US6670864B2 - Matching circuit including a MEMS capacitor - Google Patents
Matching circuit including a MEMS capacitor Download PDFInfo
- Publication number
- US6670864B2 US6670864B2 US09/892,674 US89267401A US6670864B2 US 6670864 B2 US6670864 B2 US 6670864B2 US 89267401 A US89267401 A US 89267401A US 6670864 B2 US6670864 B2 US 6670864B2
- Authority
- US
- United States
- Prior art keywords
- mems
- capacitor
- circuit
- matching circuit
- microelectromechanical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime, expires
Links
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H7/00—Multiple-port networks comprising only passive electrical elements as network components
- H03H7/38—Impedance-matching networks
- H03H7/40—Automatic matching of load impedance to source impedance
Definitions
- the invention relates to a matching circuit, by which a radio-frequency amplifier can electrically be adjusted to a load, and a method for adapting the amplifier to load impedance at various amplifier output power levels by means of the matching circuit.
- a radio channel changes constantly as a function of time. For instance, as a subscriber terminal moves, changes in multipath propagation environment cause changes in the radio channel. It is important to adapt the subscriber terminal's transmission power level such that the signal level is sufficient for a base station to receive and detect the signal, and that it causes as little interference as possible to other users of the system.
- Transmitters use power amplifiers for adjusting the transmission power to a desired level.
- Receivers use pre-amplifiers for amplifying the power of the received signal that has become weak on a radio channel.
- Output powers of the amplifiers in the subscriber terminals and the base station are adjusted as the radio channel changes.
- the amplifiers have to be matched with an antenna and operating environment of the antenna by impedance matching.
- the matching circuit of a transmitter amplifier consists of passive circuit elements with constant values.
- a matching circuit of this kind can be adapted in optimal state only to one predetermined output power level, for which is generally selected the maximum power level.
- the optimal adaption setting changes according to the channel.
- Harmonic signals of which the second harmonic signal, in particular, is harmful in radio-frequency applications, and which result from amplifier non-linearities, reduce the efficiency of the amplifier.
- a typical solution is a frequency selective circuit, which is tuned to a desired harmonic signal frequency. It can be implemented by a simple LC circuit (inductance-capacitance), which resonates at the tuned frequency and thus short-circuits the signal portion that comprises the harmonic frequency.
- the prior art implementation has a problem that in order to operate efficiently the circuit must have a high Q value, i.e. quality factor, and as the Q value is high the circuit operates optimally only on a narrow frequency band.
- U.S. Pat. No. 5,276,912 discloses a radio-frequency power amplifier having variable output power.
- the publication sets forth a plurality of different alternatives to match load impedance with the output power.
- the alternatives of the solution employ e.g. switches consisting of PIN diodes or transistors, or capacitors controlled by bias voltage, or varactors.
- the disclosed solutions have disadvantages: for instance, components used cause interference, such as distortion, to the output signal.
- components used cause interference, such as distortion, to the output signal.
- the device switches on sudden, major changes in power generate major voltage variations, and consequently sensitive components must be protected by various solutions.
- the publication provide a solution for the problem of reduced amplifier efficiency resulting from the harmonic signals.
- Microelectromechanical MEMS (microelectromechanical system) components have currently been developed.
- the microelectromechanical (MEMS) components are manufactured onto a semiconductor substrate, such as silicon (Si) or gallium-arsenide (GaAs), because in this manner it is possible to integrate them with conventional semi-conductor components as manufacturing technology advances.
- a semiconductor substrate such as silicon (Si) or gallium-arsenide (GaAs)
- MEMS microelectromechanical
- the MEMS components have a structure that is, at least in part, off from the base material, typically a membrane-like bridge, which opens and closes the circuit of the component. The bridge is controlled to on/off states by control voltage.
- the control voltage is applied to the semi-conductor substrate to a conductive layer obtained by precipitation, which layer forms one or more electrodes.
- the electrode is located below the bridge, and therefore the position of the bridge can be controlled: when the bridge touches the electrode, the circuit is closed, and when the bridge does not touch the electrode, the circuit is open. If there is an isolating layer on top of the electrode, the bridge has no galvanic contact to the electrode. Thus at least, direct current does not provide a closed circuit. Capacitance between the bridge and the electrode is then high.
- Components manufactured by MEMS technology have mainly been used in write heads of ink-jet printers and in sensors, such as triggering mechanisms of air bags in vehicles. Radio frequency applications mainly utilize passive components manufactured by MEMS technology because of space saving. dr
- the object of the invention is to provide a method and equipment implementing the method such that a radio-frequency amplifier can be adjusted to an optimal state at a plurality of different power levels and operating frequencies.
- a matching circuit for adapting the amplifier to load impedance at various output power levels of the amplifier, the matching circuit comprising an interface for receiving control signals, which determine capacitance of one or more capacitors.
- at least one matching circuit capacitor is a microelectromechanical (MEMS) capacitor, whose capacitance the control signals adjust to make the amplifier operate optimally at a selected frequency at a power level used, and consequently making the amplifier operate optimally in the whole desired power range.
- MEMS microelectromechanical
- the invention also relates to a matching circuit for adapting the amplifier to load impedance at various output power levels of the amplifier, the matching circuit comprising one or more LC circuits, i.e. an electric circuit switching consisting of at least one coil and at least one capacitor for tuning harmonic signals resulting from amplifier non-linearities.
- at least one LC circuit capacitor is an adjustable microelectromechanical (MEMS) capacitor
- the LC circuit comprises an interface for receiving the control signals adjusting the capacitance of the microelectromechanical (MEMS) capacitor
- the control signal adjusts the capacitance of the microelectromechanical (MEMS) capacitor such that the LC circuit resonates at the frequency of each harmonic signal to be tuned.
- the invention also relates to a method for adapting an amplifier to load impedance with a matching circuit at various output power levels of the amplifier, the matching circuit comprising an interface for receiving control signals which determine capacitance of one or more capacitors.
