US5935852A - DNA molecules encoding mammalian cerberus-like proteins - Google Patents
DNA molecules encoding mammalian cerberus-like proteins Download PDFInfo
- Publication number
- US5935852A US5935852A US08/887,997 US88799797A US5935852A US 5935852 A US5935852 A US 5935852A US 88799797 A US88799797 A US 88799797A US 5935852 A US5935852 A US 5935852A
- Authority
- US
- United States
- Prior art keywords
- cerberus
- proteins
- cells
- protein
- mammalian
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 101000715732 Mus musculus Cerberus Proteins 0.000 title description 84
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 59
- 230000014509 gene expression Effects 0.000 claims description 48
- 239000013598 vector Substances 0.000 claims description 38
- 108020004414 DNA Proteins 0.000 claims description 28
- 150000001413 amino acids Chemical class 0.000 claims description 28
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 claims description 19
- 239000002773 nucleotide Substances 0.000 claims description 19
- 125000003729 nucleotide group Chemical group 0.000 claims description 19
- 230000000295 complement effect Effects 0.000 claims description 5
- 102000053602 DNA Human genes 0.000 claims 8
- 108090000623 proteins and genes Proteins 0.000 abstract description 125
- 102000004169 proteins and genes Human genes 0.000 abstract description 91
- 102100025745 Cerberus Human genes 0.000 description 145
- 101710010675 Cerberus Proteins 0.000 description 144
- 241000202252 Cerberus Species 0.000 description 93
- 210000004027 cell Anatomy 0.000 description 91
- 235000018102 proteins Nutrition 0.000 description 90
- 210000001519 tissue Anatomy 0.000 description 67
- 235000018417 cysteine Nutrition 0.000 description 48
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 46
- 239000000203 mixture Substances 0.000 description 42
- 230000000694 effects Effects 0.000 description 38
- 238000000034 method Methods 0.000 description 37
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 31
- 235000001014 amino acid Nutrition 0.000 description 31
- 125000003275 alpha amino acid group Chemical group 0.000 description 29
- 229940024606 amino acid Drugs 0.000 description 28
- 108090000765 processed proteins & peptides Proteins 0.000 description 28
- 230000015572 biosynthetic process Effects 0.000 description 26
- 230000004069 differentiation Effects 0.000 description 25
- 210000002569 neuron Anatomy 0.000 description 25
- 210000001130 astrocyte Anatomy 0.000 description 23
- 210000004498 neuroglial cell Anatomy 0.000 description 23
- 210000003061 neural cell Anatomy 0.000 description 22
- 229920001184 polypeptide Polymers 0.000 description 22
- 102000004196 processed proteins & peptides Human genes 0.000 description 22
- 241001529936 Murinae Species 0.000 description 21
- 125000000539 amino acid group Chemical group 0.000 description 21
- 210000004116 schwann cell Anatomy 0.000 description 20
- 239000012634 fragment Substances 0.000 description 18
- 230000012010 growth Effects 0.000 description 18
- 239000002299 complementary DNA Substances 0.000 description 17
- 238000012423 maintenance Methods 0.000 description 17
- 238000003556 assay Methods 0.000 description 16
- 210000000056 organ Anatomy 0.000 description 16
- 230000001537 neural effect Effects 0.000 description 15
- 230000035755 proliferation Effects 0.000 description 15
- 101100408682 Caenorhabditis elegans pmt-2 gene Proteins 0.000 description 13
- 230000001105 regulatory effect Effects 0.000 description 13
- 101100005912 Xenopus laevis cer1 gene Proteins 0.000 description 12
- 210000001900 endoderm Anatomy 0.000 description 12
- 102000005962 receptors Human genes 0.000 description 11
- 108020003175 receptors Proteins 0.000 description 11
- 230000001580 bacterial effect Effects 0.000 description 10
- 230000013595 glycosylation Effects 0.000 description 10
- 238000006206 glycosylation reaction Methods 0.000 description 10
- 108010007726 Bone Morphogenetic Proteins Proteins 0.000 description 9
- 102000007350 Bone Morphogenetic Proteins Human genes 0.000 description 9
- 108091026890 Coding region Proteins 0.000 description 9
- 108010022394 Threonine synthase Proteins 0.000 description 9
- 210000004556 brain Anatomy 0.000 description 9
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 9
- 102000004419 dihydrofolate reductase Human genes 0.000 description 9
- 210000004185 liver Anatomy 0.000 description 9
- 210000001161 mammalian embryo Anatomy 0.000 description 9
- 230000004048 modification Effects 0.000 description 9
- 238000012986 modification Methods 0.000 description 9
- 239000000523 sample Substances 0.000 description 9
- 241000894007 species Species 0.000 description 9
- 241000701161 unidentified adenovirus Species 0.000 description 9
- 229940112869 bone morphogenetic protein Drugs 0.000 description 8
- 239000003795 chemical substances by application Substances 0.000 description 8
- 230000006698 induction Effects 0.000 description 8
- 210000004962 mammalian cell Anatomy 0.000 description 8
- 108020004707 nucleic acids Proteins 0.000 description 8
- 102000039446 nucleic acids Human genes 0.000 description 8
- 150000007523 nucleic acids Chemical class 0.000 description 8
- 210000000952 spleen Anatomy 0.000 description 8
- 230000029663 wound healing Effects 0.000 description 8
- 108090000723 Insulin-Like Growth Factor I Proteins 0.000 description 7
- 241000699666 Mus <mouse, genus> Species 0.000 description 7
- 230000037430 deletion Effects 0.000 description 7
- 238000012217 deletion Methods 0.000 description 7
- 230000001939 inductive effect Effects 0.000 description 7
- 210000004072 lung Anatomy 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 239000011159 matrix material Substances 0.000 description 7
- 108020004999 messenger RNA Proteins 0.000 description 7
- 210000000496 pancreas Anatomy 0.000 description 7
- 108091034117 Oligonucleotide Proteins 0.000 description 6
- 206010052428 Wound Diseases 0.000 description 6
- 208000027418 Wounds and injury Diseases 0.000 description 6
- 241000269370 Xenopus <genus> Species 0.000 description 6
- 230000000747 cardiac effect Effects 0.000 description 6
- 210000000845 cartilage Anatomy 0.000 description 6
- -1 cysteine amino acid Chemical class 0.000 description 6
- 238000009396 hybridization Methods 0.000 description 6
- 239000003550 marker Substances 0.000 description 6
- 239000013612 plasmid Substances 0.000 description 6
- 230000008439 repair process Effects 0.000 description 6
- 230000017423 tissue regeneration Effects 0.000 description 6
- 102000018233 Fibroblast Growth Factor Human genes 0.000 description 5
- 108050007372 Fibroblast Growth Factor Proteins 0.000 description 5
- 241000282412 Homo Species 0.000 description 5
- 101000914195 Homo sapiens Cerberus Proteins 0.000 description 5
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 5
- 102100032352 Leukemia inhibitory factor Human genes 0.000 description 5
- 108090000581 Leukemia inhibitory factor Proteins 0.000 description 5
- 241001465754 Metazoa Species 0.000 description 5
- 102000004887 Transforming Growth Factor beta Human genes 0.000 description 5
- 108090001012 Transforming Growth Factor beta Proteins 0.000 description 5
- 210000000988 bone and bone Anatomy 0.000 description 5
- 210000002808 connective tissue Anatomy 0.000 description 5
- 230000029087 digestion Effects 0.000 description 5
- 210000002257 embryonic structure Anatomy 0.000 description 5
- 210000002615 epidermis Anatomy 0.000 description 5
- 229940126864 fibroblast growth factor Drugs 0.000 description 5
- 239000003102 growth factor Substances 0.000 description 5
- 239000001963 growth medium Substances 0.000 description 5
- 238000000338 in vitro Methods 0.000 description 5
- 230000001965 increasing effect Effects 0.000 description 5
- 238000002955 isolation Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 210000003716 mesoderm Anatomy 0.000 description 5
- 229960000485 methotrexate Drugs 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- ZRKFYGHZFMAOKI-QMGMOQQFSA-N tgfbeta Chemical compound C([C@H](NC(=O)[C@H](C(C)C)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCSC)C(C)C)[C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O)C1=CC=C(O)C=C1 ZRKFYGHZFMAOKI-QMGMOQQFSA-N 0.000 description 5
- 230000001225 therapeutic effect Effects 0.000 description 5
- 238000002560 therapeutic procedure Methods 0.000 description 5
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 4
- 102000014429 Insulin-like growth factor Human genes 0.000 description 4
- WNGVUZWBXZKQES-YUMQZZPRSA-N Leu-Ala-Gly Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](C)C(=O)NCC(O)=O WNGVUZWBXZKQES-YUMQZZPRSA-N 0.000 description 4
- 101150092239 OTX2 gene Proteins 0.000 description 4
- 108010076504 Protein Sorting Signals Proteins 0.000 description 4
- 241000700605 Viruses Species 0.000 description 4
- 230000004075 alteration Effects 0.000 description 4
- 230000033228 biological regulation Effects 0.000 description 4
- 210000004899 c-terminal region Anatomy 0.000 description 4
- 230000024245 cell differentiation Effects 0.000 description 4
- 230000004663 cell proliferation Effects 0.000 description 4
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 4
- 210000001612 chondrocyte Anatomy 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 230000018109 developmental process Effects 0.000 description 4
- 239000000539 dimer Substances 0.000 description 4
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 4
- 210000002308 embryonic cell Anatomy 0.000 description 4
- 210000001671 embryonic stem cell Anatomy 0.000 description 4
- 239000003623 enhancer Substances 0.000 description 4
- 239000013604 expression vector Substances 0.000 description 4
- 108010063718 gamma-glutamylaspartic acid Proteins 0.000 description 4
- 210000002216 heart Anatomy 0.000 description 4
- 210000005003 heart tissue Anatomy 0.000 description 4
- 238000001727 in vivo Methods 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 108010057821 leucylproline Proteins 0.000 description 4
- 238000000520 microinjection Methods 0.000 description 4
- 210000003205 muscle Anatomy 0.000 description 4
- 210000001020 neural plate Anatomy 0.000 description 4
- 210000005084 renal tissue Anatomy 0.000 description 4
- 230000010076 replication Effects 0.000 description 4
- 210000000130 stem cell Anatomy 0.000 description 4
- 210000002784 stomach Anatomy 0.000 description 4
- 210000002435 tendon Anatomy 0.000 description 4
- 108010073969 valyllysine Proteins 0.000 description 4
- 108010059616 Activins Proteins 0.000 description 3
- 208000024827 Alzheimer disease Diseases 0.000 description 3
- 108010054576 Deoxyribonuclease EcoRI Proteins 0.000 description 3
- 241000238631 Hexapoda Species 0.000 description 3
- 108010004250 Inhibins Proteins 0.000 description 3
- 102000002746 Inhibins Human genes 0.000 description 3
- 241000699670 Mus sp. Species 0.000 description 3
- 230000004988 N-glycosylation Effects 0.000 description 3
- 241000051107 Paraechinus aethiopicus Species 0.000 description 3
- 208000018737 Parkinson disease Diseases 0.000 description 3
- 208000026062 Tissue disease Diseases 0.000 description 3
- 102000006747 Transforming Growth Factor alpha Human genes 0.000 description 3
- 101800004564 Transforming growth factor alpha Proteins 0.000 description 3
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 3
- 239000000488 activin Substances 0.000 description 3
- 229960000723 ampicillin Drugs 0.000 description 3
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 3
- 210000004958 brain cell Anatomy 0.000 description 3
- 210000005013 brain tissue Anatomy 0.000 description 3
- 230000010261 cell growth Effects 0.000 description 3
- 239000004568 cement Substances 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 210000004039 endoderm cell Anatomy 0.000 description 3
- 239000012091 fetal bovine serum Substances 0.000 description 3
- 238000001415 gene therapy Methods 0.000 description 3
- 210000004907 gland Anatomy 0.000 description 3
- 125000003630 glycyl group Chemical group [H]N([H])C([H])([H])C(*)=O 0.000 description 3
- 239000000893 inhibin Substances 0.000 description 3
- 230000002401 inhibitory effect Effects 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 210000003734 kidney Anatomy 0.000 description 3
- 238000002703 mutagenesis Methods 0.000 description 3
- 231100000350 mutagenesis Toxicity 0.000 description 3
- 210000005036 nerve Anatomy 0.000 description 3
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 3
- 210000001811 primitive streak Anatomy 0.000 description 3
- 210000004129 prosencephalon Anatomy 0.000 description 3
- 108091008146 restriction endonucleases Proteins 0.000 description 3
- 238000010561 standard procedure Methods 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- 230000000451 tissue damage Effects 0.000 description 3
- 231100000827 tissue damage Toxicity 0.000 description 3
- VBEQCZHXXJYVRD-GACYYNSASA-N uroanthelone Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)C(C)C)[C@@H](C)O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CCSC)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)CNC(=O)CNC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CS)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CS)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(N)=O)C(C)C)[C@@H](C)CC)C1=CC=C(O)C=C1 VBEQCZHXXJYVRD-GACYYNSASA-N 0.000 description 3
- UBWXUGDQUBIEIZ-UHFFFAOYSA-N (13-methyl-3-oxo-2,6,7,8,9,10,11,12,14,15,16,17-dodecahydro-1h-cyclopenta[a]phenanthren-17-yl) 3-phenylpropanoate Chemical compound CC12CCC(C3CCC(=O)C=C3CC3)C3C1CCC2OC(=O)CCC1=CC=CC=C1 UBWXUGDQUBIEIZ-UHFFFAOYSA-N 0.000 description 2
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 2
- 102000005606 Activins Human genes 0.000 description 2
- KIUYPHAMDKDICO-WHFBIAKZSA-N Ala-Asp-Gly Chemical compound C[C@H](N)C(=O)N[C@@H](CC(O)=O)C(=O)NCC(O)=O KIUYPHAMDKDICO-WHFBIAKZSA-N 0.000 description 2
- GRPHQEMIFDPKOE-HGNGGELXSA-N Ala-His-Glu Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](CCC(O)=O)C(O)=O GRPHQEMIFDPKOE-HGNGGELXSA-N 0.000 description 2
- BIOCIVSVEDFKDJ-GUBZILKMSA-N Arg-Arg-Asp Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(O)=O BIOCIVSVEDFKDJ-GUBZILKMSA-N 0.000 description 2
- AUFHLLPVPSMEOG-YUMQZZPRSA-N Arg-Gly-Glu Chemical compound NC(N)=NCCC[C@H](N)C(=O)NCC(=O)N[C@@H](CCC(O)=O)C(O)=O AUFHLLPVPSMEOG-YUMQZZPRSA-N 0.000 description 2
- PHHRSPBBQUFULD-UWVGGRQHSA-N Arg-Gly-Lys Chemical compound C(CCN)C[C@@H](C(=O)O)NC(=O)CNC(=O)[C@H](CCCN=C(N)N)N PHHRSPBBQUFULD-UWVGGRQHSA-N 0.000 description 2
- UHFUZWSZQKMDSX-DCAQKATOSA-N Arg-Leu-Asn Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)O)NC(=O)[C@H](CCCN=C(N)N)N UHFUZWSZQKMDSX-DCAQKATOSA-N 0.000 description 2
- NGTYEHIRESTSRX-UWVGGRQHSA-N Arg-Lys-Gly Chemical compound NCCCC[C@@H](C(=O)NCC(O)=O)NC(=O)[C@@H](N)CCCN=C(N)N NGTYEHIRESTSRX-UWVGGRQHSA-N 0.000 description 2
