US6583808B2 - Method and system for stereo videoconferencing - Google Patents
Method and system for stereo videoconferencing Download PDFInfo
- Publication number
- US6583808B2 US6583808B2 US09/969,749 US96974901A US6583808B2 US 6583808 B2 US6583808 B2 US 6583808B2 US 96974901 A US96974901 A US 96974901A US 6583808 B2 US6583808 B2 US 6583808B2
- Authority
- US
- United States
- Prior art keywords
- participants
- participant
- stereo
- video images
- virtual
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related, expires
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/14—Systems for two-way working
- H04N7/15—Conference systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/10—Processing, recording or transmission of stereoscopic or multi-view image signals
- H04N13/106—Processing image signals
- H04N13/111—Transformation of image signals corresponding to virtual viewpoints, e.g. spatial image interpolation
- H04N13/117—Transformation of image signals corresponding to virtual viewpoints, e.g. spatial image interpolation the virtual viewpoint locations being selected by the viewers or determined by viewer tracking
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/10—Processing, recording or transmission of stereoscopic or multi-view image signals
- H04N13/106—Processing image signals
- H04N13/158—Switching image signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/10—Processing, recording or transmission of stereoscopic or multi-view image signals
- H04N13/194—Transmission of image signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/20—Image signal generators
- H04N13/204—Image signal generators using stereoscopic image cameras
- H04N13/243—Image signal generators using stereoscopic image cameras using three or more 2D image sensors
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/30—Image reproducers
- H04N13/366—Image reproducers using viewer tracking
- H04N13/376—Image reproducers using viewer tracking for tracking left-right translational head movements, i.e. lateral movements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04S—STEREOPHONIC SYSTEMS
- H04S7/00—Indicating arrangements; Control arrangements, e.g. balance control
- H04S7/30—Control circuits for electronic adaptation of the sound field
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M3/00—Automatic or semi-automatic exchanges
- H04M3/42—Systems providing special services or facilities to subscribers
- H04M3/56—Arrangements for connecting several subscribers to a common circuit, i.e. affording conference facilities
- H04M3/567—Multimedia conference systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/20—Image signal generators
- H04N13/286—Image signal generators having separate monoscopic and stereoscopic modes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/30—Image reproducers
- H04N13/332—Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
- H04N13/337—Displays for viewing with the aid of special glasses or head-mounted displays [HMD] using polarisation multiplexing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/30—Image reproducers
- H04N13/332—Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
- H04N13/341—Displays for viewing with the aid of special glasses or head-mounted displays [HMD] using temporal multiplexing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/30—Image reproducers
- H04N13/332—Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
- H04N13/344—Displays for viewing with the aid of special glasses or head-mounted displays [HMD] with head-mounted left-right displays
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/30—Image reproducers
- H04N13/363—Image reproducers using image projection screens
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/30—Image reproducers
- H04N13/398—Synchronisation thereof; Control thereof
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/50—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
- H04N19/597—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding specially adapted for multi-view video sequence encoding
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N2013/0074—Stereoscopic image analysis
- H04N2013/0081—Depth or disparity estimation from stereoscopic image signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N2013/0074—Stereoscopic image analysis
- H04N2013/0088—Synthesising a monoscopic image signal from stereoscopic images, e.g. synthesising a panoramic or high resolution monoscopic image
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N2013/0074—Stereoscopic image analysis
- H04N2013/0092—Image segmentation from stereoscopic image signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R27/00—Public address systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04S—STEREOPHONIC SYSTEMS
- H04S1/00—Two-channel systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04S—STEREOPHONIC SYSTEMS
- H04S2400/00—Details of stereophonic systems covered by H04S but not provided for in its groups
- H04S2400/15—Aspects of sound capture and related signal processing for recording or reproduction
Definitions
- the present invention relates to the fields of virtual reality and teleconferencing, and in particular to three-dimensional videoconferencing.
- Teleconferencing permits people in different geographical locations to communicate without the time, effort and expense of travelling to a meeting place.
- Most current videoconferencing systems use a single camera and a single monitor at each location. If there are more than two locations participating in the videoconference, the video display is generally divided into windows, and a video image from each location is displayed in each window.
- immersive video in which a three-dimensional model of an environment is created and a viewer can move around within this virtual environment.
- Computer generated images are created to provide the viewer with a perspective view from a virtual spatial location within the virtual environment.
- the system uses a video data analyzer for detecting and tracking scene objects and their locations, an environmental model builder for combining multiple scene images to build a three-dimensional (3D) dynamic model recording scene objects and their instant spatial locations.
- a visualizer generates one or more selectively synthesized 2D video image(s) of the scene using the 3D model and the viewing criterion.
- Moezzi et al. require building a 3D dynamic model of an environment, and the people within the environment, from which stereo pairs are synthesized. Building 3D dynamic models of moving people and then synthesizing views of these models is computationally intensive and with currently available technology, can be prohibitively slow and expensive.
- the virtual meeting room system of the present invention is designed to create the illusion of immersion in a real meeting by recreating stereoscopic views of a virtual meeting from the viewpoint of a participant. Instead of creating dynamic 3D models of participants, the system only transmits stereo pairs of video images of each participant to each of the other participants.
- system further comprises means for determining the position of a participant's head and hands to permit interaction with objects in the virtual environment.
- a stereo videoconferencing system for at least two participants in at least two separate locations, comprising: means in each location for providing a reference point; means for sensing a position of each participant with respect to the reference point; means for capturing at least two video images of each participant, each video image being from a different perspective; means for computing a stereo pair of video images of each participant for each of the other participants using at least two video images and the respective position of each of the other participants; means for communicating the respective stereo pairs of video images of each participant to each of the other participants; and means for assembling a stereo video display image for each of the participants, using the position data and the stereo pairs of video images.
- a method for stereo videoconferencing system for at least two participants in at least two separate locations comprising steps of: providing a reference point at each location; sensing a position of each participant with respect to the reference point; capturing at least two video images of each participant, each video image being from a different perspective; computing a stereo pair of video images of each participant for each of the other participants; communicating the respective stereo pairs of video images of each participant to each of the other participants; and assembling a stereo video display image for each of the participants, using the position data and the stereo pairs of video images.
- FIG. 1 is a schematic diagram illustrating a virtual meeting room and virtual participants in accordance with an exemplary embodiment of the present invention
- FIG. 2 is a schematic diagram illustrating equipment at a participant's location in accordance with an exemplary embodiment of the present invention
- FIG. 3 is a schematic diagram of an exemplary embodiment of the present invention, illustrating the interaction between two participants
- FIG. 4 is a schematic diagram of an exemplary embodiment of the present invention, similar to FIG. 3, wherein one of the participants has moved;
- FIG. 5 is a flowchart illustrating processes involved in creating and collecting image information in accordance with an exemplary embodiment of the present invention.
- FIG. 6 is a flowchart illustrating processes involved in combining and displaying images for a participant in accordance with an exemplary embodiment of the present invention.
- the present invention provides a system and method for integrating and synchronizing multi-source data, images and sounds to provide a single seamless, immersive videoconferencing environment for a plurality of participants respectively located in a plurality of different locations.
- the system permits multiple participants to experience an illusion of immersion in a real meeting in a three-dimensional (3D) virtual space.
- 3D images of each participant appear in the 3D virtual space of each other participant, and synchronized, integrated stereo sound provides a sensation of juxtaposition with other participants in the virtual meeting.
- the system also supports the display and manipulation of 3D virtual models within the virtual meeting space.
- FIG. 1 illustrates a virtual meeting room 100 in accordance with an exemplary embodiment of the invention.
- the virtual meeting room 100 is shown in plan view for simplicity of illustration, it should be understood that each participant perceives a fully immersive, 3D experience of the room and the other participants.
- the virtual meeting room 100 can be programmed to represent substantially any desired virtual environment. Participants are represented as virtual 3D images 102 a ′, 102 b ′, 102 c ′ in the virtual meeting room 100 .
- Virtual objects 108 can also be displayed and can be manipulated by one or more participants. Manipulation of virtual objects will be further described with reference to FIGS. 5 and 6.
- FIG. 2 is a schematic diagram illustrating an equipment setup 200 at a participant's 102 location in accordance with an embodiment of the invention.
- Each participant 102 is provided with a plurality of interfaces connected to a processor 222 .
- the interfaces consist of at least two video cameras, for example video cameras 206 , 208 , 210 , 212 ; at least one and, preferably, two microphones 214 , 216 ; at least two speakers 218 , 220 ; one or more visual displays 202 ; and at least one motion/position tracker 230 .
- the processor 222 is illustrated as a single computer, but it can consist of one or more computers that share the computational load of collecting display data, and synthesizing and displaying the virtual meeting room.
- the participant 102 faces the video cameras 206 , 208 , 210 , 212 , each of which provides a different perspective of the participant.
- the video cameras 206 , 208 , 210 , 212 each of which provides a different perspective of the participant.
- four video cameras are shown. At least two or more video cameras are required to provide a stereoscopic effect. More cameras around the participant provide a broader range of perspectives, improving the realism of the virtual experience and permitting more freedom of movement within the virtual space.
- a plurality of microphones 214 , 216 is provided to capture the participant's voice and other sounds.
- a plurality of speakers 218 , 220 is provided to reproduce sounds captured from remote participants' locations.
- a 3D display is provided to permit the participant 102 to view 3D representations of other participants and virtual objects.
- the 3D display includes a video monitor or projection screen 202 that displays interlaced video pairs alternating a left-eye image and a right-eye image.
- the participant 102 wears active liquid crystal shuttered goggles 204 synchronized with the display to alternate between the left-eye view and the right-eye view, so that the participant's left eye sees only the left-eye views and the participant's right eye sees only the right-eye views, as is well understood in the art of stereo video.
- the participant may also wear a head mounted display (HMD) 204 a , which projects the respective stereo images onto lenses supported in front of each of the participant's eyes.
- HMD head mounted display
- the 3D display includes cross-polarized left and right images projected onto a metallic screen 202 and the participant 102 wears passive cross-polarized goggles 204 , as is also well understood in the art.
- the cross-polarized goggles 204 are replaced with cross-polarized contact lenses (not shown) to provide a better view of the participant's face.
- the position of the participant 102 is determined, relative to a reference point, in order to position the participant with respect to other participants in the virtual meeting room.
- the position is determined by processing the video images captured by the video cameras.
- the position is determined by a magnetic sensor or other tracking mechanism carried by the participant or mounted to the shuttered goggles 204 , or the HMD 204 a .
