US5529279A - Thermal isolation structures for microactuators - Google Patents
Thermal isolation structures for microactuators Download PDFInfo
- Publication number
- US5529279A US5529279A US08/295,127 US29512794A US5529279A US 5529279 A US5529279 A US 5529279A US 29512794 A US29512794 A US 29512794A US 5529279 A US5529279 A US 5529279A
- Authority
- US
- United States
- Prior art keywords
- substrate
- major surface
- flow
- microactuator
- support
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000002955 isolation Methods 0.000 title claims abstract description 44
- 239000000758 substrate Substances 0.000 claims abstract description 122
- 239000012530 fluid Substances 0.000 claims abstract description 28
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 32
- 229910052710 silicon Inorganic materials 0.000 claims description 32
- 239000010703 silicon Substances 0.000 claims description 32
- 238000005530 etching Methods 0.000 claims description 17
- 239000000463 material Substances 0.000 claims description 17
- 230000002093 peripheral effect Effects 0.000 claims description 13
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 10
- 239000006089 photosensitive glass Substances 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 6
- 230000000694 effects Effects 0.000 claims description 5
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 5
- 238000004891 communication Methods 0.000 claims description 4
- 229910052751 metal Inorganic materials 0.000 claims description 2
- 239000002184 metal Substances 0.000 claims description 2
- 230000001939 inductive effect Effects 0.000 claims 1
- 238000000059 patterning Methods 0.000 claims 1
- 239000010410 layer Substances 0.000 description 31
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 21
- 239000007789 gas Substances 0.000 description 16
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 15
- 229910052759 nickel Inorganic materials 0.000 description 11
- 229910052581 Si3N4 Inorganic materials 0.000 description 9
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 6
- 150000004767 nitrides Chemical class 0.000 description 6
- 239000011241 protective layer Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- 238000000576 coating method Methods 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000009713 electroplating Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000000873 masking effect Effects 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 238000005459 micromachining Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- 239000006088 Fotoceram Substances 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000002241 glass-ceramic Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 150000002815 nickel Chemical class 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000012781 shape memory material Substances 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K99/00—Subject matter not provided for in other groups of this subclass
- F16K99/0001—Microvalves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15C—FLUID-CIRCUIT ELEMENTS PREDOMINANTLY USED FOR COMPUTING OR CONTROL PURPOSES
- F15C5/00—Manufacture of fluid circuit elements; Manufacture of assemblages of such elements integrated circuits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K99/00—Subject matter not provided for in other groups of this subclass
- F16K99/0001—Microvalves
- F16K99/0003—Constructional types of microvalves; Details of the cutting-off member
- F16K99/0005—Lift valves
- F16K99/0009—Lift valves the valve element held by multiple arms
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K99/00—Subject matter not provided for in other groups of this subclass
- F16K99/0001—Microvalves
- F16K99/0034—Operating means specially adapted for microvalves
- F16K99/0042—Electric operating means therefor
- F16K99/0044—Electric operating means therefor using thermo-electric means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K99/00—Subject matter not provided for in other groups of this subclass
- F16K2099/0073—Fabrication methods specifically adapted for microvalves
- F16K2099/0074—Fabrication methods specifically adapted for microvalves using photolithography, e.g. etching
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K99/00—Subject matter not provided for in other groups of this subclass
- F16K2099/0073—Fabrication methods specifically adapted for microvalves
- F16K2099/008—Multi-layer fabrications
Definitions
- the present invention relates generally to microminiature devices and more particularly to microactuators.
- micromachining or microfabrication a technique known as micromachining or microfabrication. See for instance, the discussion of microfabrication of mechanical devices by Angell et al. in "Silicon Micromechanical Devices,” Scientific American (April 1983), pp. 44-55.
- microactuator One requirement in the design of a microminiature actuator (hereinafter, microactuator) is that some mechanical actuation means must be provided. A further requirement is that the actuation means must provide sufficient force for reliable actuation.
- Microactuators designed in the form of microminiature valves may, for example, be employed as gas flow regulators in setting the flow of a carrier gas through a capillary column in a gas chromatograph.
- the microfabricated valve may be required to open or close a moveable member (typically a moveable membrane, diaphragm, or valve face) against a pressure of 200 pounds per square inch (11 kilograms per square centimeter); to do so, the moving member may be displaced as much as 100 microns.