- PAPSMOYMQDWIOR-AVGNSLFASA-N Arg-Lys-Val Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C(C)C)C(O)=O PAPSMOYMQDWIOR-AVGNSLFASA-N 0.000 description 2
- XFXZKCRBBOVJKS-BVSLBCMMSA-N Arg-Phe-Trp Chemical compound C([C@H](NC(=O)[C@H](CCCN=C(N)N)N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(O)=O)C1=CC=CC=C1 XFXZKCRBBOVJKS-BVSLBCMMSA-N 0.000 description 2
- DAPLJWATMAXPPZ-CIUDSAMLSA-N Asn-Asn-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@@H](N)CC(N)=O DAPLJWATMAXPPZ-CIUDSAMLSA-N 0.000 description 2
- YRBGRUOSJROZEI-NHCYSSNCSA-N Asp-His-Val Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](C(C)C)C(O)=O YRBGRUOSJROZEI-NHCYSSNCSA-N 0.000 description 2
- QBJCJWAZOPCNIX-JPLJXNOCSA-N Asp-Leu-Phe-Val Chemical compound OC(=O)C[C@H](N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](C(=O)N[C@@H](C(C)C)C(O)=O)CC1=CC=CC=C1 QBJCJWAZOPCNIX-JPLJXNOCSA-N 0.000 description 2
- NZWDWXSWUQCNMG-GARJFASQSA-N Asp-Lys-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CCCCN)NC(=O)[C@H](CC(=O)O)N)C(=O)O NZWDWXSWUQCNMG-GARJFASQSA-N 0.000 description 2
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 2
- 101150052571 CERBERUS gene Proteins 0.000 description 2
- DGQJGBDBFVGLGL-ZKWXMUAHSA-N Cys-Val-Asp Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CC(=O)O)C(=O)O)NC(=O)[C@H](CS)N DGQJGBDBFVGLGL-ZKWXMUAHSA-N 0.000 description 2
- 102000004594 DNA Polymerase I Human genes 0.000 description 2
- 108010017826 DNA Polymerase I Proteins 0.000 description 2
- 241000588724 Escherichia coli Species 0.000 description 2
- 241001131785 Escherichia coli HB101 Species 0.000 description 2
- NLKVNZUFDPWPNL-YUMQZZPRSA-N Glu-Arg-Gly Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)NCC(O)=O NLKVNZUFDPWPNL-YUMQZZPRSA-N 0.000 description 2
- WRNAXCVRSBBKGS-BQBZGAKWSA-N Glu-Gly-Gln Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)NCC(=O)N[C@@H](CCC(N)=O)C(O)=O WRNAXCVRSBBKGS-BQBZGAKWSA-N 0.000 description 2
- ZALGPUWUVHOGAE-GVXVVHGQSA-N Glu-Val-His Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CC1=CN=CN1)C(=O)O)NC(=O)[C@H](CCC(=O)O)N ZALGPUWUVHOGAE-GVXVVHGQSA-N 0.000 description 2
- RLFSBAPJTYKSLG-WHFBIAKZSA-N Gly-Ala-Asp Chemical compound NCC(=O)N[C@@H](C)C(=O)N[C@@H](CC(O)=O)C(O)=O RLFSBAPJTYKSLG-WHFBIAKZSA-N 0.000 description 2
- KRRMJKMGWWXWDW-STQMWFEESA-N Gly-Arg-Phe Chemical compound NC(=N)NCCC[C@H](NC(=O)CN)C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 KRRMJKMGWWXWDW-STQMWFEESA-N 0.000 description 2
- MQVNVZUEPUIAFA-WDSKDSINSA-N Gly-Cys-Gln Chemical compound C(CC(=O)N)[C@@H](C(=O)O)NC(=O)[C@H](CS)NC(=O)CN MQVNVZUEPUIAFA-WDSKDSINSA-N 0.000 description 2
- VLIJYPMATZSOLL-YUMQZZPRSA-N Gly-Lys-Cys Chemical compound C(CCN)C[C@@H](C(=O)N[C@@H](CS)C(=O)O)NC(=O)CN VLIJYPMATZSOLL-YUMQZZPRSA-N 0.000 description 2
- IFHJOBKVXBESRE-YUMQZZPRSA-N Gly-Met-Gln Chemical compound CSCC[C@@H](C(=O)N[C@@H](CCC(=O)N)C(=O)O)NC(=O)CN IFHJOBKVXBESRE-YUMQZZPRSA-N 0.000 description 2
- WNGHUXFWEWTKAO-YUMQZZPRSA-N Gly-Ser-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@H](CO)NC(=O)CN WNGHUXFWEWTKAO-YUMQZZPRSA-N 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Natural products NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 239000004471 Glycine Substances 0.000 description 2
- CJGDTAHEMXLRMB-ULQDDVLXSA-N His-Arg-Phe Chemical compound [H]N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC1=CC=CC=C1)C(O)=O CJGDTAHEMXLRMB-ULQDDVLXSA-N 0.000 description 2
- 102100030634 Homeobox protein OTX2 Human genes 0.000 description 2
- 101000584400 Homo sapiens Homeobox protein OTX2 Proteins 0.000 description 2
- 102000004218 Insulin-Like Growth Factor I Human genes 0.000 description 2
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 2
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 2
- KWLWZYMNUZJKMZ-IHRRRGAJSA-N Leu-Pro-Leu Chemical compound CC(C)C[C@H](N)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CC(C)C)C(O)=O KWLWZYMNUZJKMZ-IHRRRGAJSA-N 0.000 description 2
- MVJRBCJCRYGCKV-GVXVVHGQSA-N Leu-Val-Gln Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCC(N)=O)C(O)=O MVJRBCJCRYGCKV-GVXVVHGQSA-N 0.000 description 2
- KFSALEZVQJYHCE-AVGNSLFASA-N Lys-Met-Val Chemical compound CC(C)[C@@H](C(=O)O)NC(=O)[C@H](CCSC)NC(=O)[C@H](CCCCN)N KFSALEZVQJYHCE-AVGNSLFASA-N 0.000 description 2
- QVTDVTONTRSQMF-WDCWCFNPSA-N Lys-Thr-Glu Chemical compound OC(=O)CC[C@@H](C(O)=O)NC(=O)[C@H]([C@H](O)C)NC(=O)[C@@H](N)CCCCN QVTDVTONTRSQMF-WDCWCFNPSA-N 0.000 description 2
- 101001060271 Mus musculus Fibroblast growth factor 4 Proteins 0.000 description 2
- KZNQNBZMBZJQJO-UHFFFAOYSA-N N-glycyl-L-proline Natural products NCC(=O)N1CCCC1C(O)=O KZNQNBZMBZJQJO-UHFFFAOYSA-N 0.000 description 2
- 101150079463 NBL1 gene Proteins 0.000 description 2
- 206010028980 Neoplasm Diseases 0.000 description 2
- 102000003982 Parathyroid hormone Human genes 0.000 description 2
- 108090000445 Parathyroid hormone Proteins 0.000 description 2
- MRNRMSDVVSKPGM-AVGNSLFASA-N Phe-Asn-Gln Chemical compound [H]N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(N)=O)C(O)=O MRNRMSDVVSKPGM-AVGNSLFASA-N 0.000 description 2
- 102000010780 Platelet-Derived Growth Factor Human genes 0.000 description 2
- 108010038512 Platelet-Derived Growth Factor Proteins 0.000 description 2
- VYWNORHENYEQDW-YUMQZZPRSA-N Pro-Gly-Glu Chemical compound OC(=O)CC[C@@H](C(O)=O)NC(=O)CNC(=O)[C@@H]1CCCN1 VYWNORHENYEQDW-YUMQZZPRSA-N 0.000 description 2
- FKLSMYYLJHYPHH-UWVGGRQHSA-N Pro-Gly-Leu Chemical compound [H]N1CCC[C@H]1C(=O)NCC(=O)N[C@@H](CC(C)C)C(O)=O FKLSMYYLJHYPHH-UWVGGRQHSA-N 0.000 description 2
- LXLFEIHKWGHJJB-XUXIUFHCSA-N Pro-Ile-Lys Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CCCCN)C(=O)O)NC(=O)[C@@H]1CCCN1 LXLFEIHKWGHJJB-XUXIUFHCSA-N 0.000 description 2
- FHJQROWZEJFZPO-SRVKXCTJSA-N Pro-Val-Val Chemical compound CC(C)[C@@H](C(O)=O)NC(=O)[C@H](C(C)C)NC(=O)[C@@H]1CCCN1 FHJQROWZEJFZPO-SRVKXCTJSA-N 0.000 description 2
- 108020005067 RNA Splice Sites Proteins 0.000 description 2
- 241000700159 Rattus Species 0.000 description 2
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 2
- LRZLZIUXQBIWTB-KATARQTJSA-N Ser-Lys-Thr Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)O)C(O)=O LRZLZIUXQBIWTB-KATARQTJSA-N 0.000 description 2
- HJAXVYLCKDPPDF-SRVKXCTJSA-N Ser-Phe-Cys Chemical compound C1=CC=C(C=C1)C[C@@H](C(=O)N[C@@H](CS)C(=O)O)NC(=O)[C@H](CO)N HJAXVYLCKDPPDF-SRVKXCTJSA-N 0.000 description 2
- KZPRPBLHYMZIMH-MXAVVETBSA-N Ser-Phe-Ile Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O KZPRPBLHYMZIMH-MXAVVETBSA-N 0.000 description 2
- FKYWFUYPVKLJLP-DCAQKATOSA-N Ser-Pro-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@@H]1CCCN1C(=O)[C@@H](N)CO FKYWFUYPVKLJLP-DCAQKATOSA-N 0.000 description 2
- 239000004098 Tetracycline Substances 0.000 description 2
- OQCXTUQTKQFDCX-HTUGSXCWSA-N Thr-Glu-Phe Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CCC(=O)O)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)O)N)O OQCXTUQTKQFDCX-HTUGSXCWSA-N 0.000 description 2
- QNCFWHZVRNXAKW-OEAJRASXSA-N Thr-Lys-Phe Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC1=CC=CC=C1)C(O)=O QNCFWHZVRNXAKW-OEAJRASXSA-N 0.000 description 2
- LECUEEHKUFYOOV-ZJDVBMNYSA-N Thr-Thr-Val Chemical compound CC(C)[C@@H](C(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@@H](N)[C@@H](C)O LECUEEHKUFYOOV-ZJDVBMNYSA-N 0.000 description 2
- QNXZCKMXHPULME-ZNSHCXBVSA-N Thr-Val-Pro Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](C(C)C)C(=O)N1CCC[C@@H]1C(=O)O)N)O QNXZCKMXHPULME-ZNSHCXBVSA-N 0.000 description 2
- 102000009618 Transforming Growth Factors Human genes 0.000 description 2
- 108010009583 Transforming Growth Factors Proteins 0.000 description 2
- UUIYFDAWNBSWPG-IHPCNDPISA-N Trp-Lys-Lys Chemical compound C1=CC=C2C(=C1)C(=CN2)C[C@@H](C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)O)N UUIYFDAWNBSWPG-IHPCNDPISA-N 0.000 description 2
- UEOOXDLMQZBPFR-ZKWXMUAHSA-N Val-Ala-Asn Chemical compound C[C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)O)NC(=O)[C@H](C(C)C)N UEOOXDLMQZBPFR-ZKWXMUAHSA-N 0.000 description 2
- SZTTYWIUCGSURQ-AUTRQRHGSA-N Val-Glu-Glu Chemical compound CC(C)[C@H](N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(O)=O SZTTYWIUCGSURQ-AUTRQRHGSA-N 0.000 description 2
- OQWNEUXPKHIEJO-NRPADANISA-N Val-Glu-Ser Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CCC(=O)O)C(=O)N[C@@H](CO)C(=O)O)N OQWNEUXPKHIEJO-NRPADANISA-N 0.000 description 2
- FTKXYXACXYOHND-XUXIUFHCSA-N Val-Ile-Leu Chemical compound CC(C)[C@H](N)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(C)C)C(O)=O FTKXYXACXYOHND-XUXIUFHCSA-N 0.000 description 2
- VSCIANXXVZOYOC-AVGNSLFASA-N Val-Pro-His Chemical compound CC(C)[C@@H](C(=O)N1CCC[C@H]1C(=O)N[C@@H](CC2=CN=CN2)C(=O)O)N VSCIANXXVZOYOC-AVGNSLFASA-N 0.000 description 2
- VVIZITNVZUAEMI-DLOVCJGASA-N Val-Val-Gln Chemical compound CC(C)[C@H](N)C(=O)N[C@@H](C(C)C)C(=O)N[C@H](C(O)=O)CCC(N)=O VVIZITNVZUAEMI-DLOVCJGASA-N 0.000 description 2
- KOSRFJWDECSPRO-UHFFFAOYSA-N alpha-L-glutamyl-L-glutamic acid Natural products OC(=O)CCC(N)C(=O)NC(CCC(O)=O)C(O)=O KOSRFJWDECSPRO-UHFFFAOYSA-N 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 108010009111 arginyl-glycyl-glutamic acid Proteins 0.000 description 2
- 108010043240 arginyl-leucyl-glycine Proteins 0.000 description 2
- 229960001230 asparagine Drugs 0.000 description 2
- 235000009582 asparagine Nutrition 0.000 description 2
- 108010077245 asparaginyl-proline Proteins 0.000 description 2
- 108010047857 aspartylglycine Proteins 0.000 description 2
- 230000004071 biological effect Effects 0.000 description 2
- 210000001109 blastomere Anatomy 0.000 description 2
- 230000006790 cellular biosynthetic process Effects 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 210000003169 central nervous system Anatomy 0.000 description 2
- 102000006533 chordin Human genes 0.000 description 2
- 108010008846 chordin Proteins 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 238000012258 culturing Methods 0.000 description 2
- 150000001945 cysteines Chemical class 0.000 description 2
- 101150118520 dan gene Proteins 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000003412 degenerative effect Effects 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000035475 disorder Diseases 0.000 description 2
- 230000013020 embryo development Effects 0.000 description 2
- 210000002242 embryoid body Anatomy 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 238000010353 genetic engineering Methods 0.000 description 2
- 108010050848 glycylleucine Proteins 0.000 description 2
- 108010077515 glycylproline Proteins 0.000 description 2
- 230000035876 healing Effects 0.000 description 2
- 210000002064 heart cell Anatomy 0.000 description 2
- 239000000833 heterodimer Substances 0.000 description 2
- 108010025306 histidylleucine Proteins 0.000 description 2
- 239000005556 hormone Substances 0.000 description 2
- 229940088597 hormone Drugs 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 238000003365 immunocytochemistry Methods 0.000 description 2
- 238000002513 implantation Methods 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 230000003834 intracellular effect Effects 0.000 description 2
- 238000002372 labelling Methods 0.000 description 2
- 210000003041 ligament Anatomy 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 229960004452 methionine Drugs 0.000 description 2
- 238000010369 molecular cloning Methods 0.000 description 2
- 230000035772 mutation Effects 0.000 description 2
- 230000006576 neuronal survival Effects 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 210000000963 osteoblast Anatomy 0.000 description 2
- 210000004409 osteocyte Anatomy 0.000 description 2
- 239000000199 parathyroid hormone Substances 0.000 description 2
- 229960001319 parathyroid hormone Drugs 0.000 description 2
- 108010083476 phenylalanyltryptophan Proteins 0.000 description 2
- 229920002401 polyacrylamide Polymers 0.000 description 2
- 230000008488 polyadenylation Effects 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000008929 regeneration Effects 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 210000001995 reticulocyte Anatomy 0.000 description 2
- 230000028327 secretion Effects 0.000 description 2
- 108010048818 seryl-histidine Proteins 0.000 description 2
- 230000004936 stimulating effect Effects 0.000 description 2
- 230000004083 survival effect Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229960002180 tetracycline Drugs 0.000 description 2
- 229930101283 tetracycline Natural products 0.000 description 2
- 235000019364 tetracycline Nutrition 0.000 description 2
- 150000003522 tetracyclines Chemical class 0.000 description 2
- 230000009772 tissue formation Effects 0.000 description 2
- 230000008467 tissue growth Effects 0.000 description 2
- 238000001890 transfection Methods 0.000 description 2
- 230000001131 transforming effect Effects 0.000 description 2
- 230000009261 transgenic effect Effects 0.000 description 2
- 238000002054 transplantation Methods 0.000 description 2
- 108010020532 tyrosyl-proline Proteins 0.000 description 2
- 210000005253 yeast cell Anatomy 0.000 description 2
- ZDSRFXVZVHSYMA-CMOCDZPBSA-N (2s)-2-[[(2s)-2-[[(2s)-2-[[(2s)-2-amino-3-(4-hydroxyphenyl)propanoyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]-4-carboxybutanoyl]amino]pentanedioic acid Chemical compound C([C@H](N)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(O)=O)C1=CC=C(O)C=C1 ZDSRFXVZVHSYMA-CMOCDZPBSA-N 0.000 description 1
- 102000007469 Actins Human genes 0.000 description 1
- 108010085238 Actins Proteins 0.000 description 1
- ZIWWTZWAKYBUOB-CIUDSAMLSA-N Ala-Asp-Leu Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(O)=O ZIWWTZWAKYBUOB-CIUDSAMLSA-N 0.000 description 1
- 241000269350 Anura Species 0.000 description 1
- 235000014469 Bacillus subtilis Nutrition 0.000 description 1
- 201000004569 Blindness Diseases 0.000 description 1
- 108010049931 Bone Morphogenetic Protein 2 Proteins 0.000 description 1
- 108010049951 Bone Morphogenetic Protein 3 Proteins 0.000 description 1
- 108010049976 Bone Morphogenetic Protein 5 Proteins 0.000 description 1
- 108010049974 Bone Morphogenetic Protein 6 Proteins 0.000 description 1
- 108010049870 Bone Morphogenetic Protein 7 Proteins 0.000 description 1
- 102100028726 Bone morphogenetic protein 10 Human genes 0.000 description 1
- 101710118482 Bone morphogenetic protein 10 Proteins 0.000 description 1
- 102000003928 Bone morphogenetic protein 15 Human genes 0.000 description 1
- 108090000349 Bone morphogenetic protein 15 Proteins 0.000 description 1
- 102100024506 Bone morphogenetic protein 2 Human genes 0.000 description 1
- 102100024504 Bone morphogenetic protein 3 Human genes 0.000 description 1
- 102100024505 Bone morphogenetic protein 4 Human genes 0.000 description 1
- 102100022526 Bone morphogenetic protein 5 Human genes 0.000 description 1
