US7942042B2 - Apparatus configured to estimate quantity of fuel stored in vehicle - Google Patents
Apparatus configured to estimate quantity of fuel stored in vehicle Download PDFInfo
- Publication number
- US7942042B2 US7942042B2 US12/362,010 US36201009A US7942042B2 US 7942042 B2 US7942042 B2 US 7942042B2 US 36201009 A US36201009 A US 36201009A US 7942042 B2 US7942042 B2 US 7942042B2
- Authority
- US
- United States
- Prior art keywords
- vehicle
- fuel
- gain
- state
- period
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related, expires
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F23/00—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
- G01F23/80—Arrangements for signal processing
- G01F23/802—Particular electronic circuits for digital processing equipment
- G01F23/804—Particular electronic circuits for digital processing equipment containing circuits handling parameters other than liquid level
Definitions
- the present invention relates to a fuel quantity estimation apparatus for estimating the quantity of fuel in a fuel tank mounted in a vehicle in accordance with a traveling state of a vehicle.
- JP-A-2006-47100 is mentioned as a literature showing an example of such a technique.
- JP-A-2006-47100 discloses that a fuel level correction section (66A) of control means (66) makes a correction to a power value output from a fuel level gauge (50) through filtering (see descriptions provided in paragraphs [0025] to [0027] in JP-A-2006-47100).
- JP-A-2006-47100 also discloses that a primary filter exhibiting high response performs filtering correction after a first set time has elapsed since an ignition switch (96) was turned on and that a secondary filter exhibiting low response performs filtering correction after elapse of a second set time (see descriptions provided in paragraphs [0027] to [0032] in JP-A-2006-47100).
- the secondary filter is used for any one of cases where the engine of a vehicle is started, where a vehicle is running, and where the engine of the vehicle is stopped. Therefore, there is a potential of occurrence of a situation in which a difference between the quantity of fuel actually stored in a fuel tank and an estimated value acquired by means of filtering correction cannot be disregarded.
- An apparatus configured to estimate quantity of fuel stored in a vehicle, including: a fuel tank, configured to store fuel used for an engine mounted in the vehicle; a fuel quantity measure, configured to measure quantity of fuel stored in the fuel tank; a filtering processor, configured to subject the quantity of fuel to filter processing by a filter gain to detect an estimated quantity of fuel stored in the fuel tank; a filter gain setter, configured to set the filter gain; and a vehicle status detector, configured to detect which one of a starting state, a halted state, a state achieved immediately after stoppage of the vehicle, and a traveling state corresponds to a state of the vehicle, wherein the filter gain setter sets a first gain as the filter gain when the vehicle status detector detects that the vehicle is the starting state; sets a second gain as the filter gain, which is larger than the first gain, when the vehicle status determination means determines that the vehicle is in the traveling state or the state achieved immediately after stoppage of the vehicle; and sets a third gain as a filter gain, which is
- FIG. 1 is a schematic block diagram showing the overall configuration of an apparatus for estimating the quantity of fuel stored in a vehicle of an embodiment of the present invention
- FIG. 2 is a schematic flowchart showing operation of the apparatus for estimating the quantity of fuel stored in a vehicle of the embodiment of the present invention
- FIG. 3 is a schematic flowchart showing operation of the apparatus for estimating the quantity of fuel stored in a vehicle of the embodiment of the present invention; i.e., a subroutine; and
- FIGS. 4A and 4B are schematic timing charts showing operation of the apparatus for estimating the quantity of fuel stored in a vehicle of the embodiment of the present invention.
- FIG. 1 is a schematic block diagram showing the overall configuration of the apparatus;
- FIG. 2 is a schematic flowchart showing operation of the apparatus;
- FIG. 3 is a schematic flowchart showing a subroutine pertaining to setting of a filter gain; and
- FIGS. 4A and 4B are schematic timing charts showing operation of the subroutine.
- a vehicle 10 is equipped with an engine 11 and a fuel tank 12 storing a composite fuel to be supplied to the engine 11 .
