US5968783A - Process for the preparation of sugar nucleotides - Google Patents
Process for the preparation of sugar nucleotides Download PDFInfo
- Publication number
- US5968783A US5968783A US09/043,175 US4317598A US5968783A US 5968783 A US5968783 A US 5968783A US 4317598 A US4317598 A US 4317598A US 5968783 A US5968783 A US 5968783A
- Authority
- US
- United States
- Prior art keywords
- sugar
- reaction
- udpag
- nucleotides
- yeast
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 235000000346 sugar Nutrition 0.000 title claims abstract description 59
- 239000002773 nucleotide Substances 0.000 title claims abstract description 38
- 125000003729 nucleotide group Chemical group 0.000 title claims abstract description 38
- 238000000034 method Methods 0.000 title claims abstract description 29
- 238000002360 preparation method Methods 0.000 title abstract description 3
- 238000004519 manufacturing process Methods 0.000 claims abstract description 36
- 240000004808 Saccharomyces cerevisiae Species 0.000 claims abstract description 22
- LFTYTUAZOPRMMI-UHFFFAOYSA-N UNPD164450 Natural products O1C(CO)C(O)C(O)C(NC(=O)C)C1OP(O)(=O)OP(O)(=O)OCC1C(O)C(O)C(N2C(NC(=O)C=C2)=O)O1 LFTYTUAZOPRMMI-UHFFFAOYSA-N 0.000 claims description 30
- HSCJRCZFDFQWRP-UHFFFAOYSA-N Uridindiphosphoglukose Natural products OC1C(O)C(O)C(CO)OC1OP(O)(=O)OP(O)(=O)OCC1C(O)C(O)C(N2C(NC(=O)C=C2)=O)O1 HSCJRCZFDFQWRP-UHFFFAOYSA-N 0.000 claims description 10
- -1 UDP sugars Chemical class 0.000 claims description 7
- HSCJRCZFDFQWRP-JZMIEXBBSA-N UDP-alpha-D-glucose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1OP(O)(=O)OP(O)(=O)OC[C@@H]1[C@@H](O)[C@@H](O)[C@H](N2C(NC(=O)C=C2)=O)O1 HSCJRCZFDFQWRP-JZMIEXBBSA-N 0.000 claims description 7
- MVMSCBBUIHUTGJ-GDJBGNAASA-N GDP-alpha-D-mannose Chemical compound C([C@H]1O[C@H]([C@@H]([C@@H]1O)O)N1C=2N=C(NC(=O)C=2N=C1)N)OP(O)(=O)OP(O)(=O)O[C@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@@H]1O MVMSCBBUIHUTGJ-GDJBGNAASA-N 0.000 claims description 5
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 4
- MVMSCBBUIHUTGJ-UHFFFAOYSA-N [[5-(2-amino-6-oxo-3h-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl] [3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl] hydrogen phosphate Chemical compound C1=2NC(N)=NC(=O)C=2N=CN1C(C(C1O)O)OC1COP(O)(=O)OP(O)(=O)OC1OC(CO)C(O)C(O)C1O MVMSCBBUIHUTGJ-UHFFFAOYSA-N 0.000 claims description 3
- LQEBEXMHBLQMDB-JGQUBWHWSA-N GDP-beta-L-fucose Chemical compound O[C@H]1[C@H](O)[C@H](O)[C@H](C)O[C@@H]1OP(O)(=O)OP(O)(=O)OC[C@@H]1[C@@H](O)[C@@H](O)[C@H](N2C3=C(C(NC(N)=N3)=O)N=C2)O1 LQEBEXMHBLQMDB-JGQUBWHWSA-N 0.000 claims description 2
- HDYANYHVCAPMJV-UHFFFAOYSA-N Uridine diphospho-D-glucuronic acid Natural products O1C(N2C(NC(=O)C=C2)=O)C(O)C(O)C1COP(O)(=O)OP(O)(=O)OC1OC(C(O)=O)C(O)C(O)C1O HDYANYHVCAPMJV-UHFFFAOYSA-N 0.000 claims description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 2
- HDYANYHVCAPMJV-USQUEEHTSA-N udp-glucuronic acid Chemical compound O([P@](O)(=O)O[P@](O)(=O)OC[C@H]1[C@@H]([C@H]([C@@H](O1)N1C(NC(=O)C=C1)=O)O)O)[C@H]1O[C@@H](C(O)=O)[C@H](O)[C@@H](O)[C@@H]1O HDYANYHVCAPMJV-USQUEEHTSA-N 0.000 claims description 2
- LFTYTUAZOPRMMI-CFRASDGPSA-N UDP-N-acetyl-alpha-D-glucosamine Chemical compound O1[C@H](CO)[C@@H](O)[C@H](O)[C@@H](NC(=O)C)[C@H]1OP(O)(=O)OP(O)(=O)OC[C@@H]1[C@@H](O)[C@@H](O)[C@H](N2C(NC(=O)C=C2)=O)O1 LFTYTUAZOPRMMI-CFRASDGPSA-N 0.000 claims 1
- HSCJRCZFDFQWRP-ABVWGUQPSA-N UDP-alpha-D-galactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1OP(O)(=O)OP(O)(=O)OC[C@@H]1[C@@H](O)[C@@H](O)[C@H](N2C(NC(=O)C=C2)=O)O1 HSCJRCZFDFQWRP-ABVWGUQPSA-N 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 abstract description 50
- LFTYTUAZOPRMMI-LSIJYXAZSA-N uridine-diphosphate-n-acetylglucosamine Chemical compound O1[C@@H](CO)[C@H](O)[C@@H](O)[C@H](NC(=O)C)[C@@H]1O[P@](O)(=O)O[P@](O)(=O)OC[C@H]1[C@H](O)[C@@H](O)[C@H](N2C(NC(=O)C=C2)=O)O1 LFTYTUAZOPRMMI-LSIJYXAZSA-N 0.000 description 35
- 238000003786 synthesis reaction Methods 0.000 description 26
- 230000015572 biosynthetic process Effects 0.000 description 24
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 20
- 239000011541 reaction mixture Substances 0.000 description 13
- 229920001542 oligosaccharide Polymers 0.000 description 10
- 150000002482 oligosaccharides Chemical class 0.000 description 10
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 9
- 239000008103 glucose Substances 0.000 description 9
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 8
- DJJCXFVJDGTHFX-UHFFFAOYSA-N Uridinemonophosphate Natural products OC1C(O)C(COP(O)(O)=O)OC1N1C(=O)NC(=O)C=C1 DJJCXFVJDGTHFX-UHFFFAOYSA-N 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- DJJCXFVJDGTHFX-XVFCMESISA-N uridine 5'-monophosphate Chemical compound O[C@@H]1[C@H](O)[C@@H](COP(O)(O)=O)O[C@H]1N1C(=O)NC(=O)C=C1 DJJCXFVJDGTHFX-XVFCMESISA-N 0.000 description 6