- microactuator typically employs one of various techniques to convert the applied power to an actuating force.
- the applied power is converted in part or whole to thermal energy, and such microactuators can be considered as being thermally-driven.
- a micromachined bi-metallic diaphragm has been employed to provide a thermally-driven actuating force in a microactuator.
- stresses are generated in the structure to deflect the diaphragm, thereby opening or closing the flow of fluid to an attached fluid-bearing system.
- FIGS. 3 and 4 which are reproduced from commonly-assigned U.S. Pat. No. 5,058,856, issued to Gordon et al.
- a thermally-driven microminiature valve 40 may be actuated from a closed configuration illustrated in FIG. 3, to an open configuration illustrated in FIG. 4.
- the valve 40 includes a seat substrate 42 which acts as a base; a central flow orifice 44, a lower periphery 45, and a valve seat 46 that surrounds the flow orifice 44.
- a seat substrate 42 which acts as a base; a central flow orifice 44, a lower periphery 45, and a valve seat 46 that surrounds the flow orifice 44.
- Supported atop the seat substrate 42 is an upper substrate 49 that includes a fixed periphery 47, a central flexible member 50, a lower layer 48 of the flexible member 50, and a boss 43.
- a nickel layer 51 and an additional serpentine pattern of nickel in a heating element 52 are deposited on a silicon layer 48. Electrical current from an external power source may be conducted through heating elements 52 to generate thermal energy in the form of localized heating, which then conducts through the silicon and nickel layers 48, 51 to cause a temperature increase of approximately 100 degree(s) C. over ambient temperature. The temperature increase causes the valve to open whereupon gas will flow through the
- thermal energy is lost through several paths and in several modes of dissipation.
- thermal energy is conducted from the armature 48 through the boss 43 in the upper substrate to the valve seat 46 and into the bulk of the seat substrate 42.
- Thermal energy is conducted from the heating pads 52 through the fixed periphery 47 to the seat substrate 42, and gas phase conduction occurs from the lower layer 48 to the seat substrate 42.
- the thermal energy may flow further into any thermally-conductive structure that is contiguous with the seat substrate 42. The extent of the loss of thermal energy will determine the temperature of the armature; in turn, this temperature (and its rate of change) have a significant effect on the performance of the valve.
- Thermally-driven phase change of a fluid has been employed as an actuating force in a microactuator; thermally-driven expansion or contraction of a fluid has also been used as an actuating force.
- the principal elements of an expansion-contraction design include a cavity formed in a substrate wherein one wall of the cavity is a thin, flexible membrane.
- the cavity encloses a fixed number of moles of gas or fluid, and when the temperature of the fluid in the cavity is increased, there is a concomitant increase in the pressure-volume (P-V) product of the gas or fluid.
- the temperature of the cavity may be varied by, for instance, the application of electrical current to a resistive heating element mounted on or inside the cavity, such that the resistive element heats the gas or fluid trapped in the cavity. See, for example, U.S. Pat. No. 4,824,073, issued to Zdeblick.
- thermally-actuated microactuators and especially in microactuators such as are illustrated in FIGS. 3 and 4 for improved thermal isolation of the microactuator with respect to a supporting structure.
- a thermally-actuated microactuator that is positionable on a support may be constructed according to the present invention to include a first substrate having a thermally-actuated member selectively operated by a thermal actuator such that the first substrate thereby develops thermal energy, and a second substrate having opposed first and second major surfaces.
- the second substrate is attached to the first substrate at the first major surface.
- the second major surface defines an isolation cell for enclosing a volume when the second substrate is attached to the support to reduce the thermal mass of the microactuator and to thermally isolate the thermal energy developed in first substrate.
- a microminiature valve for controlling the flow of a fluid may be constructed to include a first substrate having opposed first and second major surfaces, the first major surface including a valve seat structure, and the second major surface including central and peripheral regions and an isolation cell defined therebetween, and a flow via extending between the valve seat structure and the central region.
- the central and peripheral regions are positionable on the support for fluid communication between the flow via and the channel and for enclosing a volume between the isolation cell and the support to thereby thermally isolate the first substrate from the support.