- An example of a magnetic tracker is the Flock of BirdsTM product from Ascension Technologies located in Burlington, Vt., United States of America.
- FIGS. 3 and 4 represent a virtual meeting between two participants 102 a and 102 b .
- the participants 102 a , 102 b respectively face equipment 200 a , 200 b at their respective locations, and perceive a virtual 3D image of the other participant 102 b , 102 a , as if they were located as shown, regardless of the physical orientation of the two locations with respect to each other.
- the system determines, using data from position sensors 230 (FIG. 2) or image analysis, the positions of the participants 102 a , 102 b , and computes the cameras ( 208 a and 210 a in this example) that most closely approximate a view of participant 102 a from the perspective of participant 102 b .
- the system selects those two cameras to supply video images of the participant 102 a to the participant 102 b , so long as a position of the two participants 102 a , 102 b remains relatively the same.
- the system similarly selects cameras 208 b and 210 b to supply video images of participant 102 b to the participant 102 a .
- the system then separates the image of each participant 102 a , 102 b from the background that appears in the respective video images. This can be done using any one of several techniques well known to persons skilled in the art, such as pixel extraction using a background mask
- the system then transforms these respective video image pairs to create a stereo pair of video images separated by a nominal interocular spacing of participant 102 b .
- Multi-view transformation generally referred to as “morphing”, are well known to persons skilled in the art of video processing.
- Each transformed video pair is then transmitted to the other participant 102 a , 102 b and incorporated into the respective participant's view of the virtual meeting.
- the system tracks their position and selects appropriate camera pairs.
- the system selects cameras 210 b and 212 b to capture views of participant 102 b .
- the system likewise selects cameras 208 a and 206 a for providing the most appropriate perspective for capturing views of participant 102 a to be supplied to participant 102 b.
- the position information related to each participant is also preferably used to process the captured audio of each participant's voice, in order to reproduce the sound of each participant's voice in the 3D space of the virtual meeting room, as will be explained below in more detail.
- FIGS. 3 and 4 shows only two participants for ease of illustration, the number of participants is limited only by the processing power available at the respective sites. As will be explained below in detail, due to the algorithms used for reducing data exchange, and local image processing, the number of participants in a virtual meeting can be quite large.
- the processing required to provide the stereo videoconferencing in accordance with the invention is performed in a plurality of parallel processes 502 - 512 (FIG. 5) and 602 , 604 (FIG. 6) simultaneously performed by one or more processors on one or more computing machines, in a manner well known in the art.
- a flow diagram 502 outlines a principal video capture process continually executed at each participant location.
- position information related to a position of the remote participant in the virtual meeting room is retrieved from a register where it was stored when it was received in a video data stream sent by the remote participant's equipment, as will be explained below with reference to flow diagram 506 .
- the position information of the local participant is retrieved from another register where it was also stored.
- the system uses the position information of both the local participant and the remote participant to select a camera pair for capturing video images of the local participant.
- the image pair is captured from output of the selected cameras.
- the background pixels are removed from the images of the local participant (step 528 ), as explained above.
- the system uses the position information of the local participant and the remote participant to transform the image pairs to produce a stereo pair of video images representative of the interocular spacing of the remote participant from the perspective of the remote participant position in the virtual meeting room with respect to the local participant.
- the stereo pair of images devoid of background are compressed at step 532 .
- the compressed stereo pair of video images is queued for transmission to the remote participant. The process then returns to step 520 and is repeated.
- Flow diagram 504 illustrates a concurrent audio capture process.
- the position of the remote participant is retrieved from storage.
- the local participant's voice and other local sounds are captured using at least two audio channels.
- the audio information is processed to adjust relative volumes and/or phases of each audio channel at step 540 to reproduce the recorded sound of the local participant's voice relative to the position of the remote participant by synthesizing stereo sound in a manner well known in the art.
- the stereo sound is then queued for transmission to the remote participant (step 542 ) and the process returns to step 536 and is repeated.
- Flow diagram 506 illustrates a process for capturing and storing a position of each participant.
- the position of the local participant is determined at step 544 by monitoring output of the motion/position tracker 230 (FIG. 2 ).
- the position information is stored in a register at a local processor in step 546 for retrieval by other parallel processes, as described above.
- the position information is also queued (step 548 ) for transmission in a video data stream to the remote participant. The process then returns to step 544 and the process is repeated.
- Flow diagram 508 illustrates the principal steps in the process used to track information related to the manipulation of virtual object(s) by the local participant.
- Virtual objects are mathematical models of three-dimensional objects. These virtual objects can be imported into virtual meetings from modeling programs such as computer-aided design (CAD) programs and the like, and manipulated by the participants (moved, rotated, etc.).
- CAD computer-aided design
- a motion, position tracker 230 is reserved for virtual object manipulation and the tracker 230 is used in a predetermined way to move, rotate or flip the virtual object, using techniques that are known in the art.
- local virtual object manipulation information is calculated if data output by the local motion/position tracker 230 associated with the virtual object requests any change in position or orientation of the object.
- the local participant can manipulate a virtual object by moving his hands.
- Video processing techniques can be used to interpret hand motion and translate it into virtual object manipulation information.
- the local participant can manipulate a magnetic tracking device held in one hand.
- the magnetic tracking device such as a motion/position tracker 230 measures position and orientation information.
- this manipulation information is stored in a local register.
- the manipulation information is also queued for transmission to the remote participant. The process then returns to step 550 and the process is repeated.
- a flow diagram 510 illustrates how virtual object position information received from a remote participant (step 556 ) is treated. This information is stored for retrieval (step 558 ). This process is then repeated from step 556 .
- Flow diagram 512 illustrates the handling of remote virtual object manipulation information.
- remote virtual object manipulation information is received. This information is collected at the remote participant's location in a similar manner to that of the local virtual object manipulation information described with reference to flow diagram 508 .
- the remote object manipulation information is stored. The process then returns to step 560 and waits for the receipt of further virtual object manipulation information from remote participant(s).
- each process described above ( 502 , 504 , 506 , 508 , 510 , 512 ) is repeated for each remote participant.
- the various processes may be run concurrently or distributed among a plurality of computing machines.
- FIG. 6 includes a flow diagram 602 that illustrates a process for building display images viewed by the local participant in a virtual meeting.
- a stereo pair of video images is received from each remote participant.
- a position of each remote participant is retrieved from storage (see step 558 , FIG. 5 ).
- virtual object manipulation information from each participant is retrieved from storage (see step 552 , FIG. 5 ), including that of the local participant. If virtual object manipulation information is retrieved for more than one participant, it is appropriately combined to determine an instant position and orientation of the virtual object at the time.
- the local participant's position is retrieved.
- the virtual object's position and orientation in conjunction with the local participant's position is used to render a stereo view of the virtual object model from the perspective of the local participant.
- the respective video images are combined to create a composite stereo view for the local participant.
- the virtual meeting scene is rendered as a stereo pair of video images overlaid on the 3D virtual model of the meeting room, from the perspective of the position of the local participant.
- the position information of each remote participant is used to appropriately size and position the stereo pair of video images of each respective participant into the stereo pair view of the virtual meeting scene.
- the stereo pair of images of the virtual object is also inserted into the stereo pair view of the virtual meeting scene.
- the combined images are then displayed to the local participant at step 632 , as a complete meeting scene.
- the process then returns to steps 620 - 624 to build the next stereo image pair of the virtual meeting scene for the local participant.
- Flow diagram 604 illustrates handling of the audio information collected concurrently with the stereo image pairs.
- the processed audio channels of each remote participant are received.
- these audio signals are combined and at step 638 the combined audio signals are synchronized with the video images and played to the local participant through speakers 218 , 220 (FIG. 2 ).
- the audio can be played to the local participant through headphones (not shown).
- the system requires orientation information of the local participant's head in order to properly orient the position of the virtual sound sources.
- the position tracking information accumulated by the video image analysis process on the tracking mechanism 230 described above may be used for this purpose.
