the colicin E9 is released, the immunity proteins partially dissociate, resulting in extracellular DNAase activity.
In another method of producing an immunity protein that dissociates extracellularly, thus activating the colicin such as a DNAase colicin, the immunity protein, such as colE9 immunity, is subjected to error-prone PCR (e.g., Cirino et al., 2003, Generating mutant libraries using error-prone PCR, Methods in Molecular Biology 231: 3-9; Arnold and Georgiou (eds) 2003, Directed Evolution Library Creation, Humana Press). The library is then cloned into a DNAase colicin-containing plasmid, such as the colE9 colicin, and transformed into a suitable E. coli or Salmonella. The bacteria are plated to appropriate nutrient agar plates containing DNA. After an incubation period the plates are stained for DNA, e.g., ethidium brimode, and viewed under fluorescent light for “halos”; clear or lighter regions around colonies where the DNA has been digested. Such colonies will contain the colE9 colicin, and an immunity protein that is sufficiently stable intracellularly such that it protects the bacterial cell, allowing it to grow, and is capable of dissociating under extracellular conditions, allowing the DNAase colicin to degrade extracellular DNA. The assay may be further modified to alter the agar plate conditions to match conditions of the target site, such as lower pH that is known to occur in solid tumors. The process would then select for functional immunity proteins that dissociate under acidic pH, such as occurs in solid tumors, allowing the degradation of extracellular DNA, such as may occur from infiltrating neutrophils.
6.10 Co-Expression of Protease Inhibitors with Bacterial Toxins, Chemotherapeutic Agents, Clodronate, Carbogen, and Determinations of Combination Effects, Antagonism, Additivity and/or Synergy.
Each of the bacterial toxins and therapeutic peptides and proteins listed herein may be improved in its therapeutic activity by co-expression with a protease inhibitor. Inhibitors are expressed as secreted proteins as described above. The effect of the protease inhibitor on in vitro cytotoxicity is determined using standard cell culture techniques and cytotoxicity assays such as MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, a tetrazol; Mosmann 1983; J. Immunol Methods 65:55-63) known to those skilled in the arts. The contribution of the protein cytotoxin and protease inhibitors is determined individually and in combination. Purified protease of types known to occur in the target tissue, such as a solid tumor, lymphoma, myeloma, or the lumen of a leukemic bone, may be added to the assay. Combinatin effects, including antagonism, addititiy or synergy may determined using the median effect analysis (Chou and Talaly 1981 Eur. J. Biochem. 115: 207-216) or other standard methods (White et al., 1996, Antimicrobial Agents and Chemotherapy 40: 1914-1918; Brenner, 2002, Annals of Oncology 13: 1697-1698; Berenbaum MC. 1989. What is synergy? Pharmacol Rev. 41(2): 93-141; Greco W R, Bravo G, Parsons J C. 1995. The search for synergy: a critical review from a response surface perspective. Pharmacol Rev. 47(2): 331-85); Zhao et al., 2004, Evaluation of Combination Chemotherpy, Clin Cancer Res 10: 7994-8004; Loewe and Muischnek, 1926. Effect of combinations: mathematical basis of the problem, Arch. Exp. Pathol. Pharmakol. 114: 313-326). The assay may also be used to determine synergy, additivity or antagonism of two or more bacterial cytotoxins. The assay may also be used to determine synergy, additivity or antagonism a bacterial cytotoxin together with a conventional small molecule cytotoxin (e.g., cisplatin, doxorubicin, irinotecan, paclitaxel or vincristine), targeted therapeutic (e.g., imatinib, irissa, cetuximab), proteosome inhibitors (e.g., bortezomib), mTOR inhibitors or PARP inhibitors. Treatment with drugs such as imatinib prior to injection of Salmonella may also enhance bacterial tumor targeting (Vlahovic et Br J Cancer 2007, 97 735-740). In vivo studies may also be performed with antiangiogenic inhibitors such as Avastin, combrettastatin, thalidomide. In vivo studies with reticuloendothelial system (RES) blocker such as chlodronate which have the potential to improve the circulation time of the bacteria, vacular permeability inducing agents such as bradykinin, hyperthermia or carbogen which have the potential to improve the permeability of the tumor enhancing entry of the bacteria or aldose reductase ihibitors. Preferred genetic backgrounds for msbB mutant Salmonella in combination with corbogen (carbon dioxide oxygen mixture) includes zwf, which confers resistance to CO2 (Karsten et al., 2009, BMC Microbiol. BMC Microbiol. 2009 Aug. 18; 9:170).
6.11 Segregation of Required Colicin Toxin Cofactors.
The chimeric colicin toxins have active colicin components that require their respective immunity proteins, which are usually genetically linked. By unlinking the two genes and separating them on the chromosome, a single fragment or phage transduction is highly unlikely to contain both elements. In order to separate the elements from co-transmission by a transducing phage such as P22, separation by 50 kB or greater is preferred. Without both elements, the toxin portion cannot be carried and will kill most bacteria. Any additional genes such as other chimeric therapeutic molecules genetically linked to the colicin will also be inhibited from being transferred to other bacteria (FIG. 12 )
6.12 Characteristics of Therapeutic Bacteria Co-Expressing Protease Inhibitors with Chimeric Antigens, Lytic and Therapeutic Proteins
The primary characteristic of the bacteria of the invention is the enhanced effect of the effector molecule such as a toxin, lytic peptide etc. relative to the parental strain of bacteria without expressing one or more protease inhibitors. In one embodiment, the percent increase in effect is approximately 2% to approximately 95%, approximately 2% to approximately 75%, approximately 2% to approximately 50%, approximately 2% to about 40%, approximately 2% to about 30%, approximately 2% to about 25%, approximately 2% to about 20% or about 2% to approximately 10% greater than the parental strain of bacteria without expressing one or more protease inhibitors under the same conditions.
A second characteristic of the bacteria of the invention is that they carry novel chimeric proteins that prevent their elimination by antibodies compared to other chimeric protein expression systems. In one embodiment, the percent improvement is approximately 2% to approximately 95%, approximately 2% to approximately 75%, approximately 2% to approximately 50%, approximately 2% to about 40%, approximately 2% to about 30%, approximately 2% to about 25%, approximately 2% to about 20% or about 2% to approximately 10% that of another expression system under the same conditions.
A third characteristic of the bacteria of the invention is that they carry novel chimeric proteins that improve their function compared to other chimeric protein expression systems. In one embodiment, the percent improvement is approximately 2% to approximately 95%, approximately 2% to approximately 75%, approximately 2% to approximately 50%, approximately 2% to about 40%, approximately 2% to about 30%, approximately 2% to about 25%, approximately 2% to about 20% or about 2% to approximately 10% that of another expression system under the same conditions.
A fourth charateristic of the bacteria of the invention is that they carry heterologous proteins that suppress features of the immune system that include antibody binding and/or deactivating proteins, targeted peptides against activated T and B cells, extracellular DNases that prevent destruction by neutrophil nets, and antitumor toxins with cross-over anti-neutrophil activity (dual antitumor and anti-neutrophil activity). The Yersinia pestis secreted protein LcrV that triggers the release of interleukin 10 (IL-10) by host immune cells and suppresses proinflammatory cytokines such as tumor necrosis factor alpha and gamma interferon as well as innate defense mechanisms required to combat the pathogenesis of plague.
The immunosuppressive features together with the antibody and complement deactivation proteins allow repeated injections of the bacteria without elimination form the immune system, where improvement is defined as the percentage of bacteria present at the target site after between 1 to 21 days compared to the parental strain in a murine model. In one embodiment, the percent improvement is approximately 2% to approximately 95%, approximately 2% to approximately 75%, approximately 2% to approximately 50%, approximately 2% to about 40%, approximately 2% to about 30%, approximately 2% to about 25%, approximately 2% to about 20% or about 2% to approximately 10% that of another expression system under the same conditions.
Overall improvement is defined as an increase in effect, such as the ability to kill a neoplastic cells in vitro by the bacteria, or inhibit or reduce the volume or cell number of a solid tumor, carcinoma, lymphoma or leukemia in vivo following administration with the bacteria expressing a therapeutic molecule, with and without the protease inhibitor, and/or with and without an antibody inhibiting peptide. The effect of the protease inhibitor on protein therapeutic activity is determined using standard techniques and assays known to those skilled in the arts. Inhibitors are expressed as secreted, surface displayed and/or released proteins as described above. Likewise, the effect of the antibody inhibitory protein on therapeutic activity is determined using standard techniques and assays known to those skilled in the arts. Antibody inhibitors are expressed as native proteins (e.g., IgA protease in gram negative bacteria for vectors such as those using Salmonella, or spa, IdeS and EndoS in gram positive bacteria for vectors such as those using Streptococcus) or as secreted protein chimeras as described above such as a fusion with hlyA. The contribution of the therapeutic protein, protease inhibitors and/or antibody inhibitory proteins is determined individually and in combination. Additivity, synergy or antagonism may determined using the median effect analysis (Chou and Talaly 1981 Eur. J. Biochem. 115: 207-216) or other standard methods.
In order to more fully illustrate the invention, the following examples are provided.
A first step in selection of an appropriate strain based upon the known species specificity (e.g., S. typhi is human specific and S. typhimurium has broad species specificity including humans, birds, pigs and many other vertebrates). Thus, if the target species for treatment were limited to humans, S. typhi would be appropriate. If more species are desired to be treated including humans, cats, dogs, horses and many other vertebrates, then other serotypes may be used. For example, S. typhimurium and S. motevidio which have non-overlapping O-antigen presentation (e.g., S. typhimurium is O-1, 4, 5, 12 and S. typhi is Vi, S. montevideo is O-6, 7) are representative examples. Methods to genetically alter the serotype within a single strain are known to those skilled in the arts, including Favre et al., 1997 WO 97/14782 Methods for delivering heterologous 0-antigens; and Roland, 2000, WO/2000/004919). Thus, S. typhimurium is a suitable serotype for a prime/boost strategy where S. typhimurium is either the primary vaccine, or the booster vaccine where the primary vaccine is another serotype such as S. typhi or S. montivideo. Furthermore, both S. typhimurium and S. montivideo are suitable for humans, cats, dogs, or horses. A second step follows serotype selection where the first genetic mutation is introduced which may involve the use of antibiotic resistance markers and where any antibiotic resistance makers are then eliminated, followed by a third step where a second genetic mutation is introduced which may involve the use of antibiotic resistance markers and where any antibiotic resistance makers are then also eliminated. Reiteration of genetic deletion and antibiotic marker elimination can be used to supply additional mutations. Methods for reiterative chromosomal deletion and elimination of antibiotic resistance markers are known to those skilled in the arts, including Tn10 transposon deletion followed by “Bochner” selection (Bochner et al., 1980, J Bacteriol. 143: 926-933) for elimination of the tetracycline antibiotic resistance marker, lamda red recombinase deletion followed by flip recombinase elimination of the antibiotic resistance marker (Lesic and Rahme, 2008, BMC Molecular Biology 9:20), and suicide vectors such as those containing sucrase gene (e.g., pCVD442, Donnenberg and Kaper, 1991 Infect Immun 59: 4310-4317). Spontaneous mutations may also be rapidly and accurately selected for, such as the “Suwwan”, a large IS200-mediated deletion (Murray et al., 2004, Journal of Bacteriology, 186: 8516-8523). Thus, the starting strain can be a wild type Salmonella such as ATCC 14028, and the Suwwan, IS200 deletion selected for using chlorate (Murray et al., 2004, Journal of Bacteriology, 186: 8516-8523). A second mutation in msbB can be introduced using pCVD442 as described by Low et al., 2004, Methods Mol Med. 2004; 90:47-60). A third mutation can be generated in zwf as described by Karsten et al., 2009, BMC Microbiol. BMC Microbiol. 2009 Aug. 18; 9:170. Thus, the strain generated has deletions in the Suwwan region, msbB and zwf. In S. montevideo, where the Suwwan mutation is not known to occur, a pCVD442 vector is used to generate the equivalent mutation, together with the same procedures above (altered as necessary for DNA sequence variations in the DNA portions used for homologous recombination), resulting in a pair of strains having the same mutational background together with different bacterial antigens. These strains, alone or used for alternating doses, form a basic platform into which the effector genes and protease inhibitor gene constructs are inserted.
Chimeric cytotoxins are generated using standard molecular genetic techniques, including synthetic biology (e.g., chemically synthesized oligonucleotides annealed into larger constructs forming entire genes based on the nucleic acid and/or amino acid sequence selected, including codon optimization) and expressed in bacteria using methods known to those skilled in the arts, operably linking a promoter, ribosomal binding site and initiating methionine if not provided by the first portion of the construct. The upstream and downstream regions may contain a transcriptional termination signal (terminator). The construct may be inserted into an exogenous plasmid or a chromosomal or virulence (VIR; pSLT) plasmid integration vector, for which many different integration sites exist, including but not limited to any of the attenuation mutations or any defective (incomplete) phage elements, intergenic regions or the IS200 elements. The constructs may also be polycistronic, having multiple genes and/or gene products separated by ribosomal binding sites.
The colicin colE3 immunity protein is first synthesized as an expression cassette and cloned into a chromosomal localization vector for an integration site distal to the that of the intended site for the chimeric effector gene vector (FIG. 12 ) as described below, e.g., an IS200 deletion vector at location. The amino acid sequence of the immunity protein is given as:
| SEQ ID NO: 129 |
| MGLKLDLTWFDKSTEDFKGEEYSKDFGDDGSVMESLGVPFKDNVNNGCFDV |
| IAEWVPLLQPYFNHQIDISDNEYFVSFDYRDGDW |
The sequence is reverse translated using codons optimal for Salmonella. The entire chimeric effector protein and expression cassette components are synthesized using standard DNA synthesis techniques at a contract DNA synthesis facility and integrated into the chromosome (Donnenberg and Kaper, 1991 Infect Immun 59: 4310-4317, Low et al., 2004,
Methods in Molecular Medicine 90: 47-60, each of which is expressly incorporated herein by reference). The recipient stain can be any tumor-targeted bacterium.