- MSWZFWKMSRAUBD-IVMDWMLBSA-N 2-amino-2-deoxy-D-glucopyranose Chemical compound N[C@H]1C(O)O[C@H](CO)[C@@H](O)[C@@H]1O MSWZFWKMSRAUBD-IVMDWMLBSA-N 0.000 description 5
- MSWZFWKMSRAUBD-UHFFFAOYSA-N beta-D-galactosamine Natural products NC1C(O)OC(CO)C(O)C1O MSWZFWKMSRAUBD-UHFFFAOYSA-N 0.000 description 5
- 230000002255 enzymatic effect Effects 0.000 description 5
- 229960002442 glucosamine Drugs 0.000 description 5
- 239000008363 phosphate buffer Substances 0.000 description 5
- 102000004190 Enzymes Human genes 0.000 description 4
- 108090000790 Enzymes Proteins 0.000 description 4
- 102000051366 Glycosyltransferases Human genes 0.000 description 4
- 108700023372 Glycosyltransferases Proteins 0.000 description 4
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 4
- 238000004128 high performance liquid chromatography Methods 0.000 description 4
- 229910001629 magnesium chloride Inorganic materials 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- XTWYTFMLZFPYCI-UHFFFAOYSA-N Adenosine diphosphate Natural products C1=NC=2C(N)=NC=NC=2N1C1OC(COP(O)(=O)OP(O)(O)=O)C(O)C1O XTWYTFMLZFPYCI-UHFFFAOYSA-N 0.000 description 3
- PGAVKCOVUIYSFO-XVFCMESISA-N UTP Chemical compound O[C@@H]1[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O[C@H]1N1C(=O)NC(=O)C=C1 PGAVKCOVUIYSFO-XVFCMESISA-N 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- RQFCJASXJCIDSX-UUOKFMHZSA-N guanosine 5'-monophosphate Chemical group C1=2NC(N)=NC(=O)C=2N=CN1[C@@H]1O[C@H](COP(O)(O)=O)[C@@H](O)[C@H]1O RQFCJASXJCIDSX-UUOKFMHZSA-N 0.000 description 3
- 235000013928 guanylic acid Nutrition 0.000 description 3
- 235000011007 phosphoric acid Nutrition 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- 229950010342 uridine triphosphate Drugs 0.000 description 3
- PGAVKCOVUIYSFO-UHFFFAOYSA-N uridine-triphosphate Natural products OC1C(O)C(COP(O)(=O)OP(O)(=O)OP(O)(O)=O)OC1N1C(=O)NC(=O)C=C1 PGAVKCOVUIYSFO-UHFFFAOYSA-N 0.000 description 3
- XTWYTFMLZFPYCI-KQYNXXCUSA-N 5'-adenylphosphoric acid Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP(O)(=O)OP(O)(O)=O)[C@@H](O)[C@H]1O XTWYTFMLZFPYCI-KQYNXXCUSA-N 0.000 description 2
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 2
- 108020004511 Recombinant DNA Proteins 0.000 description 2
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- IERHLVCPSMICTF-XVFCMESISA-N cytidine 5'-monophosphate Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](COP(O)(O)=O)O1 IERHLVCPSMICTF-XVFCMESISA-N 0.000 description 2
- IERHLVCPSMICTF-UHFFFAOYSA-N cytidine monophosphate Natural products O=C1N=C(N)C=CN1C1C(O)C(O)C(COP(O)(O)=O)O1 IERHLVCPSMICTF-UHFFFAOYSA-N 0.000 description 2
- YSYKRGRSMLTJNL-URARBOGNSA-N dTDP-alpha-D-glucose Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)O[C@@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O2)O)[C@@H](O)C1 YSYKRGRSMLTJNL-URARBOGNSA-N 0.000 description 2
- GYOZYWVXFNDGLU-XLPZGREQSA-N dTMP Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](COP(O)(O)=O)[C@@H](O)C1 GYOZYWVXFNDGLU-XLPZGREQSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229930182830 galactose Natural products 0.000 description 2
- QGWNDRXFNXRZMB-UHFFFAOYSA-N guanidine diphosphate Natural products C1=2NC(N)=NC(=O)C=2N=CN1C1OC(COP(O)(=O)OP(O)(O)=O)C(O)C1O QGWNDRXFNXRZMB-UHFFFAOYSA-N 0.000 description 2
- 150000002772 monosaccharides Chemical class 0.000 description 2
- 150000003016 phosphoric acids Chemical class 0.000 description 2
- 229910000160 potassium phosphate Inorganic materials 0.000 description 2
- 235000011009 potassium phosphates Nutrition 0.000 description 2
- 150000008163 sugars Chemical class 0.000 description 2
- 239000013076 target substance Substances 0.000 description 2
- WFPZSXYXPSUOPY-ROYWQJLOSA-N ADP alpha-D-glucoside Chemical compound C([C@H]1O[C@H]([C@@H]([C@@H]1O)O)N1C=2N=CN=C(C=2N=C1)N)OP(O)(=O)OP(O)(=O)O[C@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O WFPZSXYXPSUOPY-ROYWQJLOSA-N 0.000 description 1
- ZKHQWZAMYRWXGA-KQYNXXCUSA-J ATP(4-) Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O ZKHQWZAMYRWXGA-KQYNXXCUSA-J 0.000 description 1
- ZKHQWZAMYRWXGA-UHFFFAOYSA-N Adenosine triphosphate Natural products C1=NC=2C(N)=NC=NC=2N1C1OC(COP(O)(=O)OP(O)(=O)OP(O)(O)=O)C(O)C1O ZKHQWZAMYRWXGA-UHFFFAOYSA-N 0.000 description 1
- CGPHZDRCVSLMCF-JZMIEXBBSA-N CDP-alpha-D-glucose Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)O[C@@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O2)O)O1 CGPHZDRCVSLMCF-JZMIEXBBSA-N 0.000 description 1
- 241000222120 Candida <Saccharomycetales> Species 0.000 description 1
- AEMOLEFTQBMNLQ-AQKNRBDQSA-N D-glucopyranuronic acid Chemical compound OC1O[C@H](C(O)=O)[C@@H](O)[C@H](O)[C@H]1O AEMOLEFTQBMNLQ-AQKNRBDQSA-N 0.000 description 1
- SHZGCJCMOBCMKK-UHFFFAOYSA-N D-mannomethylose Natural products CC1OC(O)C(O)C(O)C1O SHZGCJCMOBCMKK-UHFFFAOYSA-N 0.000 description 1