- the method of the invention adjusts the capacitance of at least one microelectromechanical (MEMS) capacitor of the matching circuit such that the amplifier operates optimally in a broad output power range.
- MEMS microelectromechanical
- the invention also relates to a method for adjusting the amplifier to load impedance with a matching circuit at various output power levels of the amplifier, the matching circuit comprising one or more LC circuits, i.e. an electric circuit switching consisting of at least one coil and at least one capacitor for tuning harmonic signals resulting from amplifier non-linearities.
- the matching circuit comprising one or more LC circuits, i.e. an electric circuit switching consisting of at least one coil and at least one capacitor for tuning harmonic signals resulting from amplifier non-linearities.
- harmonic signals are tuned with an LC circuit, the LC circuit comprising at least one adjustable microelectromechanical (MEMS) capacitor, control signals adjusting the capacitance of the microelectromechanical (MEMS) capacitor through an interface in the LC circuit are received, the capacitance of the microelectromechanical (MEMS) capacitor is adjusted by at least one control signal such that the LC circuit resonates at the frequency of the harmonic signal to be tuned.
- MEMS microelectromechanical
- the invention is based on the idea that adjustable, microelectromechanical (MEMS) capacitors are introduced to radio-frequency amplifiers and/or LC circuits connected thereto intended for tuning harmonic signals. In this way, it is possible to optimize the efficiency in energy transmission from the amplifier to the load impedance as the output power and operating frequency of the amplifier varies.
- MEMS microelectromechanical
- the method and the system of the invention By the method and system according to a first embodiment of the invention for adjusting a matching circuit of a radio-frequency amplifier it is possible to adapt the optimum load impedance of the amplifier to the load impedance according to changes in the output power and operating frequency. Thanks to adjustability, the method and system of a second embodiment of the invention for tuning harmonic signals allow to achieve a more accurate and quicker adaption to the harmonic frequency concerned.
- the MEMS capacitors are extremely linear as to their electric properties, because they have no P/N interface (interface of positive and negative charge carriers), and therefore they do not generate non-linearities that are typical to semi-conductor components, such as PIN diodes and FET (Field-Effect Transistor) components. Non-linearity of the component is harmful, because it causes signal distortion.
- the MEMS capacitors tolerate well large voltage variations and they have good AC voltage toleration, so there is less need for separate components or circuits protecting against voltage peaks. Furthermore, losses of the MEMS capacitors are very small and their service life as compared with MEMS switches is considerably long.
- FIG. 1 illustrates an example of a telecommunication system
- FIG. 2 shows a structure of one subscriber terminal in a simplified manner
- FIGS. 3 a-c illustrate examples of structure and operation of prior art microelectromechanical (MEMS) capacitors
- FIGS. 4 a-b illustrate an example of an on/off-type MEMS capacitor used in a matching circuit
- FIG. 5 illustrates an example of a tunable MEMS capacitor used in a matching circuit
- FIG. 6 illustrates an example of an LC circuit in connection with a matching circuit
- FIG. 7 shows method steps of implementing a first preferred embodiment, adapting a radio-frequency amplifier to load impedance, at a desired frequency
- FIG. 8 shows method steps of implementing a second embodiment, adjustable tuning method of harmonic signals.
- FIG. 1 illustrates, in a simplified manner, one digital data transmission system, to which the solution of the invention can be applied. It concerns a part of a cellular radio system which comprises a base station 104 , communicating 108 and 110 with subscriber terminals 100 and 102 that can be fixed terminals, terminals in a vehicle or portable terminals. Transceivers of the base station 104 have a connection to an antenna unit which implements the radio connection to the subscriber terminal 100 , 102 .
- the base station 104 further communicates with a base station controller 106 which switches the connections of the terminals 100 , 102 elsewhere in the network or to a public switched telephone network.
- the base station controller 106 controls a plurality of base stations 104 communicating therewith in a centralized manner.
- a control unit located in the base station controller 106 performs call control, mobility management, collection of statistics and signalling.
- FIG. 2 illustrates one radio system terminal which generally employs radio-frequency amplifiers.
- Transmitter amplifiers are generally called power amplifiers and receiver amplifiers are called preamplifiers.
- the transmitter of the subscriber terminal and the transmitter of the radio system network part carry out partly the same tasks.
- the receiver of the subscriber terminal and the receiver of the radio system network part carry out partly the same tasks.
- the radio system network part also comprises power amplifiers and preamplifiers.
- the subscriber terminal can be e.g. a portable telephone or a microcomputer without restricting thereto, however.
- the described terminal comprises an antenna 200 by which signals are transmitted and received.
- the system may also comprise separate antennas for transmitters and receivers, and consequently a duplex filter is not needed for separating the transmitter and receiver signals.
- the terminal may also comprise a plurality of antennas or a multi-antenna system.
- the modulated signal is amplified on the transmitter side of the terminal by a power amplifier 202 .
- Power amplifiers 202 are used in various electronic devices, such as radio device applications. The function of the power amplifier 202 is to amplify the power of the input signal to be suitable for the load. In transmitters, the power amplifiers 202 are generally used to amplify an excessively weak signal to be transmitted to a sufficient transmission power level. In receivers, the preamplifiers 206 are used to amplify the received signal, faded on the radio path, to a sufficient power level for detection.
- the power amplifier 202 and the preamplifier 206 have to be adapted to their operating environment by various circuit solutions, whose design, i.e. selection of component types and amounts and coupling manners, depend on each particular application.
- other signal processing functions such as upmixing and downmixing of the signal to the desired frequency as in the example of FIG. 2, can be added to the power amplifier 202 and the preamplifier 206 for amplifying the signal.
- Upmixing can also be performed in a modulator 204 .
- the signal is applied to an antenna 200 .
- the power amplifier 202 also comprises an amplifier matching circuit.
- the control signal of the matching circuit is 220 .