This example of a chimeric colicin follows the pattern shown in FIG. 3A . This chimera is targeted to cancer cells over-expressing EGFR via a TGF-alpha ligand. The chimera consists of the M13 filimenous phage pIII protein 18 amino acid signal sequence, followed by the natural alanine and a 3 glycine spacer. The spacer is followed by the mature 50 amino acid peptide for TGF-alpha, the remaining pIII protein truncated after amino acid 372 of pIII, followed by the enzymatically active (ribonuclease) C-terminus of colicin E3, followed by a stop signal. The complete amino acid sequence is:
| SEQ ID NO: 130 |
| MKKLLFAIPLVVPFYSHSAGGGVVSHFNDCPDSHTQFCFHGTCRFLVQEDK |
| PACVCHSGYVGARCEHADLLAAETVESCLAKSHTENSFTNVWKDDKTLDRY |
| ANYEGCLWNATGVVVCTGDETQCYGTWVPIGLAIPENEGGGSEGGGSEGGG |
| SEGGGTKPPEYGDTPIPGYTYINPLDGTYPPGTEQNPANPNPSLEESQPLN |
| TFMFQNNRFRNRQGALTVYTGTVTQGTDPVKTYYQYTPVSSKAMYDAYWNG |
| KFRDCAFHSGFNEDLFVCEYQGQSSDLPQPPVNAGGGSGGGSGGGSEGGGS |
| EGGGSEGGGSEGGGSGGGSGSGDFDYEKMANANKGAMTENADENALQSDAK |
| GKLDSVATDYGAAIDGFIGDVSGLANGNGATGDFAGSNSQMAQVGDGDNSP |
| LMNNFRQYLPSLPQSVECRFAHDPMAGGHRMWQMAGLKAQRAQTDVNNKQA |
| AFDAAAKEKSDADAALSSAMESRKKKEDKKRSAENNLNDEKNKPRKGFKDY |
| GHDYHPAPKTENIKGLGDLKPGIPKTPKQNGGGKRKRWTGDKGRKIYEWDS |
| QHGELEGYRASDGQHLGSFDPKTGNQLKGPDPKRNIKKYL* |
The entire chimeric effector protein and expression cassette components are synthesized using standard DNA synthesis techniques, for example, at a contract DNA synthesis facility, and cloned into a chromosomal localization vector, e.g., an IS200 deletion vector, and integrated into the chromosome (Donnenberg and Kaper, 1991, Low et al., 2003, each of which is expressly incorporated herein by reference).
The lytic peptide PSM-alpha-3 is inserted between the pIII signal sequence and the TGF-alpha (FIG. 3B ). The complete sequence of the construct is as follows:
| SEQ ID NO: 131 |
| MKKLLFAIPLVVPFYSHSAMEFVAKLFKFFKDLLGKFLGNNVVSHFNDCPD |
| SHTQFCFHGTCRFLVQEDKPACVCHSGYVGARCEHADLLAAETVESCLAKS |
| HTENSFTNVWKDDKTLDRYANYEGCLWNATGVVVCTGDETQCYGTWVPIGL |
| AIPENEGGGSEGGGSEGGGSEGGGTKPPEYGDTPIPGYTYINPLDGTYPPG |
| TEQNPANPNPSLEESQPLNTFMFQNNRFRNRQGALTVYTGTVTQGTDPVKT |
| YYQYTPVSSKAMYDAYWNGKFRDCAFHSGFNEDLFVCEYQGQSSDLPQPPV |
| NAGGGSGGGSGGGSEGGGSEGGGSEGGGSEGGGSGGGSGSGDFDYEKMANA |
| NKGAMTENADENALQSDAKGKLDSVATDYGAAIDGFIGDVSGLANGNGATG |
| DFAGSNSQMAQVGDGDNSPLMNNFRQYLPSLPQSVECRFAHDPMAGGHRMW |
| QMAGLKAQRAQTDVNNKQAAFDAAAKEKSDADAALSSAMESRKKKEDKKRS |
| AENNLNDEKNKPRKGFKDYGHDYHPAPKTENIKGLGDLKPGIPKTPKQNGG |
| GKRKRWTGDKGRKIYEWDSQHGELEGYRASDGQHLGSFDPKTGNQLKGPDP |
| KRNIKKYL |
As for the other colicin E3 constructs, the colicin colE7 immunity protein is synthesized as an expression cassette and cloned into a chromosomal localization vector for an integration site distal to the that of the chimeric effector gene vector described below, e.g., an IS200 deletion vector at location.
The genetic construct of the first colicin E7 chimera follows the same pattern as shown in FIG. 3A , except that the ColE3 C-terminus is replaced with the colE7 (a DNAase) C-terminus comprising amino acids 444 to 576 (FIG. 3 C). Nuclear localization signals (NLSs) may also be added, including but not limited to that from herpes simplex virus thymidine kinase, the SV40 large T antigen (PPKKKRKV SEQ ID NO:1) monopartite NLS, or the nucleoplamin bipartite NLS (KR[PAATKKAGQA]KKKK SEQ ID NO:2, or more preferably, the NLS from apoptin, a tumor associated (tumor-selective) NLS. The tumor-selective nuclear export signal from apoptin may be used alone or together with NLS from apoptin.
The genetic construct of the second colicin E7 chimera follows the same pattern as shown in FIG. 3C , except that the lysis peptide is inserted between the M13pIII signal sequence and the targeting peptide (TGF-alpha) (FIG. 3D ). Nuclear localization signals (NLSs) may also be added, including but not limited to that from herpes simplex virus thymidine kinase, the SV40 large T antigen (PPKKKRKV SEQ ID NO:1) monopartite NLS, or the nucleoplamin bipartite NLS (KR[PAATKKAGQA]KKKK SEQ ID NO:2, or more preferably, the NLS from apoptin, a tumor associated (tumor-selective) NLS. The tumor-selective nuclear export signal from apoptin may be used alone or together with NLS from apoptin.
As for the other colicin E3 constructs, the colicin Ia immunity protein is synthesized as an expression cassette and cloned into a chromosomal localization vector for an integration site distal to the that of the chimeric effector gene vector described below, e.g., an IS200 deletion vector at location.
The genetic construct of the first colicin Ia chimera follows the same pattern as shown in FIG. 3A , except that the ColE3 C-terminus is replaced with the Ia (pore forming) C-terminus comprising amino acids 450 to 626 (FIG. 3 E).
The genetic construct of the second colicin Ia chimera follows the same pattern as shown in FIG. 3B , except that the lysis peptide is inserted between the M13pIII signal sequence and the targeting peptide (TGF-alpha) (FIG. 3F ).
Colicin TRC fusions utilize the entire colicin with its three domains, T (translocation), R (receptor), and C (catalytic), and fuse active moities to the C-terminal catalytic domain (FIG. 4 ). A) TRC of a colicin, such as colE3, and a targeting domain, such as TGF-alpha. B) TRC of a colicin, such as colE3, a lytic peptide such as PSM-alpha-1, and a targeting domain, such as TGF-alpha. The lytic peptide may be engineered to have protease cleavage sites, such as those from cathepsin, that effect its release and aid in escape from an endosome. C) TRC of a DNAase colicin, such as colE9 where it is desirable to direct the DNAase activity to the tumor, a nuclear localization domain (NLS), preferably that of Apoptin, and a targeting domain such as a CD22 binding peptide. The CD22 peptide is disulfide bonded (S—S) loop. Alternatively, a peptide library such as are used in phage display, including those using disulfide bonding may be used. Such libraries are may be first selected using phage, or may alternatively first be selected by screening of colicins for target cell specificity and then transferred to the colicin receptor region. In addition, a library of the “tol box” penta peptide (DGSGW SEQ ID NO:133) variations and/or extended tolB box (DGSGWSSENNPWGGGSGSIHW SEQ ID NO:134; Hands et al., 2005, Interactions of TolB with the translocation domain of colicin E9 require and extended tolB box, J Bacteriol. 187: 6733-6741) variations may be screened alone or in combination with individual receptor peptides such as the CD22 binding peptide, or a library of receptor peptides and a library of tol box or extended tol box peptides may be screened in combination. D) TRC of a DNAase colicin, such as colE9 where it is desirable to direct the DNAase activity to the tumor, a nuclear localization domain (NLS), preferably that of Apoptin, a lytic peptide such as PSM-alpha-1, and a targeting domain, such as a CD22 binding peptide. The lytic peptide may be engineered to have protease cleavage sites, such as those from cathepsin, that affects its release and aids in escape of the colicin chimera from an endosome. E) TRC of colicin E3, a ribonuclease colicin active in the cytoplasm, where a targeting peptide, such as CD22 binding peptide, is inserted into the targeting domain, between amino acids 374 and 391. F) TRC of colicin E3, a ribonuclease colicin active in the cytoplasm, where a targeting peptide, such as CD22 binding peptide, is inserted into the targeting domain between amino acids 374 and 391 and a lytic peptide is engineered in-frame. The lytic peptide may be engineered to have a protease cleavage site, such as those from a cathepsin, that affects its release and aids in escape of the colicin chimera from an endosome. G) TRC of colicin E9, a DNAase colicin active in the nucleus, where a targeting peptide, such as CD22 binding peptide, is inserted into the targeting domain. H) TRC of colicin E9, a DNAase colicin active in the nucleus, where a targeting peptide, such as CD22 binding peptide, is inserted into the targeting domain. and a lytic peptide is engineered in-frame. The lytic peptide may be engineered to have a protease cleavage site, such as those from a cathepsin, that affects its release and aids in escape of the colicin chimera from an endosome.
Protease inhibitors are generated using knowledge of the predicted proteolytic cleavage of the effector molecule (e.g., ProP 1.0, Duckert et al., 2004, Prediction of proprotein convertase cleavage sites, Protein Engineering Design and Selection 17: 107-122; ExPASy PeptideCutter tool, Gasteiger et al. Protein Identification and Analysis Tools on the ExPASy Server, In: John M. Walker (ed): The Proteomics Protocols Handbook, Humana Press, 2005), and may be used to test the predicted proteolytic sensitivity of the effector molecule. Using the colicin lytic peptide TGF fusion described above, the Duckert et al., method predicts a furin cleavage at amino acid 509. Thus, since cleaveage of the effector molecule has the potential to occur, furin represent a protease target for which inhibition could improve the effectiveness or activity of a co-expressed molecule by inhibiting its destruction by proteolytic degradation, whereas Factor Xa is identified by ProP as a cleavage site that is not present, does not need to be inhibited, and who's cleavage recognition site could be added between protein domains where removal of a domain by proteolysis is desirable.
Secreted protease inhibitors are generated using standard molecular genetic techniques and expressed in bacteria using methods known to those skilled in the arts, operably linking a promoter, ribosomal binding site and initiating methionine if not provided by the first portion of the construct. The construct may either be a plasmid or a chromosomal virulence (VIR) plasmid integration vector, for which many different integration sites exist, including but not limited to any of the attenuation mutations, intergenic regions or any of the IS200 elements. The constructs may also be polycistronic, having multiple genes and/or gene products separated by ribosomal binding sites. The different forms of the protease inhibitor constructs are shown in FIG. 2 . The constructs used have multiple forms, for example: 1) An N-terminal signal sequence, such as that from M13pIII MKKLLFAIPLVVPFYSHS SEQ ID NO:135, followed by a protease inhibitor such as the furin inhibitor GKRPRAKRA SEQ ID NO:11; 2) a protease inhibitor such as the furin inhibitor GKRPRAKRA SEQ ID NO:11followed by the C-terminal signal sequence of hlyA
| SEQ ID NO: 136 |
| STYGSQDYLNPLINEISKIISAAGNLDVKEERSAASLLQLSGNASDFSYGR |
| NSITLTASA, |
a protease inhibitor such as the furin inhibitor GKRPRAKRA SEQ ID NO:11, followed by a furin cleavage signal RXKR↓SX SEQ ID NO:137 followed by the C-terminal signal sequence of hlyA
| SEQ ID NO: 138 |
| STYGSQDYLNPLINEISKIISAAGNLDVKEERSAASLLQLSGNASDFSYGR |
| NSITLTASA |
A C-terminal amidating enzyme composition known form serum or plasma which comprises a C-terminal amidating enzyme capable of amidating a C-terminal glycine which amidates the carboxy terminus of the C-terminal glycine of a peptide terminating in Gly-Gly. The enzyme participating in such amidation is called peptidylglycine-α-amidating monoxygenase (C-terminal amidating enzyme) (EC.1.14.17.3) (Bradbury et al, Nature, 298, 686, 1982: Glembotski et al, J. Biol, Chem., 259, 6385, 1984; and U.S. Pat. No. 5,354,675, expressly incorporated herein by reference), is considered to catalyze the following reaction:
—CHCONHCH2COOH—CHCONH2+glyoxylic acid
—CHCONHCH2COOH—CHCONH2+glyoxylic acid
is produced by the recombinant.
Examples of antitumor lytic peptides are shown in FIG. 5 . It is understood that those peptides utilizing the hlyA signal sequence requires hlyBD in trans together with a functional tolC. The lytic peptide constructs consist of A) lytic peptide joined to the HlyA signal sequence, B) lytic peptide, targeting peptide, signals sequence, C) M13 pIII signal sequence, lytic peptide, M13 pIII amino acids 19 to 372, targeting peptide, D) M13 signal sequence, lytic peptide, targeting peptide, M13 pIII amino acids 19 to 372.
Examples of antitumor lytic peptide prodrugs are shown in FIG. 6 . It is understood that those peptides utilizing the hlyA signal sequence requires hlyBD in trans together with a functional tolC. The lytic peptide prodrug constructs consist of A) a neutral (e.g., beta sheet) blocking peptide of 50 amino acids, a protease cleavage site shown by downward arrow (for a protease not being blocked by a protease inhibitor), a lytic peptide, and the hlyA signal sequence, which may contain the same protease cleavage site shown by a downward arrow, B) a neutral (e.g., beta sheet) blocking peptide of 50 amino acids, a lytic peptide, a targeting peptide (e.g., TGF-alpha), a protease cleavage site shown by downward arrow (for a protease not being blocked by a protease inhibitor), and the hlyA signal sequence, which may contain the same protease cleavage site shown by a downward arrow, C) the M13 pIII signal sequence, a blocking peptide, a protease cleavage sequence, a lytic peptide, M13 pIII amino acids 19 to 372, and a targeting peptide (e.g., TGF-alpha), and D) the M13 pIII signal sequence, a blocking peptide, a protease cleavage sequence, a lytic peptide, a targeting peptide (e.g., TGF-alpha), and M13 pIII amino acids 19 to 372.