- Each participant uses equipment configured in a similar way, for processing sound and image data in a similar manner. Consequently, the above description is applicable to each of the other participants in a virtual meeting.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Multimedia (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
- Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US09/969,749 US6583808B2 (en) | 2001-10-04 | 2001-10-04 | Method and system for stereo videoconferencing |
| PCT/CA2002/001482 WO2003030535A1 (fr) | 2001-10-04 | 2002-10-03 | Procedes et systeme pour videoconference stereo |
| CA002462765A CA2462765A1 (fr) | 2001-10-04 | 2002-10-03 | Procedes et systeme pour videoconference stereo |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US09/969,749 US6583808B2 (en) | 2001-10-04 | 2001-10-04 | Method and system for stereo videoconferencing |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20030067536A1 US20030067536A1 (en) | 2003-04-10 |
| US6583808B2 true US6583808B2 (en) | 2003-06-24 |
Family
ID=25515937
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/969,749 Expired - Fee Related US6583808B2 (en) | 2001-10-04 | 2001-10-04 | Method and system for stereo videoconferencing |
Country Status (3)
| Country | Link |
|---|---|
| US (1) | US6583808B2 (fr) |
| CA (1) | CA2462765A1 (fr) |
| WO (1) | WO2003030535A1 (fr) |
Cited By (111)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20020141595A1 (en) * | 2001-02-23 | 2002-10-03 | Jouppi Norman P. | System and method for audio telepresence |
| US20030107643A1 (en) * | 2001-08-17 | 2003-06-12 | Byoungyi Yoon | Method and system for controlling the motion of stereoscopic cameras based on a viewer's eye motion |
| US20030120794A1 (en) * | 2001-12-11 | 2003-06-26 | Satoshi Futenma | Picture distribution system and method, picture distribution apparatus and a method therefor, picture receiving apparatus and a method therefore, and recording medium and program used therewith |
| US20030234859A1 (en) * | 2002-06-21 | 2003-12-25 | Thomas Malzbender | Method and system for real-time video communication within a virtual environment |
| US20040032489A1 (en) * | 2002-08-13 | 2004-02-19 | Tyra Donald Wayne | Method for displaying a visual element of a scene |
| US20040130614A1 (en) * | 2002-12-30 | 2004-07-08 | Valliath George T. | Method, system and apparatus for telepresence communications |
| US20040168172A1 (en) * | 2003-02-24 | 2004-08-26 | Fuji Xerox Co., Ltd. | Work space control apparatus |
| US20050080900A1 (en) * | 2003-10-09 | 2005-04-14 | Culbertson W. Bruce | Method and system for clustering data streams for a virtual environment |
| US20050099605A1 (en) * | 2000-09-15 | 2005-05-12 | Georges Buchner | Interactive audio-visual system |
| US20050131846A1 (en) * | 2003-12-12 | 2005-06-16 | Kurzweil Raymond C. | Virtual encounters |
| US20050130108A1 (en) * | 2003-12-12 | 2005-06-16 | Kurzweil Raymond C. | Virtual encounters |
| US20050143172A1 (en) * | 2003-12-12 | 2005-06-30 | Kurzweil Raymond C. | Virtual encounters |
| US20050140776A1 (en) * | 2003-12-12 | 2005-06-30 | Kurzweil Raymond C. | Virtual encounters |
| US20050151850A1 (en) * | 2004-01-14 | 2005-07-14 | Korea Institute Of Science And Technology | Interactive presentation system |
| US20050152565A1 (en) * | 2004-01-09 | 2005-07-14 | Jouppi Norman P. | System and method for control of audio field based on position of user |
| EP1589758A1 (fr) * | 2004-04-22 | 2005-10-26 | Alcatel | Système et méthode de vidéoconference |
| US20060028476A1 (en) * | 2004-08-03 | 2006-02-09 | Irwin Sobel | Method and system for providing extensive coverage of an object using virtual cameras |
| US20060045276A1 (en) * | 2004-09-01 | 2006-03-02 | Fujitsu Limited | Stereophonic reproducing method, communication apparatus and computer-readable storage medium |
| US20060092270A1 (en) * | 2004-11-04 | 2006-05-04 | Sony Corporation | Kinesiological model-based gestural augmentation of voice communication |
| US20060132605A1 (en) * | 2004-12-17 | 2006-06-22 | Watanabe Jun-Ichiro | Image providing service system |
| US20060268102A1 (en) * | 2005-05-25 | 2006-11-30 | Ginther Mark E | Viewing environment and recording system |
| US20070171275A1 (en) * | 2006-01-24 | 2007-07-26 | Kenoyer Michael L | Three Dimensional Videoconferencing |
| US20070263079A1 (en) * | 2006-04-20 | 2007-11-15 | Graham Philip R | System and method for providing location specific sound in a telepresence system |
| US20070263080A1 (en) * | 2006-04-20 | 2007-11-15 | Harrell Randy K | System and method for enhancing eye gaze in a telepresence system |
| US7319720B2 (en) * | 2002-01-28 | 2008-01-15 | Microsoft Corporation | Stereoscopic video |
| US20080033728A1 (en) * | 2001-11-22 | 2008-02-07 | Kabushiki Kaisha Toshiba, | Communication support apparatus and method |
| US20080303901A1 (en) * | 2007-06-08 | 2008-12-11 | Variyath Girish S | Tracking an object |
| US20090327418A1 (en) * | 2008-06-27 | 2009-12-31 | Microsoft Corporation | Participant positioning in multimedia conferencing |
| US20100005028A1 (en) * | 2008-07-07 | 2010-01-07 | International Business Machines Corporation | Method and apparatus for interconnecting a plurality of virtual world environments |
| US20100013738A1 (en) * | 2008-07-15 | 2010-01-21 | Edward Covannon | Image capture and display configuration |
| USD610105S1 (en) | 2006-07-10 | 2010-02-16 | Cisco Technology, Inc. | Telepresence system |
| US20100123770A1 (en) * | 2008-11-20 | 2010-05-20 | Friel Joseph T | Multiple video camera processing for teleconferencing |
| US20100225735A1 (en) * | 2009-03-09 | 2010-09-09 | Cisco Technology, Inc. | System and method for providing three dimensional imaging in a network environment |
| USD636359S1 (en) | 2010-03-21 | 2011-04-19 | Cisco Technology, Inc. | Video unit with integrated features |
| USD636747S1 (en) | 2010-03-21 | 2011-04-26 | Cisco Technology, Inc. | Video unit with integrated features |
| USD637569S1 (en) | 2010-03-21 | 2011-05-10 | Cisco Technology, Inc. | Mounted video unit |
| USD637568S1 (en) | 2010-03-21 | 2011-05-10 | Cisco Technology, Inc. | Free-standing video unit |
| US20120038626A1 (en) * | 2010-08-11 | 2012-02-16 | Kim Jonghwan | Method for editing three-dimensional image and mobile terminal using the same |
| US20120192088A1 (en) * | 2011-01-20 | 2012-07-26 | Avaya Inc. | Method and system for physical mapping in a virtual world |
| US8319819B2 (en) | 2008-03-26 | 2012-11-27 | Cisco Technology, Inc. | Virtual round-table videoconference |
| US8355041B2 (en) | 2008-02-14 | 2013-01-15 | Cisco Technology, Inc. | Telepresence system for 360 degree video conferencing |
| US8390667B2 (en) | 2008-04-15 | 2013-03-05 | Cisco Technology, Inc. | Pop-up PIP for people not in picture |
| USD678307S1 (en) | 2010-12-16 | 2013-03-19 | Cisco Technology, Inc. | Display screen with graphical user interface |
| USD678320S1 (en) | 2010-12-16 | 2013-03-19 | Cisco Technology, Inc. | Display screen with graphical user interface |
| USD678308S1 (en) | 2010-12-16 | 2013-03-19 | Cisco Technology, Inc. | Display screen with graphical user interface |
| USD678894S1 (en) | 2010-12-16 | 2013-03-26 | Cisco Technology, Inc. | Display screen with graphical user interface |
| USD682294S1 (en) | 2010-12-16 | 2013-05-14 | Cisco Technology, Inc. | Display screen with graphical user interface |
| USD682293S1 (en) | 2010-12-16 | 2013-05-14 | Cisco Technology, Inc. | Display screen with graphical user interface |
| USD682854S1 (en) | 2010-12-16 | 2013-05-21 | Cisco Technology, Inc. | Display screen for graphical user interface |
| USD682864S1 (en) | 2010-12-16 | 2013-05-21 | Cisco Technology, Inc. | Display screen with graphical user interface |
| US8472415B2 (en) | 2006-03-06 | 2013-06-25 | Cisco Technology, Inc. | Performance optimization with integrated mobility and MPLS |
| US8542264B2 (en) | 2010-11-18 | 2013-09-24 | Cisco Technology, Inc. | System and method for managing optics in a video environment |
| US20130250036A1 (en) * | 2012-03-23 | 2013-09-26 | Polycom, Inc. | Method and System for Determining Reference Points in Video Image Frames |
| US8599865B2 (en) | 2010-10-26 | 2013-12-03 | Cisco Technology, Inc. | System and method for provisioning flows in a mobile network environment |
| US8599934B2 (en) | 2010-09-08 | 2013-12-03 | Cisco Technology, Inc. | System and method for skip coding during video conferencing in a network environment |
| US8659637B2 (en) | 2009-03-09 | 2014-02-25 | Cisco Technology, Inc. | System and method for providing three dimensional video conferencing in a network environment |
| US8659639B2 (en) | 2009-05-29 | 2014-02-25 | Cisco Technology, Inc. | System and method for extending communications between participants in a conferencing environment |
| US8670019B2 (en) | 2011-04-28 | 2014-03-11 | Cisco Technology, Inc. | System and method for providing enhanced eye gaze in a video conferencing environment |
| US8682087B2 (en) | 2011-12-19 | 2014-03-25 | Cisco Technology, Inc. | System and method for depth-guided image filtering in a video conference environment |
| EP2713593A1 (fr) | 2012-09-28 | 2014-04-02 | Alcatel Lucent, S.A. | Procédé et système de vidéoconférence immersive |
| US8692862B2 (en) | 2011-02-28 | 2014-04-08 | Cisco Technology, Inc. | System and method for selection of video data in a video conference environment |
| US8694658B2 (en) | 2008-09-19 | 2014-04-08 | Cisco Technology, Inc. | System and method for enabling communication sessions in a network environment |
| US8699457B2 (en) | 2010-11-03 | 2014-04-15 | Cisco Technology, Inc. | System and method for managing flows in a mobile network environment |