- the capacitance of adjustable capacitors of the amplifier matching circuits is adjusted by means of the control signal for adapting the amplifier to the load, i.e. in the transmitter to the antenna(s).
- the amplifier must be adapted, so that the signal would not distort when amplified, because if the signal distorts there is a risk that information contents of the signal changes.
- the terminal also comprises a modulator 204 , which modulates the carrier with a data signal having desired information according to the selected modulation method.
- the receiver side of the terminal also comprises an amplifier 206 which amplifies the signal coming from the antenna.
- the amplifier of the receiver is generally called a preamplifier.
- the preamplifier also comprises a matching circuit or a matching circuit is connected thereto.
- the received signal is also downmixed in the preamplifier 206 to a selected intermediate frequency or directly to baseband.
- the signal can also be downmixed in a demodulator 208 .
- the demodulator 208 demodulates the received signal, so that the data signal can be distinguished from the carrier.
- the subscriber terminal also comprises a control block 216 , which controls the operation of different terminal parts and carries out necessary measures to process the data generated by the user's speech or the user, such as DSP (Digital Signal Processing), D/A conversion and filtration.
- the control block 216 can also control a separate D/A converter 309 or directly electrodes 302 , 303 A, 303 B.
- the control block also performs both encoding and decoding, such as channel and speech encoding.
- control block 216 also controls spreading of the signal spectrum onto a broad band for transmission by means of a pseudo-random spreading code and despreading of the received signal with the intention of increasing the capacity of the channel.
- the actual spectrum spreading typically takes place after modulation and despreading prior to demodulation.
- the control block 216 also adapts the transmitted signal and the signalling information according to the air interface standard of the radio system in use.
- the control block 216 controls the operation of adjustable amplifiers, so that the signal transmission power is suitable on the radio path and so that the level of the received signal is sufficient for a detector.
- the control unit's 216 measurements on the signal transmitted by the radio system network part such as bit error ratio measurements, delay estimation and power measurements, are utilized for adjusting the signal power to a suitable level.
- Software controlling the operation of the terminal is executed in the control block 216 .
- the terminal comprises a memory 218 which comprises software controlling the operation of the terminal, for instance.
- terminal functions can be implemented in a variety of ways, for instance, with software executed by a processor, or with equipment implementation, such as a logic constructed of separate components, or an ASIC (Application Specific Integrated Circuit).
- ASIC Application Specific Integrated Circuit
- the terminal user interface comprises a loudspeaker or an earpiece 210 , a microphone 212 , a display 214 and possibly a keypad, which communicate with the control block 216 .
- FIGS. 3 a-c show an example of the structure and operation of a microelectromechanical (MEMS) capacitors by means of simplified schematic views. It should be noted that the components may include also other structural parts, such as a plurality of control electrodes or contact surfaces for providing RF connections.
- FIGS. 3 a-b show a simplified, switch-type on/off MEMS capacitor.
- the MEMS capacitor has an electrode 302 prepared onto a semi-conductor disc 300 , and the surface of the electrode is of isolating material.
- the most commonly used semi-conductor materials are silicon (Si) or gallium-arsenide (GaAs).
- a membrane-like structure 308 made of a conductive material, typically metal, such as aluminium.
- This membrane 308 forms a bridge-like structure, which is connected either at both ends or only at one end to a thicker metal layer 304 , 306 , which is ground potential.
- An air gap between the electrode 302 and the membrane bridge 308 determines the MEMS capacitor's blocking-state capacitance, i.e. off-capacitance. If voltage potential is not switched to the component, the tensile stress of the membrane bridge 308 keeps it up, off the electrode 302 .
- FIG. 3 c shows a simplified structural view of the operation of a MEMS capacitor, in which the capacitance value can be adjusted in a given value range.
- auxiliary electrodes 303 A, 303 B which operate substantially in the same manner as the electrode, can be arranged to assist the electrode 302 .
- Each auxiliary electrode 303 A, 303 B is advantageously connected directly to the output signal of the control block 216 , or alternatively to a D/A converter 309 controlled by the control block 216 .
- FIGS. 4 a-b show a simple example of an adjustable MEMS capacitor used for adapting a radio-frequency amplifier to load impedance.
- the amplifier can be adapted to two different impedance relations Z pa1 /Z load and Z pa2 /Z load , which are relative to two different output power levels.
- Z pa1 , 412 is the amplifier's optimum load impedance at a node 401 , when output power is high, for instance, when Z pa1 is 1 ⁇ .
- Z pa2 , 400 is the amplifier's optimum load impedance at the node 401 , when output power is low. Low output power is e.g.
- the optimum load impedance can be e.g. tenfold, in this example 10 ⁇ , if the amplifier's DC supply voltage is constant, as typically in subscriber terminals of a cellular radio system.
- Z load is load impedance 410 , which in this example is 50 ⁇ . If the values of coils 402 and 406 and capacitors 404 and 408 are selected suitably, and if the capacitor 404 is an on/off MEMS capacitor, as in FIGS. 4 a-b , the impedance adaptions can be implemented by selecting the state of the capacitor 404 correspondingly.
- the MEMS capacitor's on-state has high capacitance and off-state has low capacitance.
- the capacitor 408 can also be a MEMS capacitor and 404 an ordinary capacitor or both capacitors 404 and 408 can be MEMS capacitors.
- the number of capacitors, also MEMS capacitors, as well as the matching circuit topology may vary depending on the application. In the design of the amplifier or the relating circuits, other components, such as resistances and transistors, can also be used, when necessary.
- FIG. 5 shows a more complex example of an adjustable MEMS capacitor used in an amplifier.
- both capacitors 404 and 408 are MEMS capacitors and adjustable within a given value range.
- Z pa , 514 is the amplifier's optimum load impedance at a node 401 .
- Z pa , 514 is the amplifier's optimum load at node 401 .
