US9040763B2 - Method for quenching paraffin dehydrogenation reaction in counter-current reactor - Google Patents
Method for quenching paraffin dehydrogenation reaction in counter-current reactor Download PDFInfo
- Publication number
- US9040763B2 US9040763B2 US12/824,640 US82464010A US9040763B2 US 9040763 B2 US9040763 B2 US 9040763B2 US 82464010 A US82464010 A US 82464010A US 9040763 B2 US9040763 B2 US 9040763B2
- Authority
- US
- United States
- Prior art keywords
- stream
- reactor
- catalyst
- product stream
- cooled product
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 238000000034 method Methods 0.000 title claims abstract description 99
- 238000006356 dehydrogenation reaction Methods 0.000 title claims abstract description 40
- 239000012188 paraffin wax Substances 0.000 title claims abstract description 14
- 238000010791 quenching Methods 0.000 title abstract description 10
- 230000000171 quenching effect Effects 0.000 title abstract description 8
- 238000001816 cooling Methods 0.000 claims abstract description 21
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000001294 propane Substances 0.000 claims abstract description 6
- 239000003054 catalyst Substances 0.000 claims description 99
- 150000001336 alkenes Chemical class 0.000 claims description 26
- 238000005336 cracking Methods 0.000 claims description 14
- 238000000926 separation method Methods 0.000 claims description 13
- 229930195733 hydrocarbon Natural products 0.000 claims description 12
- 150000002430 hydrocarbons Chemical class 0.000 claims description 12
- 238000009826 distribution Methods 0.000 claims description 8
- 238000003892 spreading Methods 0.000 claims description 3
- 239000012808 vapor phase Substances 0.000 claims 1
- 230000003197 catalytic effect Effects 0.000 abstract 2
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 16
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 16
- 238000006243 chemical reaction Methods 0.000 description 15
- 239000010457 zeolite Substances 0.000 description 15
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 12
- 239000005977 Ethylene Substances 0.000 description 12
- 238000004519 manufacturing process Methods 0.000 description 11
- 229910021536 Zeolite Inorganic materials 0.000 description 9
- 238000013461 design Methods 0.000 description 9
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 9
- 125000004432 carbon atom Chemical group C* 0.000 description 7
- 239000004215 Carbon black (E152) Substances 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 230000005587 bubbling Effects 0.000 description 4
- 238000004523 catalytic cracking Methods 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 238000005194 fractionation Methods 0.000 description 3
- 238000005649 metathesis reaction Methods 0.000 description 3
- 229910052680 mordenite Inorganic materials 0.000 description 3
- 239000003208 petroleum Substances 0.000 description 3
- -1 polyethylene Polymers 0.000 description 3
- 238000007086 side reaction Methods 0.000 description 3
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 238000000197 pyrolysis Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 238000004230 steam cracking Methods 0.000 description 2
- 239000002028 Biomass Substances 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- UNYSKUBLZGJSLV-UHFFFAOYSA-L calcium;1,3,5,2,4,6$l^{2}-trioxadisilaluminane 2,4-dioxide;dihydroxide;hexahydrate Chemical compound O.O.O.O.O.O.[OH-].[OH-].[Ca+2].O=[Si]1O[Al]O[Si](=O)O1.O=[Si]1O[Al]O[Si](=O)O1 UNYSKUBLZGJSLV-UHFFFAOYSA-L 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 229910052676 chabazite Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007323 disproportionation reaction Methods 0.000 description 1
- 239000012013 faujasite Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000001282 iso-butane Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 238000006384 oligomerization reaction Methods 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 238000004227 thermal cracking Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C5/00—Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
- C07C5/32—Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
- C07C5/327—Formation of non-aromatic carbon-to-carbon double bonds only
- C07C5/333—Catalytic processes
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C11/00—Aliphatic unsaturated hydrocarbons
- C07C11/02—Alkenes
- C07C11/06—Propene
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S585/00—Chemistry of hydrocarbon compounds
- Y10S585/8995—Catalyst and recycle considerations
- Y10S585/903—Catalyst and recycle considerations with hydrocarbon recycle to control synthesis reaction, e.g. by cooling, quenching
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S585/00—Chemistry of hydrocarbon compounds
- Y10S585/909—Heat considerations
- Y10S585/91—Exploiting or conserving heat of quenching, reaction, or regeneration
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S585/00—Chemistry of hydrocarbon compounds
- Y10S585/909—Heat considerations
- Y10S585/911—Heat considerations introducing, maintaining, or removing heat by atypical procedure
Definitions
- the present invention involves processes for the dehydrogenation of paraffins.