A cytolethal distending toxin subunit B with tumor-specific nuclear localization and normal cell nuclear export is generated by a fusion with apoptin containing a five glycine linker in between (FIG. 6A ). The complete sequence of the construct is as follows:
| SEQ ID NO: 139 |
| MKKYIISLIVFLSFYAQADLTDFRVATWNLQGASATTESKWNINVRQLISG |
| ENAVDILAVQEAGSPPSTAVDTGTLIPSPGIPVRELIWNLSTNSRPQQVYI |
| YFSAVDALGGRVNLALVSNRRADEVFVLSPVRQGGRPLLGIRIGNDAFFTA |
| HAIAMRNNDAPALVEEVYNFFRDSRDPVHQALNWMILGDFNREPADLEMNL |
| TVPVRRASEIISPAAATQTSQRTLDYAVAGNSVAFRPSPLQAGIVYGARRT |
| QISSDHFPVGVSRRGGGGGMNALQEDTPPGPSTVFRPPTSSRPLETPHCRE |
| IRIGIAGITITLSLCGCANARAPTLRSATADNSESTGFKNVPDLRTDQPKP |
| PSKKRSCDPSEYRVSELKESLITTTPSRPRTAKRRIRL |
A cytolethal distending toxin subunit B with tumor-specific nuclear localization and normal cell nuclear export is generated by a fusion with a truncated apoptin amino acids 33 to 121 containing a five glycine linker in between (FIG. 6B ). The complete sequence of the construct is as follows:
| SEQ ID NO: 140 |
| MKKYIISLIVFLSFYAQADLTDFRVATWNLQGASATTESKWNINVRQLISG |
| ENAVDILAVQEAGSPPSTAVDTGTLIPSPGIPVRELIWNLSTNSRPQQVYI |
| YFSAVDALGGRVNLALVSNRRADEVFVLSPVRQGGRPLLGIRIGNDAFFTA |
| HAIAMRNNDAPALVEEVYNFFRDSRDPVHQALNWMILGDFNREPADLEMNL |
| TVPVRRASEIISPAAATQTSQRTLDYAVAGNSVAFRPSPLQAGIVYGARRT |
| QISSDHFPVGVSRRGGGGGITPHCREIRIGIAGITITLSLCGCANARAPTL |
| RSATADNSESTGFKNVPDLRTDQPKPPSKKRSCDPSEYRVSELKESLITTT |
| PSRPRTAKRRIRL |
A cytolethal distending toxin subunit B with tumor-specific nuclear retention signal is generated by a fusion with a truncated apoptin amino acids 33 to 46 containing a five glycine linker in between (FIG. 6C ). The complete sequence of the construct is as follows:
| SEQ ID NO: 141 |
| MKKYIISLIVFLSFYAQADLTDFRVATWNLQGASATTESKWNINVRQLISG |
| ENAVDILAVQEAGSPPSTAVDTGTLIPSPGIPVRELIWNLSTNSRPQQVYI |
| YFSAVDALGGRVNLALVSNRRADEVFVLSPVRQGGRPLLGIRIGNDAFFTA |
| HAIAMRNNDAPALVEEVYNFFRDSRDPVHQALNWMILGDFNREPADLEMNL |
| TVPVRRASEIISPAAATQTSQRTLDYAVAGNSVAFRPSPLQAGIVYGARRT |
| QISSDHFPVGVSRRGGGGGIRIGIAGITITLSL |
A cytolethal distending toxin subunit B with a normal cell nuclear export signal is generated by a fusion with a truncated apoptin amino acids 81 to 121 containing a five glycine linker in between (FIG. 6D ). The complete sequence of the construct is as follows:
| SEQ ID NO: 142 |
| MKKYIISLIVFLSFYAQADLTDFRVATWNLQGASATTESKWNINVRQLISG |
| ENAVDILAVQEAGSPPSTAVDTGTLIPSPGIPVRELIWNLSTNSRPQQVYI |
| YFSAVDALGGRVNLALVSNRRADEVFVLSPVRQGGRPLLGIRIGNDAFFTA |
| HAIAMRNNDAPALVEEVYNFFRDSRDPVHQALNWMILGDFNREPADLEMNL |
| TVPVRRASEIISPAAATQTSQRTLDYAVAGNSVAFRPSPLQAGIVYGARRT |
| QISSDHFPVGVSRRGGGGGTDQPKPPSKKRSCDPSEYRVSELKESLITTTP |
| SRPRTAKRRIRL |
The amino acid sequence FRDSRDPVHQAL SEQ ID NO:143 which is associated with dimerization and inactivation can be exchanged for the loop NSSSSPPERRVY SEQ ID NO:144 from Haemophilus which is associated with stabile retention of cytotoxicty.
RTX family members, including E. coli hemolysin operon hlyCABD and Actinobacillus actinomycetemcomitans leucotoxin ltxCABD are expressed in coordination with protease inhibitors as shown in FIG. 7 . E coli hemolysin operon hlyCABD is expressed as a non-chimera (FIG. 7A ). Actinobacillus actinomycetemcomitans leucotoxin 1txCABD operon is expressed as either a non-hybrid (FIG. 7B ) or as a hybrid (FIG. 7C ). It is understood that a functional tolC gene is required in the gram-negative bacterial strain for functional expression of each of these operons, or that homologs such as prtF and/or cyaE may be used.
A low pathogenicity clyE− group B Streptococccus expressing a gram positive secretion signal from alkaline phosphatase (Lee et al., 1999 J. Bacteriol, 181: 5790-5799) in frame with the vascular targeting peptide F3 CKDEPQRRSARLSAKPAPPKPEPKPKKAPAKK SEQ ID NO:145 in frame with the lytic peptide PSM-a-3.
A low pathogenicity clyE− group B Streptococccus expressing a gram positive secretion signal from alkaline phosphatase (Lee et al., 1999 J. Bacteriol, 181: 5790-5799) in frame with saporin and the vascular targeting peptide F3 CKDEPQRRSARLSAKPAPPKPEPKPKKAPAKK SEQ ID NO: 146 (FIG. 7 ).
It will be understood that the foregoing is only illustrative of the principles of the invention, and that various modifications can be made by those skilled in the art without departing from the scope and spirit of the invention.
Claims (17)
1. A genetically engineered bacterium for efficacious administration to a human or animal that co-expresses a genetically engineered protease-sensitive therapeutic or diagnostic molecule and a heterologous protease inhibitor, within a common target tissue of the human or animal, the protease inhibitor being adapted to inhibit proteases present in the common target tissue that would otherwise degrade the genetically engineered protease-sensitive therapeutic or diagnostic molecule.
2. The genetically engineered bacterium according to claim 1 , wherein the target tissue is a solid tumor, the genetically engineered bacterium is adapted to selectively colonize the solid tumor, and the genetically engineered protease-sensitive therapeutic or diagnostic molecule is adapted to diagnose or treat the solid tumor.
3. The genetically engineered bacterium according to claim 1 , wherein the target tissue is bone marrow, and the genetically engineered bacterium is adapted to selectively colonize the bone marrow.
4. The genetically engineered bacterium according to claim 3 , wherein the bone marrow is invaded by neoplastic cells, and the co-expressed protease sensitive therapeutic or diagnostic molecule is adapted to provide an effective therapy against the neoplastic cells in the bone marrow.
5. The genetically engineered bacterium according to claim 3 , wherein the neoplastic cells are at least one of leukemia cells, lymphoma cells, and multiple myeloma cells.
6. The genetically engineered bacterium according to claim 1 , wherein the target tissue is enriched in inflammatory immune cells.
7. The genetically engineered bacterium according to claim 6 , wherein the inflammatory immune cells are a selected one of macrophages, neutrophils, and T-cells.
8. The genetically engineered bacterium according to claim 1 , wherein the protease-sensitive therapeutic or diagnostic molecule is a therapeutic molecule selected from the group consisting of a peptide or protein, toxin, chimeric toxin, cytokine, antibody, bispecific antibody, single chain antibody, chemokine, or prodrug converting enzyme.
9. The bacterium according to claim 1 , wherein the protease-sensitive therapeutic or diagnostic molecule comprises a toxin is selected from at least one of the group consisting of cytolethal distending toxin (cldt), cytotoxic nectrotic factor (cnf), dermonecrotic factor (dmf), shiga toxin, and shiga-like toxin, a colicin, a membrane lytic peptide from Staphalococcus, leucotoxin, a leucotoxin:HlyA hybrid, a heat stable enterotoxin from enterobacteriaceae, an autotransporter toxin, clostridium enterotoxin, aerolysin, typhoid toxin, subtilase, Bordetella adenylate cyclase toxin, pertussus toxin, and porB.
10. The genetically engineered bacterium according to claim 1 , wherein the protease-sensitive therapeutic or diagnostic molecule is a cytolethal distending toxin (cldt) fused to a peptide containing a nuclear localization signal from apoptin.
11. The genetically engineered bacterium according to claim 1 , wherein the protease-sensitive therapeutic or diagnostic molecule is a typhoid toxin fused to a nuclear localization signal from apoptin.
12. The genetically engineered bacterium according to claim 1 , wherein the protease-sensitive therapeutic or diagnostic molecule is colicin col-Ia or colE7.
13. The genetically engineered bacterium according to claim 1 , wherein the protease-sensitive therapeutic or diagnostic molecule is colicin col-Ia or colE7 in which targeting and translocation sequences are replaced with an M13 pIII signal sequence fused to a targeting peptide, followed by M13, and a membrane anchor-truncated M13 pIII, fused to the C-terminal catalytic portion of col-Ia of colE7, respectively.
14. The genetically engineered bacterium according to claim 13 , wherein the targeting peptide is the mature form of TGF-alpha.
15. The genetically engineered bacterium according to claim 14 , wherein a Staphalococcus lytic peptide is inserted between the M13 pIII signal sequence and the targeting peptide.
16. The genetically engineered bacterium according to the claim 1 , wherein the protease inhibitor is selected from one or more of the group consisting of:
PAAATVTKKVAKSPKKAKAAKPKKAAKSAAKAVKPK SEQ ID NO:8
TKKVAKRPRAKRAA SEQ ID NO:9
TKKVAKRPRAKRDL SEQ ID NO:10
GKRPRAKRA SEQ ID NO:11
CKRPRAKRDL SEQ ID NO:12
CVAKRPRAKRDL SEQ ID NO:13
CKKVAKRPRAKRDL SEQ ID NO:14
GRCTKSIPPICFPD SEQ ID NO:24 and
CTTHWGFTLC SEQ ID NO:111.
17. The genetically engineered bacterium according to claim 1 , wherein the genetically engineered bacterium is conjugation deficient.
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US14/016,407 US9068187B1 (en) | 2010-02-09 | 2013-09-03 | Protease inhibitor: protease sensitivity expression system composition and methods improving the therapeutic activity and specificity of proteins delivered by bacteria |
| US14/754,113 US9878023B1 (en) | 2010-02-09 | 2015-06-29 | Protease inhibitor: protease sensitive expression system composition and methods improving the therapeutic activity and specificity of proteins delivered by bacteria |
| US15/881,012 US11219671B1 (en) | 2010-02-09 | 2018-01-26 | Protease inhibitor:protease sensitive expression system, composition and methods for improving the therapeutic activity and specificity of proteins delivered by bacteria |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US30293810P | 2010-02-09 | 2010-02-09 | |
| US13/024,172 US8524220B1 (en) | 2010-02-09 | 2011-02-09 | Protease inhibitor: protease sensitivity expression system composition and methods improving the therapeutic activity and specificity of proteins delivered by bacteria |
| US14/016,407 US9068187B1 (en) | 2010-02-09 | 2013-09-03 | Protease inhibitor: protease sensitivity expression system composition and methods improving the therapeutic activity and specificity of proteins delivered by bacteria |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/024,172 Division US8524220B1 (en) | 2010-02-09 | 2011-02-09 | Protease inhibitor: protease sensitivity expression system composition and methods improving the therapeutic activity and specificity of proteins delivered by bacteria |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/754,113 Division US9878023B1 (en) | 2010-02-09 | 2015-06-29 | Protease inhibitor: protease sensitive expression system composition and methods improving the therapeutic activity and specificity of proteins delivered by bacteria |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US9068187B1 true US9068187B1 (en) | 2015-06-30 |
Family
ID=49034592
Family Applications (4)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/024,172 Expired - Fee Related US8524220B1 (en) | 2010-02-09 | 2011-02-09 | Protease inhibitor: protease sensitivity expression system composition and methods improving the therapeutic activity and specificity of proteins delivered by bacteria |
| US14/016,407 Active US9068187B1 (en) | 2010-02-09 | 2013-09-03 | Protease inhibitor: protease sensitivity expression system composition and methods improving the therapeutic activity and specificity of proteins delivered by bacteria |
| US14/754,113 Active US9878023B1 (en) | 2010-02-09 | 2015-06-29 | Protease inhibitor: protease sensitive expression system composition and methods improving the therapeutic activity and specificity of proteins delivered by bacteria |
| US15/881,012 Active 2033-03-13 US11219671B1 (en) | 2010-02-09 | 2018-01-26 | Protease inhibitor:protease sensitive expression system, composition and methods for improving the therapeutic activity and specificity of proteins delivered by bacteria |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/024,172 Expired - Fee Related US8524220B1 (en) | 2010-02-09 | 2011-02-09 | Protease inhibitor: protease sensitivity expression system composition and methods improving the therapeutic activity and specificity of proteins delivered by bacteria |
Family Applications After (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/754,113 Active US9878023B1 (en) | 2010-02-09 | 2015-06-29 | Protease inhibitor: protease sensitive expression system composition and methods improving the therapeutic activity and specificity of proteins delivered by bacteria |
| US15/881,012 Active 2033-03-13 US11219671B1 (en) | 2010-02-09 | 2018-01-26 | Protease inhibitor:protease sensitive expression system, composition and methods for improving the therapeutic activity and specificity of proteins delivered by bacteria |
Country Status (1)
| Country | Link |
|---|---|
| US (4) | US8524220B1 (en) |
Cited By (22)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9365625B1 (en) | 2011-03-31 | 2016-06-14 | David Gordon Bermudes | Bacterial methionine analogue and methionine synthesis inhibitor anticancer, antiinfective and coronary heart disease protective microcins and methods of treatment therewith |
| US9486513B1 (en) | 2010-02-09 | 2016-11-08 | David Gordon Bermudes | Immunization and/or treatment of parasites and infectious agents by live bacteria |
| US9593339B1 (en) | 2013-02-14 | 2017-03-14 | David Gordon Bermudes | Bacteria carrying bacteriophage and protease inhibitors for the treatment of disorders and methods of treatment |