- the engine 11 and the fuel tank 12 are connected together by means of a fuel pipe 13 .
- the composite fuel to be stored in the fuel tank 12 is primarily made of gasoline and alcohol.
- the engine 11 generates driving force by combustion of the composite fuel.
- the property of the composite fuel used for the engine 11 exhibits a high degree of freedom (e.g., the concentration of alcohol in a fuel, the type of alcohol, and the like).
- an unillustrated engine controller adjusts the amount of fuel ejected into the engine 11 and ignition timing, as appropriate, in accordance with the property of the composite fuel.
- the vehicle that runs by acquiring driving force from such an engine 11 is called a flexible fuel vehicle (FFV) and recently gains attention from the viewpoint of protection of a global environment.
- the vehicle 10 of the present embodiment is an FFV.
- the vehicle 10 is equipped with a fuel level sensor (fuel quantity measurement means) 14 for measuring the quantity of stored fuel by measuring the height of a liquid level of fuel (stored fuel) stored in the fuel tank 12 .
- the quantity of stored fuel measured by the fuel level sensor 14 is called a measured fuel quantity L.
- the vehicle 10 is provided with a G sensor (an acceleration sensor) 15 for detecting acceleration.
- a G sensor an acceleration sensor 15 for detecting acceleration.
- Both the fuel level sensor 14 and the acceleration sensor 15 are connected to a fuel information ECU 21 in a communicable manner.
- the fuel information ECU 21 is an electronic control unit having a CPU and memory, both of which are not illustrated, and processes information about the fuel stored in the fuel tank 12 .
- the fuel information ECU 21 is provided with a filtering processing section (filtering processing means) 22 , a vehicle status determination section (vehicle status determination means) 23 , a filter gain setting section (filter gain setting means) 24 , and an alcohol concentration estimation section (alcohol content estimation means) 25 , all of which are embodied in the form of software.
- the filtering processing section 22 multiplies the quantity of fuel L measured by the fuel level sensor 14 by a predetermined filter gain ⁇ , thereby performing filtering processing for computing an estimated quantity of storage LF.
- the estimated quantity of storage LF is widely used as an index that shows the quantity of fuel stored in the fuel tank 12 in the vehicle 10 .
- the estimated quantity of storage LF is used as an index showing the quantity of fuel stored in the fuel tank 12 rather than the measured quantity of fuel L is that the liquid level of the fuel in the fuel tank 12 unstably undulates.
- the quantity of fuel L measured by the fuel level sensor 14 faithfully reflects fluctuations of the height of the liquid level of the fuel in the fuel tank 12 and hence is very unstable. Use of such an unstable index for various control operations is not preferable.
- Equation (1) is used for computing the estimated quantity of storage LF performed by the filtering processing section 22 .
- LF ( k ) ⁇ ( k ) ⁇ LF ( k ⁇ 1)+ ⁇ 1 ⁇ ( k ) ⁇ L ( k ) (1)
- Equation (1) Equations (2) and (3) to be described later, and FIGS. 2 and 3 to be described later, reference symbol (k) designates a k th control period.
- the vehicle status determination section 23 determines which one of a starting state, a halted state, a state achieved immediately after stoppage, and a traveling state corresponds to the status of the vehicle 10 .
- the vehicle status determination section 23 is arranged so as to estimate the status of the vehicle 10 as a “starting state” when the vehicle velocity V of the vehicle 10 is zero and when a period TIG achieved after activation of an ignition switch (omitted from the drawing) (a period elapsed since the engine 11 was started) does not reach a first threshold period T 1 .
- the vehicle status determination section 23 is arranged so as to estimate that the vehicle 10 is in a “state achieved immediately after stoppage.”
- the vehicle status determination section 23 is arranged so as to estimate that the vehicle 10 is in a “stopped state.”
- the vehicle status determination section 23 is arranged so as to estimate the status of the vehicle 10 as a “traveling state.” Specifically, when the vehicle 10 is traveling forwardly or rearwardly, the vehicle status determination section 23 determines that the vehicle 10 is in a traveling state.