- 241000235035 Debaryomyces Species 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- PNNNRSAQSRJVSB-SLPGGIOYSA-N Fucose Natural products C[C@H](O)[C@@H](O)[C@H](O)[C@H](O)C=O PNNNRSAQSRJVSB-SLPGGIOYSA-N 0.000 description 1
- IAJILQKETJEXLJ-UHFFFAOYSA-N Galacturonsaeure Natural products O=CC(O)C(O)C(O)C(O)C(O)=O IAJILQKETJEXLJ-UHFFFAOYSA-N 0.000 description 1
- SHZGCJCMOBCMKK-DHVFOXMCSA-N L-fucopyranose Chemical compound C[C@@H]1OC(O)[C@@H](O)[C@H](O)[C@@H]1O SHZGCJCMOBCMKK-DHVFOXMCSA-N 0.000 description 1
- OVRNDRQMDRJTHS-UHFFFAOYSA-N N-acelyl-D-glucosamine Natural products CC(=O)NC1C(O)OC(CO)C(O)C1O OVRNDRQMDRJTHS-UHFFFAOYSA-N 0.000 description 1
- OVRNDRQMDRJTHS-FMDGEEDCSA-N N-acetyl-beta-D-glucosamine Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O OVRNDRQMDRJTHS-FMDGEEDCSA-N 0.000 description 1
- MBLBDJOUHNCFQT-LXGUWJNJSA-N N-acetylglucosamine Natural products CC(=O)N[C@@H](C=O)[C@@H](O)[C@H](O)[C@H](O)CO MBLBDJOUHNCFQT-LXGUWJNJSA-N 0.000 description 1
- 241000235648 Pichia Species 0.000 description 1
- FOGRQMPFHUHIGU-UHFFFAOYSA-N Uridylic acid Natural products OC1C(OP(O)(O)=O)C(CO)OC1N1C(=O)NC(=O)C=C1 FOGRQMPFHUHIGU-UHFFFAOYSA-N 0.000 description 1
- 241000235017 Zygosaccharomyces Species 0.000 description 1
- USAZACJQJDHAJH-KDEXOMDGSA-N [[(2r,3s,4r,5s)-5-(2,4-dioxo-1h-pyrimidin-6-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl] [(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl] hydrogen phosphate Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1OP(O)(=O)OP(O)(=O)OC[C@@H]1[C@@H](O)[C@@H](O)[C@H](C=2NC(=O)NC(=O)C=2)O1 USAZACJQJDHAJH-KDEXOMDGSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000021736 acetylation Effects 0.000 description 1
- 238000006640 acetylation reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- UDMBCSSLTHHNCD-KQYNXXCUSA-N adenosine 5'-monophosphate Chemical group C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP(O)(O)=O)[C@@H](O)[C@H]1O UDMBCSSLTHHNCD-KQYNXXCUSA-N 0.000 description 1
- 238000005377 adsorption chromatography Methods 0.000 description 1
- UJLXYODCHAELLY-XLPZGREQSA-N dTDP Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](COP(O)(=O)OP(O)(O)=O)[C@@H](O)C1 UJLXYODCHAELLY-XLPZGREQSA-N 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 150000008266 deoxy sugars Chemical class 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- YSYKRGRSMLTJNL-OAOVJFGZSA-N dtdp-d-galactose Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)O[C@@H]2[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO)O2)O)[C@@H](O)C1 YSYKRGRSMLTJNL-OAOVJFGZSA-N 0.000 description 1
- 239000003480 eluent Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 229960003082 galactose Drugs 0.000 description 1
- 229960001031 glucose Drugs 0.000 description 1
- 229940097043 glucuronic acid Drugs 0.000 description 1
- 150000002337 glycosamines Chemical class 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 229910000402 monopotassium phosphate Inorganic materials 0.000 description 1
- 235000019796 monopotassium phosphate Nutrition 0.000 description 1
- 229950006780 n-acetylglucosamine Drugs 0.000 description 1
- 239000005445 natural material Substances 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- PJNZPQUBCPKICU-UHFFFAOYSA-N phosphoric acid;potassium Chemical compound [K].OP(O)(O)=O PJNZPQUBCPKICU-UHFFFAOYSA-N 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 230000001766 physiological effect Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 210000002345 respiratory system Anatomy 0.000 description 1
- 238000005185 salting out Methods 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 150000005846 sugar alcohols Chemical class 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P19/00—Preparation of compounds containing saccharide radicals
- C12P19/26—Preparation of nitrogen-containing carbohydrates
- C12P19/28—N-glycosides
- C12P19/30—Nucleotides
Definitions
- the present invention relates to a process for preparing sugar nucleotides, which are important substrates in the synthesis of sugar chains such as oligosaccharides.
- oligosaccharides have been produced by way of extraction from natural substances, chemical synthesis, enzymatic synthesis, or a combination of these.
- enzymatic synthesis has been considered the best suited for the mass-production for the following reasons: (1) enzymatic synthesis does not require intricate procedures such as protection and removal of protection, which are required for chemical synthesis, (2) substrate specificities of enzymes enable the synthesis of oligosaccharides having highly structural specificities.
- recent progress in recombinant DNA technology have made it possible to mass-produce various types of enzymes economically and in large quantities, which also contributes to establishing the superiority of enzymatic synthesis over other processes.