| US9616114B1 (en) | 2014-09-18 | 2017-04-11 | David Gordon Bermudes | Modified bacteria having improved pharmacokinetics and tumor colonization enhancing antitumor activity |
| US9657085B1 (en) | 2009-02-09 | 2017-05-23 | David Gordon Bermudes | Protease inhibitor: protease sensitive expression system and method improving the therapeutic activity and specificity of proteins and phage and phagemids delivered by bacteria |
| US9737592B1 (en) | 2014-02-14 | 2017-08-22 | David Gordon Bermudes | Topical and orally administered protease inhibitors and bacterial vectors for the treatment of disorders and methods of treatment |
| US9878023B1 (en) | 2010-02-09 | 2018-01-30 | David Gordon Bermudes | Protease inhibitor: protease sensitive expression system composition and methods improving the therapeutic activity and specificity of proteins delivered by bacteria |
| US10087451B2 (en) | 2006-09-22 | 2018-10-02 | Aviex Technologies Llc | Live bacterial vectors for prophylaxis or treatment |
| US10188722B2 (en) | 2008-09-18 | 2019-01-29 | Aviex Technologies Llc | Live bacterial vaccines resistant to carbon dioxide (CO2), acidic pH and/or osmolarity for viral infection prophylaxis or treatment |
| US10676723B2 (en) | 2015-05-11 | 2020-06-09 | David Gordon Bermudes | Chimeric protein toxins for expression by therapeutic bacteria |
| CN111417646A (en) * | 2017-07-10 | 2020-07-14 | 斯坦福国际研究院 | Peptide saponin conjugates for the treatment of cancer |
| US10857233B1 (en) | 2010-02-09 | 2020-12-08 | David Gordon Bermudes | Protease inhibitor combination with therapeutic proteins including antibodies |
| US10973908B1 (en) | 2020-05-14 | 2021-04-13 | David Gordon Bermudes | Expression of SARS-CoV-2 spike protein receptor binding domain in attenuated salmonella as a vaccine |
| US11129906B1 (en) | 2016-12-07 | 2021-09-28 | David Gordon Bermudes | Chimeric protein toxins for expression by therapeutic bacteria |
| US11168326B2 (en) | 2017-07-11 | 2021-11-09 | Actym Therapeutics, Inc. | Engineered immunostimulatory bacterial strains and uses thereof |
| US11180535B1 (en) | 2016-12-07 | 2021-11-23 | David Gordon Bermudes | Saccharide binding, tumor penetration, and cytotoxic antitumor chimeric peptides from therapeutic bacteria |
| US20220227823A1 (en) * | 2017-07-10 | 2022-07-21 | Sri International | Molecular guide system peptides and uses thereof |
| US11779612B2 (en) | 2019-01-08 | 2023-10-10 | Actym Therapeutics, Inc. | Engineered immunostimulatory bacterial strains and uses thereof |
| WO2024077155A1 (en) * | 2022-10-06 | 2024-04-11 | Pan Chong Xian | Cancer-specific delivery of bacterium |
| US12024709B2 (en) | 2019-02-27 | 2024-07-02 | Actym Therapeutics, Inc. | Immunostimulatory bacteria engineered to colonize tumors, tumor-resident immune cells, and the tumor microenvironment |
| US12285437B2 (en) | 2019-10-30 | 2025-04-29 | The Research Foundation For The State University Of New York | Reversing the undesirable pH-profile of doxorubicin via activation of a disubstituted maleamic acid prodrug at tumor acidity |
| US12441774B2 (en) | 2023-12-20 | 2025-10-14 | Sri International | Molecular guide system peptides and uses thereof |
Families Citing this family (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9808517B2 (en) | 2012-04-06 | 2017-11-07 | Cornell University | Subunit vaccine delivery platform for robust humoral and cellular immune responses |
| CN106163556B (en) | 2013-09-25 | 2024-04-09 | 西托姆克斯治疗公司 | Matrix metalloproteinase substrates and other cleavable moieties and methods of use thereof |
| CN106459153B (en) | 2014-01-31 | 2021-12-21 | 西托姆克斯治疗公司 | Substrates and other cleavable moieties for proteolytic enzymes and U-type plasminogen activators and methods of use thereof |
| EP4484556A3 (en) | 2014-12-16 | 2025-05-07 | C3J Therapeutics, Inc. | Compositions of and methods for in vitro viral genome engineering |
| MA41374A (en) | 2015-01-20 | 2017-11-28 | Cytomx Therapeutics Inc | MATRIX METALLOPROTEASE CLIVABLE AND SERINE PROTEASE CLIVABLE SUBSTRATES AND METHODS OF USE THEREOF |
| EP3377634B1 (en) * | 2015-11-19 | 2020-08-12 | Universität Basel | Bacteria-based protein delivery |
| MX2021006429A (en) | 2018-12-06 | 2021-07-15 | Cytomx Therapeutics Inc | Matrix metalloprotease-cleavable and serine or cysteine protease-cleavable substrates and methods of use thereof. |
| US11471497B1 (en) | 2019-03-13 | 2022-10-18 | David Gordon Bermudes | Copper chelation therapeutics |
| WO2024187069A1 (en) * | 2023-03-08 | 2024-09-12 | University Of Florida Research Foundation, Incorporated | Engineering enterobacteria to site-specifically activate the anticancer prodrug 5-fluorocytosine for treating colon cancer |
| WO2024216053A1 (en) * | 2023-04-12 | 2024-10-17 | The Board Of Trustees Of The Leland Stanford Junior University | Small molecule control of membrane and secreted proteins via human proteases |
Citations (38)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5143830A (en) | 1986-05-15 | 1992-09-01 | Holland Ian B | Process for the production of a polypeptide |
| US5354675A (en) | 1988-05-30 | 1994-10-11 | Shiseido Company Ltd. | C-terminal amidating enzyme composition, process for preparing, and use of the same |
| US5399490A (en) | 1990-06-15 | 1995-03-21 | Aktiebolaget Astra | Vector to produce biologically important peptides |
| US5466672A (en) | 1992-12-04 | 1995-11-14 | Ophidian Pharmaceuticals, Inc. | Therapeutic use of clostridium difficile toxin A |
| WO1996040238A1 (en) | 1995-06-07 | 1996-12-19 | Yale University | Vectors for the diagnosis and treatment of solid tumors including melanoma |
| US5712369A (en) | 1995-08-24 | 1998-01-27 | Ludwig Institute For Cancer Research | Isolated protein which binds to A33 antibody, and peptides corresponding to portions of the protein |
| WO2000004919A2 (en) | 1998-07-24 | 2000-02-03 | Megan Health, Inc. | Live attenuated salmonella vaccines to control avian pathogens |
| US6080849A (en) | 1997-09-10 | 2000-06-27 | Vion Pharmaceuticals, Inc. | Genetically modified tumor-targeted bacteria with reduced virulence |
| US6207156B1 (en) | 1997-03-21 | 2001-03-27 | Brigham And Women's Hospital, Inc. | Specific antibodies and antibody fragments |
| WO2001025397A2 (en) | 1999-10-04 | 2001-04-12 | Vion Pharmaceuticals, Inc. | Compositions and methods for tumor-targeted delivery of effector molecules |
| WO2002070645A2 (en) | 2001-03-02 | 2002-09-12 | MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. | Functional surface display of polypeptides |
| US20030059400A1 (en) | 2001-07-31 | 2003-03-27 | Szalay Aladar A. | Light emitting microorganisms and cells for diagnosis and therapy of tumors |
| US6605697B1 (en) | 1998-09-15 | 2003-08-12 | Hanmi Pharm. Co., Ltd. | Modified E. coli enterotoxin II signal peptide and a microorganism expressing a fusion protein of a said peptide and a heterologous protein |
| WO2003072125A1 (en) | 2002-02-22 | 2003-09-04 | The Curators Of The University Of Missouri | Therapeutic and diagnostic targeting of cancers cells with tumor homing peptides |
| US6638912B2 (en) | 1995-05-01 | 2003-10-28 | The Regents Of The University Of California | Peptide compositions mimicking TGF-β activity |
| WO2003102168A1 (en) | 2002-05-29 | 2003-12-11 | The Regents Of The University Of California | Attenuated listeria spp. and methods for using the same |
| US6743893B2 (en) | 2000-11-30 | 2004-06-01 | The Uab Research Foundation | Receptor-mediated uptake of peptides that bind the human transferrin receptor |
| WO2004076484A1 (en) | 2003-02-27 | 2004-09-10 | National Research Council Of Canada | Peptide inhibitors of thrombin as potent anticoagulants |
| WO2004103404A1 (en) | 2003-05-20 | 2004-12-02 | Applied Molecular Evolution, Inc. | Cd20 binding molecules |
| US6841535B2 (en) | 2000-07-31 | 2005-01-11 | Active Motif | Peptide-mediated transfection agents and methods of use |
| WO2005018332A1 (en) | 2003-08-13 | 2005-03-03 | The General Hospital Corporation | Modified microorganisms for anti-cancer therapy |
| US6863894B2 (en) | 1997-09-10 | 2005-03-08 | Vion Pharmaceuticals, Inc. | Genetically modified tumor-targeted bacteria with reduced virulence |
| WO2005054477A1 (en) | 2003-12-04 | 2005-06-16 | Universidad Pablo De Olavide | Method of regulating heterologous protein expression controlled by salicylic derivatives in micro-organisms associated with higher organisms |
| US6962696B1 (en) | 1999-10-04 | 2005-11-08 | Vion Pharmaceuticals Inc. | Compositions and methods for tumor-targeted delivery of effector molecules |
| WO2006010070A2 (en) | 2004-07-10 | 2006-01-26 | Board Of Regents, The University Of Texas System | Compositions and methods related to peptides that selectively bind leukemia cells |
| EP1655370A1 (en) | 2004-11-05 | 2006-05-10 | Gesellschaft für Biotechnologische Forschung | Bacterial vector |
| WO2006116545A2 (en) | 2005-04-27 | 2006-11-02 | Wisconsin Alumni Research Foundation | Spatial control of signal transduction |
| US7358084B2 (en) | 2000-10-10 | 2008-04-15 | Genecor International, Inc. | Enhanced secretion of a polypeptide by a microorganism |
| WO2008073148A2 (en) | 2006-07-11 | 2008-06-19 | Genelux Corporation | Methods and compositions for detection of microorganisms and cells and treatment of diseases and disorders |
| WO2009014650A2 (en) | 2007-07-20 | 2009-01-29 | The General Hospital Corporation | Recombinant vibrio cholerae exotoxins |
| WO2009086116A2 (en) | 2007-12-19 | 2009-07-09 | Centocor, Inc. | Alternative scaffold protein fusions phage display via fusion to plx of m13 phage |
| WO2009126189A1 (en) | 2008-01-11 | 2009-10-15 | Genelux Corporation | Methods and compositions for detection of bacteria and treatment of diseases and disorders |
| WO2009139985A2 (en) | 2008-04-04 | 2009-11-19 | Farallone Holdings Bv | Methods and materials for gastrointestinal delivery of pathogen/toxin binding agents |
| US20090294288A1 (en) | 2006-12-11 | 2009-12-03 | Schering Corporation | High-sensitivity proteolysis assay |
| WO2009152480A2 (en) | 2008-06-13 | 2009-12-17 | Vivocure, Inc. | Methods to treat solid tumors |
| US7635682B2 (en) | 2006-01-06 | 2009-12-22 | Genspera, Inc. | Tumor activated prodrugs |
| US8241623B1 (en) * | 2009-02-09 | 2012-08-14 | David Bermudes | Protease sensitivity expression system |
| US8524220B1 (en) | 2010-02-09 | 2013-09-03 | David Gordon Bermudes | Protease inhibitor: protease sensitivity expression system composition and methods improving the therapeutic activity and specificity of proteins delivered by bacteria |
Family Cites Families (251)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4436727A (en) | 1982-05-26 | 1984-03-13 | Ribi Immunochem Research, Inc. | Refined detoxified endotoxin product |
| ATE59966T1 (en) | 1983-09-26 | 1991-02-15 | Ehrenfeld Udo | MEDICATION AND PRODUCT FOR THE DIAGNOSIS AND THERAPY OF TUMORS AND FOR THE TREATMENT OF WEAKNESSES IN THE CELLULAR AND HUMORAL IMMUNE DEFENSE. |
| US5569597A (en) | 1985-05-13 | 1996-10-29 | Ciba Geigy Corp. | Methods of inserting viral DNA into plant material |
| US6037526A (en) | 1986-05-05 | 2000-03-14 | Ciba-Geigy | Method of inserting viral DNA into plant material |
| US5278049A (en) | 1986-06-03 | 1994-01-11 | Incyte Pharmaceuticals, Inc. | Recombinant molecule encoding human protease nexin |
| US5126257A (en) | 1986-11-26 | 1992-06-30 | Cornell Research Foundation | Antimicrobial proteins, compositions containing same and uses thereof |
| US5087569A (en) | 1986-11-26 | 1992-02-11 | Cornell Research Foundation, Inc. And The Rockefeller University | Antimicrobial proteins, compositions containing same and uses thereof |
| US5338724A (en) | 1986-11-26 | 1994-08-16 | Cornell Research Foundation, Inc. | Antimicrobial proteins, compositions containing same and uses thereof |
| US4906567A (en) | 1987-01-21 | 1990-03-06 | E. I. Dupont De Nemours And Company | Non-immunochemical binding of lipopolysaccharides and sandwich assays therefor |
| US5281530A (en) | 1987-08-12 | 1994-01-25 | Mycogen Corporation | Genes encoding nematode-active toxins cloned from bacillus thuringiensis isolate PS17 |
| US5151363A (en) | 1990-07-27 | 1992-09-29 | Mycogen Corporation | Isolates of Bacillus thuringiensis that are active against nematodes |
| US5223409A (en) | 1988-09-02 | 1993-06-29 | Protein Engineering Corp. | Directed evolution of novel binding proteins |
| US5180581A (en) | 1989-06-29 | 1993-01-19 | University Of Georgia Research Foundation, Inc. | Biological insect control agents and methods of use |
| JPH0376580A (en) | 1989-08-17 | 1991-04-02 | Japan Tobacco Inc | Escherichia coli manifestation vector and production of antiviral protein using the same |
| USD320325S (en) | 1989-08-17 | 1991-10-01 | Jesse Barfield | Baseball bat rack |
| US7413537B2 (en) | 1989-09-01 | 2008-08-19 | Dyax Corp. | Directed evolution of disulfide-bonded micro-proteins |
| US6177083B1 (en) | 1990-07-26 | 2001-01-23 | Evax Technologies Gmbh | Process for the production of vaccines and their use |
| AU8740491A (en) | 1990-09-28 | 1992-04-28 | Protein Engineering Corporation | Proteinaceous anti-dental plaque agents |
| US5830702A (en) | 1990-10-31 | 1998-11-03 | The Trustees Of The University Of Pennsylvania | Live, recombinant listeria monocytogenes and production of cytotoxic T-cell response |
| US6984772B1 (en) | 1994-02-18 | 2006-01-10 | Virginia Tech Intellectual Properties, Inc. | Transgenic non-human mammals producing fibrinogen in their milk |