- 102100022525 Bone morphogenetic protein 6 Human genes 0.000 description 1
- 102100022544 Bone morphogenetic protein 7 Human genes 0.000 description 1
- 102100022545 Bone morphogenetic protein 8B Human genes 0.000 description 1
- 208000014644 Brain disease Diseases 0.000 description 1
- 101710132601 Capsid protein Proteins 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- 108020004705 Codon Proteins 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 208000032170 Congenital Abnormalities Diseases 0.000 description 1
- 206010010356 Congenital anomaly Diseases 0.000 description 1
- 108091035707 Consensus sequence Proteins 0.000 description 1
- RWVBNRYBHAGYSG-GUBZILKMSA-N Cys-Met-Val Chemical compound CC(C)[C@@H](C(=O)O)NC(=O)[C@H](CCSC)NC(=O)[C@H](CS)N RWVBNRYBHAGYSG-GUBZILKMSA-N 0.000 description 1
- ABLQPNMKLMFDQU-BIIVOSGPSA-N Cys-Ser-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CO)NC(=O)[C@H](CS)N)C(=O)O ABLQPNMKLMFDQU-BIIVOSGPSA-N 0.000 description 1
- 241000252212 Danio rerio Species 0.000 description 1
- 206010011878 Deafness Diseases 0.000 description 1
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 1
- 108090000204 Dipeptidase 1 Proteins 0.000 description 1
- 241000255581 Drosophila <fruit fly, genus> Species 0.000 description 1
- 101150059401 EGR2 gene Proteins 0.000 description 1
- 241000710188 Encephalomyocarditis virus Species 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 101800003838 Epidermal growth factor Proteins 0.000 description 1
- 102400001368 Epidermal growth factor Human genes 0.000 description 1
- 241000289659 Erinaceidae Species 0.000 description 1
- 241000620209 Escherichia coli DH5[alpha] Species 0.000 description 1
- 206010016654 Fibrosis Diseases 0.000 description 1
- 101150057182 GFAP gene Proteins 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 108700028146 Genetic Enhancer Elements Proteins 0.000 description 1
- 102100039289 Glial fibrillary acidic protein Human genes 0.000 description 1
- 101710193519 Glial fibrillary acidic protein Proteins 0.000 description 1
- QKWBEMCLYTYBNI-GVXVVHGQSA-N Gln-Lys-Val Chemical compound CC(C)[C@@H](C(O)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](N)CCC(N)=O QKWBEMCLYTYBNI-GVXVVHGQSA-N 0.000 description 1
- LKDIBBOKUAASNP-FXQIFTODSA-N Glu-Ala-Glu Chemical compound OC(=O)CC[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(O)=O LKDIBBOKUAASNP-FXQIFTODSA-N 0.000 description 1
- JJKKWYQVHRUSDG-GUBZILKMSA-N Glu-Ala-Lys Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCCN)C(O)=O JJKKWYQVHRUSDG-GUBZILKMSA-N 0.000 description 1
- FFALDIDGPLUDKV-ZDLURKLDSA-N Gly-Thr-Ser Chemical compound [H]NCC(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CO)C(O)=O FFALDIDGPLUDKV-ZDLURKLDSA-N 0.000 description 1
- 108700031316 Goosecoid Proteins 0.000 description 1
- 102000050057 Goosecoid Human genes 0.000 description 1
- 108010090290 Growth Differentiation Factor 2 Proteins 0.000 description 1
- 102100040898 Growth/differentiation factor 11 Human genes 0.000 description 1
- 101710194452 Growth/differentiation factor 11 Proteins 0.000 description 1
- 102100040892 Growth/differentiation factor 2 Human genes 0.000 description 1
- 102100035368 Growth/differentiation factor 6 Human genes 0.000 description 1
- 101710204281 Growth/differentiation factor 6 Proteins 0.000 description 1
- 102000010818 Hepatocyte Nuclear Factor 3-alpha Human genes 0.000 description 1
- 108010038661 Hepatocyte Nuclear Factor 3-alpha Proteins 0.000 description 1
- 101000762379 Homo sapiens Bone morphogenetic protein 4 Proteins 0.000 description 1
- 101000899368 Homo sapiens Bone morphogenetic protein 8B Proteins 0.000 description 1
- 108090000144 Human Proteins Proteins 0.000 description 1
- 102000003839 Human Proteins Human genes 0.000 description 1
- 101150017040 I gene Proteins 0.000 description 1
- VZIFYHYNQDIPLI-HJWJTTGWSA-N Ile-Arg-Phe Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CCCN=C(N)N)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)O)N VZIFYHYNQDIPLI-HJWJTTGWSA-N 0.000 description 1
- 102100026818 Inhibin beta E chain Human genes 0.000 description 1
- 102000048143 Insulin-Like Growth Factor II Human genes 0.000 description 1
- 108090001117 Insulin-Like Growth Factor II Proteins 0.000 description 1
- 108091092195 Intron Proteins 0.000 description 1
- 108091026898 Leader sequence (mRNA) Proteins 0.000 description 1
- 102000004058 Leukemia inhibitory factor Human genes 0.000 description 1
- TZHFJXDKXGZHEN-IHRRRGAJSA-N Met-His-Leu Chemical compound [H]N[C@@H](CCSC)C(=O)N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](CC(C)C)C(O)=O TZHFJXDKXGZHEN-IHRRRGAJSA-N 0.000 description 1
- 101150114527 Nkx2-5 gene Proteins 0.000 description 1
- 230000004989 O-glycosylation Effects 0.000 description 1
- 208000001132 Osteoporosis Diseases 0.000 description 1
- 238000010222 PCR analysis Methods 0.000 description 1
- LLGTYVHITPVGKR-RYUDHWBXSA-N Phe-Gln-Gly Chemical compound [H]N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CCC(N)=O)C(=O)NCC(O)=O LLGTYVHITPVGKR-RYUDHWBXSA-N 0.000 description 1
- SSSFPISOZOLQNP-GUBZILKMSA-N Pro-Arg-Asp Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(O)=O SSSFPISOZOLQNP-GUBZILKMSA-N 0.000 description 1
- XYSXOCIWCPFOCG-IHRRRGAJSA-N Pro-Leu-Leu Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O XYSXOCIWCPFOCG-IHRRRGAJSA-N 0.000 description 1
- 102000002067 Protein Subunits Human genes 0.000 description 1
- 108010001267 Protein Subunits Proteins 0.000 description 1
- 241000589516 Pseudomonas Species 0.000 description 1
- WDXYVIIVDIDOSX-DCAQKATOSA-N Ser-Arg-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@@H](NC(=O)[C@@H](N)CO)CCCN=C(N)N WDXYVIIVDIDOSX-DCAQKATOSA-N 0.000 description 1
- XWCYBVBLJRWOFR-WDSKDSINSA-N Ser-Gln-Gly Chemical compound OC[C@H](N)C(=O)N[C@@H](CCC(N)=O)C(=O)NCC(O)=O XWCYBVBLJRWOFR-WDSKDSINSA-N 0.000 description 1
- FLONGDPORFIVQW-XGEHTFHBSA-N Ser-Pro-Thr Chemical compound C[C@@H](O)[C@@H](C(O)=O)NC(=O)[C@@H]1CCCN1C(=O)[C@@H](N)CO FLONGDPORFIVQW-XGEHTFHBSA-N 0.000 description 1
- 102000013275 Somatomedins Human genes 0.000 description 1
- NRUPKQSXTJNQGD-XGEHTFHBSA-N Thr-Cys-Arg Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O NRUPKQSXTJNQGD-XGEHTFHBSA-N 0.000 description 1
- DIPIPFHFLPTCLK-LOKLDPHHSA-N Thr-Gln-Pro Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CCC(=O)N)C(=O)N1CCC[C@@H]1C(=O)O)N)O DIPIPFHFLPTCLK-LOKLDPHHSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- 102000001742 Tumor Suppressor Proteins Human genes 0.000 description 1
- 108010040002 Tumor Suppressor Proteins Proteins 0.000 description 1
- 208000025865 Ulcer Diseases 0.000 description 1
- 108010037096 Xenopus Proteins Proteins 0.000 description 1
- 101100460507 Xenopus laevis nkx-2.5 gene Proteins 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 210000001789 adipocyte Anatomy 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- 230000004931 aggregating effect Effects 0.000 description 1
- 239000000556 agonist Substances 0.000 description 1
- 206010002026 amyotrophic lateral sclerosis Diseases 0.000 description 1
- 230000002491 angiogenic effect Effects 0.000 description 1
- 239000005557 antagonist Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000003140 astrocytic effect Effects 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 244000052616 bacterial pathogen Species 0.000 description 1
- 210000000227 basophil cell of anterior lobe of hypophysis Anatomy 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 102000006635 beta-lactamase Human genes 0.000 description 1
- 238000012742 biochemical analysis Methods 0.000 description 1
- 210000000625 blastula Anatomy 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 210000004413 cardiac myocyte Anatomy 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000021164 cell adhesion Effects 0.000 description 1
- 239000006143 cell culture medium Substances 0.000 description 1
- 230000012292 cell migration Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000002975 chemoattractant Substances 0.000 description 1
- 230000003399 chemotactic effect Effects 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 231100000895 deafness Toxicity 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- 235000015872 dietary supplement Nutrition 0.000 description 1
- 210000003981 ectoderm Anatomy 0.000 description 1
- 230000002900 effect on cell Effects 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 230000002124 endocrine Effects 0.000 description 1
- 210000001339 epidermal cell Anatomy 0.000 description 1
- 229940116977 epidermal growth factor Drugs 0.000 description 1
- 239000013613 expression plasmid Substances 0.000 description 1
- 210000002744 extracellular matrix Anatomy 0.000 description 1
- 239000012894 fetal calf serum Substances 0.000 description 1
- 230000004761 fibrosis Effects 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 210000001647 gastrula Anatomy 0.000 description 1
- 230000007045 gastrulation Effects 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 210000001654 germ layer Anatomy 0.000 description 1
- 210000005046 glial fibrillary acidic protein Anatomy 0.000 description 1
- 102000035122 glycosylated proteins Human genes 0.000 description 1
- 108091005608 glycosylated proteins Proteins 0.000 description 1
- 208000016354 hearing loss disease Diseases 0.000 description 1
- 230000001744 histochemical effect Effects 0.000 description 1
- 210000005260 human cell Anatomy 0.000 description 1
- 230000016784 immunoglobulin production Effects 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- ZPNFWUPYTFPOJU-LPYSRVMUSA-N iniprol Chemical compound C([C@H]1C(=O)NCC(=O)NCC(=O)N[C@H]2CSSC[C@H]3C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@H](C(N[C@H](C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC=4C=CC=CC=4)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CC=4C=CC=CC=4)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCCN)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC2=O)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC=2C=CC=CC=2)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H]2N(CCC2)C(=O)[C@@H](N)CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N2[C@@H](CCC2)C(=O)N2[C@@H](CCC2)C(=O)N[C@@H](CC=2C=CC(O)=CC=2)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N2[C@@H](CCC2)C(=O)N3)C(=O)NCC(=O)NCC(=O)N[C@@H](C)C(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@H](C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@H](C(=O)N1)C(C)C)[C@@H](C)O)[C@@H](C)CC)=O)[C@@H](C)CC)C1=CC=C(O)C=C1 ZPNFWUPYTFPOJU-LPYSRVMUSA-N 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 210000004153 islets of langerhan Anatomy 0.000 description 1
- 210000003292 kidney cell Anatomy 0.000 description 1
- 210000005265 lung cell Anatomy 0.000 description 1
- 238000007403 mPCR Methods 0.000 description 1
- 238000013160 medical therapy Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 210000001259 mesencephalon Anatomy 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 210000000663 muscle cell Anatomy 0.000 description 1
- 210000004165 myocardium Anatomy 0.000 description 1
- 210000000107 myocyte Anatomy 0.000 description 1
- 201000011682 nervous system cancer Diseases 0.000 description 1
- 230000003573 neuralizing effect Effects 0.000 description 1
- 230000007472 neurodevelopment Effects 0.000 description 1
- 230000000955 neuroendocrine Effects 0.000 description 1
- 108091027963 non-coding RNA Proteins 0.000 description 1
- 102000042567 non-coding RNA Human genes 0.000 description 1
- 210000003458 notochord Anatomy 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 230000000771 oncological effect Effects 0.000 description 1
- 201000008482 osteoarthritis Diseases 0.000 description 1
- 210000004681 ovum Anatomy 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000008194 pharmaceutical composition Substances 0.000 description 1
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000009696 proliferative response Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 230000002797 proteolythic effect Effects 0.000 description 1
- 210000001938 protoplast Anatomy 0.000 description 1
- 238000010188 recombinant method Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 206010039073 rheumatoid arthritis Diseases 0.000 description 1
- 210000001202 rhombencephalon Anatomy 0.000 description 1
- 231100000241 scar Toxicity 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 230000003248 secreting effect Effects 0.000 description 1
- 102000034285 signal transducing proteins Human genes 0.000 description 1
- 108091006024 signal transducing proteins Proteins 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 210000002027 skeletal muscle Anatomy 0.000 description 1
- 210000002460 smooth muscle Anatomy 0.000 description 1
- 210000002023 somite Anatomy 0.000 description 1
- 230000033451 somitogenesis Effects 0.000 description 1
- 210000000278 spinal cord Anatomy 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000008093 supporting effect Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 238000011200 topical administration Methods 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 108010068794 tyrosyl-tyrosyl-glutamyl-glutamic acid Proteins 0.000 description 1
- 231100000397 ulcer Toxicity 0.000 description 1
- 210000002438 upper gastrointestinal tract Anatomy 0.000 description 1
- 230000003827 upregulation Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 239000013603 viral vector Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/475—Growth factors; Growth regulators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/04—Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/16—Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/18—Drugs for disorders of the alimentary tract or the digestive system for pancreatic disorders, e.g. pancreatic enzymes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P13/00—Drugs for disorders of the urinary system
- A61P13/12—Drugs for disorders of the urinary system of the kidneys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/02—Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/02—Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/08—Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
- A61P19/10—Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease for osteoporosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P21/00—Drugs for disorders of the muscular or neuromuscular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/14—Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
- A61P25/16—Anti-Parkinson drugs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/28—Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
Definitions
- the present invention relates to novel members of the cerberus protein family, DNA encoding them, and processes for obtaining them.