- a two-state on/off capacitor provides a larger difference between extreme values, i.e. a difference in capacitance between on and off states, than a capacitor that is adjustable to several different states. Which capacitor type is selected depends on the application: is a large difference in capacitance needed or a plurality of different capacitance values. It is also possible to combine different types in the same amplifier or the relating circuit.
- FIG. 3C also shows a second advantageous, simple implementation, in which the controller 216 controls the basic capacitance of the MEMS capacitor, for a necessary quantity, by means of control bits and auxiliary electrodes 303 A, 303 B.
- the radio frequency amplifier is further adapted to other variables, such as the transmission power used.
- FIG. 6 shows an example of an amplifier and an LC circuit attached thereto which tunes harmonic signals, i.e. an electric circuit switching consisting of at least one coil and at least one capacitor.
- harmonic signals i.e. an electric circuit switching consisting of at least one coil and at least one capacitor.
- the amplifier typically generates harmonic frequencies depending on the components used.
- the harmonic frequencies, in particular the second harmonic frequency are generally undesired, because they cause power losses, for instance.
- the harmonic signals, or any one of them are tuned.
- a typical solution is a frequency-selective circuit which is tuned to the frequency of the second harmonic signal. According to prior art, it can be implemented by a simple LC circuit which resonates at the frequency of the second harmonic signal, and thus short-circuits that portion of the signal which includes the second harmonic frequency.
- the LC circuit consists of one coil and one capacitor that are coupled either in series, as in the figure, or in parallel.
- a problem with the prior art solution is that the circuit operates efficiently only in a narrow frequency range.
- adjustability makes it possible to achieve a broad frequency range around the harmonic frequency range by tuning the circuit electrically.
- the coil of the first LC circuit is 600
- the adjustable MEMS capacitor is 602
- the coil of the second LC circuit is 604 and the adjustable MEMS capacitor is 606
- the control signal 220 controlling them can be the same or different.
- the use of a capacitor with a large value range is more advantageous as compared with an on/off-type capacitor, because the circuit can be adjusted to resonate more accurately at different harmonic frequencies. If the MEMS capacitor has a sufficiently large adjustment range, the LC circuit can also be adjusted to resonate at the frequency of the third harmonic signal.
- FIG. 7 shows a flow chart of the method steps of adapting the amplifier to load impedance with a matching circuit as output power varies.
- the matching circuit comprises one or more MEMS capacitors and an interface for receiving a control signal controlling the capacitance of the MEMS capacitors.
- the method starts from block 700 .
- the basic capacitance of the MEMS capacitor is adjusted suitable for a channel used.
- the capacitance of microelectromechanical (MEMS) capacitors of the matching circuit are adjusted such that the amplifier operates optimally at each particular output power level. Adjustment is repeatable in nature, i.e. according to arrow 703 , the operation of block 702 is repeated.
- MEMS microelectromechanical
- the adjustable MEMS capacitors can be on/off-type capacitors or adjustable within a given value range.
- the matching circuit can only use MEMS capacitors of either type or various combination solutions which employ both component types.
- Arrow 704 depicts the repetition of the method every time the output power changes. The performance of the method stops in block 706 .
- FIG. 8 shows a flow chart of the method steps of tuning the harmonic signal frequencies. Performance of the method starts from block 800 . Next, in block 802 , the harmonic signals are tuned with an LC circuit, which comprises one or more MEMS capacitors. In block 804 , a control signal controlling the capacitances of the MEMS capacitors is received through an interface in the LC circuit. Finally, in block 806 , the capacitance of the MEMS capacitor is adjusted such that the LC circuit resonates at the frequency of the harmonic signal concerned. Performance of the method ends in block 808 . Arrow 810 depicts the repetition of the method as the frequency of the harmonic signal changes.
Landscapes
- Amplifiers (AREA)
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| FI20001525A FI109382B (fi) | 2000-06-27 | 2000-06-27 | Sovituspiiri |
| FI20001525 | 2000-06-27 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20010054937A1 US20010054937A1 (en) | 2001-12-27 |
| US6670864B2 true US6670864B2 (en) | 2003-12-30 |
Family
ID=8558654
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/892,674 Expired - Lifetime US6670864B2 (en) | 2000-06-27 | 2001-06-27 | Matching circuit including a MEMS capacitor |
Country Status (5)
| Country | Link |
|---|---|
| US (1) | US6670864B2 (fi) |