| EP0575485A1 (en) | 1991-03-01 | 1993-12-29 | Dyax Corp. | Process for the development of binding mini-proteins |
| IL101409A0 (en) | 1992-03-29 | 1992-11-15 | Era Masis Ltd | Method for the early diagnosis of cancer |
| US6030612A (en) | 1994-11-22 | 2000-02-29 | Phairson Medical Inc. | Antimicrobial uses of multifunctional enzyme |
| US5945102A (en) | 1994-11-22 | 1999-08-31 | Phairson Medical Inc. | Crustacean and fish derived multifunctional enzyme |
| US5958406A (en) | 1994-11-22 | 1999-09-28 | Phairson Medical Inc. | Acne treatment with multifunctional enzyme |
| US5604201A (en) | 1993-01-08 | 1997-02-18 | State Of Oregon, Acting By And Through The Oregon State Board Of Higher Education On Behalf Of The Oregon Health Sciences University, A Non-Profit Organization | Methods and reagents for inhibiting furin endoprotease |
| US5733568A (en) | 1993-12-03 | 1998-03-31 | Lafor Laboratories Limited | Micro-encapsulated lactobacilli for medical applications |
| UA39965C2 (en) | 1993-12-03 | 2001-07-16 | Лайфор Леборетріз Лтд | VIRUSIC, BACTERICIDAL AND DESTRUCTIVE SPERMATOSES VAGINAL PRODUCT AND VAGINAL SUPPOSITORY (OPTIONS) |
| US5506139A (en) | 1994-07-21 | 1996-04-09 | Connaught Laboratories Limited | Analog of haemophilus Hin47 with reduced protease activity |
| US5939297A (en) | 1994-07-21 | 1999-08-17 | Connaught Laboratories Limited | Analog of haemophilus HIN47 with reduced protease activity |
| US5981503A (en) | 1994-06-07 | 1999-11-09 | Connaught Laboratories Limited | Analog of Haemophilus Hin47 with reduced protease activity |
| US6147057A (en) | 1994-07-21 | 2000-11-14 | Connaught Laboratories Limited | Analog of Haemophilus Hin47 with reduced protease activity |
| EP0729513B1 (en) | 1994-07-21 | 2004-06-02 | Aventis Pasteur Limited | Analog of haemophilus hin47 with reduced protease activity |
| US6051237A (en) | 1994-11-08 | 2000-04-18 | The Trustees Of The University Of Pennsylvania | Specific immunotherapy of cancer using a live recombinant bacterial vaccine vector |
| US8791237B2 (en) | 1994-11-08 | 2014-07-29 | The Trustees Of The University Of Pennsylvania | Compositions and methods for treatment of non-hodgkins lymphoma |
| US6150170A (en) | 1998-05-03 | 2000-11-21 | University Of Maryland At Baltimore | Method for introducing and expressing genes in animal cells, and live invasive bacterial vectors for use in the same |
| US5877159A (en) | 1995-05-03 | 1999-03-02 | University Of Maryland At Baltimore | Method for introducing and expressing genes in animal cells and live invasive bacterial vectors for use in the same |
| US5705151A (en) | 1995-05-18 | 1998-01-06 | National Jewish Center For Immunology & Respiratory Medicine | Gene therapy for T cell regulation |
| US5824538A (en) | 1995-09-06 | 1998-10-20 | The United States Of America As Represented By The Secretary Of The Army | Shigella vector for delivering DNA to a mammalian cell |
| GR950300072T1 (en) | 1995-10-13 | 1996-01-31 | Schweiz Serum & Impfinst | Recombinant live vaccines against Gram-negative enteric pathogens |
| GB9521568D0 (en) | 1995-10-20 | 1995-12-20 | Lynxvale Ltd | Delivery of biologically active polypeptides |
| US5997881A (en) | 1995-11-22 | 1999-12-07 | University Of Maryland, Baltimore | Method of making non-pyrogenic lipopolysaccharide or A |
| US6447777B1 (en) | 1996-03-29 | 2002-09-10 | David S. Terman | Polymerized staphylococcal protein a for treatment of diseases |
| US6004562A (en) | 1996-08-16 | 1999-12-21 | The Research Foundation Of The State University Of New York | Outer membrane protein B1 of Moraxella catarrhalis |
| GB9621091D0 (en) | 1996-10-09 | 1996-11-27 | Fondation Pour Le Perfectionem | Attenuated microorganisms strains and their uses |
| CA2218456A1 (en) | 1996-10-15 | 1998-04-15 | The Rockefeller University | Purified stat proteins and methods of purifying thereof |
| US6720154B1 (en) | 1997-10-15 | 2004-04-13 | The Rockefeller University | Purified stat proteins and methods of purifying thereof |
| WO1998033923A1 (en) | 1997-01-30 | 1998-08-06 | Imperial College Of Science, Technology & Medicine | MUTANT msbB or htrB GENES |
| US6410012B1 (en) | 1997-03-28 | 2002-06-25 | The United States Of America As Represented By The Secretary Of The Army | Antimicrobial mediated bacterial DNA delivery |
| US6537558B2 (en) | 1997-03-31 | 2003-03-25 | Megan Health, Inc. | Methods of producing and using virulence attenuated poxR mutant bacteria |
| DE69832267T2 (en) | 1997-04-18 | 2006-08-10 | Ganeden Biotech, Inc., La Jolla | SURFACE USE OF PROBIOTIC BACILLUS SPORES TO PREVENT OR PREVENT MICROBIAL INFECTIONS |
| US7193128B2 (en) | 1997-06-03 | 2007-03-20 | Chromatin, Inc. | Methods for generating or increasing revenues from crops |
| US7235716B2 (en) | 1997-06-03 | 2007-06-26 | Chromatin, Inc. | Plant centromere compositions |
| US7119250B2 (en) | 1997-06-03 | 2006-10-10 | The University Of Chicago | Plant centromere compositions |
| US6355790B1 (en) | 1997-06-03 | 2002-03-12 | University Of Rochester | Inhibition of HIV replication using a mutated transfer RNA primer |
| US6972197B1 (en) | 1999-03-18 | 2005-12-06 | The University Of Chicago | Plant chromosome compositions and methods |
| US7227057B2 (en) | 1997-06-03 | 2007-06-05 | Chromatin, Inc. | Plant centromere compositions |
| EP1007099A4 (en) | 1997-07-11 | 2004-11-24 | Univ Brandeis | METHOD FOR INDUCING APOPTOSIS BY REDUCING THE THIAMINE RATE |
| EP1009819A1 (en) | 1997-08-29 | 2000-06-21 | Selective Genetics, Inc. | Methods using phage display for selecting internalizing ligands for gene delivery |
| US6054312A (en) | 1997-08-29 | 2000-04-25 | Selective Genetics, Inc. | Receptor-mediated gene delivery using bacteriophage vectors |
| US6348344B1 (en) | 1997-09-02 | 2002-02-19 | Insight Strategy & Marketing Ltd. | Genetically modified cells and methods for expressing recombinant heparanase and methods of purifying same |
| US6573068B1 (en) | 1997-11-13 | 2003-06-03 | Genset, S. A. | Claudin-50 protein |
| US6548633B1 (en) | 1998-12-22 | 2003-04-15 | Genset, S.A. | Complementary DNA's encoding proteins with signal peptides |
| CA2302644A1 (en) | 1997-11-13 | 1999-05-27 | Genset S.A. | Extended cdnas for secreted proteins |
| US20060009633A9 (en) | 1997-11-13 | 2006-01-12 | Genset, S.A. | Complementary DNAs encoding proteins with signal peptides |
| US20060286639A1 (en) | 1997-11-13 | 2006-12-21 | Serono Genetics Institute S.A. | Complementary DNAs encoding proteins with signal peptides |
| US8101349B2 (en) | 1997-12-23 | 2012-01-24 | Novartis Vaccines And Diagnostics, Inc. | Gene products differentially expressed in cancerous cells and their methods of use II |
| US6143551A (en) | 1997-12-29 | 2000-11-07 | Schering Aktiengesellschaft | Delivery of polypeptide-encoding plasmid DNA into the cytosol of macrophages by attenuated listeria suicide bacteria |
| AU3648499A (en) | 1998-04-17 | 1999-11-08 | Emory University | Protein phosphatase methylesterase dna |
| EP1198245B1 (en) | 1998-09-30 | 2004-08-25 | Walter Reed Army Institute of Research | Use of purified invaplex from gram negative bacteria as a vaccine |
| DE69914932T2 (en) | 1998-10-20 | 2004-12-09 | Vlaams Interuniversitair Instituut Voor Biotechnologie Vzw. | USE OF A CYTOKINE-PRODUCING LACTOCOCCUS TRIBE FOR TREATING COLUMN |
| US6489542B1 (en) | 1998-11-04 | 2002-12-03 | Monsanto Technology Llc | Methods for transforming plants to express Cry2Ab δ-endotoxins targeted to the plastids |
| US20070020327A1 (en) | 1998-11-10 | 2007-01-25 | John Fikes | Inducing cellular immune responses to prostate cancer antigens using peptide and nucleic acid compositions |
| BR9915435A (en) | 1998-11-17 | 2002-02-13 | Monsanto Co | Phosphonate metabolizing plants |
| US20050079573A1 (en) | 1998-12-23 | 2005-04-14 | Danisco A/S | Proteins |
| US7989202B1 (en) | 1999-03-18 | 2011-08-02 | The University Of Chicago | Plant centromere compositions |
| EP1178785B1 (en) | 1999-05-06 | 2008-12-24 | Wake Forest University | Compositions and methods for identifying antigens which elicit an immune response |
| US6501009B1 (en) | 1999-08-19 | 2002-12-31 | Monsanto Technology Llc | Expression of Cry3B insecticidal protein in plants |
| WO2001014579A2 (en) | 1999-08-26 | 2001-03-01 | Vion Pharmaceuticals, Inc. | Compositions and methods for delivery of an agent using attenuated salmonella containing phage |
| US6521435B1 (en) | 1999-08-30 | 2003-02-18 | The United States Of America As Represented By The Secretary Of Agriculture | Nucleic acid sequences encoding cell wall-degrading enzymes and use to engineer resistance to Fusarium and other pathogens |
| US8128922B2 (en) | 1999-10-20 | 2012-03-06 | Johns Hopkins University | Superior molecular vaccine linking the translocation domain of a bacterial toxin to an antigen |
| US7052904B2 (en) | 2000-01-31 | 2006-05-30 | The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Hybrid adeno-retroviral vector for the transfection of cells |
| US7018801B2 (en) | 2000-02-11 | 2006-03-28 | Board Of Regents, The University Of Texas System | Selection of peptides with antibody-like properties |
| EP1272213B1 (en) | 2000-04-06 | 2006-03-08 | SEER Pharmaceuticals, LLC. | Microbial delivery system |
| US8246945B2 (en) | 2000-04-06 | 2012-08-21 | University Of Arkansas | Methods and reagents for decreasing clinical reaction to allergy |
| US20050063994A1 (en) | 2000-04-06 | 2005-03-24 | Caplan Michael J. | Methods and reagents for decreasing clinical reaction to allergy |
| US20020106380A1 (en) | 2000-05-08 | 2002-08-08 | Medical College Of Ohio | rSOWgp58 protein and its use as an antigen |
| EP1339868A2 (en) | 2000-06-23 | 2003-09-03 | The University of Chicago | Methods for isolating centromere dna |
| ATE390488T1 (en) | 2000-06-28 | 2008-04-15 | Penn State Res Found | METHOD FOR TRANSFORMING AGARICUS BISPORUS |
| AU7828100A (en) | 2000-09-08 | 2002-03-22 | Epimmune Inc | Inducing cellular immune responses to hepatitis b virus using peptide and nucleic acid compositions |
| AUPR324101A0 (en) | 2001-02-21 | 2001-03-15 | Commonwealth Scientific And Industrial Research Organisation | Novel gene and uses therefor to modify pasture qualities of crops |
| US20040133930A1 (en) | 2002-03-11 | 2004-07-08 | Cooper Julian D. | Production of high levels of transgenic factor ix without gene rescue, and its therapeutic uses |
| CA2342376C (en) | 2001-03-20 | 2013-11-12 | Marco Colonna | A receptor trem (triggering receptor expressed on myeloid cells) and uses thereof |
| US20090081199A1 (en) | 2001-03-20 | 2009-03-26 | Bioxell S.P.A. | Novel receptor trem (triggering receptor expressed on myeloid cells) and uses thereof |
| US8231878B2 (en) | 2001-03-20 | 2012-07-31 | Cosmo Research & Development S.P.A. | Receptor trem (triggering receptor expressed on myeloid cells) and uses thereof |
| US8981061B2 (en) | 2001-03-20 | 2015-03-17 | Novo Nordisk A/S | Receptor TREM (triggering receptor expressed on myeloid cells) and uses thereof |
| WO2003004646A2 (en) | 2001-04-04 | 2003-01-16 | Elan Corporation, Plc | Genetic analysis of peyers's patches and m cells and methods and compositions targeting peyer's patches and m cell receptors |
| DK1395283T3 (en) | 2001-05-18 | 2007-07-09 | Us Army | Heterologous protection induced by immunization with Invaplex vaccine |
| US7001884B2 (en) | 2001-06-18 | 2006-02-21 | Regents Of The University Of Michigan | Eglin c based drugs for treatment of disease |
| US7033991B2 (en) | 2001-07-16 | 2006-04-25 | Board Of Supervisors Of Louisiana State University And Agriculture And Mechanical College | Inhibiting furin with polybasic peptides |
| US20040266674A1 (en) | 2001-09-05 | 2004-12-30 | Mills Bradley Jay | Lp mammalian proteins; related reagents |
| JP2005503418A (en) | 2001-09-14 | 2005-02-03 | ユニベルシテ ピエール エ マリー キュリー(パリ シズエム) | Therapeutic vaccination methods, mutant peptides of HIV reverse transcriptase and their use for vaccination and diagnostic purposes |
| US20030082219A1 (en) | 2001-10-01 | 2003-05-01 | The Procter & Gamble Company | Skin care compositions comprising low concentrations of skin treatment agents |
| CA2364249A1 (en) | 2001-11-27 | 2003-05-27 | Unknown-Inconnu | Effect of lactic bacteria on tumour cell death |
| US20050069532A1 (en) | 2002-01-31 | 2005-03-31 | Yvette Weinrauch | Treatment of bacterial infection with elastase |
| EP1487867B1 (en) | 2002-03-04 | 2009-01-21 | Medical College Of Ohio | Modified plasminogen activator inhibitor type-1 and methods based thereon |
| US20040101531A1 (en) | 2002-04-16 | 2004-05-27 | Roy Curtiss | Immunogenic compositions and vaccines comprising carrier bacteria that secrete antigens |
| EP2327722A3 (en) | 2002-05-02 | 2012-11-28 | Vanderbilt University | Mammalian genes involved in viral infection and tumor suppression |
| US7460960B2 (en) | 2002-05-10 | 2008-12-02 | Epitome Biosystems, Inc. | Proteome epitope tags and methods of use thereof in protein modification analysis |
| US7618788B2 (en) | 2002-05-10 | 2009-11-17 | Millipore Corporation | Proteome epitope tags and methods of use thereof in protein modification analysis |
| JP2006511819A (en) | 2002-05-10 | 2006-04-06 | イピトミ バイオシステムズ インコーポレイテッド | Unique recognition sequences and their use in protein analysis |
| US20060014212A1 (en) | 2002-05-10 | 2006-01-19 | Epitome Biosystems, Inc. | Proteome epitope tags and methods of use thereof in protein modification analysis |