- the processes generate a hot product stream and the invention is related to the cooling of the hot product stream.
- the production of light olefins are important for the production of numerous plastics, and for the production of commercially important monomers.
- the plastics include polyethylene and polypropylene, and monomers include vinyl chloride, ethylbenzene, ethylene oxide, and some alcohols.
- Light olefins are traditionally produced through cracking, both steam and catalytic cracking, of hydrocarbon feedstocks comprising larger hydrocarbons. Feedstocks include naphthas, and other heavier hydrocarbon streams.
- the traditional method of olefin production is the cracking of petroleum feedstocks to olefins.
- the cracking of petroleum feedstocks is done through catalytic cracking, steam cracking, or some combination of the two processes.
- the olefins produced are generally light olefins, such as ethylene and propylene.
- olefins can be produced from oxygenates.
- the most common conversion of oxygenates to olefins is the production of light olefins from methanol, wherein methanol can be produced from other sources, including biomass, and natural gas.
- An ethylene plant is a very complex combination of reaction and gas recovery systems.
- the feedstock is charged to a cracking zone in the presence of steam at effective thermal conditions to produce a pyrolysis reactor effluent gas mixture.
- the pyrolysis reactor effluent gas mixture is stabilized and separated into purified components through a sequence of cryogenic and conventional fractionation steps.
- a typical ethylene separation section of an ethylene plant containing both cryogenic and conventional fractionation steps to recover an ethylene product with a purity exceeding 99.5% ethylene is described in an article by V. Kaiser and M. Picciotti, entitled, “Better Ethylene Separation Unit.” The article appeared in HYDROCARBON PROCESSING MAGAZINE, November 1988, pages 57-61 and is hereby incorporated by reference.
- the hydrocarbon feedstream to the zeolitic catalyst typically contains a mixture of 40 to 100 wt-% paraffins having 4 or more carbon atoms per molecule and 0 to 60 wt-% olefins having 4 or more carbon atoms per molecule.
- the preferred catalyst for such a zeolitic cracking process is an acid zeolite, examples includes several of the ZSM-type zeolites or the borosilicates. Of the ZSM-type zeolites, ZSM-5 was preferred.
- zeolites containing materials which could be used in the cracking process to produce ethylene and propylene included zeolite A, zeolite X, zeolite Y, zeolite ZK-5, zeolite ZK-4, synthetic mordenite, dealuminized mordenite, as well as naturally occurring zeolites including chabazite, faujasite, mordenite, and the like.
- Zeolites which were ion-exchanged to replace alkali metal present in the zeolite were preferred.
- Preferred alkali exchange cations were hydrogen, ammonium, rare earth metals and mixtures thereof.
- European Patent No. 109,059B1 discloses a process for the conversion of a feedstream containing olefins having 4 to 12 carbon atoms per molecule into propylene by contacting the feedstream with a ZSM-5 or a ZSM-11 zeolite having a silica to alumina atomic ratio less than or equal to 300 at a temperature from 400 to 600° C.
- the ZSM-5 or ZSM-11 zeolite is exchanged with a hydrogen or an ammonium cation.
- the reference also discloses that, although the conversion to propylene is enhanced by the recycle of any olefins with less than 4 carbon atoms per molecule, paraffins which do not react tend to build up in the recycle stream.