- These proteins may be used to induce expression of factors in and/or differentiation of tissue and organs, and particularly, inducing formation, growth, differentiation, proliferation and/or maintenance of neural, endoderm and cardiac tissue.
- these proteins may be useful in the treatment of wounds, tumors, and in the enhancement and/or inhibition of cellular formation, growth, differentiation, proliferation and/or maintenance of other tissue and organs, for example, epidermal, pancreatic, liver, spleen, lung, kidney, brain and/or other tissue.
- These proteins may also be used for augmenting the activity of other tissue regenerating and differentiation factors, such as the BMPs.
- the protein has been named mammalian cerberus-like by the inventors.
- the inventors herein have discovered novel mammalian members of the cerberus family of proteins and have surprisingly discovered that members of the cerberus protein family are able to induce, enhance and/or inhibit the formation, growth, proliferation, differentiation, maintenance of neurons and/or related neural cells and tissues such as Schwann cells, glial cells and astrocytes. Accordingly, the present invention provides methods for inducing formation of neurons and/or related neural cells and tissues such as Schwann cells, glial cells and astrocytes, comprising administering to progenitor cells a composition comprising at least one protein which is a member of the cerberus protein family.
- the present invention relates to a family of proteins designated as cerberus, which appears to be a pioneer protein, with a 9 cysteine residue pattern, which is present in the embryo.
- cerberus mRNA is expressed at low levels in the unfertilized egg, and zygotic transcripts start accumulating at early gastrula. Expression continues during gastrulation and early neurulation, rapidly declining during neurulation. Importantly, cerberus expression starts about one hour after that of chordin, suggesting that cerberus could act downstream of the chordin signal.
- the cerberus domain of the organizer includes the leading edge of the most anterior organizer cells and extends into the lateral mesoderm. The leading edge gives rise to liver, pancreas and foregut in its midline, and the more lateral region gives rise to heart mesoderm at later stages of development.
- the composition may comprise a protein having the amino acid sequence of SEQUENCE ID NO:2 from amino acid 1, 18 to 24, 41, 85 to 91 or 162 to 241 or 272.
- the method comprises administering the composition to a patient in vivo.
- the method may comprise administering the composition to cells in vitro and recovering neurons and/or related neural cells and tissues such as Schwann cells, glial cells and astrocytes, which may subsequently be administered to a patient.
- the composition may further comprise a suitable carrier for administration.
- the present invention also provides novel DNA sequences encoding novel members of the cerberus protein family.
- the present invention provides novel DNA sequences encoding mammalian cerberus proteins such as murine and human cerberus.
- the nucleotide sequences, and the corresponding amino acid sequences encoded by these DNA sequences, are provided in the Sequence Listings.
- the present invention comprises isolated DNA sequence encoding a mammalian cerberus protein comprising a DNA sequence selected from the group consisting of: nucleotides #58, 109, 178, 313, 316, 319, 322, 325, 328, or 541 to #780 or 873 of SEQ ID NO: 1; or nucleotides encoding amino acids #1, 18, 41, 85 to 91 or 162 to #241 or 272 of SEQ ID NO: 2, as well as fragments and variants of the above sequences which are readily obtainable from the above and which maintain cerberus activity.
- the present invention further comprises sequences which hybridize to these sequences under stringent hybridization conditions and encode a protein which exhibits cerberus activity.
- mammalian cerberus protein as expressed by mammalian cells such as CHO cells, exists as a heterogeneous population of active species of cerberus protein with varying N-termini. Based in part upon the Von Heginje signal peptide prediction algorithm, the first 17 to 24 amino acids appear to be involved in signaling for the secretion of the mature peptide. It is expected that active species may optionally include the signal peptide and will include amino acid sequences beginning with amino acid residues #1, 18, 19, 20, 21, 22, 23, 24 or 25 of SEQ ID NO:2.
- DNA sequences encoding active mammalian cerberus proteins include those comprising nucleotides #109, 112, 115, 118, 121, 124, 127, 130 to #780 or 873 of SEQ ID NO: 1. Accordingly, active species of cerberus-like protein are expected to include those comprising amino acids #1, 18, 19, 20, 21, 22, 23, 24 or 25 to #241 or 272 of SEQ ID NO:2.
- cerberus and cerberus-like proteins may be proteolytically processed by cells to form further active species.
- putative proteolytic processing sites for cleavage which are typically characterized by the formula R-X-K/R-R, are found at amino acids 37 to 40 and 82 to 85 of SEQ ID NO: 2.
- DNA sequences encoding active mammalian cerberus proteins include those comprising nucleotides #178 or 313 to #780 or 873 of SEQ ID NO: 1.
- further active species of cerberus-like protein are expected to include those comprising amino acids #41 or 86 to #241 or 272 of SEQ ID NO: 2
- the present invention comprises a method of altering the regulation of genes in a patient in need of same comprising administering to said patient an effective amount of the above compositions.
- the alteration of regulation of neuronal genes may be accomplished by stimulating or inhibiting binding by cerberus proteins of receptor proteins.
- the mammalian cerberus and cerberus-like protein family may be capable of inducing formation of neural tissue.
- the present invention comprises vectors comprising the above DNA molecules in operative association with an expression control sequence therefor, as well as host cells transformed with these vectors.
- the present invention comprises methods for producing purified mammalian cerberus proteins, novel mammalian cerberus proteins, and compositions containing the mammalian cerberus proteins. These methods may comprise the steps of: culturing a host cell transformed with a DNA sequence encoding a mammalian cerberus protein such as described above; and recovering and purifying said mammalian cerberus protein from the culture medium.
- the present invention further comprises the purified mammalian cerberus polypeptide produced by the above methods, as well as purified mammalian cerberus polypeptides comprising an amino acid sequence encoded by the above DNA sequences.
- the proteins of the present invention may comprise the amino acid sequence from amino acid #1, 18, 19, 20, 21, 22, 23, 24, 86, 87, 88, 89, 90, 91 or 162 to #241 or 272 of SEQ ID NO:2; or a mammalian cerberus protein having a molecular weight of about 20-30 kd, said protein comprising the amino acid sequence of SEQ ID NO: 2 and having the ability to regulate the transcription of one or more genes.
- active cerberus-like protein is a mature peptide contemplated to comprise the amino acid sequence from amino acids 18 to 272 of SEQ ID NO:2 and have a molecular weight of about 28.6 kD.
- Another species of active cerberus-like protein is a cleaved peptide contemplated to comprise the amino acid sequence from amino acids 86 to 91 to 272 of SEQ ID NO:2, particularly from 90 to 272, and to have a molecular weight of about 20.7 kD.
- SEQ ID NO: 1 nucleotide sequence of mammalian cerberus DNA, particularly murine cerberus DNA
- SEQ ID NO: 2 amino acid sequence of the mammalian cerberus protein encoded by SEQ ID NO: 1.
- SEQ ID NO: 3 to 5 are consensus nucleotide sequences of probes to the cerberus and cerberus-like proteins.
- SEQ ID NO:6 contains the recognition site for the restriction endonuclease XhoI.
- SEQ ID NO:7 is a sequence including an XhoI recognition site.
- SEQ ID NO:8 is a portion of the EMC virus leader sequence.
- E. coli DH5 ⁇ strain transformed with pGIMCerb which comprises the mammalian cerberus coding sequence described in Sequence ID NO: 1 has been deposited with the American Type Culture Collection, 12301 Parklawn Drive, Rockville, Md. 20852, and has been accorded the ATCC accession number 98347.
- cerberus or “cerberus-like” are both used to signify the protein family which comprises the cerberus and cerberus-like proteins.
- cerberus or cerberus-like protein refers to mammalian cerberus and cerberus-like proteins, such as the murine or human cerberus proteins, and other proteins which share sequence homology to the highly conserved cysteine pattern of the C-terminal portion of the mammalian cerberus proteins.
- cerberus protein family is the murine cerberus-like protein, having the amino acid sequence specified in SEQUENCE ID NO:2, as well as homologues of this protein found in other species; and other proteins which are closely related structurally and/or functionally to murine cerberus. It is also expected that cerberus related proteins also exist in other species, including family members in Xenopus, and Drosophila, C. elegans, zebrafish, as well as in all manmnals, for example, rats, mice and humans.
- Cerberus or cerberus-like proteins also includes variants of the cerberus proteins, such as allelic variants or variants induced by mutagenesis or deletions, and fragments of cerberus proteins which variants and fragments retain cerberus activity.
- Cerberus and Cerberus-like are also used to signify the family of proteins sharing structural and/or functional similarity, including those proteins which are described further herein.
- cerberus or cerberus-like activity refers to one or more of the activities which are exhibited by the mammalian cerberus-like proteins of the present invention.
- cerberus or cerberus-like activity includes the ability to induce, enhance and/or inhibit the formation, growth, proliferation, differentiation, maintenance of neurons and/or related neural cells and tissues such as brain cells, Schwann cells, glial cells and astrocytes.
- Cerberus or cerberus-like activity also includes the ability to induce molecular markers of neuroendocrine or ectoderm tissue, such as OTX2, N-CAM, MASH, chromagranin, and AP2, as well as the ability to induce the formation of neurons and/or related neural cells and tissues such as brain cells, Schwann cells, glial cells and astrocytes.
- Cerberus or cerberus-like activity may also include the ability to regulate the interaction of ligands and their protein receptors.
- “Cerberus or cerberus-like activity” may further include the ability to regulate the formation, differentiation, proliferation and/or maintenance of other cells and/or tissue, for example connective tissue, organs and wound healing.
- cerberus or cerberus-like activity may include the ability to enhance and/or inhibit the formation, growth, proliferation, differentiation and/or maintenance of cardiac, spleen, liver, pancreas, stomach, kidney, lung and brain cells and tissue, as well as osteoblasts and bone, chondrocytes and cartilage, tendon, epidermis and muscle.
- Cerberus and cerberus-like activity also includes the activities of cerberus and cerberus-like protein in the assays described in the examples and specification herein.
- Cerberus and cerberus-like cDNA should be useful as a diagnostic tool (such as through use of antibodies in assays for proteins in cell lines or use of oligonucleotides as primers in a PCR test to amplify those with sequence similarities to the oligonucleotide primer, and to determine how much cerberus is present). Cerberus might act upon its target cells via its own receptor. Cerberus, therefore, may be useful for the isolation of that receptor. In addition, cerberus or its receptor should prove useful as a diagnostic probe for certain tumor types. Thus, cerberus, its receptor, or antibodies to either may be potent agonists or antagonists which may be clinically useful. In addition, complexes of cerberus and its receptor, cerberus and antibodies to it, or cerberus receptor and antibodies to it, may each be useful in a number of in vitro, ex vivo or clinical uses.
- the present invention also includes protein variants and functional fragments of the amino acid sequence of the mammalian cerberus protein shown in SEQ ID NO: 2 which retain cerberus activity.
- the present invention also includes antibodies to a purified mammalian cerberus protein such as the above.
- the compositions of the present invention comprise a therapeutic amount of at least one of the above mammalian cerberus proteins. It is expected that such protein variants and functional fragments of cerberus or cerberus-like proteins will include amino acid sequences which share significant homology with the amino acid sequence of SEQ ID NO: 2, most preferably at least 80% or 90% amino acid identity.
- variants and functional fragments which retain cerberus-like activity are expected to include those which retain the cysteine pattern found in the SEQ ID NO: 2.
- a truncated polypeptide comprising amino acids #162 to #241 of SEQ ID NO: 2 will retain the full 9 cysteine pattern found in the carboxy terminal portion of the sequence of SEQ ID NO: 2.
- the present invention comprises a method of altering the regulation of genes in a patient in need of same comprising administering to said patient an effective amount of the above compositions.
- the alteration of regulation of neuronal genes may be accomplished by stimulating or inhibiting binding of receptor proteins, for example, binding between the mammalian cerberus protein and its receptor protein.
- cerberus proteins may be capable of regulating the binding interaction of ligands to their receptor proteins, as well as the interaction of transcriptional factors on cells.
- the present invention also encompasses hybrid or fusion vectors comprising the coding DNA sequences of the present invention and other cerberus encoding sequences, linked to a tissue specific or inducible regulatory sequence, such as a promoter or operator.
- a tissue specific or inducible regulatory sequence such as a promoter or operator.
- the coding sequence for mammalian cerberus-like protein is operably linked to one or more promoters, enhancers and/or other regulatory elements from genes which are selectively expressed in neurons and/or related neural cells and tissues such as Schwann cells, glial cells and astrocytes.