- Two processes for the synthesis of oligosaccharides through use of enzymatic synthesis are available: a process that makes use of the reverse reaction of a hydrolase, and a process that makes use of a glycosyltransferase.
- the former has an advantage that it can employ inexpensive monosaccharides as the substrate, but as it employs the reverse reaction to the decomposition reaction, it is not necessarily the best process for the synthesis of oligosaccharides in terms of the yield and application to oligosaccharides possessing a complicated structure.
- the latter makes use of a glycosyltransferase and has an advantage over the former in terms of the yield and application to the synthesis of oligosaccharides possessing a complicated structure.
- the mass-production of various types of glycosyltransferase enabled by recent progress in recombinant DNA technology also contributes to realization of this process.
- sugar nucleotides which are sugar donors used in a synthesis that makes use of a glycosyltransferase
- UDPAG uridine diphosphate-N-acetylglucosamine
- 8-23993 Japanese Patent Application Laid-Open (kokai) No. 8-23993
- the inventors of the present invention have carried out studies on a process for preparing UDPAG by use of yeast for an enzyme source reported by Tochikura et al., wherein uridylic acid and glucosamine are used as the substrates (Japanese Patent Publication (kokoku) No. 49-8278: Tochikura's method), and have confirmed that although Tochikura's method enables high yield production of UDPAG in small scale production, synthesis efficiency lowers considerably when the reaction scale is enlarged (for example, to a reaction scale of greater than dozens of milliliters).
- the present inventors have carried out earnest studies in an attempt to develop a practical process for the production of sugar nucleotides which makes it possible to enlarge the reaction scale without reducing the production yield, and have confirmed the following points: (1) the synthesis of UDPAG by use of yeast is generally divided into two groups of reactions: a group of reactions relating to the production and accumulation of uridine triphosphate which couples to the production of adenosine triphosphate by the respiratory system, and another group of reactions which pertain to the synthesis of the sugar moiety of UDPAG, for example, phosphorylation and acetylation of glucosamine; (2) in Tochikura's method, there is a time lag at the beginning of the synthetic reaction of UTP and the beginning of the synthesis of the sugar moiety.
- the present invention is directed to a process for preparing sugar nucleotides from nucleotides and sugar derivatives by the use of yeast, wherein the reactions are conducted at about 20° C. or below.
- FIG. 2 is a graph showing chronological changes of the production yield of UDPAG on a reaction scale of 80 ml.
- FIG. 3 is a graph showing chronological changes of the production yield of UDPAG on a reaction scale of 1,000 ml.
- FIG. 4 is a graph showing the effect of reaction temperature on the production yield of uridine diphosphate glucose (UDPG).
- the sugar nucleotides which are the target substances of the present invention, are not particularly limited so long as they are known sugar nucleotides.
- Specific examples include UDP sugars such as UDPG, UDPAG, UDP galactose, and UDP glucuronic acid; GDP sugars such as guanosine diphosphate mannose (GDP mannose), GDP fucose, and GDP glucose; ADP sugars such as adenosine diphosphate glucose (ADP glucose); dTDP sugars such as thymidine diphosphate glucose (dTDP glucose) and dTDP galactose; and CDP sugars such as cytidine diphosphate glucose (CDP glucose).
- examples of sugar moieties of the sugar nucleotides include deoxy sugar, amino sugar, uronic acid, or sugar alcohol, in addition to monosaccharides.
- the process of the present invention is used to produce the target substances, sugar nucleotides, from nucleotides and sugar derivatives by use of yeast.
- yeast A variety of types of yeast may be used without any particular limitation so long as they have hitherto been employed in conventional processes, for example, Tochikura's method, for the production of sugar nucleotides such as UDPAG.
- yeast there may be used different types of yeast such as those which belong to the genus Sacchromyces, genus Zygosaccharomyces, genus Candida, genus Torulopsls, genus Hansenula, genus Debaryomyces, etc.
- viable or dry yeast may be used, dry yeast is more preferred from the point of reaction yield.
- the nucleotides and sugar derivatives subjected to the reactions may be suitably selected in accordance with the type of the sugar nucleotide of interest.
- the sugar nucleotide is a UDP sugar
- the nucleotide is uridine monophosphate (UMP)
- UMP uridine monophosphate
- the sugar derivative is suitably selected in accordance with the sugar nucleotide of interest, from among glucose, glucosamine, galactose, glucuronic acid, etc.
- the nucleotide in the case of a GDP sugar, the nucleotide is guanosine monophosphate (GMP), and the sugar derivative is suitably selected in accordance with the sugar nucleotide of interest, from among mannose, fucose, glucose, etc.; and in the case of an ADP sugar, dTDP sugar, or CDP sugar, the nucleotide is adenosine monophosphate (AMP), thymidine monophosphate (dTMP), or cytidine monophosphate (CMP), and the sugar derivative is suitably selected in accordance with the sugar nucleotide of interest, from among glucose, galactose, etc.
- GMP guanosine monophosphate
- concentration of respective materials is suitably determined within the range of about 1 to about 50 mM, preferably about 10 to about 30 mM.
- inorganic phosphoric acids and energy sources are preferably added to the reaction system, to thereby perform the process of the present invention.
- Useful inorganic phosphoric acids include potassium phosphate, which may be used either as is or, preferably, in the form of a phosphate buffer.
- concentration of the inorganic phosphoric acid during use is suitably determined within the range of about 10 to about 500 mM, preferably about 100 to about 300 mM.
- pH of the phosphate buffer is determined within the range of about 6 to about 8.
- Examples of available energy sources include sugars such as glucose and fructose; and organic acids such as acetic acid and citric acid. Sugars used as energy sources may also serve as the above-mentioned sugar derivatives.
- the reactions comprise the following steps. Yeast, nucleotide, and a sugar derivative are added to phosphate buffer. Energy sources may also be added as needed. The mixture is allowed to react at a temperature of not higher than approximately 20° C., preferably about 5° C. to about 20° C., more preferably about 10° C. to about 20° C., for about 2 hours to about 50 hours with stirring as needed.
- the thus-obtained sugar nucleotide may be isolated and purified by customary isolation and purification means (ion exchange chromatography, adsorption chromatography, salting out, etc.) employed for sugar nucleotides.