- the reference provides an additional oligomerization step wherein the olefins having 4 carbon atoms are oligomerized to facilitate the removal of paraffins such as butane and particularly isobutane which are difficult to separate from C 4 olefins by conventional fractionation.
- a process is disclosed for the conversion of butenes to propylene. The process comprises contacting butenes with a zeolitic compound selected from the group consisting of silicalites, boralites, chromosilicates and those zeolites ZSM-5 and ZSM-11 in which the mole ratio of silica to alumina is greater than or equal to 350.
- the conversion is carried out at a temperature from 500° C. to 600° C. and at a space velocity of from 5 to 200 kg/hr of butenes per kg of pure zeolitic compound.
- the European Patent No. 109,060B1 discloses the use of silicalite-1 in an ion-exchanged, impregnated, or co-precipitated form with a modifying element selected from the group consisting of chromium, magnesium, calcium, strontium and barium.
- Paraffin dehydrogenation represents an alternative route to light olefins and is described in U.S. Pat. No. 3,978,150 and elsewhere. This is an important process as it provides control through the selection of the feedstream.
- the invention provides a new process for controlling the temperatures of an exiting process stream from a dehydrogenation reactor.
- the process includes passing a hot catalyst to the dehydrogenation reactor wherein the catalyst flows down through the reactor.
- a paraffin rich stream is passed to the dehydrogenation reactor wherein the paraffin stream flows up through the reactor, contacting the catalyst and generating a process stream.
- the process stream comprises olefins and carries some catalyst fines from the reaction section of the reactor.
- the catalyst and catalyst fines are separated from the process stream to generate a product stream.
- the product stream is cooled and compressed to create a cooled product stream.
- a portion of the cooled product stream is passed to the dehydrogenation reactor to quench the process stream.
- the cooled product stream portion is passed to a position proximate to the top of the catalytic reaction section of the reactor.
- the invention provides for cooling of the process stream to prevent undesired side reactions, while not incurring additional separation costs, or complexity to a dehydrogenation process. This is of particular use in the production of light olefins, and in particular the conversion of propane to propylene.
- the FIGURE is a process flow diagram of the dehydrogenation process of the present invention.
- the production of propylene is important for the production of polypropylene.
- An important aspect is the selectivity in the economics of the production process.
- the process involves high temperature reactions, and can lead to undesired side reactions that decreases the propylene production.
- One aspect is the hot residence time of the process stream before the product stream leaves the reactor.
- the hot residence time during separation of the catalyst from the process stream leads to non-selective cracking.
- Minimizing hot residence time improves product quality, which can be performed by quenching of the hot process stream.
- Normal quenching processes involve the injection of steam or an inert gas, or even hydrogen.
- each of these quenching materials present problems, and can increase costs through additional separation sections.
- the present invention provides for cooling, or quenching, of the process stream and decreases, or prevents, unwanted cracking, thereby improving propylene yields.
- the present invention is illustrated in the FIGURE showing the process flow for controlling the temperature of the product coming from the dehydrogenation reactor.
- the process comprises passing catalyst to a dehydrogenation reactor 10 through a catalyst inlet port 12 .
- the catalyst is cycled through the reactor and a regenerator.
- the reactor can be a bubbling bed reactor, or other type of reactor where the catalyst flows through the reactor and has an average residence time before being recycled to a regenerator.
- the catalyst is distributed over a series of trays with openings to allow the catalyst to flow down through the reactor section 14 .
- a paraffin rich stream is passed to the dehydrogenation reactor 10 through a feedstream inlet port 16 .
- the reactor section 14 generates a process stream comprising dehydrogenated hydrocarbons, some unconverted paraffins and some catalyst that is entrained in the process stream.
- the catalyst is separated from the process stream in a separation section 18 , thereby creating a product stream 22 , comprising dehydrogenated hydrocarbons.