| EP (1) | EP1168608B1 (fi) |
| JP (1) | JP2002084148A (fi) |
| DE (1) | DE60125100T2 (fi) |
| FI (1) | FI109382B (fi) |
Cited By (33)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20040056733A1 (en) * | 2002-09-19 | 2004-03-25 | Park Chul Hong | Self-tuned matching network for high efficient power amplifiers |
| US20040056668A1 (en) * | 2002-09-23 | 2004-03-25 | Park Chul Hong | MEMS varactor for measuring RF power |
| US6958665B2 (en) * | 2003-04-02 | 2005-10-25 | Raytheon Company | Micro electro-mechanical system (MEMS) phase shifter |
| US6989664B2 (en) * | 2002-04-16 | 2006-01-24 | Samsung Electonics Co., Ltd. | RF power sensor for measuring an RF signal power using capacitance |
| US20060038632A1 (en) * | 2004-08-20 | 2006-02-23 | Dow-Chih Niu | Series-parallel resonant matching circuit and broadband amplifier thereof |
| US20060197624A1 (en) * | 2005-03-04 | 2006-09-07 | Jue Martin F | Extended matching range tuner |
| US20070057728A1 (en) * | 2005-09-12 | 2007-03-15 | Nokia Corporation | Method and arrangement for adjusting an output impedance of a power amplifier |
| US7208021B1 (en) | 2001-09-02 | 2007-04-24 | Borealis Technical Limited | Fabrication of close-spaced MEMS devices by method of precise adhesion regulation |
| US20070194859A1 (en) * | 2006-02-17 | 2007-08-23 | Samsung Electronics Co., Ltd. | System and method for a tunable impedance matching network |
| US20080007888A1 (en) * | 2006-03-08 | 2008-01-10 | Wispry Inc. | Micro-electro-mechanical system (MEMS) variable capacitors and actuation components and related methods |
| US20080180872A1 (en) * | 2007-01-24 | 2008-07-31 | Fujitsu Limited | Drive control method and unit for micro machine device |
| US20080218291A1 (en) * | 2005-09-22 | 2008-09-11 | Xu Zhu | System and method for a digitally tunable impedance matching network |
| US20080239611A1 (en) * | 2007-03-30 | 2008-10-02 | Fujitsu Limited | Apparatus and method for drive controlling micro machine device |
| US20090130997A1 (en) * | 2006-07-13 | 2009-05-21 | Freescale Semiconductor, Inc. | Transmitting device and method of tuning the transmitting device |
| US20090174496A1 (en) * | 2006-07-12 | 2009-07-09 | Adrianus Van Bezooijen | Load-Line Adaptation |
| US7653371B2 (en) | 2004-09-27 | 2010-01-26 | Qualcomm Mems Technologies, Inc. | Selectable capacitance circuit |
| US7657242B2 (en) | 2004-09-27 | 2010-02-02 | Qualcomm Mems Technologies, Inc. | Selectable capacitance circuit |
| US20110050166A1 (en) * | 2006-01-18 | 2011-03-03 | Qualcomm Incorporated | Method and system for powering an electronic device via a wireless link |
| US20110221543A1 (en) * | 2008-10-08 | 2011-09-15 | Epcos Ag | Impedance Matching Circuit for Matching Planar Antennas |
| US20110221300A1 (en) * | 2010-03-11 | 2011-09-15 | Fujitsu Limited | Electrostatic actuator and driving method thereof |
| US20130023870A1 (en) * | 2011-07-19 | 2013-01-24 | Tyco Healthcare Group Lp | Microwave and rf ablation system and related method for dynamic impedance matching |
| US20130023871A1 (en) * | 2011-07-19 | 2013-01-24 | Tyco Healthcare Group Lp | Microwave and rf ablation system and related method for dynamic impedance matching |
| US8373514B2 (en) | 2007-10-11 | 2013-02-12 | Qualcomm Incorporated | Wireless power transfer using magneto mechanical systems |
| US8378522B2 (en) | 2007-03-02 | 2013-02-19 | Qualcomm, Incorporated | Maximizing power yield from wireless power magnetic resonators |
| US8378523B2 (en) | 2007-03-02 | 2013-02-19 | Qualcomm Incorporated | Transmitters and receivers for wireless energy transfer |
| US8482157B2 (en) | 2007-03-02 | 2013-07-09 | Qualcomm Incorporated | Increasing the Q factor of a resonator |
| US8629576B2 (en) | 2008-03-28 | 2014-01-14 | Qualcomm Incorporated | Tuning and gain control in electro-magnetic power systems |
| US8791873B2 (en) | 2009-01-15 | 2014-07-29 | Qualcomm Technologies, Inc. | Impedance adjustment circuit for adjusting planar antennas |
| US9124120B2 (en) | 2007-06-11 | 2015-09-01 | Qualcomm Incorporated | Wireless power system and proximity effects |
| US9130602B2 (en) | 2006-01-18 | 2015-09-08 | Qualcomm Incorporated | Method and apparatus for delivering energy to an electrical or electronic device via a wireless link |
| US20150291413A1 (en) * | 2014-04-14 | 2015-10-15 | Apple Inc. | Method and system for cmos based mems bump stop contact damage prevention |
| US9601267B2 (en) | 2013-07-03 | 2017-03-21 | Qualcomm Incorporated | Wireless power transmitter with a plurality of magnetic oscillators |
| US9774086B2 (en) | 2007-03-02 | 2017-09-26 | Qualcomm Incorporated | Wireless power apparatus and methods |
Families Citing this family (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6661069B1 (en) * | 2002-10-22 | 2003-12-09 | International Business Machines Corporation | Micro-electromechanical varactor with enhanced tuning range |
| KR20040045147A (ko) * | 2002-11-22 | 2004-06-01 | 한국과학기술원 | 높은 효율을 갖는 전력 증폭기 |
| EP1605589A4 (en) | 2003-03-14 | 2007-03-21 | Ntt Docomo Inc | COMPARISON CIRCUIT |
| EP1499020A1 (de) * | 2003-07-17 | 2005-01-19 | Siemens Aktiengesellschaft | Schaltungsanordnung und Verfahren zur Anpassung der Stromaufnahme und der Ausgangsleistung von Leistungsverstärkern in Mobilfunktelefonen an verschiedene Umgebungsbedingungen |
