US7572488B2 - Method for applying an electrical insulation - Google Patents
Method for applying an electrical insulation Download PDFInfo
- Publication number
- US7572488B2 US7572488B2 US10/565,562 US56556204A US7572488B2 US 7572488 B2 US7572488 B2 US 7572488B2 US 56556204 A US56556204 A US 56556204A US 7572488 B2 US7572488 B2 US 7572488B2
- Authority
- US
- United States
- Prior art keywords
- powder
- coating
- spraying
- axial slots
- spray
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related, expires
Links
- 238000000034 method Methods 0.000 title claims abstract description 55
- 238000010292 electrical insulation Methods 0.000 title claims abstract description 8
- 239000000843 powder Substances 0.000 claims abstract description 102
- 238000005507 spraying Methods 0.000 claims abstract description 26
- 238000000576 coating method Methods 0.000 claims abstract description 24
- 239000011248 coating agent Substances 0.000 claims abstract description 22
- 238000004804 winding Methods 0.000 claims abstract description 9
- 230000005294 ferromagnetic effect Effects 0.000 claims abstract description 6
- 239000007921 spray Substances 0.000 claims description 25
- 239000002245 particle Substances 0.000 claims description 14
- 238000004140 cleaning Methods 0.000 claims description 7
- 238000001816 cooling Methods 0.000 claims description 3
- 238000010304 firing Methods 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 3
- 238000007590 electrostatic spraying Methods 0.000 claims 2
- 238000009413 insulation Methods 0.000 abstract description 8
- 238000012423 maintenance Methods 0.000 abstract description 2
- 239000012530 fluid Substances 0.000 description 11
- 238000003475 lamination Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000010422 painting Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005291 magnetic effect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 230000003047 cage effect Effects 0.000 description 1
- 238000010888 cage effect Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K15/00—Processes or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
- H02K15/12—Impregnating, moulding insulation, heating or drying of windings, stators, rotors or machines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D1/00—Processes for applying liquids or other fluent materials
- B05D1/02—Processes for applying liquids or other fluent materials performed by spraying
- B05D1/04—Processes for applying liquids or other fluent materials performed by spraying involving the use of an electrostatic field
- B05D1/06—Applying particulate materials
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K3/00—Details of windings
- H02K3/32—Windings characterised by the shape, form or construction of the insulation
- H02K3/38—Windings characterised by the shape, form or construction of the insulation around winding heads, equalising connectors, or connections thereto
Definitions
- the invention is directed to an improved method for applying an electrical insulation to a ferromagnetic body, provided with axial slots for receiving an electrical winding, of a primary element of an electrical machine a slotted armature body of an armature of a direct-current motor.
- a slotted armature body of an armature of a direct-current motor of the type with which this invention is concerned includes a plurality of profiled laminations, which are lined up axially one after the other and joined to make a lamination packet which is press-fitted onto an armature shaft.
- the armature body has a plurality of axial slots, which are open to both face ends of the cylindrical armature body 10 and which discharge at a slot opening in the cylindrical surface of the armature body.
- An armature winding in the form of coils is wound into the axial slots.
- the coils are wound from an insulated coil wire, such as painted copper wire.
- the axial slots and also the face ends of the armature body are provided with an electrical insulation.
- the armature body already pressed together with the armature shaft is precleaned to eliminate contamination occurring in manufacture; masked at points that are not to be coated, such as the armature shaft; and coated in a powder fluid bath with electrostatically charged plastic powder.
- the masks additionally take on a clamping function for fixing the armature body on a conveyor system that passes through the fluid bath, and for this purpose the armature bodies have to be repositioned on the conveyor system after masking.
- the bottom of the fluid bath comprises a porous plate, through which ionized or in other words electrically charged compressed air flows, which electrostatically charges the powder uniformly and fluidizes the powder, so that the powder behaves like a fluid.
- the electrostatically charged powder particles because of the charges that are opposite the force of attraction, settle on the armature bodies being guided through the fluid bath and remain stuck to them.
- the thus-coated armature bodies are cleaned outside the fluid bath in a further method step, to remove powder adhering to the cylindrical surface of the armature bodies.
- the cleaned armature bodies are delivered to a heating section, in which by heat input, the powder layer is melted and fired and hardened.
- the armature bodies are repositioned again and unmasked in a further method step.
- the unmasked armature bodies are then cooled down in a cooling zone.
- the removed masks are delivered to a mask cleaner, and with the cleaned masks, new, precleaned armature bodies are masked.
- the cooled-down armature bodies are removed from the processing system and delivered to an automatic winder.
- This method produces a thin insulation layer, approximately 50 to 100 ⁇ m thick, in the axial slots with good thermal and electrical properties, but has decisive disadvantages in terms of costs.
- the fluid bath requires a horizontal position of the armature bodies, which in the rest of the production process are usually processed vertically, so that as the method progresses, the armature bodies have to be repositioned multiple times.
- a quite complicated conveyor system is required for feeding the armature bodies through the fluid bath. If damage occurs in the fluid bath, replacing the fluid bath that is integrated into the system is extremely time-consuming and leads to expensive system down times.
- the masks also take on the function of clamping the armature bodies while they are being conveyed. If the masks become worn, inadequate clamping of the armature bodies can occur, which threatens the course of the process and leads to down times.