- the vehicle status determination section 23 integrates the acceleration of the vehicle 10 detected by the G sensor 15 , to thus acquire the vehicle velocity V of the vehicle 10 .
- the vehicle status determination section 23 computes the period TIG elapsing since the ignition switch was turned on by use of Equation (2) provided below.
- TIG( k ) TIG( k ⁇ 1)+CT (2)
- the vehicle status determination section 23 computes a period achieved since the vehicle velocity V came to zero (a period elapsed since the vehicle stopped) TST by use of Equation (3) provided below.
- TST( k ) TST( k ⁇ 1)+CT (3)
- reference symbol CT designates a control cycle period.
- the filter gain setting section 24 sets any one of a small gain ⁇ S, a medium gain ⁇ M, and a large gain ⁇ L as the filter gain ⁇ used for filtering processing performed by the foregoing filtering processing section 22 .
- the filter gain setting section 24 sets the small gain ⁇ S as the filter gain ⁇ .
- the filter gain setting section 24 sets the medium gain ⁇ M as the filter gain ⁇ .
- the filter gain setting section 24 sets the large gain ⁇ L as a filter gain ⁇ .
- the small gain ⁇ S, the medium gain ⁇ M, and the large gain ⁇ L are set so as to fulfill the relationship expressed by Equation (4) provided below.
- the alcohol concentration detection section 25 estimates the quantity of fuel to be fed to the fuel tank 12 on the basis of the estimated quantity of storage LF computed by the filtering processing section 22 and estimates, on the basis of the estimated quantity of fuel to be fed, the concentration of alcohol (an alcohol content) ALCH in a composite fuel stored in the fuel tank 12 .
- a technique for detecting the concentration of alcohol ALCH in stored fuel performed by the alcohol concentration detection section 25 is as follows. Specifically, the concentration of alcohol is detected on the basis of a feedback correction value of a fuel injection quantity that is controlled through feedback in accordance with an exhaust-fuel ratio.
- a tentative concentration of alcohol in the fuel tank achieved after refueling is computed on the basis of the quantity of stored fuel achieved before refueling, a detected value of an alcohol concentration, the quantity of refueled fuel, and the concentration of refuelable alcohol (the concentration of commercially-available alcohol-mixed fuel: 0% or 85%) for the case where a highly-concentrated composite fuel is refueled and where a lowly-concentrated composite fuel is refueled.
- An alcohol concentration detected value estimated from the feedback correction value of the exhaust-fuel ratio is limited by means of the tentative concentration of highly-concentrated alcohol and the tentative concentration of lowly-concentrated alcohol.
- the apparatus for estimating the quantity of fuel stored in a vehicle of the embodiment of the present invention is configured as mentioned above, and hence a working-effect and an advantage, which are provided below, are yielded.
- step S 12 processing pertaining to a filter gain setting subroutine is executed (step S 12 ).
- the filter gain setting subroutine is for setting the filter gain ⁇ , and specifics of the gain are provided in FIG. 3 .
- the vehicle status determination section 23 first computes the period TIG achieved after starting of the engine 11 by use of Equation (2) (step S 21 ).
- the vehicle status determination section 23 integrates the acceleration of the vehicle 10 detected by a G sensor 15 , to thus compute the vehicle velocity V and determine whether or not the absolute value of the vehicle velocity V is greater than zero (step S 22 ).
- the vehicle status determination section 23 computes the period TST elapsed since the vehicle 10 stopped, by use of Equation (3) (step S 23 ).
- the vehicle status determination section 23 determines whether or not the period TIG computed in step S 21 elapsed since the engine started is equal to or greater than a threshold period T 1 (step S 24 ). When the period TIG elapsed since the engine started is less than the threshold period T 1 ; namely, when the vehicle is in a state achieved immediately after starting of the engine 11 (a route No in step S 24 ), the vehicle status determination section 23 determines that the vehicle 10 is in a started state, and the filter gain setting section 24 sets the small gain ⁇ S as a filter gain ⁇ (step S 25 ).