- a second substrate may be provided to include an armature positionable in a closed position in contact with the valve seat structure to obstruct fluid flow to the flow via, and in an open position to allow fluid flow through the flow via. Means are provided for selectively displacing the armature between said closed and open positions.
- a second preferred embodiment of a novel microactuator in the form of a microminiature valve includes the first substrate described above and a second substrate including a lower major surface that is etched to form a central region, a peripheral region, and a via surround so as to define an isolation cell.
- a substrate plate defines a central bore that aligns coaxially with the flow via upon attaching the substrate plate to the lower major surface, so as to enclose the isolation cell in lieu of the support.
- a third preferred embodiment of a novel microactuator in the form of a microminiature valve includes a first substrate having a thermally-actuated member selectively operated by a thermal actuator, the first substrate thereby developing thermal energy therein; and a second substrate having opposed first and second major surfaces, the second substrate being attached to the first substrate at the first major surface.
- the second major surface comprises central and peripheral regions with a flow via extending between the central region and the first major surface to effect a fluid flow therethrough.
- the flow via is subject to closure by actuation of the thermally-actuated member.
- a port plate includes upper and lower opposing surfaces and a flow port therebetween, wherein the upper surface defines an isolation cell for enclosing a volume.
- the upper surface of the port plate is attached to the second major surface, with the flow port being aligned with the flow via and the flow channel, to enclose the isolation cell to thereby thermally isolate at least a portion of the thermal energy developed in the first substrate.
- a thermally-actuated microactuator that is constructed according to the teachings of the present invention will benefit from a reduction of power consumed by the thermal actuator. Also, the presence of the isolation cell reduces the thermal mass of the microactuator and accordingly increases its responsiveness.
- FIG. 1 is an exploded side sectional view of a microactuator constructed according to the present invention and preferred for use as a microminiature valve.
- FIG. 2 is a plan view of the underside of the microactuator of FIG. 1.
- FIGS. 3 and 4 are side views of a prior art microminiature valve, shown in respectively closed and open modes.
- FIGS. 5 through 11 illustrate steps for fabricating a first preferred embodiment of a seat substrate useable in the microactuator of FIG. 1.
- FIGS. 12, 13, and 14 illustrate second, third, and fourth preferred embodiments of a seat substrate useable in the microactuator of FIG. 1.
- FIGS. 15 and 16 illustrate second and third preferred embodiments, respectively, of a microactuator constructed according to the present invention and preferred for use as a microminiature valve.
- the present invention is directed to thermal isolation structures for microactuators. Whereas the following description is directed to a microactuator in the form of a microminiature valve, it is contemplated that the teachings of the present invention may find application in other types of thermally-driven microactuators.
- This characterization of actuators as being "thermally-driven” is meant to include microactuators that operate on the conversion of an applied quantity of energy into an actuation force for moving a movable member, wherein the conversion benefits from conservation or isolation of the thermal energy that may arise in the course of the conversion. Examples are microactuators that are driven by forces developed in a process of gas or liquid expansion/contraction, gas or liquid phase change, or according to changes in bi-metallic or shape-memory materials.
- the present invention will find use in a variety of microactuators that may be employed to operate upon a mechanical device or system, or upon a physical phenomena, such as the flow of fluids (including gases and liquids), electrical and electronic parameters (such as capacitance, current flow, and voltage potential), acoustical and. optical parameters (such as reflection, absorption, or diffraction) and simple dimensional parameters (such as acceleration, pressure, length, depth, and so on).
- fluids including gases and liquids
- electrical and electronic parameters such as capacitance, current flow, and voltage potential
- acoustical and. optical parameters such as reflection, absorption, or diffraction
- simple dimensional parameters such as acceleration, pressure, length, depth, and so on.
- a first preferred embodiment of a novel microactuator in the form of a microminiature valve 10A, mountable on a support 11 having a flow channel 11A, includes a seat substrate 12 which acts as a base.
- the seat substrate 12 is preferably a silicon chip which has been fabricated from a wafer using batch processing steps. At its periphery, the seat substrate is approximately 1000 thick.
- a central flow via 14 is formed through the seat substrate 12.
- an upper substrate 15 also formed from silicon that includes a fixed periphery 16 and a thermally-actuated member in the form of a central boss 18.
- the length and the width of the upper substrate 15 roughly match the respective dimensions of the seat substrate 12.