| US8723914B2 (en) | 2010-11-19 | 2014-05-13 | Cisco Technology, Inc. | System and method for providing enhanced video processing in a network environment |
| US8730297B2 (en) | 2010-11-15 | 2014-05-20 | Cisco Technology, Inc. | System and method for providing camera functions in a video environment |
| US8786631B1 (en) | 2011-04-30 | 2014-07-22 | Cisco Technology, Inc. | System and method for transferring transparency information in a video environment |
| US8797377B2 (en) | 2008-02-14 | 2014-08-05 | Cisco Technology, Inc. | Method and system for videoconference configuration |
| US8896655B2 (en) | 2010-08-31 | 2014-11-25 | Cisco Technology, Inc. | System and method for providing depth adaptive video conferencing |
| US8902244B2 (en) | 2010-11-15 | 2014-12-02 | Cisco Technology, Inc. | System and method for providing enhanced graphics in a video environment |
| US8934026B2 (en) | 2011-05-12 | 2015-01-13 | Cisco Technology, Inc. | System and method for video coding in a dynamic environment |
| US8947493B2 (en) | 2011-11-16 | 2015-02-03 | Cisco Technology, Inc. | System and method for alerting a participant in a video conference |
| US8957940B2 (en) | 2013-03-11 | 2015-02-17 | Cisco Technology, Inc. | Utilizing a smart camera system for immersive telepresence |
| US9082297B2 (en) | 2009-08-11 | 2015-07-14 | Cisco Technology, Inc. | System and method for verifying parameters in an audiovisual environment |
| US20150213650A1 (en) * | 2014-01-24 | 2015-07-30 | Avaya Inc. | Presentation of enhanced communication between remote participants using augmented and virtual reality |
| US9111138B2 (en) | 2010-11-30 | 2015-08-18 | Cisco Technology, Inc. | System and method for gesture interface control |
| US9117200B2 (en) | 2013-01-10 | 2015-08-25 | Westerngeco L.L.C. | Methods and computing systems for geosciences and petro-technical collaboration |
| US9143725B2 (en) | 2010-11-15 | 2015-09-22 | Cisco Technology, Inc. | System and method for providing enhanced graphics in a video environment |
| US9225916B2 (en) | 2010-03-18 | 2015-12-29 | Cisco Technology, Inc. | System and method for enhancing video images in a conferencing environment |
| US9313452B2 (en) | 2010-05-17 | 2016-04-12 | Cisco Technology, Inc. | System and method for providing retracting optics in a video conferencing environment |
| US9338394B2 (en) | 2010-11-15 | 2016-05-10 | Cisco Technology, Inc. | System and method for providing enhanced audio in a video environment |
| US20160134938A1 (en) * | 2013-05-30 | 2016-05-12 | Sony Corporation | Display control device, display control method, and computer program |
| US9681154B2 (en) | 2012-12-06 | 2017-06-13 | Patent Capital Group | System and method for depth-guided filtering in a video conference environment |
| US9843621B2 (en) | 2013-05-17 | 2017-12-12 | Cisco Technology, Inc. | Calendaring activities based on communication processing |
| WO2018116253A1 (fr) * | 2016-12-21 | 2018-06-28 | Interaptix Inc. | Système et procédé de téléprésence |
| US10223821B2 (en) | 2017-04-25 | 2019-03-05 | Beyond Imagination Inc. | Multi-user and multi-surrogate virtual encounters |
| US20200162698A1 (en) * | 2018-11-20 | 2020-05-21 | International Business Machines Corporation | Smart contact lens based collaborative video conferencing |
| US10952006B1 (en) | 2020-10-20 | 2021-03-16 | Katmai Tech Holdings LLC | Adjusting relative left-right sound to provide sense of an avatar's position in a virtual space, and applications thereof |
| US10979672B1 (en) | 2020-10-20 | 2021-04-13 | Katmai Tech Holdings LLC | Web-based videoconference virtual environment with navigable avatars, and applications thereof |
| US11070768B1 (en) | 2020-10-20 | 2021-07-20 | Katmai Tech Holdings LLC | Volume areas in a three-dimensional virtual conference space, and applications thereof |
| US11076128B1 (en) | 2020-10-20 | 2021-07-27 | Katmai Tech Holdings LLC | Determining video stream quality based on relative position in a virtual space, and applications thereof |
| US11095857B1 (en) | 2020-10-20 | 2021-08-17 | Katmai Tech Holdings LLC | Presenter mode in a three-dimensional virtual conference space, and applications thereof |
| US11113983B1 (en) * | 2013-03-15 | 2021-09-07 | Study Social, Inc. | Video presentation, digital compositing, and streaming techniques implemented via a computer network |
| US11184362B1 (en) | 2021-05-06 | 2021-11-23 | Katmai Tech Holdings LLC | Securing private audio in a virtual conference, and applications thereof |
| US11457178B2 (en) | 2020-10-20 | 2022-09-27 | Katmai Tech Inc. | Three-dimensional modeling inside a virtual video conferencing environment with a navigable avatar, and applications thereof |
| US11562531B1 (en) | 2022-07-28 | 2023-01-24 | Katmai Tech Inc. | Cascading shadow maps in areas of a three-dimensional environment |
| US11593989B1 (en) | 2022-07-28 | 2023-02-28 | Katmai Tech Inc. | Efficient shadows for alpha-mapped models |
| US11651108B1 (en) | 2022-07-20 | 2023-05-16 | Katmai Tech Inc. | Time access control in virtual environment application |
| US11682164B1 (en) | 2022-07-28 | 2023-06-20 | Katmai Tech Inc. | Sampling shadow maps at an offset |
| US11700354B1 (en) | 2022-07-21 | 2023-07-11 | Katmai Tech Inc. | Resituating avatars in a virtual environment |
| US11704864B1 (en) | 2022-07-28 | 2023-07-18 | Katmai Tech Inc. | Static rendering for a combination of background and foreground objects |
| US11711494B1 (en) | 2022-07-28 | 2023-07-25 | Katmai Tech Inc. | Automatic instancing for efficient rendering of three-dimensional virtual environment |
| US11741664B1 (en) | 2022-07-21 | 2023-08-29 | Katmai Tech Inc. | Resituating virtual cameras and avatars in a virtual environment |
| US11743430B2 (en) | 2021-05-06 | 2023-08-29 | Katmai Tech Inc. | Providing awareness of who can hear audio in a virtual conference, and applications thereof |
| US11748939B1 (en) | 2022-09-13 | 2023-09-05 | Katmai Tech Inc. | Selecting a point to navigate video avatars in a three-dimensional environment |
| US11776203B1 (en) | 2022-07-28 | 2023-10-03 | Katmai Tech Inc. | Volumetric scattering effect in a three-dimensional virtual environment with navigable video avatars |
| US11876630B1 (en) | 2022-07-20 | 2024-01-16 | Katmai Tech Inc. | Architecture to control zones |
| US11928774B2 (en) | 2022-07-20 | 2024-03-12 | Katmai Tech Inc. | Multi-screen presentation in a virtual videoconferencing environment |
| US11956571B2 (en) | 2022-07-28 | 2024-04-09 | Katmai Tech Inc. | Scene freezing and unfreezing |
| US12009938B2 (en) | 2022-07-20 | 2024-06-11 | Katmai Tech Inc. | Access control in zones |
| US12022235B2 (en) | 2022-07-20 | 2024-06-25 | Katmai Tech Inc. | Using zones in a three-dimensional virtual environment for limiting audio and video |
| US12368821B2 (en) | 2022-07-28 | 2025-07-22 | Katmai Tech Inc. | Optimizing physics for static objects in a three-dimensional virtual environment |
Families Citing this family (82)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20050046698A1 (en) * | 2003-09-02 | 2005-03-03 | Knight Andrew Frederick | System and method for producing a selectable view of an object space |
| US20050207486A1 (en) * | 2004-03-18 | 2005-09-22 | Sony Corporation | Three dimensional acquisition and visualization system for personal electronic devices |
| JP4546151B2 (ja) * | 2004-05-26 | 2010-09-15 | 株式会社日立製作所 | 音声コミュニケーション・システム |
| US8237770B2 (en) * | 2004-10-15 | 2012-08-07 | Lifesize Communications, Inc. | Audio based on speaker position and/or conference location |
| US7626569B2 (en) * | 2004-10-25 | 2009-12-01 | Graphics Properties Holdings, Inc. | Movable audio/video communication interface system |
| US20060214911A1 (en) * | 2005-03-23 | 2006-09-28 | Eastman Kodak Company | Pointing device for large field of view displays |
| JP2006314078A (ja) * | 2005-04-06 | 2006-11-16 | Sony Corp | 撮像装置、音声記録装置および音声記録方法 |
| US7822000B2 (en) * | 2005-06-30 | 2010-10-26 | Symbol Technologies, Inc. | Time division multiplexing for access ports in a wireless network |
| US7929801B2 (en) * | 2005-08-15 | 2011-04-19 | Sony Corporation | Depth information for auto focus using two pictures and two-dimensional Gaussian scale space theory |
| US20070189750A1 (en) * | 2006-02-16 | 2007-08-16 | Sony Corporation | Method of and apparatus for simultaneously capturing and generating multiple blurred images |
| US7616254B2 (en) * | 2006-03-16 | 2009-11-10 | Sony Corporation | Simple method for calculating camera defocus from an image scene |
| US7711201B2 (en) * | 2006-06-22 | 2010-05-04 | Sony Corporation | Method of and apparatus for generating a depth map utilized in autofocusing |
| US7801430B2 (en) * | 2006-08-01 | 2010-09-21 | Hewlett-Packard Development Company, L.P. | Camera adjustment |
| FR2908584A1 (fr) * | 2006-11-10 | 2008-05-16 | France Telecom | Systeme d'interaction collaborative autour d'objets partages, par integration d'images |
| US8077964B2 (en) * | 2007-03-19 | 2011-12-13 | Sony Corporation | Two dimensional/three dimensional digital information acquisition and display device |
| US8339418B1 (en) * | 2007-06-25 | 2012-12-25 | Pacific Arts Corporation | Embedding a real time video into a virtual environment |
| EP2015573A1 (fr) * | 2007-07-12 | 2009-01-14 | France Télécom | Dispositif et système de télécommunications |
| WO2009120984A1 (fr) | 2008-03-28 | 2009-10-01 | Kopin Corporation | Dispositif d'affichage sans fil portable à affichage de haute résolution pouvant être utilisé comme dispositif internet mobile |
| US20090237564A1 (en) * | 2008-03-18 | 2009-09-24 | Invism, Inc. | Interactive immersive virtual reality and simulation |
| US8280194B2 (en) * | 2008-04-29 | 2012-10-02 | Sony Corporation | Reduced hardware implementation for a two-picture depth map algorithm |