- customary isolation and purification means ion exchange chromatography, adsorption chromatography, salting out, etc.
- sugar nucleotides contained in the reaction mixture were quantitatively determined by HPLC, wherein an ODS-AQ 312 column made by YMC was used for separation, and 0.5 M potassium dihydrogenphosphate solution was used as an eluent.
- a reaction mixture (80 ml) of 20 mM 5'-UMP, 20 mM glucosamine, 100 mM glucose, 200 mM phosphate buffer (pH 8.0), and 10 mM MgCl 2 was placed in a 100-ml beaker. Dry baker's yeast (24 g, Oriental Yeast Industries K.K.) was suspended in the reaction mixture. Reaction was allowed to proceed with stirring up to 50 hours at a reaction temperature of 5° C., 10° C., 15° C., 20° C., or 25° C. The maximum production yield of UDPAG was determined. The production of UDPAG was quantitatively determined by subjecting the supernatant of the reaction mixture obtained by centrifugal separation to an analysis by high performance liquid chromatography (HPLC).
- HPLC high performance liquid chromatography
- a reaction mixture (80 ml) of 20 mM 5'-UMP, 20 mM glucosamine, 100 mM glucose, 200 mM phosphate buffer (pH 8.0), and 10 MM MgCl 2 was placed in a 100-ml beaker. Dry baker's yeast (24 g, Oriental Yeast Industries K.K.) was suspended in the reaction mixture. Reaction was allowed to proceed with stirring at the reaction temperature of 28° C. (the reaction temperature used in Tochikura's method) or 15° C. (a reaction temperature of the present invention). The production yield of UDPAG was chronologically determined. The UDPAG production was quantitatively determined by subjecting the supernatant obtained by centrifugal separation of the reaction mixture to an analysis by high performance liquid chromatography (HPLC).
- HPLC high performance liquid chromatography
- a reaction mixture 1,000 liters having a composition similar to that used in Example 1 was placed in a 2,000-L tank. Dry baker's yeast (300 Kg) was suspended in the reaction mixture, and reaction was allowed to proceed with stirring at 28° C. (Tochikura's method) or 15° C. (present invention), so as to prepare UDPAG.
- reaction mixture (5 ml) having a composition of 40 mM UMP, 400 mM glucose, 200 mM sodium phosphate (pH 8.0), and 10 mM MgCl 2 was suspended dry baker's yeast (0.5 g, Oriental Yeast Industries K.K.). Reaction was allowed to proceed with stirring at a reaction temperature of 20° C., 23° C., or 28° C. The production yield of UDPG was chronologically determined.
- reaction mixture (20 ml) having a composition of 40 mM GMP, 200 mM mannose, 200 mM potassium phosphate (pH 8.0), and 10 mM MgCl 2 was placed in a 100-ml beaker. Dry baker's yeast (2 g, Oriental Yeast Industries K.K.) was suspended in the reaction mixture. Reaction was allowed to proceed with stirring at a reaction temperature of 20° C. for seven hours. After completion of reaction, the reaction mixture was processed at 100° C. for five minutes, and cells of the yeast were removed by centrifugal separation (2,000 ⁇ g; 10 minutes). When the recovered supernatant was subjected to HPLC analysis, a yield of 11.2 mM GDP mannose was confirmed.
- the present invention enables inhibition of reduction in yield of the synthesis of sugar nucleotides even when the reaction scale is enlarged, and thus the invention process has been proven to be a very practical method that opens the way to mass-production of sugar nucleotides.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Zoology (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Microbiology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biotechnology (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
The present invention relates to a process for preparing sugar nucleotides from nucleotides and sugar derivatives by the use of yeast, characterized in that the reactions are conducted at 20° C. or below. According to this process, even when the preparation is conducted on an enlarged scale, a reduction in the yield of a sugar nucleotide can be inhibited by a very simple means; lowering the reaction temperature 20° C. or below. Thus, the process is an extremely practical one applicable to the mass-production of sugar nucleotides.
Description
This application is a 371 application of International Application No. PCT/JP97/02387 filed Jul. 10, 1997.
The present invention relates to a process for preparing sugar nucleotides, which are important substrates in the synthesis of sugar chains such as oligosaccharides.
Recent remarkable progress of sugar-chain science has clarified some of its physiological role, which makes it possible to develop pharmaceuticals and functional materials based on oligosaccharides possessing physiological activities. However, only limited types of oligosaccharides are currently available on the market, and in addition, they are extremely expensive. Moreover, those oligosaccharides can be produced only on a reagent level, and a mass-production method for them has not yet been fully established.
Conventionally, oligosaccharides have been produced by way of extraction from natural substances, chemical synthesis, enzymatic synthesis, or a combination of these. Among these processes, enzymatic synthesis has been considered the best suited for the mass-production for the following reasons: (1) enzymatic synthesis does not require intricate procedures such as protection and removal of protection, which are required for chemical synthesis, (2) substrate specificities of enzymes enable the synthesis of oligosaccharides having highly structural specificities. In addition, recent progress in recombinant DNA technology have made it possible to mass-produce various types of enzymes economically and in large quantities, which also contributes to establishing the superiority of enzymatic synthesis over other processes.
Two processes for the synthesis of oligosaccharides through use of enzymatic synthesis are available: a process that makes use of the reverse reaction of a hydrolase, and a process that makes use of a glycosyltransferase. The former has an advantage that it can employ inexpensive monosaccharides as the substrate, but as it employs the reverse reaction to the decomposition reaction, it is not necessarily the best process for the synthesis of oligosaccharides in terms of the yield and application to oligosaccharides possessing a complicated structure.
On the other hand, the latter makes use of a glycosyltransferase and has an advantage over the former in terms of the yield and application to the synthesis of oligosaccharides possessing a complicated structure. Moreover, the mass-production of various types of glycosyltransferase enabled by recent progress in recombinant DNA technology also contributes to realization of this process.
However, sugar nucleotides, which are sugar donors used in a synthesis that makes use of a glycosyltransferase, are with few exceptions still expensive, and are provided only in small amounts on reagent levels. There has been reported a process for preparing uridine diphosphate-N-acetylglucosamine (UDPAG), which is a donor of N-acetyl glucosamine, by use of an osmolarity-resistant yeast (Japanese Patent Application Laid-Open (kokai) No. 8-23993), but problems still remain to be solved before its industrial production is realized.