- the product stream 22 is cooled and a portion of the cooled product stream 24 is passed back to the reactor 10 to mix with the process stream.
- the cooled product stream 24 is passed to a position in the reactor 10 just above the catalyst, or proximate to the top of the reactor section 14 of the reactor 10 .
- Catalyst entering the reactor 10 is preferably passed through a distributor for depositing catalyst in a substantially uniform manner over the top of the reactor section 14 .
- the cooled product stream 24 is preferably passed to a position above the catalyst distributor.
- the product stream 22 is passed through a combined feed heat exchanger 26 , wherein the product stream 22 is cooled, and a combined feed of hydrogen and paraffins are preheated before passing the paraffin rich feedstream to the dehydrogenation reactor 10 .
- the cooled product stream 30 can be further cooled through a contact heat exchanger 32 to further cool the product stream and to recover any catalyst fines.
- the contact heat exchanger 32 is a direct liquid contact cooler.
- the cooled product stream 34 is compressed to generate a compressed product stream 36 .
- the compressed product stream 36 is further cooled in a cooling vessel 46 to remove the heat of compression, and a compressed cooled product stream 38 is generated. Condensate 48 generated in the cooling vessel 46 is passed out of the cooling vessel 46 .
- a portion 24 of the compressed cooled product stream 38 is then passed to the dehydrogenation reactor 10 .
- One method of controlling the amount of cooling can be assisted through the setting of the compression level of the product stream.
- the product stream can be compressed to a level above the reactor pressure, and the expansion of the compressed and cooled product stream when entering the reactor can provide some additional cooling.
- the amount of product stream passed to quench the process stream is determined by the cooling load necessary to reduce the process stream temperature to below typical cracking temperatures.
- the reactor is sized to process a feedstream having a superficial velocity between 0.1 and 1.4 msec.
- the reactor separation section 18 is also sized to maintain a superficial velocity of the process stream and the returned cooled product stream to a value between 0.1 and 1.4 msec.
- the separation section has an enlarged diameter, relative to the reaction section diameter, to maintain the superficial velocity within the design range.
- the superficial velocity is more tightly controlled to be in the range of 0.2 and 1 msec, and a more preferred range of 0.3 and 0.8 msec, and most preferably the superficial velocity is approximately 0.6 msec.
- the superficial velocity is typically determined by dividing the volumetric flow rate of the gas by the cross-sectional area of the vessel.
- the vessel design is such that the separation zone has a diameter that is greater than the diameter of the reaction vessel in the region of the catalyst beds. The initial expansion allows for significant settling out of the catalyst from the process stream.
- the vessel diameter is increased to accommodate the increased gas flow from the recycled cooled product stream to maintain a superficial velocity in the desired range.
- Catalyst flows through the reactor section 14 of the reactor 10 , and is passed to a regeneration unit 40 .
- the catalyst is regenerated through combustion of the carbon that accumulates on the catalyst during the dehydrogenation process.
- the carbon is combusted to heat up the catalyst with compressed air 42 in the regenerator 40 .
- Additional fuel 44 can be added to the regenerator 40 to control the combustion.
- Regenerated catalyst is then passed out of the regenerator 40 to the dehydrogenation reactor 10 .
- Catalyst can be passed to any reactor design that allows for the catalyst to flow through the reactor, with the catalyst recovered and passed to the regenerator.
- One such design is a fluidized bed with catalyst added to the top of the reactor section, and catalyst withdrawn from the bottom of the reactor section.
- Another design is the use of reactor internals for spreading the catalyst across the reactor and allowing the catalyst to then flow downward from one reactor internal section to another reactor internal section.
- An example of appropriate reactor internals is the use of trays, or grids, having small openings, either slits or holes, for the vapor to flow upward, and large openings to allow for catalyst to flow downward.
- the larger openings are spaced to have the catalyst flow all, or partway, across the tray, or grid, with lower trays having the larger openings positioned in a transverse position relative to a position of the large openings in the tray above.