- the structure and the operation of the upper substrate 15 are disclosed in commonly-assigned U.S. Pat. No. 5,058,856 to Gordon et al., the disclosure of which is incorporated herein by reference.
- a layer 19 of nickel is deposited and patterned on the upper substrate using the techniques of evaporation, photolithography, and electroplating.
- An array of legs 20 and 22 join the fixed periphery 16 to the central boss 18.
- the thickness of the silicon that forms the legs is a factor in determining the amount of maximum opening of the microminiature valve 10A. Hence, the ideal thickness of the silicon layer will vary according to application.
- the seat substrate 12 includes a valve seat 28 against which the boss 18 is seated when the boss is in the closed position.
- the valve seat 28 extends from a relief 30A in an upper major surface 30 of the seat substrate 12.
- the valve seat 28 is formed by anisotropically etching the seat substrate 12 at the upper major surface 30 of the substrate.
- an isolation cell 34 is defined by shaping a lower major surface 38 into a central region 38A and a peripheral region 38B separated by a surround 38C.
- the flow via 14 provides fluid communication between the flow channel 11A with surrounding areas 24 and 26.
- these areas 24 and 26 are in fluid communication with an apparatus (not shown) to or from which flow is to be regulated by the microminiature valve 10A.
- the surround 38C has a thickness sufficiently slight so as to minimize its effect as a lateral shunt (i.e., conductor) of thermal energy originating from the legs 20, 22 that is conducted through the gas within surrounding areas 24, 26 to the surround 38C.
- a preferred thickness for the surround 38C is selected from a range of approximately 1 to 10 microns.
- the area occupied by the isolation cell 34 is preferably between 10 and 90 percent of the surface area of lower major surface 38; the depth of the isolation cell is preferably between 10 and 90 percent of the overall thickness of the seat substrate 12.
- the enclosed volume thus acts as a thermal insulator and accordingly the presence of the isolation cell 34 allows greater conservation of the thermal energy developed in the upper substrate 15. Furthermore, by provision of the isolation cell 34, the thermal mass of the seat substrate 12 is greatly reduced and accordingly less thermal energy will accumulate in the seat substrate 12, and the thermal resistance of the thermal path between the seat substrate 12 and the support 11 is increased.
- valve 10A has been described as including an array of legs 20 and 22, the present invention is not limited to use with actuation by means of arching legs.
- the structure that connects the central boss 18 to the fixed periphery 16 may instead be a solid circular diaphragm which is selectively deflected to regulate fluid flow between the flow via 14 and the areas 24 and 26.
- the width of the valve seat 28 is readily varied, but is chosen to be sufficiently great that the valve seat is not susceptible to fracturing upon repeated closing of the boss 18.
- the flow orifice 14 is 200 microns square, while the radially outward periphery of the bearing surface is 240 microns square.
- valve seat 28 improves both the pneumatic and thermal characteristics of the microminiature valve 10A.
- a particularly advantageous valve seat may be found in commonly-assigned U.S. Pat. No. 5,333,831, entitled "High Performance Micromachined Valve Orifice and Seat” and issued to Phillip W. Barth and Gary B. Gordon, the disclosure of which is incorporated herein by reference.
- the steps for fabrication of the valve 10A generally proceed as follows.
- a first wafer of silicon designated the orifice wafer
- a process of batch-fabrication silicon micromachining techniques are used to fabricate certain features such as the raised valve seat 28.
- the orifice wafer is separated by sawing the wafer into individual orifice chips, and each orifice chip is cleaned.
- a second wafer of silicon designated the actuator wafer, receives a layer of silicon dioxide, and then a layer of silicon nitride, on the upper and lower major surfaces of the second wafer.
- These layers are photolithographically patterned on the upper and lower major surfaces to form areas which will later be etched.
- the silicon dioxide and silicon nitride layers are patterned on the lower major surface of the actuator wafer to define regions that will become the boss 18.
- a layer of nickel is deposited on the upper major surface using evaporation or sputtering, and this nickel is patterned to leave both thin-film resistor regions and other regions which will later be electroplated with thick nickel.
- a layer of photoresist is deposited and is photolithographically patterned and etched to define holes through the photoresist.
- electroplating is carried out to form thick nickel regions.