The inventors of the present invention have carried out studies on a process for preparing UDPAG by use of yeast for an enzyme source reported by Tochikura et al., wherein uridylic acid and glucosamine are used as the substrates (Japanese Patent Publication (kokoku) No. 49-8278: Tochikura's method), and have confirmed that although Tochikura's method enables high yield production of UDPAG in small scale production, synthesis efficiency lowers considerably when the reaction scale is enlarged (for example, to a reaction scale of greater than dozens of milliliters).
On the basis of the above, the present inventors have carried out earnest studies in an attempt to develop a practical process for the production of sugar nucleotides which makes it possible to enlarge the reaction scale without reducing the production yield, and have confirmed the following points: (1) the synthesis of UDPAG by use of yeast is generally divided into two groups of reactions: a group of reactions relating to the production and accumulation of uridine triphosphate which couples to the production of adenosine triphosphate by the respiratory system, and another group of reactions which pertain to the synthesis of the sugar moiety of UDPAG, for example, phosphorylation and acetylation of glucosamine; (2) in Tochikura's method, there is a time lag at the beginning of the synthetic reaction of UTP and the beginning of the synthesis of the sugar moiety. Enlargement of reaction scale makes the time lag extended, resulting in a reduction in the production yield of synthesized UDPAG; (3) when the reactions are conducted at temperatures of not higher than approximately 20° C.--which temperature condition is quite an unexpected one in consideration of the optimal temperature of the enzyme of yeast--the synthetic reaction of UTP and that of the sugar moiety are well-balanced, to thereby enable an efficient synthesis of UDPAG on a greater reaction scale; and (4) this approach is applicable not only to UDPAG but also to other sugar nucleotides as well. The present invention was accomplished based on these findings.
Accordingly, the present invention is directed to a process for preparing sugar nucleotides from nucleotides and sugar derivatives by the use of yeast, wherein the reactions are conducted at about 20° C. or below.
FIG. 1 is a graph showing the effect of reaction temperature on the production yield of UDPAG.
FIG. 2 is a graph showing chronological changes of the production yield of UDPAG on a reaction scale of 80 ml.
FIG. 3 is a graph showing chronological changes of the production yield of UDPAG on a reaction scale of 1,000 ml.
FIG. 4 is a graph showing the effect of reaction temperature on the production yield of uridine diphosphate glucose (UDPG).
The sugar nucleotides, which are the target substances of the present invention, are not particularly limited so long as they are known sugar nucleotides. Specific examples include UDP sugars such as UDPG, UDPAG, UDP galactose, and UDP glucuronic acid; GDP sugars such as guanosine diphosphate mannose (GDP mannose), GDP fucose, and GDP glucose; ADP sugars such as adenosine diphosphate glucose (ADP glucose); dTDP sugars such as thymidine diphosphate glucose (dTDP glucose) and dTDP galactose; and CDP sugars such as cytidine diphosphate glucose (CDP glucose). Also, examples of sugar moieties of the sugar nucleotides include deoxy sugar, amino sugar, uronic acid, or sugar alcohol, in addition to monosaccharides.
The process of the present invention is used to produce the target substances, sugar nucleotides, from nucleotides and sugar derivatives by use of yeast.
A variety of types of yeast may be used without any particular limitation so long as they have hitherto been employed in conventional processes, for example, Tochikura's method, for the production of sugar nucleotides such as UDPAG. Specifically, there may be used different types of yeast such as those which belong to the genus Sacchromyces, genus Zygosaccharomyces, genus Candida, genus Torulopsls, genus Hansenula, genus Debaryomyces, etc. Although either viable or dry yeast may be used, dry yeast is more preferred from the point of reaction yield.
The nucleotides and sugar derivatives subjected to the reactions may be suitably selected in accordance with the type of the sugar nucleotide of interest. Specifically, when the sugar nucleotide is a UDP sugar, the nucleotide is uridine monophosphate (UMP), and-the sugar derivative is suitably selected in accordance with the sugar nucleotide of interest, from among glucose, glucosamine, galactose, glucuronic acid, etc. Similarly, in the case of a GDP sugar, the nucleotide is guanosine monophosphate (GMP), and the sugar derivative is suitably selected in accordance with the sugar nucleotide of interest, from among mannose, fucose, glucose, etc.; and in the case of an ADP sugar, dTDP sugar, or CDP sugar, the nucleotide is adenosine monophosphate (AMP), thymidine monophosphate (dTMP), or cytidine monophosphate (CMP), and the sugar derivative is suitably selected in accordance with the sugar nucleotide of interest, from among glucose, galactose, etc.
These nucleotides and sugar derivatives which are usable in the reactions are available on the market, and thus, commercial products may be used. The concentration of respective materials is suitably determined within the range of about 1 to about 50 mM, preferably about 10 to about 30 mM.
In addition to the above-described nucleotides and sugar derivatives, inorganic phosphoric acids and energy sources are preferably added to the reaction system, to thereby perform the process of the present invention.
Useful inorganic phosphoric acids include potassium phosphate, which may be used either as is or, preferably, in the form of a phosphate buffer. The concentration of the inorganic phosphoric acid during use is suitably determined within the range of about 10 to about 500 mM, preferably about 100 to about 300 mM. Also, the pH of the phosphate buffer is determined within the range of about 6 to about 8.
Examples of available energy sources include sugars such as glucose and fructose; and organic acids such as acetic acid and citric acid. Sugars used as energy sources may also serve as the above-mentioned sugar derivatives.
The reactions comprise the following steps. Yeast, nucleotide, and a sugar derivative are added to phosphate buffer. Energy sources may also be added as needed. The mixture is allowed to react at a temperature of not higher than approximately 20° C., preferably about 5° C. to about 20° C., more preferably about 10° C. to about 20° C., for about 2 hours to about 50 hours with stirring as needed.
The thus-obtained sugar nucleotide may be isolated and purified by customary isolation and purification means (ion exchange chromatography, adsorption chromatography, salting out, etc.) employed for sugar nucleotides.