- the method of the invention has the advantage that it can be implemented much more economically than the known methods and assures effective powder coating with reliable slot insulation.
- the components required for performing the method are standard components conventionally available on the market, of the kind used for instance in painting automobiles or in other painting systems for decorative surfaces and are available worldwide. These standard components require only little investment expense and are easy to maintain, so that functional parts can be quickly replaced and down times for maintenance and repair are reduced to a minimum. In the event of malfunctions or an inadequate throughput of material, the powder stream can immediately shut down, and thus the use of powder can be optimized.
- the method of the invention thus takes on all the advantages of electrostatic powder spray-coating for decorative surfaces and, unlike that method, also assures reliably insulated coating of the slot walls with plastic powder.
- the application of a high layer thickness assures that a sufficiently thick powder layer will become deposited on the slot walls; this layer is as a rule thinner than the powder layer on the cylindrical surface of the body, yet it offers reliable insulating lining of the slots.
- the high layer thickness applied is greater by a factor 10 to 50 than the layer thicknesses that are achieved in powder coating of decorative surfaces and is in the range of approximately 1 to 1.5 mm.
- the axial slots are so-called Faraday cages, which are field-free, since the field lines of the magnetic field that develops between the spray source and the preferably grounded body, along which lines the electrically charged powder particles move, are concentrated at tips and protrusions and do not penetrate into the axial slots. Because of the so-called Faraday cage effect, that is, the fact that the field lines also extend to the face ends of the armature body, powder particles, while being electrostatically deposited at the ends of the slots, are not deposited in the slot interior.
- the deposition of powder does occur first at points with high field line concentration at the beginning of the coating process. However, as spraying continues, saturation at these points ensues.
- the saturated points can no longer be coated, since a charge concentration occurs there.
- the powder particles that continue to arrive carry the same charge and are spun away from the body by electrostatic repulsion (back-spray effect). Since the spray source is electrically identically charged, however, the particles are not speeded up backward but instead are no longer subject to any external force from the field lines and penetrate into the interior of the axial slots.
- Another advantage of the method of the invention is the improvement in handling the bodies in the production process, since unlike the known method that uses a fluid bath, the bodies can be sprayed in an arbitrary position and need not necessarily be put into a horizontal position. This dispenses with repositioning of the bodies, and thus further auxiliary stations in the course of the method can be dispensed with.
- FIG. 1 is a flow chart of a method for applying an insulation to armature bodies for electrical machines in the prior art
- FIG. 2 is a cross section through an armature body pressed onto an armature shaft
- FIG. 3 is a flow chart of the method of the invention for coating armature bodies with insulation
- FIG. 4 a schematic illustration of a conveyor system for the passage of armature bodies through the coating process of the invention
- FIG. 5 a block circuit diagram of a system for electrostatic powder spray-coating suitable for use in the method of the invention.
- FIG. 6 a schematic illustration of a powder coating chamber with an integrated powder supply.
- the method for applying an electrical insulation to a ferromagnetic body, provided with axial slots for receiving an electrical winding, of a primary element or in other words a stator or a rotor of an electrical machine will be described in terms of a slotted armature body 10 of an armature of a direct-current motor.
- the armature body 10 which can be seen end-on in FIG. 2 , comprises a plurality of profiled laminations 11 , which are lined up one after the other to form a so-called lamination packet and are axially joined firmly together.
- the armature body 10 may be embodied as a solid cylinder of soft magnetic composite material, or SMC material.
- the armature body 10 is provided in a known manner with a plurality of axial slots 14 , located equidistantly over the circumference of the body, for receiving an armature winding.
- the armature bodies 10 pressed onto the armature shaft 13 , are precleaned in a first method step, “precleaning”, 21 ( FIG. 3 ), in order to eliminate such manufacturing residues as trimmings from stamping and coolant residues.
- the precleaned armature bodies 10 are placed on a conveyor belt 22 with clamping devices 23 ( FIG. 4 ) that fix the armature shaft 13 and are carried by the conveyor belt 22 through three method steps, “coating” 24 , “cleaning” 25 , and “firing” 26 .
- the armature bodies 10 are coated with electrostatically charged plastic powder.
- the coating is done with a layer thickness of approximately 1 to 2 mm, preferably approximately 1.0 to 1.5 mm—which includes production-dictated deviations—by direct powder spraying onto the preferably grounded armature body 10 . It suffices if the armature body 10 has a lower electrical potential than the plastic powder; this is most simply attained, naturally, by grounding. However, it is also possible for the armature body 10 to have a higher potential. What is essential is that the armature body 10 have a potential difference, compared to the electrostatically charged plastic powder, such that the plastic powder reaches the armature body 10 .
- the cylindrical surface of the coated armature bodies 10 is freed of the powder layer adhering to it, and in the “firing” method step 26 , the coated armature bodies 10 are exposed to a heat input, as a result of which the powder layer applied to each armature body 10 melts and hardens. The layer thickness drops in this process to approximately one-third of the powder layer originally sprayed on.
- the armature bodies 10 are removed from the conveyor belt 22 by means of a repositioning tool 27 ( FIG. 4 ) and are cooled down in the “cooling” method step 28 .
- the armature bodies 10 are removed from the method cycle in the “armature removal” method step 29 and delivered for instance to an automatic winder.