| NO331839B1 (no) * | 2008-05-30 | 2012-04-16 | Cisco Systems Int Sarl | Fremgangsmate for a fremvise et bilde pa et display |
| US8194995B2 (en) * | 2008-09-30 | 2012-06-05 | Sony Corporation | Fast camera auto-focus |
| US8553093B2 (en) * | 2008-09-30 | 2013-10-08 | Sony Corporation | Method and apparatus for super-resolution imaging using digital imaging devices |
| US8537196B2 (en) * | 2008-10-06 | 2013-09-17 | Microsoft Corporation | Multi-device capture and spatial browsing of conferences |
| NO332009B1 (no) * | 2008-12-12 | 2012-05-21 | Cisco Systems Int Sarl | Fremgangsmate for a igangsette kommunikasjonsforbindelser |
| US20100194861A1 (en) * | 2009-01-30 | 2010-08-05 | Reuben Hoppenstein | Advance in Transmission and Display of Multi-Dimensional Images for Digital Monitors and Television Receivers using a virtual lens |
| WO2010129679A1 (fr) | 2009-05-08 | 2010-11-11 | Kopin Corporation | Commande à distance d'application d'hôte utilisant un mouvement et des commandes vocales |
| BRPI0924076B1 (pt) * | 2009-05-12 | 2021-09-21 | Huawei Device (Shenzhen) Co., Ltd. | Sistema de telepresença e método de telepresença |
| US9479768B2 (en) * | 2009-06-09 | 2016-10-25 | Bartholomew Garibaldi Yukich | Systems and methods for creating three-dimensional image media |
| JP5345025B2 (ja) * | 2009-08-28 | 2013-11-20 | 富士フイルム株式会社 | 画像記録装置及び方法 |
| US8631334B2 (en) * | 2009-12-31 | 2014-01-14 | International Business Machines Corporation | Virtual world presentation composition and management |
| KR20110116525A (ko) * | 2010-04-19 | 2011-10-26 | 엘지전자 주식회사 | 3d 오브젝트를 제공하는 영상표시장치, 그 시스템 및 그 동작 제어방법 |
| US9122307B2 (en) | 2010-09-20 | 2015-09-01 | Kopin Corporation | Advanced remote control of host application using motion and voice commands |
| US10013976B2 (en) | 2010-09-20 | 2018-07-03 | Kopin Corporation | Context sensitive overlays in voice controlled headset computer displays |
| JP5520774B2 (ja) * | 2010-10-13 | 2014-06-11 | 日本電信電話株式会社 | コミュニケーション装置、コミュニケーション方法、及びプログラム |
| US9122053B2 (en) | 2010-10-15 | 2015-09-01 | Microsoft Technology Licensing, Llc | Realistic occlusion for a head mounted augmented reality display |
| US9348141B2 (en) * | 2010-10-27 | 2016-05-24 | Microsoft Technology Licensing, Llc | Low-latency fusing of virtual and real content |
| BR112013013565B1 (pt) | 2010-12-02 | 2021-11-23 | Ultradent Products Inc | Sistema e método de visualização e rastreamento de imagens de vídeo estereoscópicas |
| US9595127B2 (en) * | 2010-12-22 | 2017-03-14 | Zspace, Inc. | Three-dimensional collaboration |
| WO2012154938A1 (fr) | 2011-05-10 | 2012-11-15 | Kopin Corporation | Ordinateur de casque d'écoute qui utilise des instructions de mouvement et des instructions vocales pour commander un affichage d'informations et des dispositifs à distance |
| US20120293613A1 (en) * | 2011-05-17 | 2012-11-22 | Occipital, Inc. | System and method for capturing and editing panoramic images |
| US8368690B1 (en) | 2011-07-05 | 2013-02-05 | 3-D Virtual Lens Technologies, Inc. | Calibrator for autostereoscopic image display |
| DE102011112617A1 (de) * | 2011-09-08 | 2013-03-14 | Eads Deutschland Gmbh | Kooperativer 3D-Arbeitsplatz |
| US20150049167A1 (en) * | 2011-11-15 | 2015-02-19 | Naoki Suzuki | Photographic device and photographic system |
| WO2013101438A1 (fr) | 2011-12-29 | 2013-07-04 | Kopin Corporation | Lunette vidéo d'informatique mains-libres sans fil pour diagnostic local/à distance et réparation |
| US9077846B2 (en) * | 2012-02-06 | 2015-07-07 | Microsoft Technology Licensing, Llc | Integrated interactive space |
| JP6289448B2 (ja) | 2012-04-25 | 2018-03-07 | コピン コーポレーション | 即時翻訳システム |
| US8929954B2 (en) | 2012-04-25 | 2015-01-06 | Kopin Corporation | Headset computer (HSC) as auxiliary display with ASR and HT input |
| US9442290B2 (en) | 2012-05-10 | 2016-09-13 | Kopin Corporation | Headset computer operation using vehicle sensor feedback for remote control vehicle |
| WO2013180773A1 (fr) | 2012-06-01 | 2013-12-05 | Ultradent Products, Inc. | Imagerie vidéo stéréoscopique |
| CN103634563A (zh) | 2012-08-24 | 2014-03-12 | 中兴通讯股份有限公司 | 视频会议显示方法及装置 |
| US9301085B2 (en) | 2013-02-20 | 2016-03-29 | Kopin Corporation | Computer headset with detachable 4G radio |
| WO2015039239A1 (fr) * | 2013-09-17 | 2015-03-26 | Société Des Arts Technologiques | Procédé, système et appareil de téléprésence immersive reposant sur une capture dans un environnement virtuel |
| US9609273B2 (en) * | 2013-11-20 | 2017-03-28 | Avaya Inc. | System and method for not displaying duplicate images in a video conference |
| KR20160091316A (ko) * | 2013-11-27 | 2016-08-02 | 울트라덴트 프로덕츠, 인코포레이티드 | 물리적 위치들 간 비디오 대화 |
| US9432621B2 (en) | 2014-02-19 | 2016-08-30 | Citrix Systems, Inc. | Techniques for interfacing a user to an online meeting |
| US9270943B2 (en) * | 2014-03-31 | 2016-02-23 | Futurewei Technologies, Inc. | System and method for augmented reality-enabled interactions and collaboration |
| GB2525170A (en) * | 2014-04-07 | 2015-10-21 | Nokia Technologies Oy | Stereo viewing |
| WO2016053311A1 (fr) * | 2014-09-30 | 2016-04-07 | Hewlett Packard Enterprise Development Lp | Projection d'artéfacts |
| CA2980384C (fr) * | 2015-03-31 | 2022-04-05 | Cae Inc. | Identification multifactorielle de position des yeux dans un systeme d'affichage |
| WO2017030985A1 (fr) * | 2015-08-14 | 2017-02-23 | Pcms Holdings, Inc. | Système et procédé pour téléprésence multi-vue à réalité augmentée |
| US10404938B1 (en) | 2015-12-22 | 2019-09-03 | Steelcase Inc. | Virtual world method and system for affecting mind state |
| US10181218B1 (en) | 2016-02-17 | 2019-01-15 | Steelcase Inc. | Virtual affordance sales tool |
| WO2017172528A1 (fr) | 2016-04-01 | 2017-10-05 | Pcms Holdings, Inc. | Appareil et procédé destinés à prendre en charge des fonctionnalités de réalité augmentée interactive |
| CN105894585A (zh) * | 2016-04-28 | 2016-08-24 | 乐视控股(北京)有限公司 | 一种远程视频的实时播放方法及装置 |
| US10721456B2 (en) | 2016-06-08 | 2020-07-21 | Sony Interactive Entertainment Inc. | Image generation apparatus and image generation method |
| US10607417B2 (en) | 2016-06-08 | 2020-03-31 | Sony Interactive Entertainment Inc. | Image generating apparatus and image generating method |
| WO2018005235A1 (fr) * | 2016-06-30 | 2018-01-04 | Pcms Holdings, Inc. | Système et procédé d'interaction spatiale utilisant des caméras positionnées automatiquement |
| WO2018039071A1 (fr) * | 2016-08-23 | 2018-03-01 | Pcms Holdings, Inc. | Procédé et système de présentation de sites de réunion à distance à partir de points de vue dépendants d'un utilisateur |
| KR102594792B1 (ko) * | 2016-09-30 | 2023-10-30 | 엘지디스플레이 주식회사 | 유기발광표시장치 및 그 제어방법 |
| US10019831B2 (en) * | 2016-10-20 | 2018-07-10 | Zspace, Inc. | Integrating real world conditions into virtual imagery |
| US10560678B2 (en) * | 2016-11-09 | 2020-02-11 | Mediatek Inc. | Method and apparatus having video encoding function with syntax element signaling of rotation information of content-oriented rotation applied to 360-degree image content or 360-degree video content represented in projection format and associated method and apparatus having video decoding function |
| CN108377355A (zh) * | 2016-11-28 | 2018-08-07 | 中兴通讯股份有限公司 | 一种视频数据处理方法、装置及设备 |
| US10182210B1 (en) * | 2016-12-15 | 2019-01-15 | Steelcase Inc. | Systems and methods for implementing augmented reality and/or virtual reality |
| CN107426524B (zh) * | 2017-06-06 | 2020-07-28 | 微鲸科技有限公司 | 一种基于虚拟全景的多方会议的方法及设备 |
| WO2018226508A1 (fr) | 2017-06-09 | 2018-12-13 | Pcms Holdings, Inc. | Téléprésence fidèle à l'espace prenant en charge des géométries variables et des utilisateurs en mouvement |
| CN108924529B (zh) * | 2018-07-25 | 2020-03-17 | 北京小米移动软件有限公司 | 图像显示的控制方法及装置 |
| US10701316B1 (en) * | 2019-10-10 | 2020-06-30 | Facebook Technologies, Llc | Gesture-triggered overlay elements for video conferencing |
| US11444988B2 (en) * | 2020-03-17 | 2022-09-13 | Qualcomm Incorporated | Signaling of scene description for multimedia conferencing |
| US20230140042A1 (en) * | 2021-11-04 | 2023-05-04 | Tencent America LLC | Method and apparatus for signaling occlude-free regions in 360 video conferencing |
| US12010157B2 (en) | 2022-03-29 | 2024-06-11 | Rovi Guides, Inc. | Systems and methods for enabling user-controlled extended reality |
| US12022226B2 (en) | 2022-03-29 | 2024-06-25 | Rovi Guides, Inc. | Systems and methods for enabling user-controlled extended reality |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5495576A (en) | 1993-01-11 | 1996-02-27 | Ritchey; Kurtis J. | Panoramic image based virtual reality/telepresence audio-visual system and method |
| JPH1084539A (ja) * | 1996-09-06 | 1998-03-31 | Nec Corp | ステレオ音声テレビ会議装置 |
| US5850352A (en) | 1995-03-31 | 1998-12-15 | The Regents Of The University Of California | Immersive video, including video hypermosaicing to generate from multiple video views of a scene a three-dimensional video mosaic from which diverse virtual video scene images are synthesized, including panoramic, scene interactive and stereoscopic images |
| US5999208A (en) | 1998-07-15 | 1999-12-07 | Lucent Technologies Inc. | System for implementing multiple simultaneous meetings in a virtual reality mixed media meeting room |
| US6198484B1 (en) | 1996-06-27 | 2001-03-06 | Kabushiki Kaisha Toshiba | Stereoscopic display system |
| US6263100B1 (en) | 1994-04-22 | 2001-07-17 | Canon Kabushiki Kaisha | Image processing method and apparatus for generating an image from the viewpoint of an observer on the basis of images obtained from a plurality of viewpoints |
Family Cites Families (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5892538A (en) * | 1995-06-30 | 1999-04-06 | Ericsson Inc. | True three-dimensional imaging and display system |