- the promoter of the GFAP gene which is known to be expressed in astrocytes and neuronal cells
- the promoter of the OTX2 gene which is known to be expressed in the anterior brain
- the DNA sequence encoding mammalian cerberus may be operatively linked to one or more regulatory sequences from GFAP or OTX2 proteins, as well as other proteins which are selectively produced in neurons and/or related neural cells and tissues such as Schwann cells, glial cells and astrocytes.
- the coding sequence for mammalian cerberus-like protein is operably linked to the promoter isolated from other genes, organs or cells of interest.
- Vectors using other tissue-selective regulatory elements and inducible regulatory elements may also be useful for the selective or inducible expression of the mammalian cerberus-like proteins of the present invention.
- compositions containing a therapeutically effective amount of mammalian cerberus-like protein in a pharmaceutically acceptable vehicle or carrier.
- These compositions of the invention may be used in the formation of neurons and/or related neural cells and tissues such as Schwann cells, glial cells and astrocytes, as well as liver, pancreas, lung, heart, kidney, spleen, stomach, cardiac tissue and cells, as well as connective tissue and cells, including osteocytes, chondrocytes, myocytes, tendon cells, epidermal cells, and adipocytes.
- compositions may further be utilized in order to enhance and/or inhibit the formation, growth, proliferation, differentiation and/or maintenance of bone, osteoblasts, cartilage, chondrocytes, beta cells and other cell types typically found in the islets of Langerhans or other pancreatic cells, as well as other organ tissues such as epidermis, spleen, brain, lung and kidney tissue.
- the compositions comprising mammalian cerberus-like protein may be used to treat precursor or stem cells, such as endoderm cells, which are able to differentiate into cells which comprise differentiated tissue or organs, such as cardiac and neural cells, in order to enhance the formation, differentiation, proliferation and/or maintenance of such cells, tissue or organs.
- compositions may be used to regulate embryonic development, for instance, by affecting the development of embryonic cells and tissue into the endodermal phenotype.
- compositions of the invention may comprise, in addition to a mammalian cerberus-like protein, other therapeutically useful agents including growth factors such as epidermal growth factor (EGF), fibroblast growth factor (FGF), transforming growth factor (TGF- ⁇ and TGF- ⁇ ), Wnts, hedgehogs, including sonic, indian and desert hedgehogs, activins, inhibins, bone morphogenetic proteins (BMP), and insulin-like growth factor (IGF).
- the compositions may also include an appropriate matrix, for instance, for supporting the composition and providing a surface for ingrowth of neurons and/or related neural cells and tissues such as Schwann cells, glial cells and astrocytes, or for other tissue or cell growth. The matrix may provide slow release of the mammalian cerberus-like protein and/or the appropriate environment for presentation thereof.
- the mammalian cerberus-like protein containing compositions may be employed in methods for treating a number of tissue defects, and healing and maintenance of various types of tissues and wounds.
- the tissues and wounds which may be treated include repair or induction of neurons and/or related neural cells and tissues such as Schwann cells, glial cells and astrocytes. It also includes treatment of cardiac, liver, pancreas, spleen, lung, kidney, brain and stomach tissue and may also include cartilage, epidermis, muscle, including cardiac muscle, other connective tissue, such as bone, tendon and ligament and other tissues and wounds.
- These methods entail administering to a patient needing such tissue formation, wound healing or tissue repair, an effective amount of mammalian cerberus protein.
- the mammalian cerberus-like containing compositions may also be used to treat or prevent degenerative nerve conditions such as Parkinson's Disease, Alzheimer's Disease and Lou Gehrig's Disease, as well as other degenerative nerve diseases, and other conditions involving defects of neural tissue.
- the compositions may also be useful to treat other conditions such as osteoporosis, rheumatoid arthritis, osteoarthritis, and other abnormalities of connective tissue, or of other organs or tissues, such as muscle, pancreas, liver, spleen, lung, cardiac, brain, and kidney tissue, and other tissues and organs.
- These methods may also entail the administration of a protein of the invention in conjunction with administration of at least one other protein, for example growth factors including EGF, FGF, TGF- ⁇ , TGF- ⁇ , BMP, Wnts, hedgeghogs, including sonic, indian and desert hedgehogs, activin, inhibin and IGF.
- growth factors including EGF, FGF, TGF- ⁇ , TGF- ⁇ , BMP, Wnts, hedgeghogs, including sonic, indian and desert hedgehogs, activin, inhibin and IGF.
- the mammalian cerberus-like gene or protein may be used to augment the activities of BMPs or other members of the TGF- ⁇ superfamily.
- DNA sequences coding for expression of mammalian cerberus-like protein include the sequence of nucleotides in a 5' to 3' direction illustrated in SEQ ID NO: 1, DNA sequences which, but for the degeneracy of the genetic code, are identical to the DNA sequence SEQ ID NO: 1, and encode the protein of SEQ ID NO: 2.
- DNA sequences which hybridize under stringent conditions with the DNA sequence of SEQ ID NO: 1 and encode a protein having cerberus-like activity are particularly included in the present invention.
- DNA sequences which hybridize under stringent conditions see, T. Maniatis et al, Molecular Cloning (A Laboratory Manual), Cold Spring Harbor Laboratory (1982), pages 387 to 389!.
- DNA sequences encode a polypeptide which is at least about 80% homologous, and more preferably at least about 90% homologous, to the mature mammalian cerberus-like amino acid sequence shown in SEQ ID NO:2.
- allelic or other variations of the sequences of SEQ ID NO: 1, whether such nucleotide changes result in changes in the peptide sequence or not, but where the peptide sequence still has cerberus-like activity are also included in the present invention.
- the present invention also includes functional fragments of the DNA sequence of mammalian cerberus-like proteins shown in SEQ ID NO: 1 which encode a polypeptide which retains the activity of cerberus-like protein.
- the DNA sequences of the present invention are useful, for example, as probes for the detection of mRNA encoding other cerberus-like proteins in a given cell population.
- the DNA sequences may also be useful for preparing vectors for gene therapy applications as described below.
- a further aspect of the invention includes vectors comprising a DNA sequence as described above in operative association with an expression control sequence therefor.
- These vectors may be employed in a novel process for producing a recombinant mammalian cerberus-like protein of the invention in which a cell line transformed with a DNA sequence encoding mammalian cerberus-like protein in operative association with an expression control sequence therefor, is cultured in a suitable culture medium and mammalian cerberus-like protein is recovered and purified therefrom.
- This process may employ a number of known cells both prokaryotic and eukaryotic as host cells for expression of the polypeptide.
- the vectors may also be used in gene therapy applications.
- the vectors may be transfected into the cells of a patient ex vivo, and the cells may be reintroduced into a patient, or the vectors may be introduced into a patient in vivo through targeted transfection.
- native cerberus gene expression may be unregulated by known recombination techniques to insert high expression regulatory elements into the genome in proximity to the cerberus coding sequence disclosed herein.
- vectors are prepared using one or more non-native regulatory elements, such as promoters and/or enhancers operatively associated with the coding sequence for mammalian cerberus-like, in order to achieve expression of mammalian cerberus-like in desired cell tissue and/or at a desired time in development.
- a vector may be constructed using the promoter element from genes, which is known to be constitutively expressed in neuronal development.
- cerberus-like, and transforming suitable cells such as neuronal stem cells
- mammalian cerberus-like in these cells thus promoting the desired effects of formation, growth, proliferation, differentiation and/or maintenance of cells such as neurons and/or related neural cells and tissues such as Schwann cells, glial cells and astrocytes, either in in vitro culture or in vivo.
- Still a further aspect of the invention are mammalian cerberus-like proteins or polypeptides.
- Such polypeptides are characterized by having an amino acid sequence including the sequence illustrated in SEQ ID NO: 2, variants of the amino acid sequence of SEQ ID NO: 2, including naturally occurring allelic variants, and other variants in which the protein retains cerberus-like activity, for example, the ability to enhance and/or inhibit the formation, growth, proliferation, differentiation and/or maintenance of neurons and/or related neural cells and tissues such as Schwann cells, glial cells and astrocytes, and may also affect the formation, growth, proliferation, differentiation and/or maintenance of pancreas, liver, stomach, cardiac, or other tissue such as bone, osteocytes, chondrocytes and/or cartilage tissue, or other organ tissue, such as spleen, lung, brain and kidney tissue, characteristic of cerberus-like protein.
- Preferred polypeptides include a polypeptide which is at least about 80% and more preferably at least about 90% homologous to the mature mammalian cerberus-like amino acid sequence shown in SEQ ID NO: 2. Further, allelic or other variations of the sequences of SEQ ID NO: 2, whether such amino acid changes are induced by mutagenesis, chemical alteration, or by alteration of DNA sequence used to produce the polypeptide, where the peptide sequence still has cerberus-like activity, are also included in the present invention.
- the present invention also includes fragments of the amino acid sequence of mammalian cerberus-like shown in SEQ ID NO:2 which retain the activity of cerberus-like protein.
- One skilled in the art can readily produce such variations and fragments of mammalian cerberus-like protein using techniques known in the art, and can readily assay them for activity, as described herein.
- the purified proteins of the present inventions may be used to generate antibodies, either monoclonal or polyclonal, to mammalian cerberus-like proteins and/or other related proteins, using methods that are known in the art of antibody production.
- the present invention also includes antibodies to mammalian cerberus and/or other cerberus-like proteins.
- the antibodies may be useful for purification of mammalian cerberus-like proteins, or for inhibiting or preventing the effects of cerberus proteins either in vitro or in vivo.
- the mammalian cerberus-like proteins may be useful for inducing the growth and/or differentiation of embryonic cells and/or stem cells.
- the proteins or compositions of the present invention may also be useful for treating cell populations, such as embryonic cells or stem cell populations, to enhance, enrich or to inhibit the growth and/or differentiation of the cells.
- the mammalian cerberus-like proteins may be useful for treating cell populations to enhance and/or inhibit the formation, differentiation, proliferation and/or maintenance of neurons and/or related neural cells and tissues such as Schwann cells, glial cells and astrocytes and/or other cells and tissue.
- the treated cell populations may be useful for, among other things, gene therapy applications, as described below.
- the proteins of the present invention may be useful in wound healing, tissue and organ repair and regeneration processes, as well as in differentiation of tissue, for example in embryonic development.
- the mammalian cerberus-like protein may be useful for the induction, formation, growth, differentiation, proliferation and/or maintenance and repair of neurons and/or related neural cells and tissues such as Schwann cells, glial cells and astrocytes.
- the cerberus-like proteins are normally present as secreted proteins, and have been demonstrated to have effects on the growth and differentiation of neuronal and other neural cell and tissue types.
- these proteins, and compositions containing them may be useful in the treatment of nerve and brain disorders, such as Parkinson's disease, Alzheimer's disease, and in the enhancement and/or inhibition of cellular formation, growth, differentiation, proliferation and/or maintenance, for example formation of neurons and/or related neural cells and tissues such as Schwann cells, glial cells and astrocytes.
- nerve and brain disorders such as Parkinson's disease, Alzheimer's disease
- enhancement and/or inhibition of cellular formation, growth, differentiation, proliferation and/or maintenance for example formation of neurons and/or related neural cells and tissues such as Schwann cells, glial cells and astrocytes.
- the mammalian cerberus-like proteins provided herein include factors encoded by the sequences similar to those of SEQ ID NO:1, but into which modifications or deletions are naturally provided (e.g. allelic variations in the nucleotide sequence which may result in amino acid changes in the polypeptide) or deliberately engineered.
- synthetic polypeptides may wholly or partially duplicate continuous sequences of the amino acid residues of SEQ ID NO:2. These sequences, by virtue of sharing primary, secondary, or tertiary structural and conformational characteristics with mammalian cerberus-like polypeptides of SEQ ID NO: 2 may possess biological properties in common therewith.
- these modifications and deletions of the native mammalian cerberus-like may be employed as biologically active substitutes for naturally-occurring mammalian cerberus-like polypeptides in therapeutic processes. It can be readily determined whether a given variant or fragment of mammalian cerberus-like protein maintains the biological activity of cerberus by subjecting both mammalian cerberus-like and the variant or fragment of mammalian cerberus-like to the assays described herein.
- modifications of glycosylation sites involve modifications of glycosylation sites. These modifications may involve O-linked or N-linked glycosylation sites. For instance, the absence of glycosylation or only partial glycosylation results from amino acid substitution or deletion at asparagine-linked glycosylation recognition sites.
- the asparagine-linked glycosylation recognition sites comprise tripeptide sequences which are specifically recognized by appropriate cellular glycosylation enzymes. These tripeptide sequences are either asparagine-X-threonine or asparagine-X-serine, where X is usually any amino acid.
- a variety of amino acid substitutions or deletions at one or both of the first or third amino acid positions of a glycosylation recognition site (and/or amino acid deletion at the second position) results in non-glycosylation at the modified tripeptide sequence.
- Such variants of mammalian cerberus-like are within the present invention.
- bacterial expression of mammalian cerberus-like proteins will result in production of a non-glycosylated protein, even if the glycosylation sites are left unmodified.
- Such bacterially produced versions of mammalian cerberus-like are within the present invention.
- the present invention also encompasses the novel DNA sequences, free of association with DNA sequences encoding other proteinaceous materials, and coding for expression of mammalian cerberus-like proteins.
- These DNA sequences include those depicted in SEQ ID NO: 1 in a 5' to 3' direction and those sequences which hybridize thereto under stringent hybridization conditions for example, 0.1 X SSC, 0.1% SDS at 65° C.; see, T. Maniatis et al, Molecular Cloning (A Laboratory Manual), Cold Spring Harbor Laboratory (1982), pages 387 to 389! and encode a protein having cerberus-like activity.
- Stringent hybridization conditions also refer to initial low stringency hybridization conditions, followed by higher stringency wash conditions.
- These DNA sequences also include those which comprise variants and fragments of the DNA sequence of SEQ ID NO: 1 which hybridize thereto under stringent hybridization conditions and encode a protein having cerberus-like activity.
- Another aspect of the present invention provides a novel method for producing mammalian cerberus-like proteins.
- the method of the present invention involves culturing a suitable cell line, which has been transformed with a DNA sequence encoding a mammalian cerberus-like protein of the invention, under the control of known regulatory sequences.
- the transformed host cells are cultured and the mammalian cerberus-like proteins recovered and purified from the culture medium.
- the purified proteins are substantially free from other proteins with which they are co-produced as well as from other contaminants.
- Suitable cells or cell lines may be mammalian cells, such as Chinese hamster ovary cells (CHO).
- CHO Chinese hamster ovary cells
- the selection of suitable mammalian host cells and methods for transformation, culture, amplification, screening, product production and purification are known in the art. See, e.g., Gething and Sambrook, Nature, 293:620-625 (1981), or alternatively, Kaufman et al, Mol. Cell. Biol., 5(7):1750-1759 (1985) or Howley et al, U.S. Pat. 4,419,446.
- Another suitable mammalian cell line, which is described in the accompanying examples, is the monkey COS- 1 cell line.
- the mammalian cell CV-1 may also be suitable.
- Bacterial cells may also be suitable hosts.