- the lower major surface of the wafer is etched in aqueous potassium hydroxide, forming (among other things) the boss 18 on the bottom side of the actuator wafer. Selected portions of the nitride layer are then removed by plasma etching to allow further etching in potassium hydroxide (KOH) of both sides of the wafer to clear the areas between the legs.
- KOH potassium hydroxide
- the individual valves 10A may be packaged and bonded onto the support 11 by known techniques, preferably in the presence of an atmosphere of dry air or a gas of low thermal conductivity, such as nitrogen, such that the isolation cell 34 is suitably gas-filled. Alternatively, for even greater thermal isolation, the completed valve 10A may be assembled and bonded on the support 11 in an evacuated environment such that the isolation cell 34 encloses a vacuum or near-vacuum.
- FIGS. 5-10 illustrate a method of manufacturing the seat substrate 12 of the valve 10A.
- conventional masking materials are photolithographically patterned at both of the major surfaces of the silicon wafer 60.
- Each major surface has a first layer of silicon oxide 62 and 64 and an outer layer of silicon nitride 66 and 68.
- approximately 50% of the nitride outer layer 66 at the upper surface is removed at portions of the layer, leaving thick nitride areas 70 and 72 for use in defining a valve seat and leaving outer thick nitride areas 74 and 76 for use in defining the extent of the upper valve face.
- the oxide and nitride layers 64 and 68 are completely etched at a central region. Hydrofluoric acid is used in etching the bottom oxide.
- potassium hydroxide is used to etch through the central region of the bottom of the silicon wafer 60 that was exposed in the etching of the silicon nitride layer 68 and the oxide layer 64.
- the silicon is etched more slowly along (111) planes, thereby providing the sloped walls 78 and 80.
- Anisotropically etching the silicon wafer will produce walls having an angle of approximately 54 degrees. The anisotropic etch extends partially through the silicon wafer.
- the silicon nitride layer 66 is etched to leave a portion of the previously thick areas 70-76 and to completely remove the silicon nitride layer 66 between the thick areas, and the peripheral region that surrounds the central region of the bottom of the silicon wafer 60 is exposed by etching respective portions of the silicon nitride layer 68 and silicon oxide layer 64. Potassium hydroxide (KOH) is used to etch through the central and peripheral regions. The silicon is etched more slowly along (111) planes, thereby providing the sloped walls 78 and 80. Anisotropically etching the silicon wafer will produce walls having an angle of approximately 54.7 degrees. The anisotropic etch of the central region extends through the silicon wafer.
- KOH potassium hydroxide
- Exposed oxide 62 is then etched in hydrofluoric acid.
- a central via 81 having upper and lower orifices is formed entirely through the silicon wafer 60 and a cell 82 is formed about the central via.
- the central via 81 does not resemble the final flow via to be fabricated. Rather, the etch from the bottom surface of the silicon wafer 60 provides the "rough" shape of a flow via.
- an anisotropic etch using KOH is then applied at both major surfaces of the semiconductor wafer 60. Exposed areas of the upper surface of the wafer are etched to form the inverted and truncated pyramidal faces 82 and 84. The depths of the truncated pyramidal faces will vary with the duration of the KOH etch. Initially, the etching applied at the upper surface will create the sloped walls 86 and 88 that are angled downwardly and inwardly along (111) planes. Substantially vertical walls 90 and 92 connect the radially inwardly directed walls 86 and 88 to the previously formed walls 78 and 80.
- the vertical walls 90 and 92 migrate downwardly, as shown in FIG. 9.
- the final configuration of the valve seat begins to form, as the anisotropic etching that takes place at the upper surface provides parallel opposed walls 94 and 96 and parallel opposed walls 98 and 100.
- the depth of the inverted and truncated pyramidal faces 82 and 84 increases with the etching time.
- the vertical walls 90 and 92 have migrated downwardly and the pyramidal faces 82 and 84 have increased in depth.
- the cross sectional geometry of the valve seat as defined by the parallel walls 94 and 96 and the parallel walls 98 and 100 remains unchanged.
- the geometry does change at the corners of a mask, so that steps are taken to ensure suitable results at mask corners.
- the etching can continue until the vertical walls 90 and 92 reach the lower surface of the silicon wafer 60, thereby providing 90 degree corners at the orifice of the resulting flow via.