- the clamping devices 23 of the conveyor belt 22 are cleaned of powder residues by means of cleaning brushes 30 .
- FIG. 5 the components required for performing the “coating” method step 24 are shown in a block circuit diagram.
- the spraying of the electrostatically charged plastic powder onto the grounded armature bodies 10 is done in a closed spraying chamber 31 , through which the conveyor belt 22 passes with its upper, delivery section.
- the flow of parts, that is, the passage of the armature bodies 10 through the chamber 31 is represented by the arrow 20 .
- the grounding of the armature bodies 10 is effected via the conveyor belt 22 , which has clamping devices 23 and is in turn grounded.
- a spray apparatus 32 is integrated with the chamber 31 and via at least one spray location 33 , by means of compressed air, sprays a metered quantity of powder onto each armature body 10 .
- a so-called spray gun or corona gun is disposed at each spray location 33 , and its spraying direction is aimed at the particular armature body 10 moving past it.
- Such spray guns are available on the market as standard components and are used for instance in painting decorative surfaces.
- the spray guns are connected to a voltage potential of approximately 70 kV for the sake of electrically charging the powder particles.
- the quantity of powder sprayed per armature body 10 is metered such that a layer thickness of preferably 1.0 to 1.5 mm is created on the armature body 10 .
- a coarse plastic powder is used, whose powder particles have a mean diameter of more than 150 ⁇ m.
- Powder that does not reach the armature bodies 10 is delivered, via a so-called “overspray” line 34 , to a powder bin 36 , in which the compressed air laden with powder particles is passed through filters and flows out into the environment as waste air (arrow 37 ). The powder particles trapped by the filters drop back into a powder supply stored in the powder bin 36 .
- the quantity of powder delivered to the spray guns is made available by a metering device 35 , which in turn is supplied with powder from the powder bin 36 by means of a pneumatic powder conveyor 38 .
- the powder conveyor 38 is connected to the powder bin 36 via a suction line 40 that is controllable by a valve 41 , and in the suction line 40 it generates an underpressure, by which when the valve 41 is open powder is aspirated from the powder bin 36 ; this powder is delivered with compressed air to the metering device 35 .
- FIG. 6 schematically shows the combination of the spraying chamber 31 with the powder bin 36 in a common housing 42 , as a compact integrated version of a coating chamber.
- the powder-laden air stream originating at the spray location s 33 or spray guns is carried, after flowing past the armature bodies 10 , directly into the powder bin 36 , in which the air can pass via filters 39 as waste air (arrow 37 ) into the environment.
- the powder residues deposited on the filter 39 drop onto the powder supply stored in a recessed bottom of the powder bin 36 .
- powder is aspirated by the pneumatic powder conveyor 38 and returned to the spray locations 33 via the metering device 35 .
- FIG. 4 only two spray locations 33 and in FIG. 5 only one spray location 33 are shown.
- the number of spray locations 33 in the spray apparatus 32 is arbitrary and is adapted to the desired throughput speed of the armature bodies 10 through the chamber 31 .
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Manufacture Of Motors, Generators (AREA)
- Electrostatic Spraying Apparatus (AREA)
Abstract
In a method for applying an electrical insulation to a ferromagnetic body, provided with axial slots for receiving an electrical winding, of a primary element of an electrical machine, particularly to a slotted armature body of an armature of a direct-current motor, the body is coated with electrostatically charged plastic powder. For improving the economy of the method with a view to low system costs and great ease of maintenance while assuring reliable slot insulation, the coating is done with a high layer thickness by direct powder spraying onto the grounded body.
Description
This application is a 35 USC 371 application of PCT/DE 2004/001023 filed on May 15, 2004.
1. Field of the Invention
The invention is directed to an improved method for applying an electrical insulation to a ferromagnetic body, provided with axial slots for receiving an electrical winding, of a primary element of an electrical machine a slotted armature body of an armature of a direct-current motor.
2. Description of the Prior Art
A slotted armature body of an armature of a direct-current motor of the type with which this invention is concerned includes a plurality of profiled laminations, which are lined up axially one after the other and joined to make a lamination packet which is press-fitted onto an armature shaft. The armature body has a plurality of axial slots, which are open to both face ends of the cylindrical armature body 10 and which discharge at a slot opening in the cylindrical surface of the armature body. An armature winding in the form of coils is wound into the axial slots. The coils are wound from an insulated coil wire, such as painted copper wire. Before the armature winding is wound in place, the axial slots and also the face ends of the armature body are provided with an electrical insulation.
In the possible methods for applying such an insulation to the slots, coating the armature body with electrostatically charged plastic powder has proven itself as the most economical method, with the additional advantage that the slot cross section is reduced only insignificantly by the insulation, and a quite high slot fill factor for the armature winding can thus be achieved.