- the trays can also include sections that have no holes to insure the distribution of vapor flowing through the trays.
- the use of trays for flowing the catalyst through the reactor is preferred over a series of bubbling bed reactors as bubbling bed reactors require a space over each bed to separate most of the catalyst.
- the space above the bubbling beds provides an undesired dilute phase residence time, that is a low catalyst to hydrocarbon ratio phase. This space has the drawback of contributing to hot dilute phase residence time and contributes to reducing the selectivity.
- the present design reduces the hot dilute phase residence time by quenching the process stream during the separation of catalyst from the process stream.
- the dehydrogenation reactor can include a plurality of catalyst feeds to the reactor section 14 .
- a catalyst inlet port directs catalyst above each tray of catalyst and distributes catalyst over each tray. The catalyst then flows down through the reactor section 14 .
- the dehydrogenation reactor 10 comprises a reactor section 14 that allows for the flow of catalyst down through the reactor section 14 .
- the preferred reactor section design 14 comprises perforated trays having large openings, wherein the perforations allow for the process vapor stream to flow upward through the reactor.
- the large openings allow for the flow of catalyst to pour from one tray to a lower tray.
- the trays appear as sections having large openings across the length of the trays, with the trays positioned to have the perforated sections of the trays overlapping the large openings such that the catalyst will flow in a transverse direction across each tray before flowing to the next tray below.
- the process comprises passing catalyst to a dehydrogenation reactor through at least one catalyst inlet port.
- the catalyst inlet port is in fluid communication with a catalyst distribution manifold for distributing catalyst over the top of a catalyst tray.
- a feedstream comprising propane is passed to the dehydrogenation reactor through a distributor at the bottom of the reactor.
- the feedstream passes through the reactor section and creates a process stream comprising light olefins, and catalyst.
- the light olefins in the process stream are predominantly propylene.
- Catalyst is separated from the process stream to create a product stream, and the catalyst is returned to the reactor section.
- the product stream is passed to a cooling unit, thereby creating a cooled product stream.
- the cooled product stream is passed to mix with the process stream at a position above the catalyst distribution manifold, thereby quenching the process stream and limiting further thermal reactions in the process stream, such as thermal cracking.
- the preferred embodiment is a dehydrogenation reactor comprising trays for spreading the catalyst and flowing the catalyst across the trays and down through the reactor.
- the catalyst is passed to the dehydrogenation reactor through a plurality of catalyst inlet ports. Each inlet port is connected to a catalyst distribution manifold, and each catalyst distribution manifold deposits the catalyst over a different tray.
- the cooled product stream is passed to a position above the uppermost catalyst distribution manifold.
- the cooled product stream is passed proximate to the uppermost catalyst distribution manifold in a position above the manifold. This cooled product inlet position is near the lower portion of the upper separation section of the dehydrogenation reactor.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
Claims (18)