| US20050040909A1 (en) * | 2003-08-20 | 2005-02-24 | Waight Matthew Glenn | Broadband integrated digitally tunable filters |
| JP2008205793A (ja) * | 2007-02-20 | 2008-09-04 | Toshiba Corp | 高周波整合回路 |
| US8335481B2 (en) | 2007-12-05 | 2012-12-18 | Telefonaktiebolaget L M Ericsson (Publ) | Load modulation arrangement |
| EP2151921B1 (en) * | 2008-08-07 | 2013-10-02 | Epcos AG | Dynamic impedance matching network and method for matching an impedance between a source and a load |
| US8580596B2 (en) * | 2009-04-10 | 2013-11-12 | Nxp, B.V. | Front end micro cavity |
| JP5398411B2 (ja) * | 2009-08-10 | 2014-01-29 | 株式会社東芝 | マイクロ可動デバイスおよびマイクロ可動デバイスの製造方法 |
| US8188755B2 (en) * | 2010-01-12 | 2012-05-29 | Maxim Integrated Products, Inc. | Electrostatic MEMS driver with on-chip capacitance measurement for autofocus applications |
| EP2549645A1 (en) * | 2011-07-21 | 2013-01-23 | Telefonaktiebolaget LM Ericsson (publ) | Transformer filter arrangement |
| US8803615B2 (en) * | 2012-01-23 | 2014-08-12 | Qualcomm Incorporated | Impedance matching circuit with tunable notch filters for power amplifier |
| CN112425184B (zh) * | 2018-08-08 | 2022-05-20 | 朝阳半导体技术江阴有限公司 | 具有有源压缩的电容式微机电系统麦克风 |
| CN115800956B (zh) * | 2023-02-10 | 2023-04-18 | 深圳市恒运昌真空技术有限公司 | 一种阻抗匹配控制电路、方法及系统 |
Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5276912A (en) | 1990-02-06 | 1994-01-04 | Motorola, Inc. | Radio frequency power amplifier having variable output power |
| US5696662A (en) | 1995-08-21 | 1997-12-09 | Honeywell Inc. | Electrostatically operated micromechanical capacitor |
| US5808527A (en) * | 1996-12-21 | 1998-09-15 | Hughes Electronics Corporation | Tunable microwave network using microelectromechanical switches |
| US5834975A (en) | 1997-03-12 | 1998-11-10 | Rockwell Science Center, Llc | Integrated variable gain power amplifier and method |
| US5880921A (en) * | 1997-04-28 | 1999-03-09 | Rockwell Science Center, Llc | Monolithically integrated switched capacitor bank using micro electro mechanical system (MEMS) technology |
| US6127908A (en) * | 1997-11-17 | 2000-10-03 | Massachusetts Institute Of Technology | Microelectro-mechanical system actuator device and reconfigurable circuits utilizing same |
| US6150901A (en) | 1998-11-20 | 2000-11-21 | Rockwell Collins, Inc. | Programmable RF/IF bandpass filter utilizing MEM devices |
| US6232841B1 (en) * | 1999-07-01 | 2001-05-15 | Rockwell Science Center, Llc | Integrated tunable high efficiency power amplifier |
Family Cites Families (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS6392106A (ja) * | 1986-10-06 | 1988-04-22 | Nippon Telegr & Teleph Corp <Ntt> | 高周波増幅器 |
| JPS63253730A (ja) * | 1987-04-09 | 1988-10-20 | Nec Corp | 電力増幅器 |
| JPH05343935A (ja) * | 1992-06-05 | 1993-12-24 | Oki Electric Ind Co Ltd | 電力増幅器 |
| JPH0955337A (ja) * | 1995-08-11 | 1997-02-25 | Murata Mfg Co Ltd | 可変容量コンデンサ |
| JP3160525B2 (ja) * | 1996-03-26 | 2001-04-25 | 株式会社ヨコオ | トランジスタ増幅回路 |
| JPH11205052A (ja) * | 1998-01-16 | 1999-07-30 | Kyocera Corp | 高周波用電力増幅器 |
| JPH11220338A (ja) * | 1998-01-30 | 1999-08-10 | Matsushita Electric Ind Co Ltd | 高周波電力増幅器 |
| US6242989B1 (en) * | 1998-09-12 | 2001-06-05 | Agere Systems Guardian Corp. | Article comprising a multi-port variable capacitor |
| DE59911153D1 (de) * | 1998-09-25 | 2004-12-30 | Siemens Ag | Programmierbares mobilfunk-endgerät |
-
2000
- 2000-06-27 FI FI20001525A patent/FI109382B/fi not_active IP Right Cessation
-
2001
- 2001-06-21 DE DE60125100T patent/DE60125100T2/de not_active Expired - Lifetime
- 2001-06-21 EP EP01000239A patent/EP1168608B1/en not_active Expired - Lifetime
- 2001-06-27 US US09/892,674 patent/US6670864B2/en not_active Expired - Lifetime
- 2001-06-27 JP JP2001194820A patent/JP2002084148A/ja active Pending
Patent Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5276912A (en) | 1990-02-06 | 1994-01-04 | Motorola, Inc. | Radio frequency power amplifier having variable output power |
| US5696662A (en) | 1995-08-21 | 1997-12-09 | Honeywell Inc. | Electrostatically operated micromechanical capacitor |
| US5808527A (en) * | 1996-12-21 | 1998-09-15 | Hughes Electronics Corporation | Tunable microwave network using microelectromechanical switches |
| US5834975A (en) | 1997-03-12 | 1998-11-10 | Rockwell Science Center, Llc | Integrated variable gain power amplifier and method |
| US5880921A (en) * | 1997-04-28 | 1999-03-09 | Rockwell Science Center, Llc | Monolithically integrated switched capacitor bank using micro electro mechanical system (MEMS) technology |
| US6127908A (en) * | 1997-11-17 | 2000-10-03 | Massachusetts Institute Of Technology | Microelectro-mechanical system actuator device and reconfigurable circuits utilizing same |
| US6150901A (en) | 1998-11-20 | 2000-11-21 | Rockwell Collins, Inc. | Programmable RF/IF bandpass filter utilizing MEM devices |
| US6232841B1 (en) * | 1999-07-01 | 2001-05-15 | Rockwell Science Center, Llc | Integrated tunable high efficiency power amplifier |
Non-Patent Citations (1)
| Title |
|---|