In a known method for applying the electrical insulation to the armature body by means of electrostatic powder coating, the armature body already pressed together with the armature shaft is precleaned to eliminate contamination occurring in manufacture; masked at points that are not to be coated, such as the armature shaft; and coated in a powder fluid bath with electrostatically charged plastic powder. The masks additionally take on a clamping function for fixing the armature body on a conveyor system that passes through the fluid bath, and for this purpose the armature bodies have to be repositioned on the conveyor system after masking. The bottom of the fluid bath comprises a porous plate, through which ionized or in other words electrically charged compressed air flows, which electrostatically charges the powder uniformly and fluidizes the powder, so that the powder behaves like a fluid. The electrostatically charged powder particles, because of the charges that are opposite the force of attraction, settle on the armature bodies being guided through the fluid bath and remain stuck to them. The thus-coated armature bodies are cleaned outside the fluid bath in a further method step, to remove powder adhering to the cylindrical surface of the armature bodies. Next, the cleaned armature bodies are delivered to a heating section, in which by heat input, the powder layer is melted and fired and hardened. The armature bodies are repositioned again and unmasked in a further method step. The unmasked armature bodies are then cooled down in a cooling zone. The removed masks are delivered to a mask cleaner, and with the cleaned masks, new, precleaned armature bodies are masked. The cooled-down armature bodies are removed from the processing system and delivered to an automatic winder.
This method produces a thin insulation layer, approximately 50 to 100 μm thick, in the axial slots with good thermal and electrical properties, but has decisive disadvantages in terms of costs. For instance, the fluid bath requires a horizontal position of the armature bodies, which in the rest of the production process are usually processed vertically, so that as the method progresses, the armature bodies have to be repositioned multiple times. Moreover, a quite complicated conveyor system is required for feeding the armature bodies through the fluid bath. If damage occurs in the fluid bath, replacing the fluid bath that is integrated into the system is extremely time-consuming and leads to expensive system down times. The masks also take on the function of clamping the armature bodies while they are being conveyed. If the masks become worn, inadequate clamping of the armature bodies can occur, which threatens the course of the process and leads to down times.
The method of the invention has the advantage that it can be implemented much more economically than the known methods and assures effective powder coating with reliable slot insulation. The components required for performing the method are standard components conventionally available on the market, of the kind used for instance in painting automobiles or in other painting systems for decorative surfaces and are available worldwide. These standard components require only little investment expense and are easy to maintain, so that functional parts can be quickly replaced and down times for maintenance and repair are reduced to a minimum. In the event of malfunctions or an inadequate throughput of material, the powder stream can immediately shut down, and thus the use of powder can be optimized.
The method of the invention thus takes on all the advantages of electrostatic powder spray-coating for decorative surfaces and, unlike that method, also assures reliably insulated coating of the slot walls with plastic powder. The application of a high layer thickness assures that a sufficiently thick powder layer will become deposited on the slot walls; this layer is as a rule thinner than the powder layer on the cylindrical surface of the body, yet it offers reliable insulating lining of the slots. The high layer thickness applied is greater by a factor 10 to 50 than the layer thicknesses that are achieved in powder coating of decorative surfaces and is in the range of approximately 1 to 1.5 mm. In electrostatic powder spraying, the axial slots are so-called Faraday cages, which are field-free, since the field lines of the magnetic field that develops between the spray source and the preferably grounded body, along which lines the electrically charged powder particles move, are concentrated at tips and protrusions and do not penetrate into the axial slots. Because of the so-called Faraday cage effect, that is, the fact that the field lines also extend to the face ends of the armature body, powder particles, while being electrostatically deposited at the ends of the slots, are not deposited in the slot interior. By the application of what according to the invention is a high layer thickness, the deposition of powder does occur first at points with high field line concentration at the beginning of the coating process. However, as spraying continues, saturation at these points ensues. The saturated points can no longer be coated, since a charge concentration occurs there. The powder particles that continue to arrive carry the same charge and are spun away from the body by electrostatic repulsion (back-spray effect). Since the spray source is electrically identically charged, however, the particles are not speeded up backward but instead are no longer subject to any external force from the field lines and penetrate into the interior of the axial slots.
Another advantage of the method of the invention is the improvement in handling the bodies in the production process, since unlike the known method that uses a fluid bath, the bodies can be sprayed in an arbitrary position and need not necessarily be put into a horizontal position. This dispenses with repositioning of the bodies, and thus further auxiliary stations in the course of the method can be dispensed with.
The invention is described in further detail below, with reference to the drawings, in which:
The method for applying an electrical insulation to a ferromagnetic body, provided with axial slots for receiving an electrical winding, of a primary element or in other words a stator or a rotor of an electrical machine will be described in terms of a slotted armature body 10 of an armature of a direct-current motor. The armature body 10, which can be seen end-on in FIG. 2 , comprises a plurality of profiled laminations 11, which are lined up one after the other to form a so-called lamination packet and are axially joined firmly together. Instead of a profiled lamination packet, the armature body 10 may be embodied as a solid cylinder of soft magnetic composite material, or SMC material. The armature body 10 is provided in a known manner with a plurality of axial slots 14, located equidistantly over the circumference of the body, for receiving an armature winding.