Priority Applications (6)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US12/824,640 US9040763B2 (en) | 2010-06-28 | 2010-06-28 | Method for quenching paraffin dehydrogenation reaction in counter-current reactor |
| EP11807242.0A EP2585208A4 (en) | 2010-06-28 | 2011-06-21 | Method for quenching paraffin dehydrogenation reaction in counter-current reactor |
| CN201180029078.0A CN102958596B (en) | 2010-06-28 | 2011-06-21 | Method for quenching paraffin dehydrogenation reaction in counter-current reactor |
| RU2012148454/05A RU2536503C2 (en) | 2010-06-28 | 2011-06-21 | Method of tempering products of paraffin dehydration reaction in counterflow reactor |
| PCT/US2011/041204 WO2012009110A2 (en) | 2010-06-28 | 2011-06-21 | Method for quenching paraffin dehydrogenation reaction in counter-current reactor |
| US14/515,660 US20150038757A1 (en) | 2010-06-28 | 2014-10-16 | Method for quenching paraffin dehydrogenation reaction in counter-current reactor |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US12/824,640 US9040763B2 (en) | 2010-06-28 | 2010-06-28 | Method for quenching paraffin dehydrogenation reaction in counter-current reactor |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/515,660 Continuation US20150038757A1 (en) | 2010-06-28 | 2014-10-16 | Method for quenching paraffin dehydrogenation reaction in counter-current reactor |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20110319692A1 US20110319692A1 (en) | 2011-12-29 |
| US9040763B2 true US9040763B2 (en) | 2015-05-26 |
Family
ID=45353155
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/824,640 Active 2032-10-14 US9040763B2 (en) | 2010-06-28 | 2010-06-28 | Method for quenching paraffin dehydrogenation reaction in counter-current reactor |
| US14/515,660 Abandoned US20150038757A1 (en) | 2010-06-28 | 2014-10-16 | Method for quenching paraffin dehydrogenation reaction in counter-current reactor |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/515,660 Abandoned US20150038757A1 (en) | 2010-06-28 | 2014-10-16 | Method for quenching paraffin dehydrogenation reaction in counter-current reactor |
Country Status (5)
| Country | Link |
|---|---|
| US (2) | US9040763B2 (en) |
| EP (1) | EP2585208A4 (en) |
| CN (1) | CN102958596B (en) |
| RU (1) | RU2536503C2 (en) |
| WO (1) | WO2012009110A2 (en) |
Families Citing this family (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TWI495511B (en) * | 2011-07-27 | 2015-08-11 | Exxonmobil Chem Patents Inc | Fluid bed reactor with staged baffles |
| WO2014081545A1 (en) * | 2012-11-20 | 2014-05-30 | Uop Llc | Counter-current fluidized bed reactor for the dehydrogenation of olefins |
| US9150466B2 (en) * | 2012-11-20 | 2015-10-06 | Uop Llc | Counter-current fluidized bed reactor for the dehydrogenation of olefins |
| US20140364671A1 (en) * | 2013-06-11 | 2014-12-11 | Uop Llc | Catalyst moisture sensitivty management |
| US10988421B2 (en) | 2013-12-06 | 2021-04-27 | Exxonmobil Chemical Patents Inc. | Removal of bromine index-reactive compounds |
| US20160090336A1 (en) * | 2014-09-25 | 2016-03-31 | Uop Llc | Removal of aromatic contaminants in olefin stream from paraffin dehydrogenation |
| US9919988B2 (en) | 2015-11-04 | 2018-03-20 | Exxonmobil Chemical Patents Inc. | Process and system for making cyclopentadiene and/or dicyclopentadiene |
| US9873647B2 (en) | 2015-11-04 | 2018-01-23 | Exxonmobil Chemical Patents Inc. | Processes and systems for converting hydrocarbons to cyclopentadiene |
| CN105312046B (en) * | 2015-11-05 | 2018-05-04 | 中海油天津化工研究设计院有限公司 | A kind of catalyst for dehydrogenation of low-carbon paraffin and the method for improving its activity and stability |
| US9908825B1 (en) | 2016-10-07 | 2018-03-06 | Exxonmobil Chemical Patents Inc. | Processes and systems for converting hydrocarbons to cyclopentadiene |