- the vehicle status determination section 23 determines whether or not the period TST elapsed since the vehicle stopped computed in step S 23 is equal to or greater than the threshold period T 2 (step S 26 ).
- the vehicle status determination section 23 determines that the vehicle 10 is at standstill, and the filter gain setting section 24 sets the medium gain ⁇ M as the filter gain ⁇ (step S 27 ).
- the vehicle status determination section 23 determines that the vehicle 10 is in a state achieved immediately after stopped, and the filter gain setting section 24 sets the large gain ⁇ L as the filter gain ⁇ (step S 28 ).
- the vehicle status determination section 23 resets the period TST elapsed after the vehicle stopped to zero (step S 29 ).
- the vehicle status determination section 23 determines the vehicle 10 to be in a traveling state, and the filter gain setting section 24 sets the large gain ⁇ L as the filter gain ⁇ (step S 28 ).
- processing returns to the main routine shown in FIG. 2 , and the filtering processing section 22 reads a value (i.e., a detected fuel quantity) L output from the fuel level sensor 14 in step S 13 (step S 13 ).
- the filtering processing section 22 sets, as the filter gain ⁇ , the filter gain ⁇ set in any of steps S 25 , S 27 , and S 28 shown in FIG. 3 ; namely, the small gain ⁇ S, the medium gain ⁇ M, and the large gain ⁇ L, and applies the thus-set filter gain to Equation (1), thereby computing the estimated quantity of storage LF (step S 14 ).
- the alcohol concentration detection section 25 estimates the quantity of fuel fed to the fuel tank 12 on the basis of the estimated quantity of storage LF computed in step S 14 , as well as estimating the concentration of alcohol ALCH in the composite fuel in the fuel tank 12 on the basis of the estimated quantity of fuel to be refueled (step S 15 ).
- the vehicle status determination section 23 When the ignition switch is deactivated (a route No in step S 11 ), the vehicle status determination section 23 resets to zero the period TIG elapsed since the engine was started (step S 16 ) and sets the period TST elapsed since the vehicle stopped to the threshold period T 2 (step S 17 ). Specifically, when the ignition switch is deactivated in step S 17 , the vehicle 10 is deemed to be at a standstill for a comparatively-long period of time.
- the apparatus for estimating the quantity of fuel stored in a vehicle of the embodiment of the present invention enables high-precision detection in accordance with the traveling state of the vehicle 10 .
- a solid line in FIG. 4B designates whether or not the vehicle 10 is the process of traveling or at a standstill.
- the estimated quantity of storage LF acquired by use of any of the small gain ⁇ S, the medium gain ⁇ M, and the large gain ⁇ L gradually ascends to indicate the quantity of fuel stored in the fuel tank 12 .
- the gradient of the two-dot chain line (a), the gradient of the chain line (b), and the gradient of the broken line (c) differ from each other. This is a phenomenon attributable to a decrease in response of the estimated quantity of storage LF as the filter gain ⁇ increases.
- the fuel in the fuel tank 12 undulates because of vibrations of the vehicle 10 ; hence, the liquid level of the fuel unstably fluctuates (see the fine solid line (d)).
- the two-dot chain line (a) and the fine solid line (d) essentially overlap each other at points in time subsequent to point in time t 1 .
- the chain line (b) showing the estimated quantity of storage LF computed by use of the medium gain ⁇ M is smoothed as compared with the quantity of fuel L measured by the fuel level sensor 14 .
- the fuel is still fluctuating unstably, and it is difficult to appropriately estimate the quantity of fuel remaining in the fuel tank 12 on the basis of the estimated quantity of storage LF (the chain line (b)).
- the estimated quantity of storage LF (designated by a broke line (c)) computed by use of the large gain ⁇ L is sufficiently smoothed, and the quantity of fuel remaining in the fuel tank 12 can be appropriately estimated.