| US6801637B2 (en) * | 1999-08-10 | 2004-10-05 | Cybernet Systems Corporation | Optical body tracker |
| JP2000165831A (ja) * | 1998-11-30 | 2000-06-16 | Nec Corp | 多地点テレビ会議システム |
| US6222465B1 (en) * | 1998-12-09 | 2001-04-24 | Lucent Technologies Inc. | Gesture-based computer interface |
-
2001
- 2001-10-04 US US09/969,749 patent/US6583808B2/en not_active Expired - Fee Related
-
2002
- 2002-10-03 CA CA002462765A patent/CA2462765A1/fr not_active Abandoned
- 2002-10-03 WO PCT/CA2002/001482 patent/WO2003030535A1/fr not_active Ceased
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5495576A (en) | 1993-01-11 | 1996-02-27 | Ritchey; Kurtis J. | Panoramic image based virtual reality/telepresence audio-visual system and method |
| US6263100B1 (en) | 1994-04-22 | 2001-07-17 | Canon Kabushiki Kaisha | Image processing method and apparatus for generating an image from the viewpoint of an observer on the basis of images obtained from a plurality of viewpoints |
| US5850352A (en) | 1995-03-31 | 1998-12-15 | The Regents Of The University Of California | Immersive video, including video hypermosaicing to generate from multiple video views of a scene a three-dimensional video mosaic from which diverse virtual video scene images are synthesized, including panoramic, scene interactive and stereoscopic images |
| US6198484B1 (en) | 1996-06-27 | 2001-03-06 | Kabushiki Kaisha Toshiba | Stereoscopic display system |
| JPH1084539A (ja) * | 1996-09-06 | 1998-03-31 | Nec Corp | ステレオ音声テレビ会議装置 |
| US5999208A (en) | 1998-07-15 | 1999-12-07 | Lucent Technologies Inc. | System for implementing multiple simultaneous meetings in a virtual reality mixed media meeting room |
Non-Patent Citations (8)
| Title |
|---|
| "Real-Time Tracking of the Human Body", Online publication downloaded on Jun. 28, 2001. |
| Seitz, Steve et al., "View Morphing", Online publication downloaded on Jun. 28, 2001. |
| Selected page downloaded from the website of Fastgraph on Jul. 5, 2001. |
| Selected page downloaded from the website of Stereoscopy on Jul. 12, 2001. |
| Selected pages downloaded from the website of Ascension Technology Corporation on Jul. 13, 2000. |
| Selected pages downloaded from the website of Dresden 3D on Jun. 29, 2001. |
| Selected pages downloaded from the website of LinCom on Jul. 12, 2001. |
| Selected pages downloaded from the website of Studio 3D on Jul. 12, 2001. |
Cited By (175)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20050099605A1 (en) * | 2000-09-15 | 2005-05-12 | Georges Buchner | Interactive audio-visual system |
| US7048386B2 (en) * | 2000-09-15 | 2006-05-23 | France Telecom | Interactive audio-visual system |
| US20020141595A1 (en) * | 2001-02-23 | 2002-10-03 | Jouppi Norman P. | System and method for audio telepresence |
| US7184559B2 (en) * | 2001-02-23 | 2007-02-27 | Hewlett-Packard Development Company, L.P. | System and method for audio telepresence |
| US20030113012A1 (en) * | 2001-08-17 | 2003-06-19 | Byoungyi Yoon | Method and system for controlling a screen ratio based on a photographing ratio |
| US20030112326A1 (en) * | 2001-08-17 | 2003-06-19 | Byoungyi Yoon | Method and system for transmitting or storing stereoscopic images and photographing ratios for the images |
| US20030107643A1 (en) * | 2001-08-17 | 2003-06-12 | Byoungyi Yoon | Method and system for controlling the motion of stereoscopic cameras based on a viewer's eye motion |
| US20030117395A1 (en) * | 2001-08-17 | 2003-06-26 | Byoungyi Yoon | Method and system for calculating a photographing ratio of a camera |
| US20030122925A1 (en) * | 2001-08-17 | 2003-07-03 | Byoungyi Yoon | Method and system for providing the motion information of stereoscopic cameras |
| US20030107645A1 (en) * | 2001-08-17 | 2003-06-12 | Byoungyi Yoon | Method and system for controlling the display location of stereoscopic images |
| US20030108236A1 (en) * | 2001-08-17 | 2003-06-12 | Byoungyi Yoon | Portable communication device for stereoscopic image display and transmission |
| US7190825B2 (en) * | 2001-08-17 | 2007-03-13 | Geo-Rae Co., Ltd. | Portable communication device for stereoscopic image display and transmission |
| US20080033728A1 (en) * | 2001-11-22 | 2008-02-07 | Kabushiki Kaisha Toshiba, | Communication support apparatus and method |
| US8676562B2 (en) * | 2001-11-22 | 2014-03-18 | Kabushiki Kaisha Toshiba | Communication support apparatus and method |
| US7266610B2 (en) * | 2001-12-11 | 2007-09-04 | Sony Corporation | Picture distribution system and method, picture distribution apparatus and a method therefor, picture receiving apparatus and a method therefore, and recording medium and program used therewith |
| US20030120794A1 (en) * | 2001-12-11 | 2003-06-26 | Satoshi Futenma | Picture distribution system and method, picture distribution apparatus and a method therefor, picture receiving apparatus and a method therefore, and recording medium and program used therewith |
| US7319720B2 (en) * | 2002-01-28 | 2008-01-15 | Microsoft Corporation | Stereoscopic video |
| US6853398B2 (en) * | 2002-06-21 | 2005-02-08 | Hewlett-Packard Development Company, L.P. | Method and system for real-time video communication within a virtual environment |
| US20030234859A1 (en) * | 2002-06-21 | 2003-12-25 | Thomas Malzbender | Method and system for real-time video communication within a virtual environment |
| US20040032489A1 (en) * | 2002-08-13 | 2004-02-19 | Tyra Donald Wayne | Method for displaying a visual element of a scene |
| US20040130614A1 (en) * | 2002-12-30 | 2004-07-08 | Valliath George T. | Method, system and apparatus for telepresence communications |
| US7106358B2 (en) * | 2002-12-30 | 2006-09-12 | Motorola, Inc. | Method, system and apparatus for telepresence communications |
| US8072479B2 (en) * | 2002-12-30 | 2011-12-06 | Motorola Mobility, Inc. | Method system and apparatus for telepresence communications utilizing video avatars |
| US20060210045A1 (en) * | 2002-12-30 | 2006-09-21 | Motorola, Inc. | A method system and apparatus for telepresence communications utilizing video avatars |
| US20040168172A1 (en) * | 2003-02-24 | 2004-08-26 | Fuji Xerox Co., Ltd. | Work space control apparatus |
| US7747957B2 (en) * | 2003-02-24 | 2010-06-29 | Fuji Xerox Co., Ltd. | Work space control apparatus |
| US7634575B2 (en) * | 2003-10-09 | 2009-12-15 | Hewlett-Packard Development Company, L.P. | Method and system for clustering data streams for a virtual environment |
| US20050080900A1 (en) * | 2003-10-09 | 2005-04-14 | Culbertson W. Bruce | Method and system for clustering data streams for a virtual environment |
| US9948885B2 (en) | 2003-12-12 | 2018-04-17 | Kurzweil Technologies, Inc. | Virtual encounters |
| US20050140776A1 (en) * | 2003-12-12 | 2005-06-30 | Kurzweil Raymond C. | Virtual encounters |
| US20050143172A1 (en) * | 2003-12-12 | 2005-06-30 | Kurzweil Raymond C. | Virtual encounters |
| US10645338B2 (en) | 2003-12-12 | 2020-05-05 | Beyond Imagination Inc. | Virtual encounters |
| US20050130108A1 (en) * | 2003-12-12 | 2005-06-16 | Kurzweil Raymond C. | Virtual encounters |
| US20050131846A1 (en) * | 2003-12-12 | 2005-06-16 | Kurzweil Raymond C. | Virtual encounters |
| US9971398B2 (en) | 2003-12-12 | 2018-05-15 | Beyond Imagination Inc. | Virtual encounters |
| US9841809B2 (en) * | 2003-12-12 | 2017-12-12 | Kurzweil Technologies, Inc. | Virtual encounters |
| US20050152565A1 (en) * | 2004-01-09 | 2005-07-14 | Jouppi Norman P. | System and method for control of audio field based on position of user |
| US7613313B2 (en) * | 2004-01-09 | 2009-11-03 | Hewlett-Packard Development Company, L.P. | System and method for control of audio field based on position of user |
| US20050151850A1 (en) * | 2004-01-14 | 2005-07-14 | Korea Institute Of Science And Technology | Interactive presentation system |
| US7468742B2 (en) * | 2004-01-14 | 2008-12-23 | Korea Institute Of Science And Technology | Interactive presentation system |
| US20050237376A1 (en) * | 2004-04-22 | 2005-10-27 | Alcatel | Video conference system and a method for providing an individual perspective view for a participant of a video conference between multiple participants |
| EP1589758A1 (fr) * | 2004-04-22 | 2005-10-26 | Alcatel | Système et méthode de vidéoconference |
| US7616226B2 (en) | 2004-04-22 | 2009-11-10 | Alcatel | Video conference system and a method for providing an individual perspective view for a participant of a video conference between multiple participants |
| US20060028476A1 (en) * | 2004-08-03 | 2006-02-09 | Irwin Sobel | Method and system for providing extensive coverage of an object using virtual cameras |
| US20060045276A1 (en) * | 2004-09-01 | 2006-03-02 | Fujitsu Limited | Stereophonic reproducing method, communication apparatus and computer-readable storage medium |
| US20060092270A1 (en) * | 2004-11-04 | 2006-05-04 | Sony Corporation | Kinesiological model-based gestural augmentation of voice communication |
| US7271825B2 (en) * | 2004-11-04 | 2007-09-18 | Sony Corporation | Kinesiological model-based gestural augmentation of voice communication |
| US20060132605A1 (en) * | 2004-12-17 | 2006-06-22 | Watanabe Jun-Ichiro | Image providing service system |
| US7479987B2 (en) * | 2004-12-17 | 2009-01-20 | Hitachi, Ltd. | Image providing service system |
| US7884848B2 (en) * | 2005-05-25 | 2011-02-08 | Ginther Mark E | Viewing environment and recording system |
| US20060268102A1 (en) * | 2005-05-25 | 2006-11-30 | Ginther Mark E | Viewing environment and recording system |
| US20070171275A1 (en) * | 2006-01-24 | 2007-07-26 | Kenoyer Michael L | Three Dimensional Videoconferencing |
| US8472415B2 (en) | 2006-03-06 | 2013-06-25 | Cisco Technology, Inc. | Performance optimization with integrated mobility and MPLS |