| US11987547B2 (en) * | 2019-06-28 | 2024-05-21 | Dow Global Technologies Llc | Methods for forming light olefins that include use of cooled product as a recycled quench stream |
| US11447707B2 (en) * | 2020-12-22 | 2022-09-20 | Uop Llc | Paraffin dehydrogenation process and apparatus |
Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2458862A (en) * | 1943-07-24 | 1949-01-11 | Standard Oil Dev Co | Preventing secondary reactions in catalytic processes |
| US3288878A (en) * | 1964-01-28 | 1966-11-29 | Phillips Petroleum Co | Fluidized dehydrogenation process and apparatus |
| US3978150A (en) | 1975-03-03 | 1976-08-31 | Universal Oil Products Company | Continuous paraffin dehydrogenation process |
| EP0109060B1 (en) | 1982-11-10 | 1987-03-11 | MONTEDIPE S.p.A. | Process for the conversion of linear butenes to propylene |
| US4663493A (en) * | 1984-10-02 | 1987-05-05 | Uop Inc. | Process for the dehydrogenation of hydrocarbons |
| EP0109059B1 (en) | 1982-11-10 | 1987-07-15 | MONTEDIPE S.p.A. | Process for converting olefins having 4 to 12 carbon atoms into propylene |
| US5026935A (en) | 1989-10-02 | 1991-06-25 | Arco Chemical Technology, Inc. | Enhanced production of ethylene from higher hydrocarbons |
| US5026936A (en) | 1989-10-02 | 1991-06-25 | Arco Chemical Technology, Inc. | Enhanced production of propylene from higher hydrocarbons |
| US5043522A (en) | 1989-04-25 | 1991-08-27 | Arco Chemical Technology, Inc. | Production of olefins from a mixture of Cu+ olefins and paraffins |
Family Cites Families (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB582624A (en) * | 1942-06-13 | 1946-11-22 | Standard Oil Dev Co | An improved process for the catalytic dehydrogenation of hydrocarbons |
| US5019353A (en) * | 1988-01-19 | 1991-05-28 | Mobil Oil Corporation | Reactor system for conversion of alkanes to alkenes in an external FCC catalyst cooler |
| US5167795A (en) * | 1988-01-28 | 1992-12-01 | Stone & Webster Engineering Corp. | Process for the production of olefins and aromatics |
| US4956510A (en) * | 1989-03-14 | 1990-09-11 | Mobil Oil Corp. | Hydrocarbon upgrading process and reaction section design with regenerated catalyst quench |
| JP5021140B2 (en) * | 2000-06-14 | 2012-09-05 | ビーエーエスエフ ソシエタス・ヨーロピア | Method for producing acrolein and / or acrylic acid |
| RU2301107C1 (en) * | 2005-10-18 | 2007-06-20 | Открытое акционерное общество Научно-исследовательский институт "Ярсинтез" (ОАО НИИ "Ярсинтез") | Reactor for dehydrogenation of paraffinic hydrocarbons c3-c5 |
-
2010
- 2010-06-28 US US12/824,640 patent/US9040763B2/en active Active
-
2011
- 2011-06-21 CN CN201180029078.0A patent/CN102958596B/en active Active
- 2011-06-21 EP EP11807242.0A patent/EP2585208A4/en not_active Withdrawn
- 2011-06-21 RU RU2012148454/05A patent/RU2536503C2/en active
- 2011-06-21 WO PCT/US2011/041204 patent/WO2012009110A2/en not_active Ceased
-
2014
- 2014-10-16 US US14/515,660 patent/US20150038757A1/en not_active Abandoned
Patent Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2458862A (en) * | 1943-07-24 | 1949-01-11 | Standard Oil Dev Co | Preventing secondary reactions in catalytic processes |
| US3288878A (en) * | 1964-01-28 | 1966-11-29 | Phillips Petroleum Co | Fluidized dehydrogenation process and apparatus |
| US3978150A (en) | 1975-03-03 | 1976-08-31 | Universal Oil Products Company | Continuous paraffin dehydrogenation process |
| EP0109060B1 (en) | 1982-11-10 | 1987-03-11 | MONTEDIPE S.p.A. | Process for the conversion of linear butenes to propylene |
| EP0109059B1 (en) | 1982-11-10 | 1987-07-15 | MONTEDIPE S.p.A. | Process for converting olefins having 4 to 12 carbon atoms into propylene |
| US4663493A (en) * | 1984-10-02 | 1987-05-05 | Uop Inc. | Process for the dehydrogenation of hydrocarbons |