- a period between points in time t 2 to t 3 corresponds to a period during which the vehicle status determination section 23 determines that the vehicle 10 is in a state achieved immediately after stopped.
- filtering processing using the large gain ⁇ L is successively performed, whereby the estimated quantity of storage LF is acquired.
- the state where the vehicle 10 is at a standstill yields the possibility of the fuel tank 12 being fed with fuel.
- the quantity of fuel remaining in the fuel tank 12 sharply increases.
- a change in the quantity of fuel can be immediately followed by performance of filtering processing using the medium gain ⁇ M that is smaller than the large gain ⁇ L.
- the vehicle status determination section 23 determines which one of the “starting state,” the “stopped state,” the “state achieved immediately after stoppage of a vehicle,” and the “traveling state” corresponds to the state of the vehicle 10 .
- the filter gain setting section 24 sets the small gain ⁇ S, the medium gain ⁇ M, or the large gain ⁇ L as the filter gain ⁇ .
- Equation (4) the relationship among the small gain ⁇ S, the medium gain ⁇ M, and the large gain ⁇ L is set such that the small gain ⁇ S becomes minimum; that the medium gain ⁇ M is greater than the small gain ⁇ S; and that the large gain ⁇ L is greater than the medium gain ⁇ M.
- the filtering processing section 22 performs filtering processing, by means of which the quantity of fuel L measured by the fuel level sensor 14 is multiplied by the small gain ⁇ S, the medium gain ⁇ M, or the large gain ⁇ L, thereby acquiring the estimated quantity of storage LF.
- the quantity of fuel stored in the fuel tank 12 can be stably estimated with high accuracy in accordance with the traveling state of the vehicle 10 .
- the vehicle 10 is an FFV. Namely, the composite fuel is fed to the engine 11 mounted in the vehicle 10 , but a theoretical air-fuel ratio changes according to the property of the composite fuel.
- a controller (omitted from the drawings) of the engine 11 is required to grasp the property of the composite fuel at all times.
- the controller of the engine 11 is required to detect or estimate the quantity of fuel stored in the fuel tank 12 at the appropriate times with high accuracy.
- the present invention makes it possible to sufficiently satisfy the requirement.
- the alcohol concentration estimation section 25 estimates the quantity of fuel fed to the fuel tank 12 on the basis of the estimated quantity of storage LF and estimates the concentration of alcohol ALCH in the fuel of the fuel tank 12 on the basis of the thus-estimated quantity of fuel to be fed.
- the concentration of alcohol ALCH in the fuel can be immediately estimated with high accuracy in accordance with the state of the vehicle 10 , and the engine 11 can be operated more appropriately.
- the filter gain setting section 24 changes the filter gain ⁇ in accordance with the state of the vehicle 10 .
- the vehicle status determination section 23 classifies the status of the vehicle 10 into any one of the “starting state,” the “state achieved immediately after stoppage of a vehicle,” the “halted state,” and the “traveling state”; hence, the estimated quantity of storage LF can be acquired more elaborately.
- the present invention is not limited to the embodiment and is susceptible to various alterations within the scope of the gist of the present invention.
- the present invention is not limited to the FFV.
- detection of the estimated quantity of storage LF requires a higher degree of accuracy when compared with the case of a vehicle (a general vehicle) equipped with a common engine using single fuel, such as only gasoline or only light oil.