- E. coli e.g., HB101, MC1061
- Various strains of B. subtilis, Pseudomonas, other bacilli and the like may also be employed in this method.
- DNA encoding the propeptide of cerberus-like is generally not necessary.
- yeast cells may also be available as host cells for expression of the polypeptides of the present invention.
- insect cells may be utilized as host cells in the method of the present invention. See, e.g. Miller et al, Genetic Engineering, 8:277-298 (Plenum Press 1986) and references cited therein.
- vectors for use in the method of expression of these novel mammalian cerberus-like polypeptides Preferably the vectors contain the full novel DNA sequences described above which encode the novel factors of the invention. Additionally, the vectors contain appropriate expression control sequences permitting expression of the cerberus-like protein sequences. Alternatively, vectors incorporating modified sequences as described above are also embodiments of the present invention.
- sequence of SEQ ID NO: 1 or other sequences encoding mammalian cerberus-like proteins could be manipulated to express a mature mammalian cerberus-like protein by deleting mammalian cerberus-like propeptide sequences and replacing them with sequences encoding the complete propeptides of other cerberus-like proteins or other suitable propeptides.
- the present invention includes chimeric DNA molecules encoding a propeptide from a member of the cerberus-like family linked in correct reading frame to a DNA sequence encoding a mammalian cerberus-like polypeptide.
- the vectors may be employed in the method of transforming cell lines and contain selected regulatory sequences in operative association with the DNA coding sequences of the invention which are capable of directing the replication and expression thereof in selected host cells. Regulatory sequences for such vectors are known to those skilled in the art and may be selected depending upon the host cells. Such selection is routine and does not form part of the present invention.
- the DNA encoding it is transferred into an appropriate expression vector and introduced into mammalian cells or other preferred eukaryotic or prokaryotic hosts by conventional genetic engineering techniques.
- the preferred expression system for biologically active recombinant mammalian cerberus-like is contemplated to be stably transformed mammalian cells.
- mammalian expression vectors by employing the sequence of SEQ ID NO: 1, or other DNA sequences encoding cerberus-like proteins or other modified sequences and known vectors, such as pCD Okayama et al., Mol. Cell Biol., 2:161-170 (1982)!, pJL3, pJL4 Gough et al., EMBO J., 4:645-653 (1985)! and pMT2 CXM.
- the mammalian expression vector pMT2 CXM is a derivative of p91023(b) (Wong et al., Science 228:810-815, 1985) differing from the latter in that it contains the ampicillin resistance gene in place of the tetracycline resistance gene and further contains a XhoI site for insertion of cDNA clones.
- the functional elements of pMT2 CXM have been described (Kaufmnan, R. J., 1985, Proc. Natl. Acad. Sci.
- adenovirus VA genes include the adenovirus VA genes, the SV40 origin of replication including the 72 bp enhancer, the adenovirus major late promoter including a 5' splice site and the majority of the adenovirus tripartite leader sequence present on adenovirus late mRNAs, a 3' splice acceptor site, a DHFR insert, the SV40 early polyadenylation site (SV40), and pBR322 sequences needed for propagation in E. coli.
- Plasmid pMT2 CXM is obtained by EcoRI digestion of pMT2-VWF, which has been deposited with the American Type Culture Collection (ATCC), Rockville, Md. (USA) under accession number ATCC 67122. EcoRI digestion excises the cDNA insert present in pMT2-VWF, yielding pMT2 in linear form which can be ligated and used to transform E. coli HB 101 or DH-5 to ampicillin resistance. Plasmid pMT2 DNA can be prepared by conventional methods. pMT2 CXM is then constructed using loopout/in mutagenesis Morinaga, et al., Biotechnology 84: 636 (1984). This removes bases 1075 to 1145 relative to the Hind III site near the SV40 origin of replication and enhancer sequences of pMT2. In addition it inserts the following sequence:
- Plasmid pMT2 CXM and pMT23 DNA may be prepared by conventional methods.
- pEMC2 ⁇ 1 derived from pMT21 may also be suitable in practice of the invention.
- pMT21 is derived from pMT2 which is derived from pMT2-VWF.
- EcoRI digestion excises the cDNA insert present in pMT-VWF, yielding pMT2 in linear form which can be ligated and used to transform E. Coli HB 101 or DH-5 to ampicillin resistance.
- Plasmid pMT2 DNA can be prepared by conventional methods.
- a unique ClaI site is introduced by digestion with EcoRV and XbaI, treatment with Klenow fragment of DNA polymerase I, and ligation to a ClaI linker (CATCGATG). This deletes a 250 bp segment from the adenovirus associated RNA (VAI) region but does not interfere with VAI RNA gene expression or function.
- pMT21 is digested with EcoRI and XhoI, and used to derive the vector pEMC2B 1.
- a portion of the EMCV leader is obtained from pMT2-ECAT1 S. K. Jung, et al, J. Virol 63:1651-1660 (1989)! by digestion with Eco RI and PstI, resulting in a 2752 bp fragment. This fragment is digested with TaqI yielding an Eco RI-TaqI fragment of 508 bp which is purified by electrophoresis on low melting agarose gel.
- a 68 bp adapter and its complementary strand are synthesized with a 5' TaqI protruding end and a 3' XhoI protruding end which has the following sequence:5'CGAGGTTAAAAAACGTCTAGGCCCCCCGAACCACGGGGACGTGGTTT (SEQ ID NO:8)TCCTTT TaqI GAAAAACACGATTGC-3' XhoI
- This sequence matches the EMC virus leader sequence from nucleotide 763 to 827. It also changes the ATG at position 10 within the EMC virus leader to an ATT and is followed by a XhoI site.
- This vector contains the SV40 origin of replication and enhancer, the adenovirus major late promoter, a cDNA copy of the majority of the adenovirus tripartite leader sequence, a small hybrid intervening sequence, an SV40 polyadenylation signal and the adenovirus VA I gene, DHFR and ⁇ -lactamase markers and an EMC sequence, in appropriate relationships to direct the high level expression of the desired cDNA in mammalian cells.
- vectors may involve modification of the mammalian cerberus DNA sequences.
- mammalian cerberus cDNA can be modified by removing the non-coding nucleotides on the 5' and 3' ends of the coding region.
- the deleted non-coding nucleotides may or may not be replaced by other sequences known to be beneficial for expression.
- sequence of SEQ ID NO: 1 other sequences encoding mammalian cerberus proteins can be manipulated to express a mature mammalian cerberus protein by deleting mammalian cerberus encoding propeptide sequences and replacing them with sequences encoding the complete propeptides of other proteins.
- One skilled in the art can manipulate the sequences of SEQ ID NO: 1 by eliminating or replacing the mammalian regulatory sequences flanking the coding sequence with bacterial sequences to create bacterial vectors for intracellular or extracellular expression by bacterial cells.
- the coding sequences could be further manipulated (e.g. ligated to other known linkers or modified by deleting non-coding sequences therefrom or altering nucleotides therein by other known techniques).
- the modified mammalian cerberus coding sequence could then be inserted into a known bacterial vector using procedures such as described in T. Taniguchi et al., Proc. Natl Acad. Sci. USA, 77:5230-5233 (1980).
- This exemplary bacterial vector could then be transformed into bacterial host cells and a protein expressed thereby.
- This exemplary bacterial vector could then be transformed into bacterial host cells and a protein expressed thereby.
- yeast vector could also be constructed employing yeast regulatory sequences for intracellular or extracellular expression of the factors of the present invention by yeast cells. See, e.g., procedures described in published PCT application WO86/00639 and European patent application EPA 123,289!.
- a method for producing high levels of a mammalian cerberus protein of the invention in mammalian cells may involve the construction of cells containing multiple copies of the heterologous mammalian cerberus gene.
- the heterologous gene is linked to an amplifiable marker, e.g. the dihydrofolate reductase (DHFR) gene for which cells containing increased gene copies can be selected for propagation in increasing concentrations of methotrexate (MTX) according to the procedures of Kaufman and Sharp, J. Mol. Biol., 159:601-629 (1982).
- DHFR dihydrofolate reductase
- MTX methotrexate
- a plasmid containing a DNA sequence for a mammalian cerberus protein of the invention in operative association with other plasmid sequences enabling expression thereof and the DHFR expression plasmid pAdA26SV(A)3 Kaufman and Sharp, Mol. Cell. Biol., 2:1304 (1982)! can be co-introduced into DHFR-deficient CHO cells, DUKX-BII, by various methods including calcium phosphate coprecipitation and transfection, electroporation or protoplast fusion.
- DHFR expressing transformants are selected for growth in alpha media with dialyzed fetal calf serum, and subsequently selected for amplification by growth in increasing concentrations of MTX (e.g.
- Mammalian cerberus protein expression should increase with increasing levels of MTX resistance.
- Mammalian cerberus polypeptides are characterized using standard techniques known in the art such as pulse labeling with 35S! methionine or cysteine and polyacrylamide gel electrophoresis. Similar procedures can be followed to produce other related cerberus proteins.
- a mammalian cerberus protein of the present invention which demonstrates cerberus activity, has application in the induction, formation, growth, differentiation, proliferation and/or maintenance and healing of cells and tissues such as neurons and/or related neural cells and tissues such as Schwann cells, glial cells and astrocytes, and other tissues, in humans and other animals.
- Such a preparation employing mammalian cerberus protein may have prophylactic use in treatment of Parkinson's disease, Alzheimer's disease, as well as preventing neural tumors, and other neural tissue disorders.
- Mammalian cerberus protein may also be used in the treatment of neural disease, and in other tissue and organ repair processes. Such agents may provide an environment to attract suitable stem cells, stimulate growth and proliferation of neuron-forming cells or induce differentiation of progenitors of neuron-forming cells, and may also support the regeneration of other tissues and organs. Mammalian cerberus polypeptides of the invention may also be useful in the treatment of organ disorders.
- the proteins of the invention may further be useful for the treatment of conditions related to other types of tissue, such as epidermis, muscle, connective tissue, such as bone, cartilage, tendon and ligament, and other organs such as pancreas, liver, spleen, lung, cardiac, brain and kidney tissue.
- tissue such as epidermis, muscle, connective tissue, such as bone, cartilage, tendon and ligament
- organs such as pancreas, liver, spleen, lung, cardiac, brain and kidney tissue.
- the proteins of the present invention may also have value as a dietary supplement, or as additives for cell culture media. For this use, the proteins may be used in intact form, or may be predigested to provide a more readily absorbed supplement.
- the proteins of the invention may also have other useful properties characteristic of the cerberus family of proteins. Such properties include angiogenic, chemotactic and/or chemoattractant properties, and effects on cells including differentiation responses, cell proliferative responses and responses involving cell adhesion, migration and extracellular matrices. These properties make the proteins of the invention potential agents for wound healing, reduction of fibrosis and reduction of scar tissue formation.
- the proteins of the invention may also be useful for the induction of formation of cells capable of secreting valuable hormones, including endocrine or exocrine hormones.
- a further aspect of the invention is a therapeutic method and composition for treating disorders of neurons and/or related neural cells and tissues such as Schwann cells, glial cells and astrocytes, and other conditions related to neuronal and neural tissue disorders or diseases.
- the invention further comprises therapeutic methods and compositions for wound healing and tissue repair.
- Such compositions comprise a therapeutically effective amount of at least one mammalian cerberus protein of the present invention in admixture with a pharmaceutically acceptable vehicle, carrier or matrix. It is further contemplated that compositions of the invention may increase neuronal, glial cell and astrocyte survival and therefore be useful in transplantation and treatment of conditions exhibiting a decrease in neuronal survival.
- cerberus and cerberus-like proteins may exist in nature as homodimers or heterodimers.
- DNA sequence of SEQUENCE ID NO: 1 to provide one or more additional cysteine residues to increase potential dimer formation.
- the resulting DNA sequence would be capable of producing a "cysteine added variant" of cerberus-like protein.
- proteins of the invention may act in concert with or perhaps synergistically with other related proteins and growth factors. Such combinations may comprise separate molecules of the cerberus or cerberus-like proteins and other proteins or heteromolecules comprised of different moieties.
- a method and composition of the invention may comprise a disulfide linked dimer comprising a cerberus protein subunit and a subunit from one of the "BMP" proteins.
- the present invention includes a purified cerberus-like polypeptide which is a heterodimer wherein one subunit comprises an amino acid sequence of SEQ ID NO:2, and one subunit comprises an amino acid sequence for a bone morphogenetic protein selected from the group consisting of BMP-2, BMP-3, BMP4, BMP-5, BMP-6, BMP-7, BMP-8, BMP-9, BMP-10, BMP-11, BMP-12 or BMP-13, disclosed in PCT application WO 95/16035, or BMP-15, disclosed in PCT application WO96/36710 or BMP-16, disclosed in co-pending patent application Ser. No. 08/715/202, filed Sep. 18, 1996.
- a further embodiment may comprise a heterodimer of cerberus moieties, for example, of Xenopus cerberus and a mammalian homologue of Xenopus cerberus or other cerberus-like protein.
- Further therapeutic methods and compositions of the invention therefore comprise a therapeutic amount of at least one mammalian cerberus protein of the invention with a therapeutic amount of at least one other protein, such as a member of the TGF- ⁇ superfamily of proteins, which includes the bone morphogenetic proteins (BMPs), growth and differentiation factors (GDFs) and other proteins.
- BMPs bone morphogenetic proteins
- GDFs growth and differentiation factors
- the composition may include other agents and growth factors such as epidermal growth factor (EGF), fibroblast growth factor (FGF), platelet derived growth factor (PDGF), transforming growth factors (TGF- ⁇ and TGF- ⁇ ), Wnts, hedgeghogs, including sonic, indian and desert hedgehogs, activins, inhibins, and k-fibroblast growth factor (kFGF), parathyroid hormone (PTH), leukemia inhibitory factor (LIF/HLDA/DIA), insulin-like growth factors (IGF-I and IGF-II). Portions of these agents may also be used in compositions of the present invention.
- EGF epidermal growth factor
- FGF fibroblast growth factor
- PDGF platelet derived growth factor
- TGF- ⁇ and TGF- ⁇ transforming growth factors
- Wnts hedgeghogs, including sonic, indian and desert hedgehogs, activins, inhibins, and k-fibroblast growth factor (kFGF), parathyroid hormone (PTH),
- compositions having due regard to pH, isotonicity, stability and the like, are within the skill of the art.
- the therapeutic compositions are also presently valuable for veterinary applications due to the lack of species specificity in cerberus proteins. Particularly domestic animals and thoroughbred horses in addition to humans are desired patients for such treatment with the cerberus proteins of the present invention.
- the therapeutic method includes administering the composition topically, systemically, or locally as by injection or implantation.
- the therapeutic composition for use in this invention is, of course, in a pyrogen-free, physiologically acceptable form.
- the composition may desirably be encapsulated or injected in a viscous form for delivery to the site of neurons and/or related neural cells and tissues such as Schwann cells, glial cells and astrocytes or other tissue damage. Topical administration may be suitable for wound healing and tissue repair.
- Therapeutically useful agents other than the cerberus proteins which may also optionally be included in the composition as described above, may alternatively or additionally, be administered simultaneously or sequentially with the cerberus composition in the methods of the invention.