| "International Journal of RF and Microwave Computer-Aided Engineering", John Wiley & Sons, CAE 9:362-374, 1999. |
Cited By (57)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7208021B1 (en) | 2001-09-02 | 2007-04-24 | Borealis Technical Limited | Fabrication of close-spaced MEMS devices by method of precise adhesion regulation |
| US6989664B2 (en) * | 2002-04-16 | 2006-01-24 | Samsung Electonics Co., Ltd. | RF power sensor for measuring an RF signal power using capacitance |
| US6977562B2 (en) * | 2002-09-19 | 2005-12-20 | Agilent Technologies, Inc. | Self-tuned matching network for high efficient power amplifiers |
| US20040056733A1 (en) * | 2002-09-19 | 2004-03-25 | Park Chul Hong | Self-tuned matching network for high efficient power amplifiers |
| US20040056668A1 (en) * | 2002-09-23 | 2004-03-25 | Park Chul Hong | MEMS varactor for measuring RF power |
| US6803774B2 (en) * | 2002-09-23 | 2004-10-12 | Agilent Technologies, Inc. | MEMS varactor for measuring RF power |
| US6958665B2 (en) * | 2003-04-02 | 2005-10-25 | Raytheon Company | Micro electro-mechanical system (MEMS) phase shifter |
| US20060038632A1 (en) * | 2004-08-20 | 2006-02-23 | Dow-Chih Niu | Series-parallel resonant matching circuit and broadband amplifier thereof |
| US20100149722A1 (en) * | 2004-09-27 | 2010-06-17 | Qualcomm Mems Technologies, Inc. | Selectable capacitance circuit |
| US20100117761A1 (en) * | 2004-09-27 | 2010-05-13 | Qualcomm Mems Technologies, Inc. | Selectable capacitance circuit |
| US7657242B2 (en) | 2004-09-27 | 2010-02-02 | Qualcomm Mems Technologies, Inc. | Selectable capacitance circuit |
| US7653371B2 (en) | 2004-09-27 | 2010-01-26 | Qualcomm Mems Technologies, Inc. | Selectable capacitance circuit |
| US7881686B2 (en) | 2004-09-27 | 2011-02-01 | Qualcomm Mems Technologies, Inc. | Selectable Capacitance Circuit |
| US8340615B2 (en) | 2004-09-27 | 2012-12-25 | Qualcomm Mems Technologies, Inc. | Selectable capacitance circuit |
| US20060197624A1 (en) * | 2005-03-04 | 2006-09-07 | Jue Martin F | Extended matching range tuner |
| US7224241B2 (en) * | 2005-03-04 | 2007-05-29 | Jue Martin F | Extended matching range tuner |
| US7279979B2 (en) | 2005-09-12 | 2007-10-09 | Nokia Corporation | Method and arrangement for adjusting an output impedance of a power amplifier |
| US20070057728A1 (en) * | 2005-09-12 | 2007-03-15 | Nokia Corporation | Method and arrangement for adjusting an output impedance of a power amplifier |
| US8026773B2 (en) * | 2005-09-22 | 2011-09-27 | Samsung Electronics Co., Ltd. | System and method for a digitally tunable impedance matching network |
| US20080218291A1 (en) * | 2005-09-22 | 2008-09-11 | Xu Zhu | System and method for a digitally tunable impedance matching network |
| US20110050166A1 (en) * | 2006-01-18 | 2011-03-03 | Qualcomm Incorporated | Method and system for powering an electronic device via a wireless link |
| US8447234B2 (en) | 2006-01-18 | 2013-05-21 | Qualcomm Incorporated | Method and system for powering an electronic device via a wireless link |
| US9130602B2 (en) | 2006-01-18 | 2015-09-08 | Qualcomm Incorporated | Method and apparatus for delivering energy to an electrical or electronic device via a wireless link |
| US7671693B2 (en) * | 2006-02-17 | 2010-03-02 | Samsung Electronics Co., Ltd. | System and method for a tunable impedance matching network |
| US20070194859A1 (en) * | 2006-02-17 | 2007-08-23 | Samsung Electronics Co., Ltd. | System and method for a tunable impedance matching network |
| US7907033B2 (en) * | 2006-03-08 | 2011-03-15 | Wispry, Inc. | Tunable impedance matching networks and tunable diplexer matching systems |
| US7545622B2 (en) | 2006-03-08 | 2009-06-09 | Wispry, Inc. | Micro-electro-mechanical system (MEMS) variable capacitors and actuation components and related methods |
| US20080055016A1 (en) * | 2006-03-08 | 2008-03-06 | Wispry Inc. | Tunable impedance matching networks and tunable diplexer matching systems |
| US20080007888A1 (en) * | 2006-03-08 | 2008-01-10 | Wispry Inc. | Micro-electro-mechanical system (MEMS) variable capacitors and actuation components and related methods |
| US20090174496A1 (en) * | 2006-07-12 | 2009-07-09 | Adrianus Van Bezooijen | Load-Line Adaptation |
| US8436694B2 (en) * | 2006-07-12 | 2013-05-07 | Epcos Ag | Load-line adaptation |
| US20090130997A1 (en) * | 2006-07-13 | 2009-05-21 | Freescale Semiconductor, Inc. | Transmitting device and method of tuning the transmitting device |
| US8204458B2 (en) * | 2006-07-13 | 2012-06-19 | Freescale Semiconductor, Inc. | Transmitting device and method of tuning the transmitting device |
| US20080180872A1 (en) * | 2007-01-24 | 2008-07-31 | Fujitsu Limited | Drive control method and unit for micro machine device |
| US7961448B2 (en) | 2007-01-24 | 2011-06-14 | Fujitsu Limited | Drive control method and unit for micro machine device |
| US8482157B2 (en) | 2007-03-02 | 2013-07-09 | Qualcomm Incorporated | Increasing the Q factor of a resonator |
| US8378522B2 (en) | 2007-03-02 | 2013-02-19 | Qualcomm, Incorporated | Maximizing power yield from wireless power magnetic resonators |
| US9774086B2 (en) | 2007-03-02 | 2017-09-26 | Qualcomm Incorporated | Wireless power apparatus and methods |