- application of the present invention to the FFV can be said to be a very preferable embodiment.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
Abstract
Description
LF(k)=α(k)·LF(k−1)+{1−α(k)}·L(k) (1)
TIG(k)=TIG(k−1)+CT (2)
TST(k)=TST(k−1)+CT (3)
αS<αM<αL (4)
Claims (5)
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2008045753A JP4438875B2 (en) | 2008-02-27 | 2008-02-27 | Vehicle fuel storage amount estimation device |
| JPP2008-045753 | 2008-02-27 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20090211349A1 US20090211349A1 (en) | 2009-08-27 |
| US7942042B2 true US7942042B2 (en) | 2011-05-17 |
Family
ID=40997012
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/362,010 Expired - Fee Related US7942042B2 (en) | 2008-02-27 | 2009-01-29 | Apparatus configured to estimate quantity of fuel stored in vehicle |
Country Status (3)
| Country | Link |
|---|---|
| US (1) | US7942042B2 (en) |
| JP (1) | JP4438875B2 (en) |
| BR (1) | BRPI0900123B1 (en) |
Cited By (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20100256338A1 (en) * | 2009-04-02 | 2010-10-07 | Ulrich Brinkmann | Multispecific antibodies comprising full length antibodies and single chain fab fragments |
| US9266967B2 (en) | 2007-12-21 | 2016-02-23 | Hoffmann-La Roche, Inc. | Bivalent, bispecific antibodies |
| US9676845B2 (en) | 2009-06-16 | 2017-06-13 | Hoffmann-La Roche, Inc. | Bispecific antigen binding proteins |
| US9688758B2 (en) | 2012-02-10 | 2017-06-27 | Genentech, Inc. | Single-chain antibodies and other heteromultimers |
| US9879095B2 (en) | 2010-08-24 | 2018-01-30 | Hoffman-La Roche Inc. | Bispecific antibodies comprising a disulfide stabilized-Fv fragment |
| US9890204B2 (en) | 2009-04-07 | 2018-02-13 | Hoffmann-La Roche Inc. | Trivalent, bispecific antibodies |
| US9982036B2 (en) | 2011-02-28 | 2018-05-29 | Hoffmann-La Roche Inc. | Dual FC antigen binding proteins |
| US9994646B2 (en) | 2009-09-16 | 2018-06-12 | Genentech, Inc. | Coiled coil and/or tether containing protein complexes and uses thereof |
| US10106600B2 (en) | 2010-03-26 | 2018-10-23 | Roche Glycart Ag | Bispecific antibodies |
| US10106612B2 (en) | 2012-06-27 | 2018-10-23 | Hoffmann-La Roche Inc. | Method for selection and production of tailor-made highly selective and multi-specific targeting entities containing at least two different binding entities and uses thereof |
| US10138293B2 (en) | 2007-12-21 | 2018-11-27 | Hoffmann-La Roche, Inc. | Bivalent, bispecific antibodies |
| US10323099B2 (en) | 2013-10-11 | 2019-06-18 | Hoffmann-La Roche Inc. | Multispecific domain exchanged common variable light chain antibodies |
| US10611825B2 (en) | 2011-02-28 | 2020-04-07 | Hoffmann La-Roche Inc. | Monovalent antigen binding proteins |
| US10633457B2 (en) | 2014-12-03 | 2020-04-28 | Hoffmann-La Roche Inc. | Multispecific antibodies |
| US11421022B2 (en) | 2012-06-27 | 2022-08-23 | Hoffmann-La Roche Inc. | Method for making antibody Fc-region conjugates comprising at least one binding entity that specifically binds to a target and uses thereof |
| US11618790B2 (en) | 2010-12-23 | 2023-04-04 | Hoffmann-La Roche Inc. | Polypeptide-polynucleotide-complex and its use in targeted effector moiety delivery |
Families Citing this family (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP5768569B2 (en) * | 2011-08-01 | 2015-08-26 | スズキ株式会社 | Fuel level indicator |
| KR20140087369A (en) * | 2012-12-28 | 2014-07-09 | 현대자동차주식회사 | Method and system of determining failure of urea level sensor |
| WO2019097388A1 (en) * | 2017-11-15 | 2019-05-23 | Piaggio & C. Spa | A method and system for estimating the volume of fuel contained in a tank of a transport vehicle |