The armature bodies 10, pressed onto the armature shaft 13, are precleaned in a first method step, “precleaning”, 21 (FIG. 3 ), in order to eliminate such manufacturing residues as trimmings from stamping and coolant residues. The precleaned armature bodies 10 are placed on a conveyor belt 22 with clamping devices 23 (FIG. 4 ) that fix the armature shaft 13 and are carried by the conveyor belt 22 through three method steps, “coating” 24, “cleaning” 25, and “firing” 26. In the “coating” method step 24, the armature bodies 10 are coated with electrostatically charged plastic powder. The coating is done with a layer thickness of approximately 1 to 2 mm, preferably approximately 1.0 to 1.5 mm—which includes production-dictated deviations—by direct powder spraying onto the preferably grounded armature body 10. It suffices if the armature body 10 has a lower electrical potential than the plastic powder; this is most simply attained, naturally, by grounding. However, it is also possible for the armature body 10 to have a higher potential. What is essential is that the armature body 10 have a potential difference, compared to the electrostatically charged plastic powder, such that the plastic powder reaches the armature body 10.
In the “cleaning” method step 25, the cylindrical surface of the coated armature bodies 10 is freed of the powder layer adhering to it, and in the “firing” method step 26, the coated armature bodies 10 are exposed to a heat input, as a result of which the powder layer applied to each armature body 10 melts and hardens. The layer thickness drops in this process to approximately one-third of the powder layer originally sprayed on. After that, the armature bodies 10 are removed from the conveyor belt 22 by means of a repositioning tool 27 (FIG. 4 ) and are cooled down in the “cooling” method step 28. Finally, the armature bodies 10, provided with the insulation, are removed from the method cycle in the “armature removal” method step 29 and delivered for instance to an automatic winder. In the return segment of the conveyor belt 22, the clamping devices 23 of the conveyor belt 22 are cleaned of powder residues by means of cleaning brushes 30.
In FIG. 5 , the components required for performing the “coating” method step 24 are shown in a block circuit diagram. The spraying of the electrostatically charged plastic powder onto the grounded armature bodies 10 is done in a closed spraying chamber 31, through which the conveyor belt 22 passes with its upper, delivery section. The flow of parts, that is, the passage of the armature bodies 10 through the chamber 31, is represented by the arrow 20. The grounding of the armature bodies 10 is effected via the conveyor belt 22, which has clamping devices 23 and is in turn grounded. A spray apparatus 32 is integrated with the chamber 31 and via at least one spray location 33, by means of compressed air, sprays a metered quantity of powder onto each armature body 10. To that end, a so-called spray gun or corona gun is disposed at each spray location 33, and its spraying direction is aimed at the particular armature body 10 moving past it. Such spray guns are available on the market as standard components and are used for instance in painting decorative surfaces. The spray guns are connected to a voltage potential of approximately 70 kV for the sake of electrically charging the powder particles. The quantity of powder sprayed per armature body 10 is metered such that a layer thickness of preferably 1.0 to 1.5 mm is created on the armature body 10. A coarse plastic powder is used, whose powder particles have a mean diameter of more than 150 μm. These heavy powder particles improve the overcoming of the Faraday effect mentioned above and lead to an improved, uniform coating of the slot walls of the axial slots 14 in the armature body 10. Powder that does not reach the armature bodies 10 is delivered, via a so-called “overspray” line 34, to a powder bin 36, in which the compressed air laden with powder particles is passed through filters and flows out into the environment as waste air (arrow 37). The powder particles trapped by the filters drop back into a powder supply stored in the powder bin 36.
The quantity of powder delivered to the spray guns is made available by a metering device 35, which in turn is supplied with powder from the powder bin 36 by means of a pneumatic powder conveyor 38. The powder conveyor 38 is connected to the powder bin 36 via a suction line 40 that is controllable by a valve 41, and in the suction line 40 it generates an underpressure, by which when the valve 41 is open powder is aspirated from the powder bin 36; this powder is delivered with compressed air to the metering device 35.
The foregoing relates to a preferred exemplary embodiment of the invention, it being understood that other variants and embodiments thereof are possible within the spirit and scope of the invention, the latter being defined by the appended claims.
Claims (15)
1. A method for applying an electrical insulation to a ferromagnetic body of a primary element of an electrical machine, which ferromagnetic body is provided with axial slots for receiving an electrical winding, which axial slots form a Faraday cage whose field-free space can be coated during corona electrostatic spraying, in which the body is coated with electrostatically charged plastic powder, the method comprising applying a powder coating having a layer thickness of between 1.0 and 2.0 mm by means of direct powder spraying onto the body while maintaining a potential difference between the body and the powder, and further characterized in that for the powder spraying, a coarse plastic powder is used, whose powder particles have a mean diameter greater than 150 μm, as a result of which sufficient particles penetrate into the axial slots in order to create a layer, including within the axial slots, of between 1.0 and 2.0 mm.
2. The method as defined by claim 1 , wherein the coating is done on the body while it has a lower potential than the plastic powder.
3. The method as defined by claim 1 , wherein the powder spraying is performed with compressed air.
4. The method as defined by claim 2 , wherein the powder spraying is performed with compressed air.
5. The method as defined by claim 1 , wherein the powder spraying is performed in a closed spraying chamber with an electrostatic spray apparatus which is equipped with at least one spray location aimed at the body.
6. The method as defined by claim 2 , wherein the powder spraying is performed in a closed spraying chamber with an electrostatic spray apparatus which is equipped with at least one spray location aimed at the body.
7. The method as defined by claim 3 , wherein the powder spraying is performed in a closed spraying chamber with an electrostatic spray apparatus which is equipped with at least one spray location aimed at the body.