| US8378523B2 (en) | 2007-03-02 | 2013-02-19 | Qualcomm Incorporated | Transmitters and receivers for wireless energy transfer |
| US20080239611A1 (en) * | 2007-03-30 | 2008-10-02 | Fujitsu Limited | Apparatus and method for drive controlling micro machine device |
| US7903386B2 (en) | 2007-03-30 | 2011-03-08 | Fujitsu Limited | Apparatus and method for drive controlling micro machine device |
| US9124120B2 (en) | 2007-06-11 | 2015-09-01 | Qualcomm Incorporated | Wireless power system and proximity effects |
| US8373514B2 (en) | 2007-10-11 | 2013-02-12 | Qualcomm Incorporated | Wireless power transfer using magneto mechanical systems |
| US8629576B2 (en) | 2008-03-28 | 2014-01-14 | Qualcomm Incorporated | Tuning and gain control in electro-magnetic power systems |
| US20110221543A1 (en) * | 2008-10-08 | 2011-09-15 | Epcos Ag | Impedance Matching Circuit for Matching Planar Antennas |
| US8760239B2 (en) | 2008-10-08 | 2014-06-24 | Qualcomm Technologies, Inc. | Impedance matching circuit for matching planar antennas |
| US8791873B2 (en) | 2009-01-15 | 2014-07-29 | Qualcomm Technologies, Inc. | Impedance adjustment circuit for adjusting planar antennas |
| US20110221300A1 (en) * | 2010-03-11 | 2011-09-15 | Fujitsu Limited | Electrostatic actuator and driving method thereof |
| US8618715B2 (en) * | 2010-03-11 | 2013-12-31 | Fujitsu Limited | Electrostatic actuator and driving method thereof |
| US8968297B2 (en) * | 2011-07-19 | 2015-03-03 | Covidien Lp | Microwave and RF ablation system and related method for dynamic impedance matching |
| US9028482B2 (en) * | 2011-07-19 | 2015-05-12 | Covidien Lp | Microwave and RF ablation system and related method for dynamic impedance matching |
| US20130023870A1 (en) * | 2011-07-19 | 2013-01-24 | Tyco Healthcare Group Lp | Microwave and rf ablation system and related method for dynamic impedance matching |
| US20130023871A1 (en) * | 2011-07-19 | 2013-01-24 | Tyco Healthcare Group Lp | Microwave and rf ablation system and related method for dynamic impedance matching |
| US9601267B2 (en) | 2013-07-03 | 2017-03-21 | Qualcomm Incorporated | Wireless power transmitter with a plurality of magnetic oscillators |
| US20150291413A1 (en) * | 2014-04-14 | 2015-10-15 | Apple Inc. | Method and system for cmos based mems bump stop contact damage prevention |
| US9751756B2 (en) * | 2014-04-14 | 2017-09-05 | Apple Inc. | Method and system for CMOS based MEMS bump stop contact damage prevention |
| US9850127B1 (en) * | 2014-04-14 | 2017-12-26 | Apple Inc. | Method and system for CMOS based MEMS bump stop contact damage prevention |
Also Published As
| Publication number | Publication date |
|---|---|
| FI20001525L (fi) | 2001-12-28 |
| EP1168608B1 (en) | 2006-12-13 |
| JP2002084148A (ja) | 2002-03-22 |
| FI109382B (fi) | 2002-07-15 |
| DE60125100T2 (de) | 2007-07-12 |
| FI20001525A0 (fi) | 2000-06-27 |
| DE60125100D1 (de) | 2007-01-25 |
| US20010054937A1 (en) | 2001-12-27 |
| EP1168608A3 (en) | 2002-01-16 |
| EP1168608A2 (en) | 2002-01-02 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6670864B2 (en) | Matching circuit including a MEMS capacitor | |
| US7633355B2 (en) | Variable matching circuit | |
| US10224917B2 (en) | Power amplifier saturation detection | |
| KR100372856B1 (ko) | 인접 채널 및 선택 채널 전력의 제어용 부하 조정을 갖는전력 증폭 회로 | |
| US7071776B2 (en) | Systems and methods for controlling output power in a communication device | |
| EP0803973B1 (en) | Linear power amplifier with automatic gate/base bias control for optimum efficiency | |
| KR100312367B1 (ko) | 이동체통신장치및방법 | |
| US20150326326A1 (en) | RF Transmit Path Calibration via On-Chip Dummy Load | |
| JP2004519150A (ja) | 適応アンテナ最適化ネットワーク | |
| KR100987487B1 (ko) | 다중 모드 통신 디바이스용 스위칭 가능 전력 레벨 검출기 | |
| JPH1155131A (ja) | 無線送信電力制御装置 | |
| EP1550227A1 (en) | Device for dynamic impedance matching between a power amplifier and an antenna | |
| JPH11274804A (ja) | 高周波スイッチ | |
| US20030045252A1 (en) | Power amplifier | |
| US7957703B2 (en) | Wireless circuit device | |
| US9014245B2 (en) | Method and apparatus for compensating for phase shift in a communication device | |
| WO2004054095A1 (en) | Preserving linearity of an isolator-free power amplifier by dynamically switching active devices | |
| JP3809302B2 (ja) | フィルタ装置および無線受信装置 | |
| JPH0946152A (ja) | 無線送受信装置 | |
| CN119109451A (zh) | 射频开关电路 | |
| JP2002118488A (ja) | 移動無線端末装置 | |
| JP2002176368A (ja) | 送信出力増幅器のバイアス電流最適化制御が可能な送信電力制御装置 | |
| KR20060073197A (ko) | 이동통신 단말기의 안테나 자동 정합장치 | |
| KR20050067297A (ko) | 휴대단말기 안테나의 인체영향 최소화 장치 및 방법 | |
| KR20010108018A (ko) | 이동체 통신장치 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: NOKIA MOBILE PHONES LTD., FINLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HYVONEN, LASSI;JARVINEN, ESKO;REEL/FRAME:011949/0029 Effective date: 20010614 |
|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
| FPAY | Fee payment |
Year of fee payment: 4 |
|
| FPAY | Fee payment |
Year of fee payment: 8 |
|
| FPAY | Fee payment |
Year of fee payment: 12 |
|
| AS | Assignment |
Owner name: NOKIA TECHNOLOGIES OY, FINLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NOKIA CORPORATION;REEL/FRAME:036067/0222 Effective date: 20150116 |