| US7679639B2 (en) * | 2006-04-20 | 2010-03-16 | Cisco Technology, Inc. | System and method for enhancing eye gaze in a telepresence system |
| WO2007123960A3 (fr) * | 2006-04-20 | 2008-11-20 | Cisco Tech Inc | Système et procédé pour améliorer les regards dans un système de téléprésence |
| US20070263080A1 (en) * | 2006-04-20 | 2007-11-15 | Harrell Randy K | System and method for enhancing eye gaze in a telepresence system |
| US20100171808A1 (en) * | 2006-04-20 | 2010-07-08 | Cisco Technology, Inc. | System and Method for Enhancing Eye Gaze in a Telepresence System |
| US20100214391A1 (en) * | 2006-04-20 | 2010-08-26 | Cisco Technology, Inc. | System and Method for Providing Location Specific Sound in a Telepresence System |
| US8427523B2 (en) * | 2006-04-20 | 2013-04-23 | Cisco Technology, Inc. | System and method for enhancing eye gaze in a telepresence system |
| US20070263079A1 (en) * | 2006-04-20 | 2007-11-15 | Graham Philip R | System and method for providing location specific sound in a telepresence system |
| US7692680B2 (en) | 2006-04-20 | 2010-04-06 | Cisco Technology, Inc. | System and method for providing location specific sound in a telepresence system |
| USD610105S1 (en) | 2006-07-10 | 2010-02-16 | Cisco Technology, Inc. | Telepresence system |
| US20080303901A1 (en) * | 2007-06-08 | 2008-12-11 | Variyath Girish S | Tracking an object |
| US8570373B2 (en) | 2007-06-08 | 2013-10-29 | Cisco Technology, Inc. | Tracking an object utilizing location information associated with a wireless device |
| US8797377B2 (en) | 2008-02-14 | 2014-08-05 | Cisco Technology, Inc. | Method and system for videoconference configuration |
| US8355041B2 (en) | 2008-02-14 | 2013-01-15 | Cisco Technology, Inc. | Telepresence system for 360 degree video conferencing |
| US8319819B2 (en) | 2008-03-26 | 2012-11-27 | Cisco Technology, Inc. | Virtual round-table videoconference |
| US8390667B2 (en) | 2008-04-15 | 2013-03-05 | Cisco Technology, Inc. | Pop-up PIP for people not in picture |
| US7840638B2 (en) | 2008-06-27 | 2010-11-23 | Microsoft Corporation | Participant positioning in multimedia conferencing |
| US20090327418A1 (en) * | 2008-06-27 | 2009-12-31 | Microsoft Corporation | Participant positioning in multimedia conferencing |
| US20100005028A1 (en) * | 2008-07-07 | 2010-01-07 | International Business Machines Corporation | Method and apparatus for interconnecting a plurality of virtual world environments |
| US20100013738A1 (en) * | 2008-07-15 | 2010-01-21 | Edward Covannon | Image capture and display configuration |
| US8694658B2 (en) | 2008-09-19 | 2014-04-08 | Cisco Technology, Inc. | System and method for enabling communication sessions in a network environment |
| US20100123770A1 (en) * | 2008-11-20 | 2010-05-20 | Friel Joseph T | Multiple video camera processing for teleconferencing |
| US8358328B2 (en) | 2008-11-20 | 2013-01-22 | Cisco Technology, Inc. | Multiple video camera processing for teleconferencing |
| US8477175B2 (en) | 2009-03-09 | 2013-07-02 | Cisco Technology, Inc. | System and method for providing three dimensional imaging in a network environment |
| US8659637B2 (en) | 2009-03-09 | 2014-02-25 | Cisco Technology, Inc. | System and method for providing three dimensional video conferencing in a network environment |
| US20100225735A1 (en) * | 2009-03-09 | 2010-09-09 | Cisco Technology, Inc. | System and method for providing three dimensional imaging in a network environment |
| US8659639B2 (en) | 2009-05-29 | 2014-02-25 | Cisco Technology, Inc. | System and method for extending communications between participants in a conferencing environment |
| US9204096B2 (en) | 2009-05-29 | 2015-12-01 | Cisco Technology, Inc. | System and method for extending communications between participants in a conferencing environment |
| US9082297B2 (en) | 2009-08-11 | 2015-07-14 | Cisco Technology, Inc. | System and method for verifying parameters in an audiovisual environment |
| US9225916B2 (en) | 2010-03-18 | 2015-12-29 | Cisco Technology, Inc. | System and method for enhancing video images in a conferencing environment |
| USD636747S1 (en) | 2010-03-21 | 2011-04-26 | Cisco Technology, Inc. | Video unit with integrated features |
| USD637570S1 (en) | 2010-03-21 | 2011-05-10 | Cisco Technology, Inc. | Mounted video unit |
| USD653245S1 (en) | 2010-03-21 | 2012-01-31 | Cisco Technology, Inc. | Video unit with integrated features |
| USD637568S1 (en) | 2010-03-21 | 2011-05-10 | Cisco Technology, Inc. | Free-standing video unit |
| USD636359S1 (en) | 2010-03-21 | 2011-04-19 | Cisco Technology, Inc. | Video unit with integrated features |
| USD637569S1 (en) | 2010-03-21 | 2011-05-10 | Cisco Technology, Inc. | Mounted video unit |
| USD655279S1 (en) | 2010-03-21 | 2012-03-06 | Cisco Technology, Inc. | Video unit with integrated features |
| US9313452B2 (en) | 2010-05-17 | 2016-04-12 | Cisco Technology, Inc. | System and method for providing retracting optics in a video conferencing environment |
| US20120038626A1 (en) * | 2010-08-11 | 2012-02-16 | Kim Jonghwan | Method for editing three-dimensional image and mobile terminal using the same |
| US8896655B2 (en) | 2010-08-31 | 2014-11-25 | Cisco Technology, Inc. | System and method for providing depth adaptive video conferencing |
| US8599934B2 (en) | 2010-09-08 | 2013-12-03 | Cisco Technology, Inc. | System and method for skip coding during video conferencing in a network environment |
| US8599865B2 (en) | 2010-10-26 | 2013-12-03 | Cisco Technology, Inc. | System and method for provisioning flows in a mobile network environment |
| US9331948B2 (en) | 2010-10-26 | 2016-05-03 | Cisco Technology, Inc. | System and method for provisioning flows in a mobile network environment |
| US8699457B2 (en) | 2010-11-03 | 2014-04-15 | Cisco Technology, Inc. | System and method for managing flows in a mobile network environment |
| US9143725B2 (en) | 2010-11-15 | 2015-09-22 | Cisco Technology, Inc. | System and method for providing enhanced graphics in a video environment |
| US8902244B2 (en) | 2010-11-15 | 2014-12-02 | Cisco Technology, Inc. | System and method for providing enhanced graphics in a video environment |
| US8730297B2 (en) | 2010-11-15 | 2014-05-20 | Cisco Technology, Inc. | System and method for providing camera functions in a video environment |
| US9338394B2 (en) | 2010-11-15 | 2016-05-10 | Cisco Technology, Inc. | System and method for providing enhanced audio in a video environment |
| US8542264B2 (en) | 2010-11-18 | 2013-09-24 | Cisco Technology, Inc. | System and method for managing optics in a video environment |
| US8723914B2 (en) | 2010-11-19 | 2014-05-13 | Cisco Technology, Inc. | System and method for providing enhanced video processing in a network environment |
| US9111138B2 (en) | 2010-11-30 | 2015-08-18 | Cisco Technology, Inc. | System and method for gesture interface control |
| USD678894S1 (en) | 2010-12-16 | 2013-03-26 | Cisco Technology, Inc. | Display screen with graphical user interface |
| USD678307S1 (en) | 2010-12-16 | 2013-03-19 | Cisco Technology, Inc. | Display screen with graphical user interface |
| USD678308S1 (en) | 2010-12-16 | 2013-03-19 | Cisco Technology, Inc. | Display screen with graphical user interface |
| USD678320S1 (en) | 2010-12-16 | 2013-03-19 | Cisco Technology, Inc. | Display screen with graphical user interface |
| USD682864S1 (en) | 2010-12-16 | 2013-05-21 | Cisco Technology, Inc. | Display screen with graphical user interface |
| USD682294S1 (en) | 2010-12-16 | 2013-05-14 | Cisco Technology, Inc. | Display screen with graphical user interface |
| USD682293S1 (en) | 2010-12-16 | 2013-05-14 | Cisco Technology, Inc. | Display screen with graphical user interface |
| USD682854S1 (en) | 2010-12-16 | 2013-05-21 | Cisco Technology, Inc. | Display screen for graphical user interface |
| US20120192088A1 (en) * | 2011-01-20 | 2012-07-26 | Avaya Inc. | Method and system for physical mapping in a virtual world |
| US8692862B2 (en) | 2011-02-28 | 2014-04-08 | Cisco Technology, Inc. | System and method for selection of video data in a video conference environment |
| US8670019B2 (en) | 2011-04-28 | 2014-03-11 | Cisco Technology, Inc. | System and method for providing enhanced eye gaze in a video conferencing environment |
| US8786631B1 (en) | 2011-04-30 | 2014-07-22 | Cisco Technology, Inc. | System and method for transferring transparency information in a video environment |
| US8934026B2 (en) | 2011-05-12 | 2015-01-13 | Cisco Technology, Inc. | System and method for video coding in a dynamic environment |
| US8947493B2 (en) | 2011-11-16 | 2015-02-03 | Cisco Technology, Inc. | System and method for alerting a participant in a video conference |
| US8682087B2 (en) | 2011-12-19 | 2014-03-25 | Cisco Technology, Inc. | System and method for depth-guided image filtering in a video conference environment |
| US20130250036A1 (en) * | 2012-03-23 | 2013-09-26 | Polycom, Inc. | Method and System for Determining Reference Points in Video Image Frames |
| US9386276B2 (en) * | 2012-03-23 | 2016-07-05 | Polycom, Inc. | Method and system for determining reference points in video image frames |
| CN104685858A (zh) * | 2012-09-28 | 2015-06-03 | 阿尔卡特朗讯 | 沉浸式视频会议方法和系统 |
| US9432625B2 (en) | 2012-09-28 | 2016-08-30 | Alcatel Lucent | Immersive videoconference method and system |
| EP2713593A1 (fr) | 2012-09-28 | 2014-04-02 | Alcatel Lucent, S.A. | Procédé et système de vidéoconférence immersive |
| WO2014048686A1 (fr) | 2012-09-28 | 2014-04-03 | Alcatel Lucent | Procédé et système de vidéoconférence immersive |
| US9681154B2 (en) | 2012-12-06 | 2017-06-13 | Patent Capital Group | System and method for depth-guided filtering in a video conference environment |
| US9117200B2 (en) | 2013-01-10 | 2015-08-25 | Westerngeco L.L.C. | Methods and computing systems for geosciences and petro-technical collaboration |