8. The method as defined by claim 5 , further comprising the steps of removing the plastic powder from a powder supply by means of suction, and delivering a metered quantity of powder to the spray apparatus by means of compressed air.
9. The method as defined by claim 1 , further comprising the step of subjecting the body to a cleaning process after the electrostatic powder spray-coating for removal of powder adhering to surfaces of the body where a coating of the powder is not wanted.
10. The method as defined by claim 2 , further comprising the step of subjecting the body to a cleaning process after the electrostatic powder spray-coating for removal of powder adhering to surfaces of the body where a coating of the powder is not wanted.
11. The method as defined by claim 5 , further comprising the step of subjecting the body to a cleaning process after the electrostatic powder spray-coating for removal of powder adhering to surfaces of the body where a coating of the powder is not wanted.
12. The method as defined by claim 8 , further comprising the step of subjecting the body to a cleaning process after the electrostatic powder spray-coating for removal of powder adhering to surfaces of the body where a coating of the powder is not wanted.
13. The method as defined by claim 9 , wherein the coated and cleaned body is subjected to a heating process that causes the firing of the powder coating.
14. The method as defined by claim 13 , further comprising the steps of cooling the body after the heating process.
15. A method for applying an electrical insulation to a ferromagnetic body provided with axial slots for receiving an electrical winding, which axial slots form a Faraday cage whose field-free space can be coated during corona electrostatic spraying, in which the body, including within the axial slots, is coated with electrostatically charged plastic powder, the method comprising applying a powder coating having a layer thickness of between 1.0 and 2.0 mm within the axial slots by means of direct powder spraying onto the body, including within the axial slots, while maintaining a potential difference between the body and the powder, and further characterized in that for the powder spraying, a coarse plastic powder is used, whose powder particles have a mean diameter greater than 150 μm, so that sufficient particles penetrate into the axial slots in order to create a layer, including within the axial slots, of between 1.0 and 2.0 mm.
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE10333187.5 | 2003-07-22 | ||
| DE10333187A DE10333187A1 (en) | 2003-07-22 | 2003-07-22 | Method for applying an electrical insulation |
| PCT/DE2004/001023 WO2005011091A1 (en) | 2003-07-22 | 2004-05-15 | Method for applying an electrical insulation |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20060177593A1 US20060177593A1 (en) | 2006-08-10 |
| US7572488B2 true US7572488B2 (en) | 2009-08-11 |
Family
ID=34088714
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/565,562 Expired - Fee Related US7572488B2 (en) | 2003-07-22 | 2004-05-15 | Method for applying an electrical insulation |
Country Status (8)
| Country | Link |
|---|---|
| US (1) | US7572488B2 (en) |
| EP (1) | EP1649580B1 (en) |
| JP (1) | JP4191764B2 (en) |
| KR (1) | KR101025149B1 (en) |
| CN (1) | CN100539363C (en) |
| BR (1) | BRPI0412739A (en) |
| DE (2) | DE10333187A1 (en) |
| WO (1) | WO2005011091A1 (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10898917B2 (en) | 2016-02-10 | 2021-01-26 | Eisenmann Se | Insulation device and coating system comprising said insulation device |
| US11611257B2 (en) | 2019-02-11 | 2023-03-21 | Dr. Ing. H. C. F. Porsche Ag | Method and stator for optimized slot base insulation |
Families Citing this family (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101367072B (en) * | 2008-10-01 | 2012-02-22 | 瑞阳汽车零部件(仙桃)有限公司 | Automatic application product line for shock absorption noise silencing slice |
| DE102008054810A1 (en) * | 2008-12-17 | 2010-06-24 | Robert Bosch Gmbh | Method for removing an electrically insulating powder layered on a stator iron, device for carrying out the method and electric machine with a stator iron |
| DE102013205831A1 (en) * | 2013-04-03 | 2014-10-09 | Robert Bosch Gmbh | Method for activating a coil wire for an electric motor and coil with such a coil wire |
| DE102015225758A1 (en) | 2015-12-17 | 2017-06-22 | Robert Bosch Gmbh | Process for coating an electromagnetically excitable core |
| WO2017158642A1 (en) | 2016-03-16 | 2017-09-21 | 富士電機株式会社 | Permanent magnet type rotating electric machine and method for manufacturing same |
| DE102017222917A1 (en) | 2017-12-15 | 2019-06-19 | Robert Bosch Gmbh | Method for applying an electrical insulation to a magnetically conductive body of a main element of an electrical machine, and electrical machine and a device for carrying out the method |
| DE102019120943A1 (en) * | 2019-08-02 | 2021-02-04 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Method for coating a component of an electrical machine |