| EP2947095B1 (en) | 2002-05-22 | 2019-10-02 | ESBATech, an Alcon Biomedical Research Unit LLC | Immunoglobulin frameworks which demonstrate enhanced stability in the intracellular environment and methods of identifying same |
| KR20050004914A (en) | 2002-06-07 | 2005-01-12 | 제넨테크, 인크. | Compositions and Methods for the Diagnosis and Treatment of Tumor |
| JP4521687B2 (en) | 2002-06-21 | 2010-08-11 | ニューキャッスル イノベーション リミテッド | Probiotics, Propionibacterium ienseni 702 |
| WO2004011656A1 (en) | 2002-07-29 | 2004-02-05 | UNIVERSITé LAVAL | Method for enhancing yield of recombinant protein production from plants |
| AU2003250692A1 (en) | 2002-07-29 | 2004-02-16 | Universite Laval | Method for enhancing the nutritive value of plant extract |
| US7666627B2 (en) | 2002-08-08 | 2010-02-23 | Targetex Kft. | Folded recombinant catalytic fragments of multidomain serine proteases, preparation and uses thereof |
| IL151436A0 (en) | 2002-08-22 | 2003-04-10 | Yissum Res Dev Co | Compositions and methods for treatment and prophylaxis of infections caused by gram positive bacteria |
| EP1558275A4 (en) | 2002-10-30 | 2009-06-24 | Us Health | SCAVENGER RECEPTOR B1 (CLA-1) TARGETING TREATMENT OF INFECTIONS, SEPSIS AND DEFICITS |
| EP1568377A1 (en) | 2002-11-29 | 2005-08-31 | Morinaga Milk Industry Co., Ltd. | Cysteine protease inhibitor |
| RU2005118407A (en) | 2002-12-13 | 2006-03-10 | СмитКлайн Бичем Корпорейшн (US) | PIPERIDINE DERIVATIVES AS CCR5 ANTAGONISTS |
| US20050055746A1 (en) | 2002-12-20 | 2005-03-10 | Universite Laval | Method for increasing protein content in plant cells |
| CA2516320C (en) | 2003-02-18 | 2015-05-26 | Kevin Slawin | Induced activation in dendritic cells |
| US20050281828A1 (en) | 2003-03-04 | 2005-12-22 | Bowdish Katherine S | Method of treating autoimmune disease by inducing antigen presentation by tolerance inducing antigen presenting cells |
| WO2004092339A2 (en) | 2003-04-11 | 2004-10-28 | Ilex Products, Inc. | Modulation of muc1 mediated signal transduction |
| EP1479761A1 (en) | 2003-05-21 | 2004-11-24 | PrimaGen Holding B.V. | New enterovirus, vaccines, medicaments and diagnostic kits |
| WO2005024422A2 (en) | 2003-05-23 | 2005-03-17 | Oregon Health & Science University | Methods for identifying inhibitors |
| EP1660661A2 (en) | 2003-08-08 | 2006-05-31 | Arriva Pharmaceuticals, Inc. | Methods of protein production in yeast |
| EP1651663B1 (en) | 2003-08-08 | 2017-05-17 | Immunomedics, Inc. | Bispecific antibodies for inducing apoptosis of tumor and diseased cells |
| DE602004031581D1 (en) | 2003-08-18 | 2011-04-14 | Amsterdam Inst Of Viral Genomics B V | Coronavirus, nucleic acid, protein, method of production of vaccines, drugs and diagnostics |
| ES2622522T3 (en) | 2003-08-26 | 2017-07-06 | The Regents Of The University Of Colorado, A Body Corporate | Inhibitors of serine protease activity and its use in methods and compositions for the treatment of bacterial infections |
| CA2539068C (en) | 2003-09-15 | 2013-07-23 | The Government Of The United States Of America, As Represented By The Se Cretary, Department Of Health And Human Services | Hiv vaccines based on env of multiple clades of hiv |
| US7390646B2 (en) | 2003-09-17 | 2008-06-24 | The Regents Of The University Of California | Bacterial vectors and methods of use thereof |
| WO2005040201A1 (en) | 2003-10-21 | 2005-05-06 | The Regents Of The University Of California | Human cathelicidin antimicrobial peptides |
| US7776823B2 (en) | 2003-10-21 | 2010-08-17 | The Regents Of The University Of California | Human cathelicidin antimicrobial peptides |
| US20050214318A1 (en) | 2003-10-23 | 2005-09-29 | Nmk Research, Llc | Immunogenic composition and method of developing a vaccine based on fusion protein |
| EP1692287A4 (en) | 2003-10-31 | 2007-03-28 | Univ British Columbia | BACTERIAL AGRESSINS AND USES |
| WO2005042770A2 (en) | 2003-11-03 | 2005-05-12 | Ethicon, Inc. | Methods, peptides and biosensors useful for detecting a broad spectrum of bacteria |
| ATE486087T1 (en) | 2003-11-06 | 2010-11-15 | Danisco Us Inc | FGF-5 BINDING AND SUPPORTED PEPTIDES |
| AU2004291576A1 (en) | 2003-11-20 | 2005-06-02 | Sanofi Pasteur Limited | Immunization against Chlamydia infection |
| US20070298012A1 (en) | 2003-12-16 | 2007-12-27 | Ivan King | Compositions and Methods for Tumor-Targeted Delivery of Effector Molecules |
| SE0400191D0 (en) | 2004-01-30 | 2004-01-30 | Tendera Ab | A test kit for detecting periodontal disease |
| US20060088910A1 (en) | 2004-02-13 | 2006-04-27 | Khue Vu Nguyen | RT-PCR-based cloning of the human beta-amyloid precursor protein gene and the construction of its expression plasmids |
| US7943754B2 (en) | 2004-04-02 | 2011-05-17 | Rosetta-Genomics | Bioinformatically detectable group of novel regulatory bacterial and bacterial associated oligonucleotides and uses thereof |
| EP1768688A4 (en) | 2004-07-02 | 2009-09-30 | Raymond J Dattwyler | Oral vaccine for borrelia |
| CN101031655A (en) | 2004-07-26 | 2007-09-05 | 陶氏环球技术公司 | Process for improved protein expression by strain engineering |
| ITMI20041550A1 (en) | 2004-07-29 | 2004-10-29 | Proge Farm Srl | USE OF PROBIOTIC BACTERIA FOR THE PREPARATION OF TOPICAL COMPOSITIONS FOR THE PROTECTION OF THE EPIDERMIS |
| MX2007001638A (en) | 2004-08-11 | 2009-02-12 | Trubion Pharmaceuticals Inc | Binding domain fusion proteins. |
| US7723570B2 (en) | 2004-10-12 | 2010-05-25 | Soymeds, Inc. | Edible vaccines expressed in soybeans |
| EP1814385A4 (en) | 2004-11-12 | 2008-05-28 | Univ Rochester | MODELS OF INFLAMMATION IN NEURODEGENERATIVE AND ARTHRITIS DISORDERS |
| EP1814591A4 (en) | 2004-11-22 | 2009-04-22 | Anadis Ltd | Bioactive compositions |
| ATE479740T1 (en) | 2004-12-17 | 2010-09-15 | Beth Israel Hospital | COMPOSITIONS FOR BACTERIALLY MEDIATED GENE SILENCING AND METHODS OF USE THEREOF |
| US9474793B2 (en) | 2005-02-22 | 2016-10-25 | The United States Of America, As Represented By The Secretary Of The Department Of Health And Human Services | Vaccines and methods for prevention and treatment of drug-resistant HIV-1 and hepatitis B virus |
| WO2006090385A2 (en) | 2005-02-22 | 2006-08-31 | Ramot At Tel-Aviv University Ltd. | Protease inhibitors and method of screening thereof |
| RU2007145202A (en) | 2005-05-06 | 2009-06-20 | Новартис Аг (Us) | USE OF TFPI FOR TREATMENT OF SEVERE BACTERIAL INFECTIONS |
| EP2270181B1 (en) | 2005-09-16 | 2015-10-21 | deVGen N.V. | DSRNA as insect control agent |
| US8795730B2 (en) | 2006-01-31 | 2014-08-05 | David John Vachon | Compositions and methods for promoting the healing of tissue of multicellular organisms |
| EP2004678A1 (en) | 2006-03-15 | 2008-12-24 | Csir | Modulation of glutamine synthetase activity |
| SI2040725T1 (en) | 2006-06-23 | 2014-08-29 | Engeneic Molecular Delivery Pty Ltd. | Targeted delivery of drugs, therapeutic nucleic acids and functional nucleic acids to mammalian cells via intact killed bacterial cells |
| US20120142623A1 (en) | 2006-07-07 | 2012-06-07 | Michael Lagunoff | Compositions And Methods For Predicting Inhibitors Of Protein Targets |
| US8926993B2 (en) | 2006-07-17 | 2015-01-06 | Aduro Biotech | Methods and compositions using Listeria for enhancing immunogenicity by prime boost |
| CN1974759B (en) | 2006-07-26 | 2010-06-09 | 吉林大学 | Attenuated Salmonella Carrying Recombinant Plasmid and Its Application in Antitumor |
| WO2008027394A2 (en) | 2006-08-28 | 2008-03-06 | The Wistar Institute Of Anatomy And Biology | Constructs for enhancing immune responses |
| US8030447B2 (en) | 2006-09-20 | 2011-10-04 | The Board Of Regents Of The University Of Texas System | Substrate peptide sequences for plague plasminogen activator and uses thereof |
| US20080124355A1 (en) | 2006-09-22 | 2008-05-29 | David Gordon Bermudes | Live bacterial vaccines for viral infection prophylaxis or treatment |
| WO2008127296A2 (en) | 2006-10-25 | 2008-10-23 | The Regents Of The University Of California | Methods and compositions for treating tularemia |
| EP1921149A1 (en) | 2006-11-13 | 2008-05-14 | AEterna Zentaris GmbH | Microorganisms as carriers of nucleotide sequences coding for antigens and protein toxins, process of manufacturing and uses thereof |
| EP2082237A2 (en) | 2006-12-06 | 2009-07-29 | Universität Zürich | Means and methods for isolating and determining novel targets for the treatment of neurodegenerative, neurological or neuropsychiatric disorders and compositions comprising the same |
| CA2678001C (en) | 2007-02-12 | 2017-07-11 | Stefan Schulte | Therapeutic application of kazal-type serine protease inhibitors |
| WO2008103380A2 (en) | 2007-02-21 | 2008-08-28 | Fox Chase Cancer Center | Hepatitis b virus compositions and methods of use |
| US20100086546A1 (en) | 2007-03-13 | 2010-04-08 | Yale University | Toll-LIke Receptor 4 Deficiency and Downstream Effectors Cause Pulmonary Emphysema |
| AU2008270951A1 (en) | 2007-04-20 | 2009-01-08 | Regents Of The University Of Colorado | Alpha-1 antitrypsin having no significant serine protease inhibitor activity |
| FR2915490B1 (en) | 2007-04-26 | 2011-10-28 | Univ Joseph Fourier Grenoble I | FORMATION OF PROTEOLIPOSOMES CONTAINING MEMBRANE PROTEINS USING A CELLULAR PROTEIN SYNTHESIS SYSTEM |
| US9580719B2 (en) | 2007-04-27 | 2017-02-28 | Pfenex, Inc. | Method for rapidly screening microbial hosts to identify certain strains with improved yield and/or quality in the expression of heterologous proteins |
| EP2615172A1 (en) | 2007-04-27 | 2013-07-17 | Pfenex Inc. | Method for rapidly screening microbial hosts to identify certain strains with improved yield and/or quality in the expression of heterologous proteins |
| KR20100018523A (en) | 2007-05-01 | 2010-02-17 | 제넨테크, 인크. | Crig antagonists |
| EP2155251B1 (en) | 2007-05-08 | 2013-09-25 | Rq Bioscience, Inc. | Therapeutic compositions and methods for treating gram-negative bacterial infections |
| EP2167137B1 (en) | 2007-05-31 | 2013-10-16 | GENimmune N.V. | Hpv polyepitope constructs and uses thereof |
| EP2173875B1 (en) | 2007-06-15 | 2017-08-30 | Cequent Pharmaceuticals, Inc. | Bacteria mediated gene silencing |
| EP2170393A4 (en) | 2007-06-19 | 2013-01-23 | Univ Johns Hopkins | ANTITHROMBOTIC AGENTS AND METHODS OF USE |
| WO2009006453A2 (en) | 2007-06-29 | 2009-01-08 | Boston Biomedical, Inc. | Enabling the use of long dsrna for gene targeting in mammalian and other selected animal cells |
| EP2178560A2 (en) | 2007-07-23 | 2010-04-28 | Maxygen, Inc. | Chimeric hiv antigens |
| EP2225265A2 (en) | 2007-09-14 | 2010-09-08 | Katholieke Universiteit Leuven | Streptococcus pneumoniae vaccines |
| WO2009042165A2 (en) | 2007-09-25 | 2009-04-02 | Thomas Jefferson University | Mutant botulinum neurotoxin serotype a polypeptide and uses thereof |
| EP2048503A1 (en) | 2007-10-09 | 2009-04-15 | Universität Konstanz | Assay for monitoring activity of frizzled receptors |
| WO2009068926A1 (en) | 2007-11-30 | 2009-06-04 | University Of Debrecen | Use of urokinase type plasminogen activator inhibitors for the treatment of corneal disorders |
| AU2008331434B2 (en) | 2007-12-04 | 2013-06-27 | Proteobioactives Pty Ltd | Protection of progenitor cells and regulation of their differentiation |
| WO2009089535A2 (en) | 2008-01-11 | 2009-07-16 | The Government Of The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Polypeptide vaccine and vaccination strategy against mycobacterium |
| AR070141A1 (en) | 2008-01-23 | 2010-03-17 | Glenmark Pharmaceuticals Sa | SPECIFIC HUMANIZED ANTIBODIES FOR VON WILLEBRAND FACTOR |
| US20110117106A1 (en) | 2008-03-06 | 2011-05-19 | Alice Prince | Uses of calpain inhibitors to inhibit inflammation |
| WO2009123950A2 (en) | 2008-03-31 | 2009-10-08 | The Trustees Of The University Of Pennsylvania | Chimera comprising bacterial cytotoxin and methods of using the same |
| WO2010036391A2 (en) | 2008-04-16 | 2010-04-01 | Bacilligen, Inc. | A novel rna-based expression system |
| US20110201109A1 (en) | 2008-05-13 | 2011-08-18 | Baylor College Of Medicine | Ronin is Essential for Perpetuity of Mouse ES Cells, and Acts Independently of Canonical Pathways |
| GB0810869D0 (en) | 2008-06-13 | 2008-07-23 | Isis Innovation | Vaccine adjuvant composition |
| US20110152176A1 (en) | 2008-06-17 | 2011-06-23 | University Of Iowa Research Foundation | Agr-mediated inhibition and dispersal of biofilms |
| WO2010009456A1 (en) | 2008-07-18 | 2010-01-21 | Cornell University | Mycobacterium tuberculosis rv3671c gene encoded membrane protease as a target for inhibitors of intrabacterial ph homeostasis and acid resistance |
| US7846678B2 (en) | 2008-08-18 | 2010-12-07 | BioDtech, Inc. | Enhancing endotoxin detection |
| US8647642B2 (en) | 2008-09-18 | 2014-02-11 | Aviex Technologies, Llc | Live bacterial vaccines resistant to carbon dioxide (CO2), acidic PH and/or osmolarity for viral infection prophylaxis or treatment |
| ES2704986T3 (en) | 2008-10-16 | 2019-03-21 | Celator Pharmaceuticals Inc | Combinations of a water-soluble liposomal camptothecin with cetuximab or bevacizumab |
| JP2012508582A (en) | 2008-11-14 | 2012-04-12 | マリーナ バイオテック,インコーポレイテッド | E. coli mediated gene silencing of β-catenin |
| US20110293608A1 (en) | 2008-12-03 | 2011-12-01 | The Johns Hopkins Univeristy | Annexin a2 as immunological target |
| PL213066B1 (en) | 2009-02-23 | 2013-01-31 | Univ Jagiellonski W Krakowie | New strain of Salmonella enterica s. Typhimurium bacteria, its application, and method of obtaining the therapeutic vaccine vector |
| US8628782B2 (en) | 2009-02-26 | 2014-01-14 | The United States Of America, As Represented By The Department Of Health And Human Services | Deletion of the beta 20-21 loop in HIV gp120 exposes the CD4 binding site for improved antibody binding and antibody induction |