| CN112161663B (en) * | 2020-09-29 | 2024-04-26 | 北京车和家信息技术有限公司 | Vehicle residual oil amount determining method, device, equipment and vehicle |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20060027017A1 (en) | 2004-08-04 | 2006-02-09 | Hiroshi Kamatsuke | Fuel level control system for internal combustion engine |
-
2008
- 2008-02-27 JP JP2008045753A patent/JP4438875B2/en not_active Expired - Fee Related
-
2009
- 2009-01-29 US US12/362,010 patent/US7942042B2/en not_active Expired - Fee Related
- 2009-02-05 BR BRPI0900123A patent/BRPI0900123B1/en not_active IP Right Cessation
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20060027017A1 (en) | 2004-08-04 | 2006-02-09 | Hiroshi Kamatsuke | Fuel level control system for internal combustion engine |
| JP2006047100A (en) | 2004-08-04 | 2006-02-16 | Suzuki Motor Corp | Fuel level control system of internal-combustion engine |
Cited By (24)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9266967B2 (en) | 2007-12-21 | 2016-02-23 | Hoffmann-La Roche, Inc. | Bivalent, bispecific antibodies |
| US10927163B2 (en) | 2007-12-21 | 2021-02-23 | Hoffmann-La Roche, Inc. | Bivalent, bispecific antibodies |
| US10138293B2 (en) | 2007-12-21 | 2018-11-27 | Hoffmann-La Roche, Inc. | Bivalent, bispecific antibodies |
| US9382323B2 (en) | 2009-04-02 | 2016-07-05 | Roche Glycart Ag | Multispecific antibodies comprising full length antibodies and single chain fab fragments |
| US20100256338A1 (en) * | 2009-04-02 | 2010-10-07 | Ulrich Brinkmann | Multispecific antibodies comprising full length antibodies and single chain fab fragments |
| US11993642B2 (en) | 2009-04-07 | 2024-05-28 | Hoffmann-La Roche Inc. | Trivalent, bispecific antibodies |
| US9890204B2 (en) | 2009-04-07 | 2018-02-13 | Hoffmann-La Roche Inc. | Trivalent, bispecific antibodies |
| US9676845B2 (en) | 2009-06-16 | 2017-06-13 | Hoffmann-La Roche, Inc. | Bispecific antigen binding proteins |
| US10640555B2 (en) | 2009-06-16 | 2020-05-05 | Hoffmann-La Roche Inc. | Bispecific antigen binding proteins |
| US11673945B2 (en) | 2009-06-16 | 2023-06-13 | Hoffmann-La Roche Inc. | Bispecific antigen binding proteins |
| US9994646B2 (en) | 2009-09-16 | 2018-06-12 | Genentech, Inc. | Coiled coil and/or tether containing protein complexes and uses thereof |
| US10106600B2 (en) | 2010-03-26 | 2018-10-23 | Roche Glycart Ag | Bispecific antibodies |
| US9879095B2 (en) | 2010-08-24 | 2018-01-30 | Hoffman-La Roche Inc. | Bispecific antibodies comprising a disulfide stabilized-Fv fragment |
| US11618790B2 (en) | 2010-12-23 | 2023-04-04 | Hoffmann-La Roche Inc. | Polypeptide-polynucleotide-complex and its use in targeted effector moiety delivery |
| US9982036B2 (en) | 2011-02-28 | 2018-05-29 | Hoffmann-La Roche Inc. | Dual FC antigen binding proteins |
| US10611825B2 (en) | 2011-02-28 | 2020-04-07 | Hoffmann La-Roche Inc. | Monovalent antigen binding proteins |
| US10793621B2 (en) | 2011-02-28 | 2020-10-06 | Hoffmann-La Roche Inc. | Nucleic acid encoding dual Fc antigen binding proteins |
| US9688758B2 (en) | 2012-02-10 | 2017-06-27 | Genentech, Inc. | Single-chain antibodies and other heteromultimers |
| US11407836B2 (en) | 2012-06-27 | 2022-08-09 | Hoffmann-La Roche Inc. | Method for selection and production of tailor-made highly selective and multi-specific targeting entities containing at least two different binding entities and uses thereof |
| US11421022B2 (en) | 2012-06-27 | 2022-08-23 | Hoffmann-La Roche Inc. | Method for making antibody Fc-region conjugates comprising at least one binding entity that specifically binds to a target and uses thereof |
| US10106612B2 (en) | 2012-06-27 | 2018-10-23 | Hoffmann-La Roche Inc. | Method for selection and production of tailor-made highly selective and multi-specific targeting entities containing at least two different binding entities and uses thereof |