| US12111440B2 (en) | 2013-01-10 | 2024-10-08 | Schlumberger Technology Corporation | Methods and computing systems for geosciences and petro-technical collaboration |
| US11169302B2 (en) | 2013-01-10 | 2021-11-09 | Schlumberger Technology Corporation | Methods and computing systems for geosciences and petro-technical collaboration |
| EP3514746A1 (fr) | 2013-01-10 | 2019-07-24 | Westerngeco LLC | Procédés et systèmes informatiques pour géosciences et collaboration pétrotechnique |
| US8957940B2 (en) | 2013-03-11 | 2015-02-17 | Cisco Technology, Inc. | Utilizing a smart camera system for immersive telepresence |
| US9369628B2 (en) | 2013-03-11 | 2016-06-14 | Cisco Technology, Inc. | Utilizing a smart camera system for immersive telepresence |
| US11113983B1 (en) * | 2013-03-15 | 2021-09-07 | Study Social, Inc. | Video presentation, digital compositing, and streaming techniques implemented via a computer network |
| US11151889B2 (en) | 2013-03-15 | 2021-10-19 | Study Social Inc. | Video presentation, digital compositing, and streaming techniques implemented via a computer network |
| US9843621B2 (en) | 2013-05-17 | 2017-12-12 | Cisco Technology, Inc. | Calendaring activities based on communication processing |
| US10674220B2 (en) | 2013-05-30 | 2020-06-02 | Sony Corporation | Display control device and display control method |
| US20160134938A1 (en) * | 2013-05-30 | 2016-05-12 | Sony Corporation | Display control device, display control method, and computer program |
| US11178462B2 (en) | 2013-05-30 | 2021-11-16 | Sony Corporation | Display control device and display control method |
| US10013805B2 (en) | 2014-01-24 | 2018-07-03 | Avaya Inc. | Control of enhanced communication between remote participants using augmented and virtual reality |
| US20150213650A1 (en) * | 2014-01-24 | 2015-07-30 | Avaya Inc. | Presentation of enhanced communication between remote participants using augmented and virtual reality |
| US9959676B2 (en) * | 2014-01-24 | 2018-05-01 | Avaya Inc. | Presentation of enhanced communication between remote participants using augmented and virtual reality |
| US9524588B2 (en) | 2014-01-24 | 2016-12-20 | Avaya Inc. | Enhanced communication between remote participants using augmented and virtual reality |
| WO2018116253A1 (fr) * | 2016-12-21 | 2018-06-28 | Interaptix Inc. | Système et procédé de téléprésence |
| US12149671B2 (en) | 2016-12-21 | 2024-11-19 | Interaptix Inc. | Telepresence system and method |
| US10825218B2 (en) | 2017-04-25 | 2020-11-03 | Beyond Imagination Inc. | Multi-user and multi-surrogate virtual encounters |
| US11810219B2 (en) | 2017-04-25 | 2023-11-07 | Beyond Imagination Inc. | Multi-user and multi-surrogate virtual encounters |
| US10223821B2 (en) | 2017-04-25 | 2019-03-05 | Beyond Imagination Inc. | Multi-user and multi-surrogate virtual encounters |
| US20200162698A1 (en) * | 2018-11-20 | 2020-05-21 | International Business Machines Corporation | Smart contact lens based collaborative video conferencing |
| US10952006B1 (en) | 2020-10-20 | 2021-03-16 | Katmai Tech Holdings LLC | Adjusting relative left-right sound to provide sense of an avatar's position in a virtual space, and applications thereof |
| US11095857B1 (en) | 2020-10-20 | 2021-08-17 | Katmai Tech Holdings LLC | Presenter mode in a three-dimensional virtual conference space, and applications thereof |
| US11290688B1 (en) | 2020-10-20 | 2022-03-29 | Katmai Tech Holdings LLC | Web-based videoconference virtual environment with navigable avatars, and applications thereof |
| US11457178B2 (en) | 2020-10-20 | 2022-09-27 | Katmai Tech Inc. | Three-dimensional modeling inside a virtual video conferencing environment with a navigable avatar, and applications thereof |
| US11076128B1 (en) | 2020-10-20 | 2021-07-27 | Katmai Tech Holdings LLC | Determining video stream quality based on relative position in a virtual space, and applications thereof |
| US11070768B1 (en) | 2020-10-20 | 2021-07-20 | Katmai Tech Holdings LLC | Volume areas in a three-dimensional virtual conference space, and applications thereof |
| US12081908B2 (en) | 2020-10-20 | 2024-09-03 | Katmai Tech Inc | Three-dimensional modeling inside a virtual video conferencing environment with a navigable avatar, and applications thereof |
| US10979672B1 (en) | 2020-10-20 | 2021-04-13 | Katmai Tech Holdings LLC | Web-based videoconference virtual environment with navigable avatars, and applications thereof |
| US11184362B1 (en) | 2021-05-06 | 2021-11-23 | Katmai Tech Holdings LLC | Securing private audio in a virtual conference, and applications thereof |
| US11743430B2 (en) | 2021-05-06 | 2023-08-29 | Katmai Tech Inc. | Providing awareness of who can hear audio in a virtual conference, and applications thereof |
| US11928774B2 (en) | 2022-07-20 | 2024-03-12 | Katmai Tech Inc. | Multi-screen presentation in a virtual videoconferencing environment |
| US12009938B2 (en) | 2022-07-20 | 2024-06-11 | Katmai Tech Inc. | Access control in zones |
| US11651108B1 (en) | 2022-07-20 | 2023-05-16 | Katmai Tech Inc. | Time access control in virtual environment application |
| US12022235B2 (en) | 2022-07-20 | 2024-06-25 | Katmai Tech Inc. | Using zones in a three-dimensional virtual environment for limiting audio and video |
| US11876630B1 (en) | 2022-07-20 | 2024-01-16 | Katmai Tech Inc. | Architecture to control zones |
| US11741664B1 (en) | 2022-07-21 | 2023-08-29 | Katmai Tech Inc. | Resituating virtual cameras and avatars in a virtual environment |
| US12340461B2 (en) | 2022-07-21 | 2025-06-24 | Katmai Tech Inc. | Resituating virtual cameras and avatars in a virtual environment |
| US11700354B1 (en) | 2022-07-21 | 2023-07-11 | Katmai Tech Inc. | Resituating avatars in a virtual environment |
| US11956571B2 (en) | 2022-07-28 | 2024-04-09 | Katmai Tech Inc. | Scene freezing and unfreezing |
| US11711494B1 (en) | 2022-07-28 | 2023-07-25 | Katmai Tech Inc. | Automatic instancing for efficient rendering of three-dimensional virtual environment |
| US11682164B1 (en) | 2022-07-28 | 2023-06-20 | Katmai Tech Inc. | Sampling shadow maps at an offset |
| US11776203B1 (en) | 2022-07-28 | 2023-10-03 | Katmai Tech Inc. | Volumetric scattering effect in a three-dimensional virtual environment with navigable video avatars |
| US11593989B1 (en) | 2022-07-28 | 2023-02-28 | Katmai Tech Inc. | Efficient shadows for alpha-mapped models |
| US11562531B1 (en) | 2022-07-28 | 2023-01-24 | Katmai Tech Inc. | Cascading shadow maps in areas of a three-dimensional environment |
| US11704864B1 (en) | 2022-07-28 | 2023-07-18 | Katmai Tech Inc. | Static rendering for a combination of background and foreground objects |
| US12368821B2 (en) | 2022-07-28 | 2025-07-22 | Katmai Tech Inc. | Optimizing physics for static objects in a three-dimensional virtual environment |
| US11748939B1 (en) | 2022-09-13 | 2023-09-05 | Katmai Tech Inc. | Selecting a point to navigate video avatars in a three-dimensional environment |
| US12141913B2 (en) | 2022-09-13 | 2024-11-12 | Katmai Tech Inc. | Selecting a point to navigate video avatars in a three-dimensional environment |
Also Published As
| Publication number | Publication date |
|---|---|
| CA2462765A1 (fr) | 2003-04-10 |
| WO2003030535A1 (fr) | 2003-04-10 |
| US20030067536A1 (en) | 2003-04-10 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6583808B2 (en) | Method and system for stereo videoconferencing | |
| Zhang et al. | Viewport: A distributed, immersive teleconferencing system with infrared dot pattern | |
| Gibbs et al. | Teleport–towards immersive copresence | |
| US20170237941A1 (en) | Realistic viewing and interaction with remote objects or persons during telepresence videoconferencing | |
| US6836286B1 (en) | Method and apparatus for producing images in a virtual space, and image pickup system for use therein | |
| US20160269685A1 (en) | Video interaction between physical locations | |
| JP7732453B2 (ja) | 情報処理装置、情報処理方法、及び、プログラム | |
| CN115639976B (zh) | 一种虚拟现实内容多模式多角度同步展示方法及系统 | |
| KR101329057B1 (ko) | 다시점 입체 동영상 송신 장치 및 방법 | |
| CN105933637A (zh) | 一种视频通信的方法及系统 | |
| CN113891063B (zh) | 一种全息展示方法及装置 | |
| US7643064B1 (en) | Predictive video device system | |
| US20190139313A1 (en) | Device and method for sharing an immersion in a virtual environment | |
| McKay et al. | Membrane-mirror-based autostereoscopic display for tele-operation and teleprescence applications | |
| US20250063153A1 (en) | Autostereoscopic display device presenting 3d-view and 3d-sound | |
| CN115361521B (zh) | 一种全息影像视频会议系统 | |
| Lalioti et al. | Virtual meeting in cyberstage | |
| US20200252585A1 (en) | Systems, Algorithms, and Designs for See-through Experiences With Wide-Angle Cameras | |
| JP3088326B2 (ja) | 立体映像表示装置 | |
| Zhang et al. | Improving immersive experiences in telecommunication with motion parallax [applications corner] | |
| NL2030325B1 (en) | Scaling of three-dimensional content for an autostereoscopic display device | |
| Lalioti et al. | Meet. Me@ Cyberstage: towards immersive telepresence | |
| KR20190064394A (ko) | 360도 가상현실 분할 서클 비젼 표시 장치 및 방법 | |
| Kongsilp et al. | Communication portals: Immersive communication for everyday life | |
| CN120604507A (zh) | 用于在视频会议中缩放尺寸和深度的方法 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: NATIONAL RESEARCH COUNCIL OF CANADA, CANADA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BOULANGER, PIERRE;GODIN, GUY;REEL/FRAME:012229/0518;SIGNING DATES FROM 20010919 TO 20010925 |
|
| REMI | Maintenance fee reminder mailed | ||
| LAPS | Lapse for failure to pay maintenance fees | ||
| STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
| FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20070624 |