| US20120219545A1 (en) | 2009-07-31 | 2012-08-30 | Mount Sinai School Of Medicine | Materials and methods for diagnosing and treating shellfish allergy |
| CA2806295A1 (en) | 2009-08-03 | 2011-02-10 | Alnylam Pharmaceuticals, Inc. | Methods and compositions for treating insects |
| WO2011044365A1 (en) | 2009-10-07 | 2011-04-14 | Trustees Of Boston University | Rothia species glutamine endopeptidases and use thereof |
| WO2011059801A1 (en) | 2009-10-29 | 2011-05-19 | University Of Rochester | Solution assay and high through-put screen to probe interaction between human cullin-ring ligase complex and hiv-vif protein |
| WO2011068953A2 (en) | 2009-12-02 | 2011-06-09 | Tufts University | Atoxic recombinant holotoxins of clostridium difficile as immunogens |
| WO2011072115A1 (en) | 2009-12-09 | 2011-06-16 | Bristow Cynthia L | Ldl quantitation and methods of use |
| WO2011087835A2 (en) | 2009-12-22 | 2011-07-21 | University Of Maryland, Baltimore | Novel compositions and methods for treating inflammatory bowel disease and airway inflammation |
| DE102010004957A1 (en) | 2010-01-14 | 2011-07-21 | Universitätsklinikum Jena, 07743 | Biologically active molecules for influencing virus, bacterial, parasite-infected cells and / or tumor cells and methods for their use |
| AU2011206532B8 (en) | 2010-01-14 | 2015-08-06 | Inserm (Institut National De La Sante Et De La Recherche Medicale) | Recombinant probiotic bacteria for the prevention and treatment of inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS) |
| US8771669B1 (en) * | 2010-02-09 | 2014-07-08 | David Gordon Bermudes | Immunization and/or treatment of parasites and infectious agents by live bacteria |
| US20110195403A1 (en) | 2010-02-10 | 2011-08-11 | Selinfreund Richard H | Systems and methods for fertility analysis |
| CN102167741B (en) | 2010-02-25 | 2014-05-14 | 上海百迈博制药有限公司 | A fully human anti-TNF-α monoclonal antibody, its preparation method and use |
| EP2558566A4 (en) | 2010-04-14 | 2013-10-02 | Penn State Res Found | Strategies for the transgenic manipulation of filamentous fungi |
| US20110305724A1 (en) | 2010-04-19 | 2011-12-15 | Yvonne Paterson | Immunotherapeutic, anti-tumorigenic compositions and methods of use thereof |
| EP2593469A4 (en) | 2010-04-20 | 2015-07-15 | Whitehead Biomedical Inst | MODIFIED PROTEINS AND POLYPEPTIDES AND USES THEREOF |
| CN102947452A (en) | 2010-05-23 | 2013-02-27 | 艾杜罗生物科技公司 | Methods and compositions using listeria for adjuvant treatment of cancer |
| US9598697B2 (en) | 2010-05-28 | 2017-03-21 | The Arizona Board Of Regents For And On Behalf Of Arizona State University | Recombinant bacterium to decrease tumor growth |
| WO2012006384A2 (en) | 2010-07-07 | 2012-01-12 | Trustees Of Boston University | Rothia species gluten-degrading enzymes and uses thereof |
| AU2011276157B2 (en) | 2010-07-08 | 2016-12-22 | Hans Rudolf Pfaendler | Fluorescent carbapenems |
| WO2012017033A1 (en) | 2010-08-04 | 2012-02-09 | Ieo-Istituto Europeo Di Oncologia S.R.L. | Method of antigen loading for immunotherapy |
| US8956859B1 (en) | 2010-08-13 | 2015-02-17 | Aviex Technologies Llc | Compositions and methods for determining successful immunization by one or more vaccines |
| WO2012021785A1 (en) | 2010-08-13 | 2012-02-16 | Pioneer Hi-Bred International, Inc. | Compositions and methods comprising sequences having hydroxyphenylpyruvate dioxygenase (hppd) activity |
| WO2012035407A2 (en) | 2010-09-13 | 2012-03-22 | Nemgenix Pty Ltd | Target genes for control of plant parasitic nematodes and use of same |
| US20120064062A1 (en) | 2010-09-13 | 2012-03-15 | Goguen Jon D | Inhibitors of bacterial plasminogen activators |
| WO2012097062A1 (en) | 2011-01-11 | 2012-07-19 | The Johns Hopkins University | Methods for treating or preventing cardiac and neurological disorders using chemokine receptor antagonists |
| DE102011009798B4 (en) | 2011-01-31 | 2015-03-05 | Merz Pharma Gmbh & Co. Kgaa | Balneological lipid-containing probiotic preparations for cosmetic / dermatological / medical applications |
| US9693555B2 (en) | 2011-03-18 | 2017-07-04 | Shanghai Institutes For Biological Sciences, Chinese Academy Of Sciences | Insect-combating preparation and method based on RNAi technology |
| US9200251B1 (en) | 2011-03-31 | 2015-12-01 | David Gordon Bermudes | Bacterial methionine analogue and methionine synthesis inhibitor anticancer, antiinfective and coronary heart disease protective microcins and methods of treatment therewith |
| WO2012150269A1 (en) | 2011-05-03 | 2012-11-08 | Dupont Nutrition Biosciences Aps | Probiotic bacteria for the topical treatment of skin disorders |
| ES2613808T3 (en) | 2011-07-29 | 2017-05-26 | Oncotherapy Science, Inc. | Peptide derived from ERAP1 and use thereof |
| EP2741772A1 (en) | 2011-08-08 | 2014-06-18 | ETH Zurich | Pasteurellaceae vaccines |
| ES2402014B1 (en) | 2011-09-07 | 2014-02-27 | Consejo Superior De Investigaciones Científicas (Csic) | PEPTIDE SECRETED BY LACTOBACILLUS PLANTARUM WITH IMMUNOMODULATORY FUNCTION |
| CN116162175A (en) | 2011-09-20 | 2023-05-26 | 西奈山伊坎医学院 | Influenza virus vaccine and application thereof |
| US9649346B2 (en) | 2011-11-02 | 2017-05-16 | Bios Llc | Probiotic stick formulation for skin maintenance and methods of use |
| US8921335B2 (en) | 2012-01-31 | 2014-12-30 | The Regents Of The University Of California | Oral delivery of nucleic acid-based gene interfering agents by Salmonella |
| FR2990699B1 (en) | 2012-05-21 | 2016-02-05 | Agronomique Inst Nat Rech | PROKARYOTIC EXPRESSION CASSETTES REGULATED BY STRESS |
| AU2013293570B2 (en) | 2012-07-27 | 2019-05-23 | City Of Hope | An MVA vaccine for delivery of a UL128 complex and preventing CMV infection |
| EP2894985A4 (en) | 2012-09-13 | 2016-09-28 | Massachusetts Inst Technology | PROGRAMMABLE MEDICATION DELIVERY PROFILES OF TUMOR TARGETED BACTERIA |
| EP2895606A4 (en) | 2012-09-17 | 2016-07-06 | Res Inst Nationwide Childrens Hospital | COMPOSITIONS AND METHODS FOR TREATING AMYOTROPHIC LATERAL SCLEROSIS |
| WO2014052634A1 (en) | 2012-09-27 | 2014-04-03 | The University Of North Carolina At Chapel Hill | Lipid coated nanoparticles containing agents having low aqueous and lipid solubilities and methods thereof |
| WO2014100234A1 (en) | 2012-12-19 | 2014-06-26 | Dow Agrosciences Llc | Improved soybean transformation for efficient and high-throughput transgenic event production |
| CA2894213A1 (en) | 2012-12-21 | 2014-06-26 | Pioneer Hi-Bred International, Inc. | Compositions and methods for auxin-analog conjugation |
| CA2905595A1 (en) | 2013-03-14 | 2014-09-25 | Pioneer Hi-Bred International, Inc. | Compositions having dicamba decarboxylase activity and methods of use |
| GB201306536D0 (en) | 2013-04-10 | 2013-05-22 | Gt Biolog Ltd | Polypeptide and immune modulation |
| DK3017039T3 (en) | 2013-07-01 | 2021-06-07 | Massachusetts Inst Technology | FUNCTIONALIZATION OF ENDOGENE BACTERIA |
| US9360485B2 (en) | 2013-11-04 | 2016-06-07 | National Chung Hsing University | Eukaryotic expression system and use thereof |
| WO2015191546A2 (en) | 2014-06-10 | 2015-12-17 | The Board Of Regents Of The University Of Texas System | Adp-ribose detection reagents |
-
2011
- 2011-02-09 US US13/024,172 patent/US8524220B1/en not_active Expired - Fee Related
-
2013
- 2013-09-03 US US14/016,407 patent/US9068187B1/en active Active
-
2015
- 2015-06-29 US US14/754,113 patent/US9878023B1/en active Active
-
2018
- 2018-01-26 US US15/881,012 patent/US11219671B1/en active Active
Patent Citations (48)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5143830A (en) | 1986-05-15 | 1992-09-01 | Holland Ian B | Process for the production of a polypeptide |
| US5354675A (en) | 1988-05-30 | 1994-10-11 | Shiseido Company Ltd. | C-terminal amidating enzyme composition, process for preparing, and use of the same |
| US5399490A (en) | 1990-06-15 | 1995-03-21 | Aktiebolaget Astra | Vector to produce biologically important peptides |
| US5466672A (en) | 1992-12-04 | 1995-11-14 | Ophidian Pharmaceuticals, Inc. | Therapeutic use of clostridium difficile toxin A |
| US6638912B2 (en) | 1995-05-01 | 2003-10-28 | The Regents Of The University Of California | Peptide compositions mimicking TGF-β activity |
| US6190657B1 (en) | 1995-06-07 | 2001-02-20 | Yale University | Vectors for the diagnosis and treatment of solid tumors including melanoma |
| US6685935B1 (en) | 1995-06-07 | 2004-02-03 | Yale University | Vectors for the diagnosis and treatment of solid tumors including melanoma |
| WO1996040238A1 (en) | 1995-06-07 | 1996-12-19 | Yale University | Vectors for the diagnosis and treatment of solid tumors including melanoma |
| US5712369A (en) | 1995-08-24 | 1998-01-27 | Ludwig Institute For Cancer Research | Isolated protein which binds to A33 antibody, and peptides corresponding to portions of the protein |
| US6207156B1 (en) | 1997-03-21 | 2001-03-27 | Brigham And Women's Hospital, Inc. | Specific antibodies and antibody fragments |
| US6080849A (en) | 1997-09-10 | 2000-06-27 | Vion Pharmaceuticals, Inc. | Genetically modified tumor-targeted bacteria with reduced virulence |
| US6863894B2 (en) | 1997-09-10 | 2005-03-08 | Vion Pharmaceuticals, Inc. | Genetically modified tumor-targeted bacteria with reduced virulence |
| US6447784B1 (en) | 1997-09-10 | 2002-09-10 | Vion Pharmaceuticals, Inc. | Genetically modified tumor-targeted bacteria with reduced virulence |
| US6923972B2 (en) | 1997-09-10 | 2005-08-02 | Vion Pharmaceuticals, Inc. | Methods for use of genetically modified tumor-targeted bacteria with reduced virulence |
| US6475482B1 (en) | 1997-09-10 | 2002-11-05 | Vion Pharmaceuticals, Inc. | Genetically modified tumor-targeted bacteria with reduce virulence |
| US7354592B2 (en) | 1997-09-10 | 2008-04-08 | Vion Pharmaceuticals, Inc. | Genetically modified tumor-targeted bacteria with reduced virulence |
| WO2000004919A2 (en) | 1998-07-24 | 2000-02-03 | Megan Health, Inc. | Live attenuated salmonella vaccines to control avian pathogens |
| US6605697B1 (en) | 1998-09-15 | 2003-08-12 | Hanmi Pharm. Co., Ltd. | Modified E. coli enterotoxin II signal peptide and a microorganism expressing a fusion protein of a said peptide and a heterologous protein |
| US6962696B1 (en) | 1999-10-04 | 2005-11-08 | Vion Pharmaceuticals Inc. | Compositions and methods for tumor-targeted delivery of effector molecules |
| US7452531B2 (en) | 1999-10-04 | 2008-11-18 | Vion Pharmaceuticals, Inc. | Compositions and methods for tumor-targeted delivery of effector molecules |
| WO2001025397A2 (en) | 1999-10-04 | 2001-04-12 | Vion Pharmaceuticals, Inc. | Compositions and methods for tumor-targeted delivery of effector molecules |
| US6841535B2 (en) | 2000-07-31 | 2005-01-11 | Active Motif | Peptide-mediated transfection agents and methods of use |
| US7358084B2 (en) | 2000-10-10 | 2008-04-15 | Genecor International, Inc. | Enhanced secretion of a polypeptide by a microorganism |
| US6743893B2 (en) | 2000-11-30 | 2004-06-01 | The Uab Research Foundation | Receptor-mediated uptake of peptides that bind the human transferrin receptor |
| WO2002070645A2 (en) | 2001-03-02 | 2002-09-12 | MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. | Functional surface display of polypeptides |
| US20030059400A1 (en) | 2001-07-31 | 2003-03-27 | Szalay Aladar A. | Light emitting microorganisms and cells for diagnosis and therapy of tumors |
| WO2003072125A1 (en) | 2002-02-22 | 2003-09-04 | The Curators Of The University Of Missouri | Therapeutic and diagnostic targeting of cancers cells with tumor homing peptides |
| EP1513924A1 (en) | 2002-05-29 | 2005-03-16 | The Regents Of The University Of California | Attenuated listeria spp. and methods for using the same |
| WO2003102168A1 (en) | 2002-05-29 | 2003-12-11 | The Regents Of The University Of California | Attenuated listeria spp. and methods for using the same |
| WO2004076484A1 (en) | 2003-02-27 | 2004-09-10 | National Research Council Of Canada | Peptide inhibitors of thrombin as potent anticoagulants |
| WO2004103404A1 (en) | 2003-05-20 | 2004-12-02 | Applied Molecular Evolution, Inc. | Cd20 binding molecules |
| WO2005018332A1 (en) | 2003-08-13 | 2005-03-03 | The General Hospital Corporation | Modified microorganisms for anti-cancer therapy |
| WO2005054477A1 (en) | 2003-12-04 | 2005-06-16 | Universidad Pablo De Olavide | Method of regulating heterologous protein expression controlled by salicylic derivatives in micro-organisms associated with higher organisms |
| WO2006010070A2 (en) | 2004-07-10 | 2006-01-26 | Board Of Regents, The University Of Texas System | Compositions and methods related to peptides that selectively bind leukemia cells |
| EP1655370A1 (en) | 2004-11-05 | 2006-05-10 | Gesellschaft für Biotechnologische Forschung | Bacterial vector |
| WO2006048344A1 (en) | 2004-11-05 | 2006-05-11 | Helmholtz-Zentrum für Infektionsforschung GmbH | Bacterial vector |
| WO2006116545A2 (en) | 2005-04-27 | 2006-11-02 | Wisconsin Alumni Research Foundation | Spatial control of signal transduction |
| US7635682B2 (en) | 2006-01-06 | 2009-12-22 | Genspera, Inc. | Tumor activated prodrugs |
| WO2008073148A2 (en) | 2006-07-11 | 2008-06-19 | Genelux Corporation | Methods and compositions for detection of microorganisms and cells and treatment of diseases and disorders |
| US20090294288A1 (en) | 2006-12-11 | 2009-12-03 | Schering Corporation | High-sensitivity proteolysis assay |