- the composition preferably includes a matrix capable of delivering mammalian cerberus proteins to the site of neurons and/or related neural cells and tissues such as Schwann cells, glial cells and astrocytes or other tissue damage, providing a structure for the developing tissue and optimally capable of being resorbed into the body.
- the matrix may provide slow release of mammalian cerberus and/or other protein, as well as proper presentation and appropriate environment for cellular infiltration.
- Such matrices may be formed of materials presently in use for other implanted medical applications.
- the choice of matrix material is based on biocompatibility, biodegradability, mechanical properties, cosmetic appearance and interface properties.
- the particular application of the mammalian cerberus compositions will define the appropriate formulation.
- the dosage regimen will be determined by the attending physician considering various factors which modify the action of the mammalian cerberus protein, e.g. amount of tissue desired to be formed, the site of tissue damage, the condition of the damaged tissue, the size of a wound, type of damaged tissue, the patient's age, sex, and diet, the severity of any infection, time of administration and other clinical factors.
- the dosage may vary with the type of matrix used in the reconstitution and the types of mammalian cerberus proteins in the composition.
- the addition of other known growth factors, such as IGF I (insulin like growth factor I), to the final composition may also effect the dosage.
- Progress can be monitored by periodic assessment of tissue growth and/or repair.
- the progress can be monitored, for example, x-rays, histomorphometric determinations and tetracycline labeling.
- the carboxy-terminal, cysteine rich domain of xenopus cerberus was used to screen mammalian libraries and ESTS reported in GENBANK.
- An EST, AA120122, derived from the Beddington day 7.5 embryonic region library was identified by sequence homology to xenopus cerberus. While the partial clone has almost no sequence conservation in the N-terminal half of the molecule, the C-terminal domain and especially the pattern of the nine cysteines showed sequence conservation.
- the full-length cDNA encoding the murine cerberus-like protein was isolated from a murine embryonic cell cDNA library and the gene isolated from a murine genomic library.
- Murine cerberus-like cDNA (SEQ ID NO: 1) encodes a 272 amino acid protein with predicted MW 30.5 Kd (SEQUENCE ID NO:2).
- the murine cerberus-like gene, Mcerb-1 has a single 2 Kb intron at position 564 of the cDNA SEQ ID NO: 1.
- the predicted protein contains a hydrophobic signal sequence at its amino terminus, indicating the molecule is secreted.
- the mature murine cerberus-like protein is predicted to be a 255 residue protein of MW 28.6 Kd including residues 18-272 of SEQ ID NO:2.
- the cerberus-like cDNA was expressed in COS cells and labeled with 35 S-Met/ 35 S-Cys.
- the resulting protein was secreted into the culture medium and resulted in a smeared band of MW 38-44 Kd when fractionated on 16% polyacrylamide reducing gels.
- the smeared bands indicate that the protein is glycosylated consistent with the two putative N-linked glycosylation sites in the sequence.
- Expression of the protein in reticulocyte systems shows a 33 kD band consistent with predicted protein in the absence of glycosylation.
- the protein sequence contains a hydrophobic signal sequence at its amino terminus and a cysteine-rich domain close to its carboxy terminus.
- the cysteine-rich domains of Xenopus cerberus and murine cerberus-like proteins are 58% identical and the overall amino acids are 31 % identical.
- the nine cysteine pattern at the carboxy terminus is conserved between Xenopus cerberus and mammalian cerberus-like protein.
- the 293T human cell line was transiently transfected with the DNA sequence of SEQ ID NO: 1, which encodes mammalian cerberus-like protein, cloned in an eukaryotic expression vector and labelled with 35 S-methionine. A broad band was secreted into the culture medium, as well as a minor form. Similar to the COS cell expression, fractionation of the material expressed in 293T cells evidenced the formation of cysteine-linked dimers.
- the cerberus-like protein is presumably glycosylated since the protein translated in the reticulocyte system (in the absence of membranes) results in a band of 33 kD molecular weight corresponding to the molecular weight predicted from the amino acid sequence. Cerberus-like protein has two putative N-linked glycosylation sites. Accordingly, the DNA of SEQ ID NO: 1 defines a secreted protein with high amino acid identity to Xenopus cerberus in the cysteine-rich domain.
- mammalian cerberus-like transcripts were detected on one side of the primitive endoderm, including the distal tip of the embryo.
- expression was found in a patch of primitive endoderm cells on one side of the embryonic region and no longer extends to the tip of the embryo. This patch corresponded to the anterior side of the embryo, because in sections it is found in the endoderm opposite to the forming primitive streak which can be recognized as a thickening of the posterior epiblast.
- the cerberus-like positive area remained in the anterior primitive endoderm.
- cerberus-like expressing was seen in the region surrounding the node. These cells presumably correspond to definitive endodermal cells, that are known to emerge from the node. The endodermal nature of this cell population was confirmed by histological analysis.
- cerberus-like is found underlying the anterior neural plate, in a pattern comparable to the domain of Otx2 expression in endoderm. Ang et al., Cell, 78:561-574 (1994).
- the cerberus-like positive cell population presumably consists of both primitive and definitive endoderm, and do not include the node itself.
- cells expressing the cerberus-like secreted factor are in direct contact with cells that subsequently give rise to the fore- and midbrain region of the CNS.
- cerberus-like signal in the endoderm stats to weaken.
- cerberus-like expression is confined to the midline and adjoining endoderm. Expression is found in all cells of the midline from the rostral end of the embryo to the proximity of the node and includes anterior gut endoderm and mesoderm from the prechordal and notochordal plates. Expression of cerberus-like mRNA in anterior endoderm remains until the start of somitogenesis and then becomes undetectable. Concomitantly, a late phase of expression begins in the mesoderm of the somites. Thus, cerberus-like defines an anterior domain of the endoderm in early mouse embryos. Expression is found in anterior endoderm in direct contact with the future neural plate, but never detected in posterior endoderm cells in contact with the primitive streak, providing further evidence in support of the role of cerberus-like in the induction of anterior neuroectoderm.
- transgenic knockout and misexpression mice can be made by engineering of murine embryonic stem (ES) cells and injection into the blastula using standard procedures.
- the murine knockout can be achieved by replacing a central portion of the cerberus or cerberus like genes with a selectable marker (e.g., neo), transfecting the construct into ES cells and selecting for the double crossover.
- the cerberus and cerberus-like genes can be engineered to be expressed from generic (e.g., actin) or tissue specific (e.g., IDX) promoters and reintroduced into murine ES cells.
- Transgenic animals can be generated from such engineered cells using classical procedures.
- the protein can be directly injected into tissues or delivered by viral vectors.
- the cerberus or cerberus-like genes can be transiently overexpressed in the adult mouse using adenovirus vectors and the function or activity of the proteins investigated by physiological, histochemical and biochemical analysis of the animals.
- Hybridization of the murine cerberus-like gene to human DNA sequences identified a single XbaI generated band of approximately 15 Kb demonstrating its utility as probe to identify the human cerberus-like gene within a human genomic library. Alignment of the Xenopus cerberus and murine cerberus-like genes has identified three regions of sufficient nucleic acid homology within the cysteine rich domain to serve as probes for the human cerberus and cerberus-like genes. The consensus sequences for the three probes are:
- the first probe spans the 2 Kb intron in the mouse gene and is therefore less likely to function well as a probe. Used individually or together, the latter two oligos containing 6-fold and 10-fold degeneracy, respectively, would serve as probes for human cerberus and cerberus-like genes in genomic or cDNA libraries.
- the cerberus and cerberus-like proteins are members of a family which can be recognized by their unique cysteine pattern.
- This family includes cerberus, cerberus-like protein, Dan protein and Norrie protein.
- Dan protein is a tumor suppressor candidate and defects in the Norrie protein result in congenital defects including blindness and deafness.
- Members of the cerberus family thus seem to play an important role in cell differentiation and proliferation and thus it is important to find other members of this family of proteins.
- Family members cannot necessarily be recognized by amino acid homology, which demonstrates a significant amount of diversity, but can be recognized by a unique pattern of nine cysteines.
- the consensus cysteine pattern in each of these proteins is: in immediate sequence, a first cysteine residue, 13-15 non-cysteine amino acid residues, a second cysteine, 9 non-cysteine amino acid residues, a third cysteine residue, 1 non-cysteine amino acid residue, 1 glycine residue, 1 non-cysteine amino acid residue, a fourth cysteine, 14-23 non-cysteine amino acid residues, a fifth cysteine amino acid residue, two non-cysteine amino acid residues, a sixth cysteine residue, 13 non-cysteine amino acid residues, a seventh cysteine residue, 15-18 non-cysteine amino acid residues, an eighth cysteine residue, 1 non-cysteine amino acid residue, and a ninth cysteine residue, found in the conserved cysteine pattern of the cerberus and cerberus-like families of proteins.
- novel members of the cerberus family have been identified including the human EST N35377 and the murine EST AA289245.
- the full length genes can be isolated from either genomic or cDNA libraries. These genes are expected to encode signaling proteins which function to pattern the embryo, control cellular differentiation or cell proliferation and thus be candidate proteins in medical therapy.
- cysteine-rich domains of Xenopus cerberus and murine cerberus-like proteins are two discrete subregions which are highly conserved cysteine motifs and may be particularly useful for the identification and isolation of cerberus and cerberus-like proteins from other species, as well as related members of the cerberus and cerberus-like protein families.
- Use of these highly conserved motifs to screen mammalian libraries and ESTS reported in GENBANK is expected to identify additional proteins of the cerberus and cerberus-like families of proteins from humans and other species, as well as identify further family members may be found.
- the first region is the motif of a five amino acid sequence wherein the first amino acid residue is a cysteine, the second amino acid residue is a non-cysteine amino acid, the third amino acid residue is glycine, the fourth amino acid residue is a non-cysteine amino acid, the fifth amino acid residue is a cysteine which corresponds to Cys-Phe-Gly-Lys-Cys found at amino acid residues 186 to 190 of SEQ ID NO: 1.
- degenerate oligonucleotides to the sequence TGC TTT GGC AAA TGC at nucleotide positions 613 to 627 of SEQ ID NO: 1, and the adjoining regions may be useful to identify and isolate other genes which share the five amino acid sequence motif, wherein the first amino acid residue is a cysteine, the second amino acid residue is a non-cysteine amino acid, the third amino acid residue is glycine, the fourth amino acid residue is a non-cysteine amino acid, the fifth amino acid residue is a cysteine, of cerberus and cerberus-like proteins.
- a second highly conserved region within the cysteine-rich domains of Xenopus cerberus and murine cerberus-like proteins is the motif of a four amino acid sequence wherein the first amino acid residue is a cysteine, the second and third amino acid residues are each a non-cysteine amino acid, and the fourth amino acid residue is a cysteine which corresponds to Cys-Ser-His-Cys found at amino acid residues 206 to 209 of SEQ ID NO: 1.
- degenerate oligonucleotides to the sequence TGC TTC CAC TGC at nucleotide positions 673 to 684 of SEQ ID NO: 1, and the adjoining regions may be useful to identify and isolate other genes which share the four amino acid sequence motif, wherein the first amino acid residue is a cysteine, the second and third amino acid residues are each a non-cysteine amino acid, and the fourth amino acid residue is a cysteine, of cerberus and cerberus-like proteins.
- additional proteins of the cerberus and cerberus-like families of proteins may be identified from other species, and further family members from humans, mice or frogs may be found.
- Use of the two motifs above in concert may further provide specific identification and isolation of additional cerberus and cerberus-like family members.
- Cerberus induced gene expression includes N-CAM (brain), Otx2 (anterior brain), CG-13 (cement gland) and Nkx-2.5 (heart primordium). Induction of neural tissue by cerberus was specific to anterior region of the brain as indicated by upregulation of the Otx2 marker but not more posterior markers including En-2 (midbrain-hind brain junction), Krox-20 (hind brain) and X1Hbox-6 (spinal cord). Injection of cerberus into specific cells of the 32-cell blastomere resulted in the induction of ectopic heads, and duplicate heart and liver.
- cerberus-like mRNA Like cerberus, microinjection of cerberus-like mRNA into animal cap explants induces anterior CNS in xenopus embryos. However, microinjection of mammalian cerberus-like mRNA into xenopus embryos did not induce formation of ectopic head structures, for example, containing forebrain, cyclopic eyes, olfactory placodes and cement glands, suggesting overlapping but not identical functional effects. Thus, cerberus-like is a neuralizing factor, that leads to the formation of forebrain in xenopus assays.
- ES-E14TG2 which is available from the American Type Culture Collection in Rockville, Md.
- cells may be propagated in the presence of 100 units of LIF to keep them in an undifferentiated state.
- Assays are setup by first removing the LIF and aggregating the cells in suspension, in what is known as embryoid bodies. After 3 days the embryoid bodies are plated on gelatin coated plates (12 well plates for PCR analysis, 24 well plates for immunocytochemistry) and treated with the proteins to be assayed. Cells are supplied with nutrients and treated with the protein factor every 2-3 days. Cells may be adapted so that assays may be conducted in media supplemented with 15% Fetal Bovine Serum (FBS) or with CDM defined media containing much lower amounts of FBS.
- FBS Fetal Bovine Serum
- RNA is harvested from the cells and analyzed by quantitative multiplex PCR for the following markers: Brachyury, a mesodermal marker, AP-2, an ectodermal marker, and HNF-3 ⁇ an endodermal marker.
- a mesodermal marker e.g., a mesodermal marker
- AP-2 ectodermal marker
- HNF-3 ⁇ an endodermal marker.