| US10323099B2 (en) | 2013-10-11 | 2019-06-18 | Hoffmann-La Roche Inc. | Multispecific domain exchanged common variable light chain antibodies |
| US10633457B2 (en) | 2014-12-03 | 2020-04-28 | Hoffmann-La Roche Inc. | Multispecific antibodies |
| US11999801B2 (en) | 2014-12-03 | 2024-06-04 | Hoffman-La Roche Inc. | Multispecific antibodies |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2009203851A (en) | 2009-09-10 |
| BRPI0900123B1 (en) | 2019-09-03 |
| JP4438875B2 (en) | 2010-03-24 |
| BRPI0900123A2 (en) | 2010-10-19 |
| US20090211349A1 (en) | 2009-08-27 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7942042B2 (en) | Apparatus configured to estimate quantity of fuel stored in vehicle | |
| US5878727A (en) | Method and system for estimating fuel vapor pressure | |
| JP2009167853A (en) | Controller for internal combustion engine | |
| US20120174653A1 (en) | Pm emission amount estimation device for diesel engine | |
| JP2007040108A5 (en) | ||
| JP2002151126A (en) | Vehicle fuel cell system | |
| US7526374B2 (en) | Ethanol compensated fuel density for fuel consumed calculation | |
| EP2466278B1 (en) | Method for estimating the fuel level in a vehicle tank and corresponding fuel level estimation system | |
| KR101981881B1 (en) | How to increase the pressure detection accuracy without using a sensor | |
| JP2011220178A (en) | Catalyst temperature estimating device | |
| JP2009036023A (en) | Different fuel mixing determination device of internal combustion engine | |
| KR101684013B1 (en) | Method for preventing engine stall by virtual crank signal | |
| JP6922398B2 (en) | Piston temperature estimation device and piston temperature estimation method | |
| CN105697760B (en) | The shifting control method and speed-change control device of vehicle | |
| JP2006220109A (en) | Failure diagnosis device for fuel level sensor | |
| JP2006343136A (en) | Water vapor partial pressure detection device, engine intake flow rate detection device, and collector internal pressure detection device | |
| JP6919317B2 (en) | Piston temperature estimation device and piston temperature estimation method | |
| JP6888409B2 (en) | Piston temperature estimation device and piston temperature estimation method | |
| JP6932989B2 (en) | Piston temperature estimation device and piston temperature estimation method | |
| JP6919318B2 (en) | Piston temperature estimation device and piston temperature estimation method | |
| JP4655229B2 (en) | Abnormality diagnosis apparatus for intake system of internal combustion engine | |
| JP2520725Y2 (en) | Vehicle altimeter | |
| KR101519447B1 (en) | Device and Method For Statistical Model Checking Using Hybirid Technique | |
| CN114252195B (en) | Rail pressure reliability detection methods, devices, storage media and equipment | |
| JP5021916B2 (en) | Method and apparatus for operating an internal combustion engine |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: MITSUBISHI JIDOSHA KOGYO KABUSHIKI KAISHA, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KAWAKITA, KOJI;UEDA, KATSUNORI;MIYATA, TOSHIYUKI;AND OTHERS;REEL/FRAME:022229/0040 Effective date: 20090114 |
|
| FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
| FPAY | Fee payment |
Year of fee payment: 4 |
|
| MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |
|
| AS | Assignment |
Owner name: MITSUBISHI JIDOSHA KOGYO KABUSHIKI KAISHA, JAPAN Free format text: CHANGE OF ADDRESS;ASSIGNOR:MITSUBISHI JIDOSHA KOGYO KABUSHIKI KAISHA;REEL/FRAME:055472/0944 Effective date: 20190104 |
|
| FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
| LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
| STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
| FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20230517 |