The present invention will next be described in detail by way of examples, which should not be construed as limiting the invention. In the examples, sugar nucleotides contained in the reaction mixture were quantitatively determined by HPLC, wherein an ODS-AQ 312 column made by YMC was used for separation, and 0.5 M potassium dihydrogenphosphate solution was used as an eluent.
Synthesis of UDPAG (1)
A reaction mixture (80 ml) of 20 mM 5'-UMP, 20 mM glucosamine, 100 mM glucose, 200 mM phosphate buffer (pH 8.0), and 10 mM MgCl2 was placed in a 100-ml beaker. Dry baker's yeast (24 g, Oriental Yeast Industries K.K.) was suspended in the reaction mixture. Reaction was allowed to proceed with stirring up to 50 hours at a reaction temperature of 5° C., 10° C., 15° C., 20° C., or 25° C. The maximum production yield of UDPAG was determined. The production of UDPAG was quantitatively determined by subjecting the supernatant of the reaction mixture obtained by centrifugal separation to an analysis by high performance liquid chromatography (HPLC).
The results are shown in FIG. 1. As is apparent from FIG. 1, it was possible to produce 13 mM or more of UDPAG at a temperature of 20° C. or less, preferably 5-20° C., proving that the reaction temperature unexpectedly affected the production yield of UDPAG. Incidentally, when the reaction was performed at 15° C., production of 14.5 mM UDPAG was confirmed at the end of 48 hours of reaction.
Synthesis of UDPAG (2)
A reaction mixture (80 ml) of 20 mM 5'-UMP, 20 mM glucosamine, 100 mM glucose, 200 mM phosphate buffer (pH 8.0), and 10 MM MgCl2 was placed in a 100-ml beaker. Dry baker's yeast (24 g, Oriental Yeast Industries K.K.) was suspended in the reaction mixture. Reaction was allowed to proceed with stirring at the reaction temperature of 28° C. (the reaction temperature used in Tochikura's method) or 15° C. (a reaction temperature of the present invention). The production yield of UDPAG was chronologically determined. The UDPAG production was quantitatively determined by subjecting the supernatant obtained by centrifugal separation of the reaction mixture to an analysis by high performance liquid chromatography (HPLC).
The results are shown in FIG. 2. As is apparent from FIG. 2, when the reaction temperature was 28° C., the production yield reached its maximum, 9.5 mM, eight (8) hours after start of the reaction, and subsequently, the production yield of UDPAG reduced rapidly. In contrast, when the reaction temperature was 15° C., the production yield reached its maximum, 15 mM, twenty (20) hours after the start of reaction, and the reduction in the amount of UDPAG was very small even twenty-four (24) hours after the start of reaction.
Synthesis of UDPAG (3)
A reaction mixture (1,000 liters) having a composition similar to that used in Example 1 was placed in a 2,000-L tank. Dry baker's yeast (300 Kg) was suspended in the reaction mixture, and reaction was allowed to proceed with stirring at 28° C. (Tochikura's method) or 15° C. (present invention), so as to prepare UDPAG.
The results are shown in FIG. 3. As is apparent from FIG. 3, when the reaction temperature was 28° C., the amount of UDPAG synthesized was 3 mM at most. However, dropping of the reaction temperature alone enabled synthesis of approximately 12 mM UDPAG. Although this production yield was somewhat smaller than that achieved in the case of the 80-ml scale production in Example 1, the process of the present invention was proven to be practical in view that the reduction in production yield was suppressed to a small extent.
In this connection, when the process was applied to an even greater scale reaction of several thousand liters, preparation of sugar nucleotides on a Kg level was confirmed.
Synthesis of UDPG
Into a reaction mixture (5 ml) having a composition of 40 mM UMP, 400 mM glucose, 200 mM sodium phosphate (pH 8.0), and 10 mM MgCl2 was suspended dry baker's yeast (0.5 g, Oriental Yeast Industries K.K.). Reaction was allowed to proceed with stirring at a reaction temperature of 20° C., 23° C., or 28° C. The production yield of UDPG was chronologically determined.
The results are shown in FIG. 4. As is apparent from FIG. 4, it was confirmed that although the higher the temperature, the faster the synthesis rate, the ultimate yield was highest at 20° C., approximately 8 mM UDPG.
Synthesis of GDP mannose
A reaction mixture (20 ml) having a composition of 40 mM GMP, 200 mM mannose, 200 mM potassium phosphate (pH 8.0), and 10 mM MgCl2 was placed in a 100-ml beaker. Dry baker's yeast (2 g, Oriental Yeast Industries K.K.) was suspended in the reaction mixture. Reaction was allowed to proceed with stirring at a reaction temperature of 20° C. for seven hours. After completion of reaction, the reaction mixture was processed at 100° C. for five minutes, and cells of the yeast were removed by centrifugal separation (2,000×g; 10 minutes). When the recovered supernatant was subjected to HPLC analysis, a yield of 11.2 mM GDP mannose was confirmed.
By a very simple approach of reducing the reaction temperature to approximately 20° C. or lower, the present invention enables inhibition of reduction in yield of the synthesis of sugar nucleotides even when the reaction scale is enlarged, and thus the invention process has been proven to be a very practical method that opens the way to mass-production of sugar nucleotides.
Claims (5)
1. A process for preparing a sugar nucleotide selected from the group consisting of UDP sugars and GDP sugars, which comprises reacting a nucleotide and a sugar derivative in the presence of yeast at a temperature not higher than approximately 20° C. for more than 4 hours.
2. The process according to claim 1, which is performed at a temperature of about 5° C. to about 20° C.
3. The process according to claim 1, which is performed at a temperature of about 10° C. to about 20° C.
4. The process according to claim 1, which is performed in the presence of an inorganic phosphoric acid.
5. The process according to claim 1, wherein the sugar nucleotide is selected from the group consisting of UDP-N-acetylglucosamine, UDP glucose, UDP galactose, UDP glucuronic acid, GDP mannose, GDP fucose and GDP glucose.