| US5043522A (en) | 1989-04-25 | 1991-08-27 | Arco Chemical Technology, Inc. | Production of olefins from a mixture of Cu+ olefins and paraffins |
| US5026935A (en) | 1989-10-02 | 1991-06-25 | Arco Chemical Technology, Inc. | Enhanced production of ethylene from higher hydrocarbons |
| US5026936A (en) | 1989-10-02 | 1991-06-25 | Arco Chemical Technology, Inc. | Enhanced production of propylene from higher hydrocarbons |
Non-Patent Citations (3)
| Title |
|---|
| Kaiser, V., et al.; Better Ethylene Separation Unit, Hydrocarbon Processing, Nov. 1988, pp. 57-61. |
| Shilling, et al., "Heat Transfer Equipment" in Perry's Chemical Engineer's Handbook, McGraw-Hill, 7th ed., 1997, available on-line at www.knovel.com. * |
| Tilton, "Fluid and Particle Dynamics" in Perry's Chemical Engineer's Handbook, 7th ed., 1997, McGraw-Hill, available on-line at www.knovel.com. * |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2012009110A3 (en) | 2012-04-19 |
| WO2012009110A2 (en) | 2012-01-19 |
| RU2012148454A (en) | 2014-05-20 |
| EP2585208A2 (en) | 2013-05-01 |
| EP2585208A4 (en) | 2014-05-21 |
| CN102958596A (en) | 2013-03-06 |
| US20110319692A1 (en) | 2011-12-29 |
| RU2536503C2 (en) | 2014-12-27 |
| CN102958596B (en) | 2015-06-10 |
| US20150038757A1 (en) | 2015-02-05 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US9040763B2 (en) | Method for quenching paraffin dehydrogenation reaction in counter-current reactor | |
| US8137533B2 (en) | Mixture of catalysts for cracking naphtha to olefins | |
| US9150465B2 (en) | Integration of cyclic dehydrogenation process with FCC for dehydrogenation of refinery paraffins | |
| JP5038142B2 (en) | Conversion of alcoholic oxygenates to propylene using moving bed technology and etherification process. | |
| US6791002B1 (en) | Riser reactor system for hydrocarbon cracking | |
| KR101847474B1 (en) | Method for preparing a light olefin using an oxygen-containing compound | |
| JP4829227B2 (en) | Conversion of oxygenate to propylene using moving bed technology. | |
| US20100331590A1 (en) | Production of light olefins and aromatics | |
| US9328299B2 (en) | Naphtha cracking | |
| EP0088494B1 (en) | Process for converting methanol into olefins | |
| CA2931122C (en) | Increased conversion of recycled oxygenates in mto | |
| EP3455336B1 (en) | Process for naphtha cracking and reforming | |
| US20140357913A1 (en) | Naphtha cracking | |
| EP3004291B1 (en) | Naphtha cracking | |
| CN102245542A (en) | Process for preparing products containing C3H6 and C2H4 | |
| US20110301393A1 (en) | Two Stage Oxygenate Conversion Reactor with Improved Selectivity | |
| US20230159411A1 (en) | Integrated process for producing ethylene and propylene from c4 and/or c5 hydrocarbons | |
| US20110300026A1 (en) | Two Stage Oxygenate Conversion Reactor with Improved Selectivity | |
| US20250207042A1 (en) | Process for converting naphtha to light paraffins with staged reactors | |
| US20250207043A1 (en) | Isothermal process for converting naphtha to light paraffins | |
| US20250207045A1 (en) | Process for converting naphtha to paraffins with hydrocracked charge streams | |
| US20250206685A1 (en) | Process for converting naphtha with propane recycle | |
| CN111073695B (en) | Fischer-Tropsch synthesis naphtha modification method | |
| KR20220110550A (en) | Aromatic alkylation process |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: UOP LLC, ILLINOIS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SPIEKER, WOLFGANG A;LEONARD, LAURA E;MYERS, DAVID N;SIGNING DATES FROM 20100805 TO 20100809;REEL/FRAME:024859/0054 |
|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
| MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
| MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |