US795886A - Making aluminium. - Google Patents
Making aluminium. Download PDFInfo
- Publication number
- US795886A US795886A US25334805A US1905253348A US795886A US 795886 A US795886 A US 795886A US 25334805 A US25334805 A US 25334805A US 1905253348 A US1905253348 A US 1905253348A US 795886 A US795886 A US 795886A
- Authority
- US
- United States
- Prior art keywords
- aluminium
- alloy
- iron
- electrolyte
- fused
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title description 63
- 239000004411 aluminium Substances 0.000 title description 62
- 229910052782 aluminium Inorganic materials 0.000 title description 62
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 34
- 229910045601 alloy Inorganic materials 0.000 description 20
- 239000000956 alloy Substances 0.000 description 20
- 239000003792 electrolyte Substances 0.000 description 16
- 229910052742 iron Inorganic materials 0.000 description 16
- 238000000034 method Methods 0.000 description 12
- 230000005484 gravity Effects 0.000 description 11
- 229910052751 metal Inorganic materials 0.000 description 11
- 239000002184 metal Substances 0.000 description 11
- 239000000463 material Substances 0.000 description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 229910052802 copper Inorganic materials 0.000 description 6
- 239000010949 copper Substances 0.000 description 6
- 238000000151 deposition Methods 0.000 description 6
- 239000010703 silicon Substances 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 5
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 5
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 5
- 239000004927 clay Substances 0.000 description 5
- 229910052718 tin Inorganic materials 0.000 description 5
- 239000011135 tin Substances 0.000 description 5
- 229910052725 zinc Inorganic materials 0.000 description 5
- 239000011701 zinc Substances 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 229910000838 Al alloy Inorganic materials 0.000 description 3
- 238000005275 alloying Methods 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 229910001018 Cast iron Inorganic materials 0.000 description 2
- 229910000640 Fe alloy Inorganic materials 0.000 description 2
- 229910000519 Ferrosilicon Inorganic materials 0.000 description 2
- 229910001570 bauxite Inorganic materials 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- VBMVTYDPPZVILR-UHFFFAOYSA-N iron(2+);oxygen(2-) Chemical compound [O-2].[Fe+2] VBMVTYDPPZVILR-UHFFFAOYSA-N 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 239000011819 refractory material Substances 0.000 description 2
- 239000002893 slag Substances 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910000906 Bronze Inorganic materials 0.000 description 1
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910000805 Pig iron Inorganic materials 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000011449 brick Substances 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229910001610 cryolite Inorganic materials 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C3/00—Electrolytic production, recovery or refining of metals by electrolysis of melts
- C25C3/06—Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
Definitions
- the single figure of the drawing is a view in vertical section of electrolytic apparatus I use in carrying out my invention.
- This invention relates to the reparation of pure aluminium from ores wit out necessitating the purification of the ore before the metal is reduced from its oxid.
- the principal object of my invention is to prepare aluminium of high purity at a low cost.
- Aluminium oxid occurs in nature for the most part associated with other oxids, notably with those of iron and silicon in clay and with those of iron, silicon, and-titanium in bauxite. All these oxids are more easily reducible than alumina, so that it is not possible to prepare pure aluminium by first reducing the ore to an alloy and then slag off the impurities by oxidation analogously to the purification of pig-iron and most other metals. Oonsequentl at the present time the alumina is freed c emically from the impurities before it is reduced to metal, and a moderately pure metal is thus obtained.
- aluminium of being the most easily oxidized of the metals present in the mixture insures that aluminiumonly dissolves from the anode, so that the result of passing the electric current is thatpure aluminium is deposited at or in the cathode, while the deficiency of aluminium caused thereby to occur in the electrolyte is made up by solution from the anode.
- Si+2FeO sio +21%.
- Clay or other aluminous material can be smelted with iron ore or with metallic iron or copper to alloys of copper or iron with silicon and aluminium, the aluminium electrolytically extracted, and the resulting ferrosilicon or silicon-bronze utilized in any desired manner.
- cathode of zinc, tin, or aluminium-bronze may be used to receive the deposited aluminium, making a liquid alloy therewith at a temperature below the melting-point of pure aluminium, so that other baths than the flourid bath of the Hall process may be can also use solid cathodes of iron or copper,
- Aluminium can be extracted by my present method from such materials as aluminium silicid and carbid and similar nonoxygen-containing compounds of aluminium.
- 1 is a castiron box lined with carbon 2, containing the fused aluminium alloy 3.
- carbon 2 On top of the carbon lining is a layer of non conducting refractory material 4for example, of alumina.
- Electric connection is made by the positive bus-bar 9 to the iron box 1 and by the negative bus-bar 10 to the aluminium cathode by means of the aluminium in the channel 11 in the refractory material 4-.
- the carbon lining being a conductor, the alloy at the bottom of the cell becomes the anode.
- substantially pure aluminium which consists in reducing aluminium ore in presence of a heavier metal to produce an alloy of said metal containing aluminium, and then extracting aluminium from the alloy by electrolyzing a fused aluminiumdepositing electrolyte of greater specific gravity than pure aluminium, and of less specific gravity than the alloy, with the alloy as anode beneath the electrolyte, and a suitable cathode above the anode.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electrolytic Production Of Metals (AREA)
Description
PATENTED AUG. 1, 1905. A. G. BE'I'TS. MAKING ALUMINIUM.
APPLICATION FILED APR-1.1905.
5 7 \L 1 1.1 L fi 5 i i J 2 --2 W/znesses [221 672 tor ANDREW R emu/w c0. mofounmmmlrm \vAsumcrow. n.r
-UNITED STATES PATENT oFFIoE.
Specification of Letters Eatent.
Patented Aug. 1, 1905.
Application filed April 1. 1905. Serial No. 253.348-
To all whom it may concern.-
Be it known that I, ANsoN GAR NER BETTs, a citizen of the United States, residing at Troy, in the county of Rnsselaer and State of New York, have invented certain new and useful Improvements in Making Aluminium, of which the following is a specification accompanied by a drawing.
The single figure of the drawing is a view in vertical section of electrolytic apparatus I use in carrying out my invention.
This invention relates to the reparation of pure aluminium from ores wit out necessitating the purification of the ore before the metal is reduced from its oxid.
The principal object of my invention is to prepare aluminium of high purity at a low cost.
Other objects and features of the invention will appear in connection with the following description of my method.
Aluminium oxid occurs in nature for the most part associated with other oxids, notably with those of iron and silicon in clay and with those of iron, silicon, and-titanium in bauxite. All these oxids are more easily reducible than alumina, so that it is not possible to prepare pure aluminium by first reducing the ore to an alloy and then slag off the impurities by oxidation analogously to the purification of pig-iron and most other metals. Oonsequentl at the present time the alumina is freed c emically from the impurities before it is reduced to metal, and a moderately pure metal is thus obtained.
To carry out my process, I reduce the crude ore directly to a metallic state with or without diluting the aluminium further by the addition of another metal, as copper,
iron, zinc, or tin, which I may do in numerous ways, of which I will later give examples. The 1product of aluminium combined or mixed wit other elements, as carbon, iron, silicon, titanium, copper, zinc, tin, &c., I then place, preferably but not necessarily, in the fused state at the bottom of an electrolyzing-cell containing an aluminium-depositing electrolyte specifically lighter than the aluminium-containing product and floating on the electrolyte, which is also specifically heavier than fused ure aluminium, a layer of fused substantially pure aluminium electrically connected as cathode, while the aluminium-containing product is electrically connected as anode. The property of aluminium of being the most easily oxidized of the metals present in the mixture insures that aluminiumonly dissolves from the anode, so that the result of passing the electric current is thatpure aluminium is deposited at or in the cathode, while the deficiency of aluminium caused thereby to occur in the electrolyte is made up by solution from the anode.
in any desired way.
Reduction of bauxite, clay, or other aluminous material for the elimination of oxygen, alloying the product with liquid iron, copper, zinc, tin, &c., and extraction of the contained aluminium electrolytically, leaving .the iron, silicon, &c., still alloyed with the heavy metal. The iron, copper, or tin can be recovered in substantially pure condition by oxidation and slagging, and the zinc can be recovered by distillation. For example, the iron containing silicon resulting from the reduction of red clay, alloying with iron,
and extraction of the aluminium can be smelted with iron and lime, giving a slag of calcium silicate and reduction of iron oxid to iron.
Si+2FeO =sio +21%.
Clay or other aluminous material can be smelted with iron ore or with metallic iron or copper to alloys of copper or iron with silicon and aluminium, the aluminium electrolytically extracted, and the resulting ferrosilicon or silicon-bronze utilized in any desired manner.
In the electrolytic reduction of aluminium oxid, pure or native, now that it is easily possib e to extract aluminium from alloys, a
cathode of zinc, tin, or aluminium-bronze may be used to receive the deposited aluminium, making a liquid alloy therewith at a temperature below the melting-point of pure aluminium, so that other baths than the flourid bath of the Hall process may be can also use solid cathodes of iron or copper,
&c., in the electrolytic reduction, for the v aluminium alloy formed on the surface of the cathode being more easily fusible continually trickles off to the bottom of the electrolytic cell.
Aluminium can be extracted by my present method from such materials as aluminium silicid and carbid and similar nonoxygen-containing compounds of aluminium.
Having reference to the accompanying drawing, 1 is a castiron box lined with carbon 2, containing the fused aluminium alloy 3. On top of the carbon lining is a layer of non conducting refractory material 4for example, of alumina. The electrolyte 5 of cryolite, saturated with aluminia, for example, rests on the specifically heavier alloy 3 and supports the specifically lighter fused pure aluminium 6. A cover of cast-iron 7, lined with fire-brick 8, protects the aluminium from oxidation.
Electric connection is made by the positive bus-bar 9 to the iron box 1 and by the negative bus-bar 10 to the aluminium cathode by means of the aluminium in the channel 11 in the refractory material 4-.
The carbon lining being a conductor, the alloy at the bottom of the cell becomes the anode.
WVhat I claim as new, and desire to secure by Letters Patent, is
1. The process of extracting aluminium from materials containing aluminium in the unoxidized condition which consists in electrolyzing a fused aluminium-depositing electrolyte of greater specific gravity than pure aluminium and of less specific gravity than the said aluminium-containing material used, with the alloy as anode, and a suitable cathode.
2. The process of extracting aluminium from materials containing aluminium in the unoxidized condition which consists in electrolyzing a fused aluminium-depositing electrolyte of greater specificgravity than pure aluminium and of less specific gravity than the said aluminium-containing material used, With the alloy as anode, and a cathode of fused aluminium floating on the electrolyte.
3. The process of extracting aluminium from a fused aluminium alloy, which consists in electrolyzing a fused aluminium-depositing electrolyte of greater specific gravity than pure aluminium and of less specific gravity than the alloy, with the alloy as anode beneath the electrolyte, and a cathode of aluminium floating on the electrolyte.
4. The process of producing substantially pure aluminium which consists in alloying impure aluminium with a heavier metal, and then extracting aluminium from the alloy by electrolyzing a fused aluminium-depositing electrolyte of greater specific gravity than pure aluminium, and of less specific gravity than the alloy, with the alloy as anode beneath the electrolyte, and a suitable cathode above the anode.
5. The process of producing substantially pure aluminium which consists in reducing aluminium ore in presence of a heavier metal to produce an alloy of said metal containing aluminium, and then extracting aluminium from the alloy by electrolyzing a fused aluminiumdepositing electrolyte of greater specific gravity than pure aluminium, and of less specific gravity than the alloy, with the alloy as anode beneath the electrolyte, and a suitable cathode above the anode.
6. The process of producing substantially pure aluminium which consists in reducing aluminium ore in presence of an oxid of a heavier metal to produce an alloy of said 1 metal containing aluminium, and then extracting aluminium from said alloy by electrolyzing a fused aluminium-depositing electrolyte of greater specific gravity than pure aluminium, and of less specific gravity than said alloy, with the alloy as anode beneath the electrolyte and a suitable cathode above the anode.
7. The process of producing substantially pure aluminium which consists in reducing aluminium ore in presence of iron oxid to produce an iron alloy containing aluminium, and then electrolytically extracting aluminium therefrom.
, 8. The process of producing substantially purq aluminium which consists in reducing clay in presence of iron ore to ferrosilicon containing aluminium, and then electrolytically extracting aluminium therefrom.
In testimony whereof I have signed my name to this specification in the presence of two subscribing witnesses.
ANSON GARDNER BETTS.
WVitnesses FREDERICK CLARK, EDWARD F. KERN.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US25334805A US795886A (en) | 1905-04-01 | 1905-04-01 | Making aluminium. |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US25334805A US795886A (en) | 1905-04-01 | 1905-04-01 | Making aluminium. |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US795886A true US795886A (en) | 1905-08-01 |
Family
ID=2864375
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US25334805A Expired - Lifetime US795886A (en) | 1905-04-01 | 1905-04-01 | Making aluminium. |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US795886A (en) |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2451490A (en) * | 1944-08-04 | 1948-10-19 | Reynolds Metals Company Inc | Production of aluminum |
| US2584565A (en) * | 1943-08-11 | 1952-02-05 | Ferrand Louis | Fused bath electrolytic cell for the production and refining of metals |
| US2685566A (en) * | 1949-08-25 | 1954-08-03 | Pechiney Prod Chimiques Sa | Molten metal electrolysis cells |
| US2991235A (en) * | 1956-07-13 | 1961-07-04 | Pechiney Prod Chimiques Sa | Method for supplying current to the anode of aluminum refining cells |
| US3048497A (en) * | 1958-02-18 | 1962-08-07 | Moller Goran August | Process of coating base metals with aluminum |
| US3471380A (en) * | 1966-10-25 | 1969-10-07 | Reynolds Metals Co | Method of treating cathode surfaces in alumina reduction cells |
-
1905
- 1905-04-01 US US25334805A patent/US795886A/en not_active Expired - Lifetime
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2584565A (en) * | 1943-08-11 | 1952-02-05 | Ferrand Louis | Fused bath electrolytic cell for the production and refining of metals |
| US2451490A (en) * | 1944-08-04 | 1948-10-19 | Reynolds Metals Company Inc | Production of aluminum |
| US2685566A (en) * | 1949-08-25 | 1954-08-03 | Pechiney Prod Chimiques Sa | Molten metal electrolysis cells |
| US2991235A (en) * | 1956-07-13 | 1961-07-04 | Pechiney Prod Chimiques Sa | Method for supplying current to the anode of aluminum refining cells |
| US3048497A (en) * | 1958-02-18 | 1962-08-07 | Moller Goran August | Process of coating base metals with aluminum |
| US3471380A (en) * | 1966-10-25 | 1969-10-07 | Reynolds Metals Co | Method of treating cathode surfaces in alumina reduction cells |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7504017B2 (en) | Method for electrowinning of titanium metal or alloy from titanium oxide containing compound in the liquid state | |
| US3203883A (en) | Method of refining molten metals by electrolyzing molten slag under arc discharge | |
| US795886A (en) | Making aluminium. | |
| WO2008155451A1 (en) | Method for processing cobalt-containing copper concentrate | |
| US3984235A (en) | Treatment of converter slag | |
| US2830891A (en) | Process for the production of ferromanganese products from manganesebearing materials | |
| US4108638A (en) | Process for separating nickel, cobalt and copper | |
| Kjellgren | The production of beryllium oxide and beryllium copper | |
| EP1147236B1 (en) | Carbothermic aluminium production using scrap aluminium as coolant | |
| US3018233A (en) | Producing manganese by fused salt electrolysis, and apparatus therefor | |
| US3507643A (en) | Cell reduction of bauxite or clay | |
| US3836357A (en) | Direct reduction process for production of aluminium | |
| US2398591A (en) | Method of making chromium and its alloys | |
| US2845342A (en) | Method of recovering ferrochromium | |
| US3768998A (en) | Method of smelting high quality ferrosilicon | |
| US4192674A (en) | Method of obtaining tantalum-niobium from ores having a high titanium content | |
| US1215857A (en) | Process of producing metallic alloys. | |
| US1310449A (en) | Electbodeposition of magnesium | |
| US1905340A (en) | Method of concentrating beryllium oxide occurring in materials containing beryllium silicate or silicates | |
| US677208A (en) | Process of purifying bauxite, &c. | |
| US1351877A (en) | Method of separating nickel and copper from copper-nickel mattes or materials | |
| SU931776A1 (en) | Method for producing aluminium-silicon alloys | |
| US746798A (en) | Process of recovering zinc from sulfid ores. | |
| US618575A (en) | Oiqrneys | |
| US920893A (en) | Art of extracting aluminum and other metals. |