| CN112039303A (en) * | 2020-09-04 | 2020-12-04 | 湖南佳林智能装备有限公司 | Automatic armature coating equipment and coating method |
| KR20220035592A (en) * | 2020-09-14 | 2022-03-22 | 현대자동차주식회사 | Manufacturing systems and methods for manufacturing stator assemblies |
| DE102023203470A1 (en) | 2023-04-17 | 2024-10-17 | Volkswagen Aktiengesellschaft | Slot base insulation by spin coating |
Citations (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB1046086A (en) | 1963-02-01 | 1966-10-19 | Danfoss As | Improvements in or relating to insulating electrical machines |
| US5316801A (en) * | 1992-11-25 | 1994-05-31 | General Electric Company | Electrostatic powder coating method for insulating the series loop connections of a dynamoelectric machine |
| US5319002A (en) * | 1990-12-28 | 1994-06-07 | Somar Corporation | Epoxy powder coating composition for use in electrostatic coating |
| EP0697255A2 (en) | 1994-08-17 | 1996-02-21 | Chichibu Onoda Cement Corporation | Method and apparatus for electrostatic powder coating |
| US5540776A (en) * | 1991-02-27 | 1996-07-30 | Axis Usa, Inc. | Apparatus for applying a powdered coating to a workpiece |
| WO1997007585A2 (en) | 1995-08-21 | 1997-02-27 | Siemens Aktiengesellschaft | Stator for an electric machine and impregnating and insulating process for the stator of an electric machine |
| US5618589A (en) | 1994-12-02 | 1997-04-08 | Owens Corning Fiberglas Technology, Inc. | Method and apparatus for coating elongate members |
| DE19542683A1 (en) | 1995-11-16 | 1997-05-22 | Sachsenwerk Ag | Post insulator for high-medium voltage equipment |
| US5741558A (en) * | 1993-04-07 | 1998-04-21 | Nordson Corporation | Method and apparatus for coating three dimensional articles |
| JPH10145994A (en) | 1996-11-05 | 1998-05-29 | Tanaka Seisakusho:Kk | Motor core, motor provided with the motor core and jig for coating the core |
| JPH10314658A (en) | 1997-05-22 | 1998-12-02 | Sankyo Seiki Mfg Co Ltd | Powder coating method and armature core manufacturing method |
| EP0891817A2 (en) | 1997-07-15 | 1999-01-20 | ABB Research Ltd. | Method for electrostatic coating |
| US5922413A (en) | 1996-09-19 | 1999-07-13 | Susumu Takeda | Method for manufacturing a coated body of metal member for electronic components |
| DE19755652A1 (en) | 1997-01-22 | 2000-03-30 | Dresler Peter | Electrostatic powder coating is carried out in apparatus charging dilute fluidized cloud induced by ejector-atomizer, with safety precautions against high voltage and fire |
| JP2001170551A (en) | 1999-12-15 | 2001-06-26 | Nordson Kk | Transporting method of a slight quantity of powder for powder coating |
| US6322629B1 (en) | 1999-06-01 | 2001-11-27 | Nidec Corporation | Apparatus and method for coating an annular article |
| US20020078883A1 (en) | 2000-10-05 | 2002-06-27 | Shutic Jeffrey R. | Quick change powder coating spray system |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE19542863A1 (en) * | 1995-11-17 | 1997-05-22 | Abb Research Ltd | Powder spray gun |
-
2003
- 2003-07-22 DE DE10333187A patent/DE10333187A1/en not_active Withdrawn
-
2004
- 2004-05-15 US US10/565,562 patent/US7572488B2/en not_active Expired - Fee Related
- 2004-05-15 WO PCT/DE2004/001023 patent/WO2005011091A1/en not_active Ceased
- 2004-05-15 KR KR1020067001250A patent/KR101025149B1/en not_active Expired - Fee Related
- 2004-05-15 DE DE502004012201T patent/DE502004012201D1/en not_active Expired - Lifetime
- 2004-05-15 CN CNB2004800209187A patent/CN100539363C/en not_active Expired - Fee Related
- 2004-05-15 EP EP04733240A patent/EP1649580B1/en not_active Expired - Lifetime
- 2004-05-15 BR BRPI0412739-0A patent/BRPI0412739A/en not_active IP Right Cessation
- 2004-05-15 JP JP2006515662A patent/JP4191764B2/en not_active Expired - Lifetime
Patent Citations (20)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3470010A (en) | 1963-02-01 | 1969-09-30 | Erik Frede Christiansen | Method for applying streams of insulating particles to stator and rotor winding slots |
| US3572290A (en) | 1963-02-01 | 1971-03-23 | Danfoss As | Apparatus for insulating slots in stators and rotors of electrical rotary machines |
| GB1046086A (en) | 1963-02-01 | 1966-10-19 | Danfoss As | Improvements in or relating to insulating electrical machines |
| US5319002A (en) * | 1990-12-28 | 1994-06-07 | Somar Corporation | Epoxy powder coating composition for use in electrostatic coating |
| US5540776A (en) * | 1991-02-27 | 1996-07-30 | Axis Usa, Inc. | Apparatus for applying a powdered coating to a workpiece |
| US5316801A (en) * | 1992-11-25 | 1994-05-31 | General Electric Company | Electrostatic powder coating method for insulating the series loop connections of a dynamoelectric machine |
| US5741558A (en) * | 1993-04-07 | 1998-04-21 | Nordson Corporation | Method and apparatus for coating three dimensional articles |
| EP0697255A2 (en) | 1994-08-17 | 1996-02-21 | Chichibu Onoda Cement Corporation | Method and apparatus for electrostatic powder coating |
| US5618589A (en) | 1994-12-02 | 1997-04-08 | Owens Corning Fiberglas Technology, Inc. | Method and apparatus for coating elongate members |