| WO2009014650A2 (en) | 2007-07-20 | 2009-01-29 | The General Hospital Corporation | Recombinant vibrio cholerae exotoxins |
| WO2009086116A2 (en) | 2007-12-19 | 2009-07-09 | Centocor, Inc. | Alternative scaffold protein fusions phage display via fusion to plx of m13 phage |
| WO2009126189A1 (en) | 2008-01-11 | 2009-10-15 | Genelux Corporation | Methods and compositions for detection of bacteria and treatment of diseases and disorders |
| WO2009139985A2 (en) | 2008-04-04 | 2009-11-19 | Farallone Holdings Bv | Methods and materials for gastrointestinal delivery of pathogen/toxin binding agents |
| WO2009152480A2 (en) | 2008-06-13 | 2009-12-17 | Vivocure, Inc. | Methods to treat solid tumors |
| US8241623B1 (en) * | 2009-02-09 | 2012-08-14 | David Bermudes | Protease sensitivity expression system |
| US8623350B1 (en) * | 2009-02-09 | 2014-01-07 | David Gordon Bermudes | Protease inhibitor: protease sensitivity expression system and method improving the therapeutic activity and specificity of proteins and phage and phagemids delivered by bacteria |
| US8524220B1 (en) | 2010-02-09 | 2013-09-03 | David Gordon Bermudes | Protease inhibitor: protease sensitivity expression system composition and methods improving the therapeutic activity and specificity of proteins delivered by bacteria |
Non-Patent Citations (6)
| Title |
|---|
| http://en.wikipedia.org/wiki/Macrophage (Acessed Jul. 1, 2014). |
| http://en.wikipedia.org/wiki/Neutrophil (accesed Jul. 1, 2014). |
| http://en.wikipedia.org/wiki/T-cell (Accessed Jul. 1, 2014). |
| http://www.ebi.ac.uk/pdbe-site/pdbemotif/sequence?accessionCode=1o8y (Acessed Jul. 1, 2014) Enzymatic Cyclization of a Potent Bowman-Birk Protease Inhibitor, Sunflower Trypsin Inhibitor-1, and Solution Structure of an Acyclic Precursor Peptide, Marx, U.C.search; Korsinczky, M.search; Schirra, H.search; Jones, A. search; Condie, B.search; Otvos, L.; Craik, D.J., J.Biol.Chem.search vol. 278, pag:21782 (2003), PubMed ID (U.S. Appl. No. 12/621,047) DOI (10.1074/jbc.M212996200). |
| http://www.uniprot.org/uniprot/Q4GWU5, Q4GWU5 (SFTI1-HELAN) Reviewed, UniProtKB/Swiss-Prot, Trypsin inhibitor 1 (SFTI-1) (Acessed Jul. 1, 2014). |
| Suming Wang, Jinbo Han, Yanfang Wang, Wuyuan Lu, and Chengwu Chi, "Design of peptide inhibitors for furin based on the C-terminal fragment of histone H1.2", Acta Biochim Biophys Sin (2008), vol. 40, Issue 10, p. 848-854. |
Cited By (45)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10087451B2 (en) | 2006-09-22 | 2018-10-02 | Aviex Technologies Llc | Live bacterial vectors for prophylaxis or treatment |
| US10188722B2 (en) | 2008-09-18 | 2019-01-29 | Aviex Technologies Llc | Live bacterial vaccines resistant to carbon dioxide (CO2), acidic pH and/or osmolarity for viral infection prophylaxis or treatment |
| US9657085B1 (en) | 2009-02-09 | 2017-05-23 | David Gordon Bermudes | Protease inhibitor: protease sensitive expression system and method improving the therapeutic activity and specificity of proteins and phage and phagemids delivered by bacteria |
| US10590185B1 (en) | 2009-02-09 | 2020-03-17 | David Gordon Bermudes | Protease inhibitor: protease sensitive expression system and method improving the therapeutic activity and specificity of proteins and phage and phagemids delivered by bacteria |
| US11485773B1 (en) | 2009-02-09 | 2022-11-01 | David Gordon Bermudes | Protease inhibitor:protease sensitive expression system and method improving the therapeutic activity and specificity of proteins and phage and phagemids delivered by bacteria |
| US9878023B1 (en) | 2010-02-09 | 2018-01-30 | David Gordon Bermudes | Protease inhibitor: protease sensitive expression system composition and methods improving the therapeutic activity and specificity of proteins delivered by bacteria |
| US9486513B1 (en) | 2010-02-09 | 2016-11-08 | David Gordon Bermudes | Immunization and/or treatment of parasites and infectious agents by live bacteria |
| US10364435B1 (en) | 2010-02-09 | 2019-07-30 | David Gordon Bermudes | Immunization and/or treatment of parasites and infectious agents by live bacteria |
| US10857233B1 (en) | 2010-02-09 | 2020-12-08 | David Gordon Bermudes | Protease inhibitor combination with therapeutic proteins including antibodies |
| US11219671B1 (en) | 2010-02-09 | 2022-01-11 | David Gordon Bermudes | Protease inhibitor:protease sensitive expression system, composition and methods for improving the therapeutic activity and specificity of proteins delivered by bacteria |
| US10954521B1 (en) | 2010-02-09 | 2021-03-23 | David Gordon Bermudes | Immunization and/or treatment of parasites and infectious agents by live bacteria |
| US9365625B1 (en) | 2011-03-31 | 2016-06-14 | David Gordon Bermudes | Bacterial methionine analogue and methionine synthesis inhibitor anticancer, antiinfective and coronary heart disease protective microcins and methods of treatment therewith |
| US11827890B1 (en) | 2013-02-14 | 2023-11-28 | David Gordon Bermudes | Bacteria carrying bacteriophage and protease inhibitors for the treatment of disorders and methods of treatment |
| US9593339B1 (en) | 2013-02-14 | 2017-03-14 | David Gordon Bermudes | Bacteria carrying bacteriophage and protease inhibitors for the treatment of disorders and methods of treatment |
| US10501746B1 (en) | 2013-02-14 | 2019-12-10 | David Gordon Bermudes | Bacteria carrying bacteriophage and protease inhibitors for the treatment of disorders and methods of treatment |
| US9737592B1 (en) | 2014-02-14 | 2017-08-22 | David Gordon Bermudes | Topical and orally administered protease inhibitors and bacterial vectors for the treatment of disorders and methods of treatment |
| US10828350B1 (en) | 2014-02-14 | 2020-11-10 | David Gordon Bermudes | Topical and orally administered protease inhibitors and bacterial vectors for the treatment of disorders and methods of treatment |
| US11813295B1 (en) | 2014-09-18 | 2023-11-14 | Theobald Therapeutics LLC | Modified bacteria having improved pharmacokinetics and tumor colonization enhancing antitumor activity |
| US10729731B1 (en) | 2014-09-18 | 2020-08-04 | David Gordon Bermudes | Modified bacteria having improved pharmacokinetics and tumor colonization enhancing antitumor activity |
| US9616114B1 (en) | 2014-09-18 | 2017-04-11 | David Gordon Bermudes | Modified bacteria having improved pharmacokinetics and tumor colonization enhancing antitumor activity |
| US10449237B1 (en) | 2014-09-18 | 2019-10-22 | David Gordon Bermudes | Modified bacteria having improved pharmacokinetics and tumor colonization enhancing antitumor activity |
| US10828356B1 (en) | 2014-09-18 | 2020-11-10 | David Gordon Bermudes | Modified bacteria having improved pharmacokinetics and tumor colonization enhancing antitumor activity |
| US11633435B1 (en) | 2014-09-18 | 2023-04-25 | David Gordon Bermudes | Modified bacteria having improved pharmacokinetics and tumor colonization enhancing antitumor activity |
| US10676723B2 (en) | 2015-05-11 | 2020-06-09 | David Gordon Bermudes | Chimeric protein toxins for expression by therapeutic bacteria |
| US12378536B1 (en) | 2015-05-11 | 2025-08-05 | David Bermudes | Chimeric protein toxins for expression by therapeutic bacteria |
| US11129906B1 (en) | 2016-12-07 | 2021-09-28 | David Gordon Bermudes | Chimeric protein toxins for expression by therapeutic bacteria |
| US11180535B1 (en) | 2016-12-07 | 2021-11-23 | David Gordon Bermudes | Saccharide binding, tumor penetration, and cytotoxic antitumor chimeric peptides from therapeutic bacteria |
| AU2018301651B2 (en) * | 2017-07-10 | 2023-05-18 | Sri International | A peptide saporin conjugate for the treatment of cancer |
| CN111417646B (en) * | 2017-07-10 | 2024-04-19 | 斯坦福国际研究院 | Peptide saporin conjugates for cancer treatment |
| US20220227823A1 (en) * | 2017-07-10 | 2022-07-21 | Sri International | Molecular guide system peptides and uses thereof |
| CN111417646A (en) * | 2017-07-10 | 2020-07-14 | 斯坦福国际研究院 | Peptide saponin conjugates for the treatment of cancer |
| US11738089B2 (en) | 2017-07-10 | 2023-08-29 | Sri International | Peptide saporin conjugate for the treatment of cancer |
| US11965004B2 (en) * | 2017-07-10 | 2024-04-23 | Sri International | Molecular guide system peptides and uses thereof |
| EP3652195A4 (en) * | 2017-07-10 | 2021-08-04 | SRI International | PEPTID-SAPORINE CONJUGATE FOR THE TREATMENT OF CANCER |
| US11168326B2 (en) | 2017-07-11 | 2021-11-09 | Actym Therapeutics, Inc. | Engineered immunostimulatory bacterial strains and uses thereof |
| US12226439B2 (en) | 2018-07-11 | 2025-02-18 | Actym Therapeutics, Inc. | Engineered immunostimulatory bacterial strains and uses thereof |
| US12201653B2 (en) | 2018-07-11 | 2025-01-21 | Actym Therapeutics, Inc. | Engineered immunostimulatory bacterial strains and uses thereof |
| US12357661B2 (en) | 2018-07-11 | 2025-07-15 | Actym Therapeutics, Inc. | Engineered immunostimulatory bacterial strains and uses thereof |
| US11779612B2 (en) | 2019-01-08 | 2023-10-10 | Actym Therapeutics, Inc. | Engineered immunostimulatory bacterial strains and uses thereof |
| US12024709B2 (en) | 2019-02-27 | 2024-07-02 | Actym Therapeutics, Inc. | Immunostimulatory bacteria engineered to colonize tumors, tumor-resident immune cells, and the tumor microenvironment |
| US12285437B2 (en) | 2019-10-30 | 2025-04-29 | The Research Foundation For The State University Of New York | Reversing the undesirable pH-profile of doxorubicin via activation of a disubstituted maleamic acid prodrug at tumor acidity |
| US11406702B1 (en) | 2020-05-14 | 2022-08-09 | David Gordon Bermudes | Expression of SARS-CoV-2 spike protein receptor binding domain in attenuated Salmonella as a vaccine |
| US10973908B1 (en) | 2020-05-14 | 2021-04-13 | David Gordon Bermudes | Expression of SARS-CoV-2 spike protein receptor binding domain in attenuated salmonella as a vaccine |
| WO2024077155A1 (en) * | 2022-10-06 | 2024-04-11 | Pan Chong Xian | Cancer-specific delivery of bacterium |
| US12441774B2 (en) | 2023-12-20 | 2025-10-14 | Sri International | Molecular guide system peptides and uses thereof |
Also Published As
| Publication number | Publication date |
|---|---|
| US11219671B1 (en) | 2022-01-11 |
| US9878023B1 (en) | 2018-01-30 |
| US8524220B1 (en) | 2013-09-03 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11219671B1 (en) | Protease inhibitor:protease sensitive expression system, composition and methods for improving the therapeutic activity and specificity of proteins delivered by bacteria | |
| US11485773B1 (en) | Protease inhibitor:protease sensitive expression system and method improving the therapeutic activity and specificity of proteins and phage and phagemids delivered by bacteria | |
| US12378536B1 (en) | Chimeric protein toxins for expression by therapeutic bacteria | |
| US10954521B1 (en) | Immunization and/or treatment of parasites and infectious agents by live bacteria | |
| US11633435B1 (en) | Modified bacteria having improved pharmacokinetics and tumor colonization enhancing antitumor activity | |
| Kayal et al. | Listeriolysin O: a key protein of Listeria monocytogenes with multiple functions | |
| AU783714B2 (en) | Compositions and methods for tumor-targeted delivery of effector molecules | |
| US11827890B1 (en) | Bacteria carrying bacteriophage and protease inhibitors for the treatment of disorders and methods of treatment | |
| Lagos et al. | Antibacterial and antitumorigenic properties of microcin E492, a pore-forming bacteriocin | |
| US20040229338A1 (en) | Compositions and methods for tumor-targeted delivery of effector molecules | |
| US20070298012A1 (en) | Compositions and Methods for Tumor-Targeted Delivery of Effector Molecules | |
| Pasquevich et al. | Omp19 enables Brucella abortus to evade the antimicrobial activity from host's proteolytic defense system | |
| CN101579362A (en) | Compositions and methods for targeted delivery of effector molecules to tumors | |
| US11180535B1 (en) | Saccharide binding, tumor penetration, and cytotoxic antitumor chimeric peptides from therapeutic bacteria | |
| US11129906B1 (en) | Chimeric protein toxins for expression by therapeutic bacteria | |
| Quintero et al. | Co-Expression of a chimeric protease inhibitor secreted by a tumor-targeted Salmonella protects therapeutic proteins from proteolytic degradation | |
| Saha et al. | The uses of bacteria in cancer therapy | |
| Sharma et al. | Bacterial Cancer Therapy: Promising Role | |
| WO2025022097A1 (en) | Recombinant bacterial cell capable of expressing a heterologous extracellular matrix (ecm) degrading polypeptide using a tumour-inducible promoter. | |
| Quintero | Chimeric Anti-Cancer Proteins Engineered for Delivery by Tumor-Targeted Salmonella | |
| WO2025037284A2 (en) | Genetically modified bacteria for multi-modal secretion of a neoantigen | |
| Khusro et al. | 5 Bacteria and Bioactive Peptides | |
| CN114340648A (en) | Probiotic delivery of directed antimicrobial peptides | |
| Michl et al. | 6.2. 1 Novel therapeutic approaches | |
| HK1139043A (en) | Compositions and methods for tumor-targeted delivery of effector molecules |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
| MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, MICRO ENTITY (ORIGINAL EVENT CODE: M3551); ENTITY STATUS OF PATENT OWNER: MICROENTITY Year of fee payment: 4 |
|
| MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, MICRO ENTITY (ORIGINAL EVENT CODE: M3552); ENTITY STATUS OF PATENT OWNER: MICROENTITY Year of fee payment: 8 |