- the masking material has been removed from the upper and lower surfaces of the silicon wafer, providing the seat substrate 12 of FIGS. 1 and 2.
- the substrate includes the valve seat 28 and the bearing surface 32 at the top of the valve seat.
- a central flow via 14 having the benefits described above is created.
- FIGS. 12 and 13 Second and third preferred embodiments of a seat substrate, formed in accordance with the foregoing steps, with some modifications, are respectively illustrated in FIGS. 12 and 13.
- a wafer 102 preferably formed of silicon
- respective photolithographically patterned protective layers preferably, of silicon nitride
- the upper protective layer is patterned to form protective regions and the wafer 102 is then etched from both sides in KOH to provide a central via 114, vertical walls 124 and 126, via wall 128, bearing seat 132, and isolation cell 134.
- a wafer 202 includes a structural layer 203 formed of a material having a thermal conductivity that is substantially less than the material forming the remainder of the wafer 202.
- the wafer 202 is formed of silicon and the structural layer 203 is formed of silicon oxide (SiO 2 ).
- the wafer 202 is coated at its top and bottom surfaces with respective photolithographically patterned protective layers (preferably, of silicon nitride) in patterns similar to those illustrated in FIGS. 5-7.
- the wafer 202 is then etched from both sides in tetramethyl ammonium hydroxide (TMAH) to provide a central via 214, vertical walls 224 and 226, via wall 228, bearing seat 232, and isolation cell 234. Because the structural layer 203 exhibits less thermal conductivity than the wafer 202, less thermal energy is conducted from the bearing seat 232, thereby increasing the thermal isolation of the upper substrate 15.
- TMAH tetramethyl ammonium hydroxide
- a fourth preferred embodiment of a seat is illustrated in FIG. 14.
- a wafer 242 (preferably composed of a precision-etchable material having a low coefficient of thermal conductivity) is coated at its top and bottom surfaces with respective photolithographically patterned protective layers in patterns similar to those illustrated in FIGS. 5-7.
- the upper protective layer is patterned to form protective regions and the wafer 242 is then etched from both sides in acid to provide a central via 244, bearing seat 243, vertical via wall 245, and isolation cell 248.
- a preferred composition of precision-etchable material having a low coefficient of thermal conductivity is photosensitive glass; suitable compositions may be selected from the FOTOFORM Glass Products and FOTOCERAM Glass-Ceramic Products available from Corning Fotoform Products Group, Corning, N.Y.
- a second microminiature valve 10B includes the upper substrate 15 described with respect to FIG. 1 and a seat substrate 252 including a valve seat 262 extending from a relief 253A in an upper major surface 253.
- the valve seat 262 and relief 253A are formed by precision etching the seat substrate 252 at the upper major surface 253 of the substrate.
- the seat substrate 252 includes a lower major surface 258 that is etched to form a central region 258A, a peripheral region 258B, and a via surround 265 so as to define an isolation cell 264.
- the flow via 254 and isolation cell 264 are formed by precision etching the seat substrate 252 at the lower major surface 258.
- a seat substrate plate 266 defines a central bore 266 that is sized and located so as to align coaxially with the flow via 254 upon bonding the seat substrate plate 266 to the lower major surface 258.
- the seat substrate 252 and seat substrate plate 266 are preferably composed of a precision-etchable material having a low coefficient of thermal conductivity so as to minimize the conduction of thermal energy from the valve seat 262 to the support 11.
- One such preferred composition is the above-described photosensitive glass.
- the seat substrate plate 266 be bonded to the lower major surface 258 while in an appropriate environment such that the isolation cell 264 encloses a gas-filled or evacuated volume so as to maximize the thermal isolation.
- a third preferred microminiature valve 10C includes a seat substrate 352 including a valve seat 362 extending upwardly from a relief 353A in an upper major surface 353.
- the valve seat 362 is formed by etching the seat substrate 352 at the upper major surface 353 of the substrate.
- the seat substrate 352 includes a lower major surface 358, a via surround 365, and flow via 354 formed by etching the seat substrate 352 at the upper major surface 353.
- the seat substrate 352 is bonded onto a port plate 311 that has been pressed, milled, etched, or otherwise altered by known methods to include an isolation cell 374 located about a flow port 376.