| WO1997007585A2 (en) | 1995-08-21 | 1997-02-27 | Siemens Aktiengesellschaft | Stator for an electric machine and impregnating and insulating process for the stator of an electric machine |
| DE19542683A1 (en) | 1995-11-16 | 1997-05-22 | Sachsenwerk Ag | Post insulator for high-medium voltage equipment |
| US5922413A (en) | 1996-09-19 | 1999-07-13 | Susumu Takeda | Method for manufacturing a coated body of metal member for electronic components |
| JPH10145994A (en) | 1996-11-05 | 1998-05-29 | Tanaka Seisakusho:Kk | Motor core, motor provided with the motor core and jig for coating the core |
| DE19755652A1 (en) | 1997-01-22 | 2000-03-30 | Dresler Peter | Electrostatic powder coating is carried out in apparatus charging dilute fluidized cloud induced by ejector-atomizer, with safety precautions against high voltage and fire |
| JPH10314658A (en) | 1997-05-22 | 1998-12-02 | Sankyo Seiki Mfg Co Ltd | Powder coating method and armature core manufacturing method |
| EP0891817A2 (en) | 1997-07-15 | 1999-01-20 | ABB Research Ltd. | Method for electrostatic coating |
| US6032871A (en) | 1997-07-15 | 2000-03-07 | Abb Research Ltd. | Electrostatic coating process |
| US6322629B1 (en) | 1999-06-01 | 2001-11-27 | Nidec Corporation | Apparatus and method for coating an annular article |
| JP2001170551A (en) | 1999-12-15 | 2001-06-26 | Nordson Kk | Transporting method of a slight quantity of powder for powder coating |
| US20020078883A1 (en) | 2000-10-05 | 2002-06-27 | Shutic Jeffrey R. | Quick change powder coating spray system |
Non-Patent Citations (1)
| Title |
|---|
| Powder Coating The Complete Finishers Handbook, ed. by N.P. Liberto, 1994, pp. 82-85. * |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10898917B2 (en) | 2016-02-10 | 2021-01-26 | Eisenmann Se | Insulation device and coating system comprising said insulation device |
| US11611257B2 (en) | 2019-02-11 | 2023-03-21 | Dr. Ing. H. C. F. Porsche Ag | Method and stator for optimized slot base insulation |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2005011091A1 (en) | 2005-02-03 |
| KR20060036099A (en) | 2006-04-27 |
| DE10333187A1 (en) | 2005-03-03 |
| KR101025149B1 (en) | 2011-03-31 |
| EP1649580A1 (en) | 2006-04-26 |
| DE502004012201D1 (en) | 2011-03-31 |
| EP1649580B1 (en) | 2011-02-16 |
| JP4191764B2 (en) | 2008-12-03 |
| CN1826717A (en) | 2006-08-30 |
| BRPI0412739A (en) | 2006-09-26 |
| JP2006527978A (en) | 2006-12-07 |
| US20060177593A1 (en) | 2006-08-10 |
| CN100539363C (en) | 2009-09-09 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7572488B2 (en) | Method for applying an electrical insulation | |
| JP2987619B2 (en) | Electrostatic powder coating equipment | |
| US8597735B2 (en) | Electrostatic powder coating method and electrostatic powder coating apparatus | |
| EP0828566A1 (en) | Rotary electrostatic dusting apparatus and method | |
| US20050287306A1 (en) | Process for electrostatic powder coating an article using triboelectrically charged powder with air jet assist | |
| JP2780017B2 (en) | Electrostatic powder coating equipment | |
| US4563977A (en) | Electrostatic coating plant | |
| KR20130024921A (en) | Electrostatic painting method and electrostatic paint gun | |
| JPH10257727A (en) | Powder coating method and armature core manufacturing method | |
| US9795986B2 (en) | Method for electrostatically coating objects and application device | |
| KR101736508B1 (en) | Cleaning method for coating systems | |
| JPH10145988A (en) | MOTOR CORE, METHOD FOR MANUFACTURING THE SAME, AND MOTOR HAVING THE MOTOR CORE | |
| CN106890775A (en) | For coat can electromagnetic excitation magnetic core method | |
| DE102012021218A1 (en) | Painting device for electrostatically applying paint particles on motor car body, has handling machine and paint atomizer for electrostatically supported application of paint particles on matter, where paint atomizer includes spray head | |
| JPH0547488A (en) | Static eliminator for clean room | |
| JP6156062B2 (en) | Powder coating apparatus and powder coating method | |
| JPS5939356A (en) | Apparatus for electrostatically coating wire body | |
| CN103201043B (en) | For object being carried out method and the bringing device of electrostatic spraying | |
| US10239072B2 (en) | Energy dissipation unit for high voltage charged paint system | |
| JPS5939361A (en) | Apparatus for electrostatically coating wire body | |
| JPS5949863A (en) | Electrostatic coater for wirelike body | |
| JP2003039011A (en) | Method for manufacturing feed member | |
| JP2013144277A (en) | Powder painting method | |
| JP2003236418A (en) | Coating method and coating apparatus | |
| JP2003033717A (en) | Electrostatic powder coating method |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: ROBERT BOSCH GMBH, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HUEHSAM, ANDREAS;REEL/FRAME:017627/0841 Effective date: 20051128 |
|
| REMI | Maintenance fee reminder mailed | ||
| LAPS | Lapse for failure to pay maintenance fees | ||
| STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
| FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20130811 |