- neuronal cells glia, astrocytes and neurons
- muscle cells cardiac cells
- various other phenotype markers such as proteoglycan core protein (cartilage), and cytokeratins (epidermis). Since these cells have a tendency to differentiate autonomously when LIF is removed, the results are always quantitated by comparison to an untreated control.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Veterinary Medicine (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Animal Behavior & Ethology (AREA)
- General Chemical & Material Sciences (AREA)
- Public Health (AREA)
- Pharmacology & Pharmacy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physical Education & Sports Medicine (AREA)
- Neurology (AREA)
- Neurosurgery (AREA)
- Biomedical Technology (AREA)
- Rheumatology (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Gastroenterology & Hepatology (AREA)
- Molecular Biology (AREA)
- Genetics & Genomics (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Zoology (AREA)
- Toxicology (AREA)
- Psychology (AREA)
- Immunology (AREA)
- Dermatology (AREA)
- Pulmonology (AREA)
- Urology & Nephrology (AREA)
- Pain & Pain Management (AREA)
- Psychiatry (AREA)
- Hospice & Palliative Care (AREA)
- Heart & Thoracic Surgery (AREA)
- Cardiology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Priority Applications (6)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US08/887,997 US5935852A (en) | 1997-07-03 | 1997-07-03 | DNA molecules encoding mammalian cerberus-like proteins |
| US09/089,818 US20020164682A1 (en) | 1997-07-03 | 1998-06-03 | Mammalian cerberus-like protein and compositions |
| EP98926263A EP1012278A1 (fr) | 1997-07-03 | 1998-06-03 | Proteines murines et humaines du genre cerberus et compositions les comprenant |
| AU78140/98A AU749031B2 (en) | 1997-07-03 | 1998-06-03 | Murine and human cerberus-like proteins and compositions comprising them |
| PCT/US1998/011462 WO1999001553A1 (fr) | 1997-07-03 | 1998-06-03 | Proteines murines et humaines du genre cerberus et compositions les comprenant |
| JP50714799A JP2002511762A (ja) | 1997-07-03 | 1998-06-03 | ネズミおよびヒトのサーベラス様蛋白およびそれらを含有する組成物 |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US08/887,997 US5935852A (en) | 1997-07-03 | 1997-07-03 | DNA molecules encoding mammalian cerberus-like proteins |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/089,818 Continuation-In-Part US20020164682A1 (en) | 1997-07-03 | 1998-06-03 | Mammalian cerberus-like protein and compositions |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US5935852A true US5935852A (en) | 1999-08-10 |
Family
ID=25392312
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US08/887,997 Expired - Lifetime US5935852A (en) | 1997-07-03 | 1997-07-03 | DNA molecules encoding mammalian cerberus-like proteins |
| US09/089,818 Abandoned US20020164682A1 (en) | 1997-07-03 | 1998-06-03 | Mammalian cerberus-like protein and compositions |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/089,818 Abandoned US20020164682A1 (en) | 1997-07-03 | 1998-06-03 | Mammalian cerberus-like protein and compositions |
Country Status (5)
| Country | Link |
|---|---|
| US (2) | US5935852A (fr) |
| EP (1) | EP1012278A1 (fr) |
| JP (1) | JP2002511762A (fr) |
| AU (1) | AU749031B2 (fr) |
| WO (1) | WO1999001553A1 (fr) |
Cited By (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6432410B1 (en) * | 1997-02-05 | 2002-08-13 | The Regents Of The University Of California | Morphogenic proteins |
| US20020162131A1 (en) * | 2000-06-21 | 2002-10-31 | Leviten Michael W. | Transgenic mice containing cerberus gene disruptions |
| WO2003100026A3 (fr) * | 2002-05-28 | 2004-11-04 | Novocell Inc | Procedes, compositions et facteurs de croissance et de differenciation pour cellules productrices d'insuline |
| US20040219548A1 (en) * | 2001-06-05 | 2004-11-04 | Young Robert Peter | Method and compositions for assessment of pulmonary function and disorders |
| US20040259244A1 (en) * | 2002-05-28 | 2004-12-23 | Scharp David William | Methods, compositions, and growth and differentiation factors for insulin-producing cells |
| US20060025340A1 (en) * | 2004-05-27 | 2006-02-02 | Acceleron Pharma Inc. | Cerberus/Coco derivatives and uses thereof |
| US20060269946A1 (en) * | 2005-05-10 | 2006-11-30 | Young Robert P | Methods and compositions for assessment of pulmonary function and disorders |
| US20060275808A1 (en) * | 2005-05-20 | 2006-12-07 | Young Robert P | Methods of analysis of polymorphisms and uses thereof |
| US20060281114A1 (en) * | 2005-05-19 | 2006-12-14 | Young Robert P | Methods and compositions for assessment of pulmonary function and disorders |
| US7186409B2 (en) * | 1998-08-14 | 2007-03-06 | The Children's Medical Center Corporation | Neural stem cells and use thereof for brain tumor therapy |
| US20070099202A1 (en) * | 2005-05-19 | 2007-05-03 | Young Robert P | Methods and compositions for assessment of pulmonary function and disorders |
| US20080032304A1 (en) * | 2002-03-22 | 2008-02-07 | Acceleron Pharma Inc. | FULL-LENGTH cDNA AND POLYPEPTIDES |
| CN101240262A (zh) * | 2001-12-07 | 2008-08-13 | 杰龙公司 | 源自人胚胎干细胞的胰岛细胞 |
| US20090082270A1 (en) * | 2006-12-08 | 2009-03-26 | Acceleron Pharma Inc. | Uses of cerberus, Coco and derivatives thereof |
| US20100240130A1 (en) * | 2006-06-19 | 2010-09-23 | Geron Corporation | Differentiation and Enrichment of Islet-like Cells from Human Pluripotent Stem Cells |
| US9045553B2 (en) | 2004-05-27 | 2015-06-02 | Acceleron Pharma, Inc. | Cerberus/Coco derivatives and uses thereof |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| AU2001293586A1 (en) | 2000-09-29 | 2002-04-08 | Vincent Tropepe | Primitive neural stem cells and method for differentiation of stem cells to neural cells |
| CA2646316C (fr) | 2006-03-15 | 2016-05-24 | Theralogics, Inc. | Methodes de traitement des maladies d'atrophie musculaire au moyen d'inhibiteurs de l'activation de nf-kb |
| JP2020502218A (ja) | 2016-12-21 | 2020-01-23 | メレオ バイオファーマ 3 リミテッド | 骨形成不全症の処置における抗スクレロスチン抗体の使用 |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5166322A (en) * | 1989-04-21 | 1992-11-24 | Genetics Institute | Cysteine added variants of interleukin-3 and chemical modifications thereof |
-
1997
- 1997-07-03 US US08/887,997 patent/US5935852A/en not_active Expired - Lifetime
-
1998
- 1998-06-03 WO PCT/US1998/011462 patent/WO1999001553A1/fr not_active Ceased
- 1998-06-03 US US09/089,818 patent/US20020164682A1/en not_active Abandoned
- 1998-06-03 EP EP98926263A patent/EP1012278A1/fr not_active Withdrawn
- 1998-06-03 AU AU78140/98A patent/AU749031B2/en not_active Ceased
- 1998-06-03 JP JP50714799A patent/JP2002511762A/ja active Pending
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5166322A (en) * | 1989-04-21 | 1992-11-24 | Genetics Institute | Cysteine added variants of interleukin-3 and chemical modifications thereof |
Non-Patent Citations (14)
| Title |
|---|
| Ang et al., Cell 78:561 574 (1994). * |
| Ang et al., Cell 78:561-574 (1994). |
| Bouwmeester et al., Nature 382:595 601 (1996). * |
| Bouwmeester et al., Nature 382:595-601 (1996). |
| Burgess et al, The Journal of Cell Biology, III:2129 2138, 1990. * |
| Burgess et al, The Journal of Cell Biology, III:2129-2138, 1990. |
| EST Accession Number AA 120122, GenBank, Nov. 19, 1996. * |
| EST Accession Number AA 432482; GenBank ,May 22,1997. * |
| Jung et al., J. Virol 63:1651 1660 (1989). * |
| Jung et al., J. Virol 63:1651-1660 (1989). |
| Lazar et al, Molecular and Cellular Biology 8(3):1247 1252, 1998. * |
| Lazar et al, Molecular and Cellular Biology 8(3):1247-1252, 1998. |
| Rudinger et al, in Peptide Hormones, Parsons et al eds, University Park Press, Jun. 1976 pp. 1 6. * |
| Rudinger et al, in Peptide Hormones, Parsons et al eds, University Park Press, Jun. 1976 pp. 1-6. |
Cited By (31)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6432410B1 (en) * | 1997-02-05 | 2002-08-13 | The Regents Of The University Of California | Morphogenic proteins |
| US20020192219A1 (en) * | 1997-02-05 | 2002-12-19 | The Regents Of The University Of California | Morphogenic proteins |
| US7186409B2 (en) * | 1998-08-14 | 2007-03-06 | The Children's Medical Center Corporation | Neural stem cells and use thereof for brain tumor therapy |
| US20020162131A1 (en) * | 2000-06-21 | 2002-10-31 | Leviten Michael W. | Transgenic mice containing cerberus gene disruptions |
| US20040219548A1 (en) * | 2001-06-05 | 2004-11-04 | Young Robert Peter | Method and compositions for assessment of pulmonary function and disorders |
| US9085756B2 (en) | 2001-12-07 | 2015-07-21 | Asterias Biotherapeutic, Inc. | Drug screening using islet cells and islet cell progenitors from human embryonic stem cells |
| CN101240262A (zh) * | 2001-12-07 | 2008-08-13 | 杰龙公司 | 源自人胚胎干细胞的胰岛细胞 |
| US20110065118A1 (en) * | 2001-12-07 | 2011-03-17 | Fisk Gregory J | Drug Screening Using Islet Cells and Islet Cell Progenitors from Human Embryonic Stem Cells |
| US20090093055A1 (en) * | 2001-12-07 | 2009-04-09 | Fisk Gregory J | Islet Cells from Human Embryonic Stem Cells |
| US20080032304A1 (en) * | 2002-03-22 | 2008-02-07 | Acceleron Pharma Inc. | FULL-LENGTH cDNA AND POLYPEPTIDES |
| US7560541B2 (en) | 2002-03-22 | 2009-07-14 | Acceleron Pharma, Inc. | Heart20049410 full-length cDNA and polypeptides |
| US20040259244A1 (en) * | 2002-05-28 | 2004-12-23 | Scharp David William | Methods, compositions, and growth and differentiation factors for insulin-producing cells |
| WO2003100026A3 (fr) * | 2002-05-28 | 2004-11-04 | Novocell Inc | Procedes, compositions et facteurs de croissance et de differenciation pour cellules productrices d'insuline |
| US20060025340A1 (en) * | 2004-05-27 | 2006-02-02 | Acceleron Pharma Inc. | Cerberus/Coco derivatives and uses thereof |
| US20090192080A1 (en) * | 2004-05-27 | 2009-07-30 | John Knopf | Cerberus/coco derivatives and uses thereof |
| US9045553B2 (en) | 2004-05-27 | 2015-06-02 | Acceleron Pharma, Inc. | Cerberus/Coco derivatives and uses thereof |
| US7981857B2 (en) | 2004-05-27 | 2011-07-19 | Acceleron Pharma Inc. | Cerberus/coco derivatives and uses thereof |
| US7316998B2 (en) | 2004-05-27 | 2008-01-08 | Acceleron Pharma Inc. | Cerberus/Coco derivatives and uses thereof |
| US20060269946A1 (en) * | 2005-05-10 | 2006-11-30 | Young Robert P | Methods and compositions for assessment of pulmonary function and disorders |
| US20070099202A1 (en) * | 2005-05-19 | 2007-05-03 | Young Robert P | Methods and compositions for assessment of pulmonary function and disorders |
| US8076065B2 (en) | 2005-05-19 | 2011-12-13 | Synergenz Bioscience Limited | Methods and compositions for assessment of pulmonary function and disorders |
| US20060281114A1 (en) * | 2005-05-19 | 2006-12-14 | Young Robert P | Methods and compositions for assessment of pulmonary function and disorders |
| US7933722B2 (en) | 2005-05-20 | 2011-04-26 | Synergenz Bioscience Limited | Methods of analysis of polymorphisms and uses thereof |
| US20110182872A1 (en) * | 2005-05-20 | 2011-07-28 | Synergenz Bioscience Limited | Methods of analysis of polymorphisms and uses thereof |
| US20060275808A1 (en) * | 2005-05-20 | 2006-12-07 | Young Robert P | Methods of analysis of polymorphisms and uses thereof |
| US20100240130A1 (en) * | 2006-06-19 | 2010-09-23 | Geron Corporation | Differentiation and Enrichment of Islet-like Cells from Human Pluripotent Stem Cells |
| US8415153B2 (en) | 2006-06-19 | 2013-04-09 | Geron Corporation | Differentiation and enrichment of islet-like cells from human pluripotent stem cells |
| US7833971B2 (en) | 2006-12-08 | 2010-11-16 | Acceleron Pharma Inc. | Uses of cerberus, coco and derivatives thereof |
| US20110046057A1 (en) * | 2006-12-08 | 2011-02-24 | Acceleron Pharma Inc. | Uses of cerberus and derivatives thereof |
| US20090082270A1 (en) * | 2006-12-08 | 2009-03-26 | Acceleron Pharma Inc. | Uses of cerberus, Coco and derivatives thereof |
| US8796199B2 (en) | 2006-12-08 | 2014-08-05 | Acceleron Pharma, Inc. | Uses of Cerberus and derivatives thereof |
Also Published As
| Publication number | Publication date |
|---|---|
| EP1012278A1 (fr) | 2000-06-28 |
| AU749031B2 (en) | 2002-06-20 |
| AU7814098A (en) | 1999-01-25 |
| US20020164682A1 (en) | 2002-11-07 |
| WO1999001553A1 (fr) | 1999-01-14 |
| JP2002511762A (ja) | 2002-04-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US5935852A (en) | DNA molecules encoding mammalian cerberus-like proteins | |
| US5965403A (en) | Nucleic acids encoding bone morphogenic protein-16 (BMP-16) | |
| US5986056A (en) | Chordin compositions | |
| JP3681069B2 (ja) | Bmp−11組成物 | |
| AU692709B2 (en) | BMP-15 compositions | |
| AU763470B2 (en) | Bone morphogenetic protein (BMP)-17 and BMP-18 compositions | |
| JPH09501305A (ja) | Bmp−10組成物 | |
| AU761940B2 (en) | Neuronal uses of BMP-11 | |
| WO1998020029A2 (fr) | COMPOSITIONS DE HNF3$g(d) | |
| JP2009142287A (ja) | フラズルドヌクレオチド配列、発現生成物、組成物および用途 | |
| OA10987A (en) | A game-type flavouring agent | |
| MXPA00000242A (en) | Murine and human cerberus-like proteins and compositions comprising them | |
| AU749878B2 (en) | WA545 compositions | |
| AU2003244613B2 (en) | Neuronal uses of BMP-11 | |
| AU4586402A (en) | Frazzled nucleotide sequences expression products compositions and uses | |
| MXPA00000820A (en) | Wa545 compositions | |
| MXPA00004347A (en) | Neuronal uses of bmp-11 | |
| AU4616301A (en) | Bone morphogenetic protein-16 (BMP-16) compositions |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: GENETICS INSTITUTE, INC., MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FOLLETTIE, MAXIMILLIAN;DEROBERTIS, EDWARD M.;REEL/FRAME:008779/0008;SIGNING DATES FROM 19970729 TO 19971027 Owner name: CALIFORNIA, THE REGENTS OF THE UNIVERSITY OF, CALI Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FOLLETTIE, MAXIMILLIAN;DEROBERTIS, EDWARD M.;REEL/FRAME:008779/0008;SIGNING DATES FROM 19970729 TO 19971027 Owner name: GENETICS INSTITUTE, INC., MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FOLLETTIE, MAXIMILLIAN;DEROBERTIS, EDWARD M.;SIGNING DATES FROM 19970729 TO 19971027;REEL/FRAME:008779/0008 Owner name: REGENTS OF THE UNIVERSITY OF CALIFORNIA, THE, CALI Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FOLLETTIE, MAXIMILLIAN;DEROBERTIS, EDWARD M.;SIGNING DATES FROM 19970729 TO 19971027;REEL/FRAME:008779/0008 |
|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
| AS | Assignment |
Owner name: GENETICS INSTITUTE, LLC, MASSACHUSETTS Free format text: CHANGE OF NAME;ASSIGNOR:GENETICS INSTITUTE, INC.;REEL/FRAME:012937/0815 Effective date: 20020101 |
|
| FPAY | Fee payment |
Year of fee payment: 4 |
|
| CC | Certificate of correction | ||
| FPAY | Fee payment |
Year of fee payment: 8 |
|
| FPAY | Fee payment |
Year of fee payment: 12 |