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP8-204316 | 1996-07-15 | ||
| JP20431696 | 1996-07-15 | ||
| PCT/JP1997/002387 WO1998002566A1 (en) | 1996-07-15 | 1997-07-10 | Process for the preparation of sugar nucleotides |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US5968783A true US5968783A (en) | 1999-10-19 |
Family
ID=16488470
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/043,175 Expired - Fee Related US5968783A (en) | 1996-07-15 | 1997-07-10 | Process for the preparation of sugar nucleotides |
Country Status (7)
| Country | Link |
|---|---|
| US (1) | US5968783A (en) |
| EP (1) | EP0861904A1 (en) |
| KR (1) | KR19990044619A (en) |
| CN (1) | CN1197484A (en) |
| AU (1) | AU3458897A (en) |
| CA (1) | CA2231474A1 (en) |
| WO (1) | WO1998002566A1 (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20040214291A1 (en) * | 2002-12-23 | 2004-10-28 | Scinopharm Biotech, Ltd. | Deoxyribonucleotides manufacturing by enzymatic reduction of ribonucleotides |
| WO2023115798A1 (en) * | 2021-12-20 | 2023-06-29 | 中国科学院上海药物研究所 | Method for synthesizing rare sugar nucleotide from udp-glcnac |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP3667359B2 (en) * | 1993-12-29 | 2005-07-06 | 扶桑薬品工業株式会社 | Preparation and pharmaceutical composition of 5-fluorouridine derivatives |
-
1997
- 1997-07-10 KR KR1019980701870A patent/KR19990044619A/en not_active Withdrawn
- 1997-07-10 CA CA002231474A patent/CA2231474A1/en not_active Abandoned
- 1997-07-10 WO PCT/JP1997/002387 patent/WO1998002566A1/en not_active Ceased
- 1997-07-10 AU AU34588/97A patent/AU3458897A/en not_active Abandoned
- 1997-07-10 EP EP97930742A patent/EP0861904A1/en not_active Withdrawn
- 1997-07-10 CN CN97190892A patent/CN1197484A/en active Pending
- 1997-07-10 US US09/043,175 patent/US5968783A/en not_active Expired - Fee Related
Non-Patent Citations (6)
| Title |
|---|
| Chemical Abstracts 72(7):41686h (1970). * |
| Chemical Abstracts 84(7):41909f (1976). * |
| Kawaguchi et al, Agric. Biol. Chem. 34(6):908 918 (1970). * |
| Kawaguchi et al, Agric. Biol. Chem. 34(6):908-918 (1970). |
| Kimura et al, J. Bacteriol. 125(2):744 746 (1976). * |
| Kimura et al, J. Bacteriol. 125(2):744-746 (1976). |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20040214291A1 (en) * | 2002-12-23 | 2004-10-28 | Scinopharm Biotech, Ltd. | Deoxyribonucleotides manufacturing by enzymatic reduction of ribonucleotides |
| WO2023115798A1 (en) * | 2021-12-20 | 2023-06-29 | 中国科学院上海药物研究所 | Method for synthesizing rare sugar nucleotide from udp-glcnac |
Also Published As
| Publication number | Publication date |
|---|---|
| AU3458897A (en) | 1998-02-09 |
| CN1197484A (en) | 1998-10-28 |
| CA2231474A1 (en) | 1998-01-22 |
| EP0861904A1 (en) | 1998-09-02 |
| KR19990044619A (en) | 1999-06-25 |
| WO1998002566A1 (en) | 1998-01-22 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Roseman et al. | Nucleoside polyphosphates. XI. 1 An improved general method for the synthesis of nucleotide coenzymes. Syntheses of uridine-5', cytidine-5'and guanosine-5'diphosphate derivatives | |
| Schramm et al. | Non‐enzymatic synthesis of polysaccharides, nucleosides and nucleic acids and the origin of self‐reproducing systems | |
| Kamel et al. | Chemo-enzymatic synthesis of α-D-pentofuranose-1-phosphates using thermostable pyrimidine nucleoside phosphorylases | |
| EP0096547B1 (en) | Process for preparing uridine diphosphate-n-acetylgalactosamine | |
| US6040158A (en) | Process for preparing sugar nucleotide | |
| US5968783A (en) | Process for the preparation of sugar nucleotides | |
| Thiem et al. | Synthesis of galactose-terminated oligosaccharides by use of galactosyltransferase | |
| US5962275A (en) | Method for the enzymatic galactosylation of monosaccharides and oligosaccharides | |
| JP4601060B2 (en) | Azido amino sugar nucleotides and their applications | |
| Isherwood et al. | A note of the occurrence of nucleotides in strawberry leaves | |
| JP2780062B2 (en) | Purified sucrose-synthetic enzyme, method for producing the same and method for using the same | |
| EP0259598A2 (en) | Process for the enzymatic synthesis of a trisaccharide containing N-acetylneuraminic acid | |
| EP0767239B1 (en) | Process for the enzymatic synthesis of nucleotide-6-desoxy-D-xylo-4-hexuloses. | |
| JPH02177891A (en) | Method for synthesizing cytidine-5'-monophosphosialate by conjugated enzymic reaction | |
| US6316228B1 (en) | Efficient synthesis of nucleosides | |
| JPH0422559B2 (en) | ||
| KR920005726B1 (en) | Method for preparing ribonucleoside | |
| US3138539A (en) | Preparation of 5'-polyphosphate nucleotides | |
| JPWO1998002566A1 (en) | Method for producing sugar nucleotides | |
| AKAMATSU | Isolation of uridine diphosphate N-acetyl-D-glucosamine from Streptomyces griseus | |
| Moreno et al. | Nucleotides in embryos in the stages of morula, gastrula, and neurula | |
| JP4105873B2 (en) | N-acetylglucosaminyl-cellooligosaccharide derivative and method for producing the same | |
| JP4105872B2 (en) | N-acetyllactosaminyl-cellooligosaccharide derivative and method for producing the same | |
| Lazarevic et al. | En route to deoxygenated N-acetyllactosamine analogues employing uridyl and galactosyl transferases | |
| JPH04287692A (en) | Production of theanderose |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: YAMASA CORPORATION, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ISHIGE, KAZUYA;TAKENOUCHI, KENJI;REEL/FRAME:009149/0349 Effective date: 19980225 |
|
| REMI | Maintenance fee reminder mailed | ||
| LAPS | Lapse for failure to pay maintenance fees | ||
| STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
| FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20031019 |