- the seat substrate 353 be bonded to the valve support plate 370 while in an appropriate environment such that the isolation cell encloses a gas-filled or evacuated volume so as to maximize the thermal isolation of the third microminiature valve 10C.
- the port plate 370 may be bonded or attached by known means to the support 311 while the flow port 376 is coaxially aligned with the flow channel 311A so as to allow unobstructed flow through the flow channel 11A and the flow port 376 to the flow via 354.
- the seat substrate 352 of the third preferred embodiment is preferably composed of a precision-etchable material having a low coefficient of thermal conductivity, so as to minimize the conduction of thermal energy from the valve seat 362 to the port plate 370.
- a precision-etchable material having a low coefficient of thermal conductivity, so as to minimize the conduction of thermal energy from the valve seat 362 to the port plate 370.
- One such preferred composition is the above-described photosensitive glass.
- the port plate 370 may also be formed of a precision-etchable material such as photosensitive glass for enhanced thermal isolation, or (in less demanding applications) of other materials such as metal or plastic.
- While the present invention has been described as being fabricated from silicon or photosensitive glass substrates, other materials may be used.
- other crystalline substrates such as gallium arsenide may be used, and modifications in the structure of the disclosed embodiments may be effected by use of differing patterns of etch-resistant coatings.
- alternative coatings such as silicon dioxide may be deposited or grown on the surface of the completed structure.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Micromachines (AREA)
- Temperature-Responsive Valves (AREA)
- Weting (AREA)
- Flow Control (AREA)
Abstract
Description
Claims (18)
Priority Applications (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US08/295,127 US5529279A (en) | 1994-08-24 | 1994-08-24 | Thermal isolation structures for microactuators |
| DE19509026A DE19509026C2 (en) | 1994-08-24 | 1995-03-13 | Micro actuator with thermal insulation structure |
| GB9512766A GB2292608B (en) | 1994-08-24 | 1995-06-22 | Microactuator |
| JP7239230A JPH08114278A (en) | 1994-08-24 | 1995-08-24 | Micro-actuator |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US08/295,127 US5529279A (en) | 1994-08-24 | 1994-08-24 | Thermal isolation structures for microactuators |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US5529279A true US5529279A (en) | 1996-06-25 |
Family
ID=23136323
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US08/295,127 Expired - Fee Related US5529279A (en) | 1994-08-24 | 1994-08-24 | Thermal isolation structures for microactuators |
Country Status (4)
| Country | Link |
|---|---|
| US (1) | US5529279A (en) |
| JP (1) | JPH08114278A (en) |
| DE (1) | DE19509026C2 (en) |
| GB (1) | GB2292608B (en) |
Cited By (51)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1998023869A1 (en) | 1996-11-25 | 1998-06-04 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Piezo-electrically actuated microvalve |
| US5975485A (en) * | 1997-10-16 | 1999-11-02 | Industrial Technology Research Institute | Integrated micro thermistor type flow control module |
| US6003833A (en) * | 1997-10-16 | 1999-12-21 | Industrial Technology Research Institute | Integrated micro pressure-resistant flow control module |
| US6070851A (en) * | 1998-06-08 | 2000-06-06 | Industrial Technology Research Institute | Thermally buckling linear micro structure |
| US6087638A (en) * | 1997-07-15 | 2000-07-11 | Silverbrook Research Pty Ltd | Corrugated MEMS heater structure |
| US6109852A (en) * | 1996-01-18 | 2000-08-29 | University Of New Mexico | Soft actuators and artificial muscles |
| US6131879A (en) * | 1996-11-25 | 2000-10-17 | Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. | Piezoelectrically actuated microvalve |
| US6206022B1 (en) * | 1998-10-30 | 2001-03-27 | Industrial Technology Research Institute | Integrated flow controller module |
| US6390791B1 (en) * | 1997-08-20 | 2002-05-21 | Westonbridge International Limited | Micro pump comprising an inlet control member for its self-priming |
| US6475639B2 (en) | 1996-01-18 | 2002-11-05 | Mohsen Shahinpoor | Ionic polymer sensors and actuators |
| WO2002033268A3 (en) * | 2000-10-18 | 2002-11-21 | Univ New York State Res Found | Microvalve |
| EP0981710A4 (en) * | 1997-05-21 | 2003-08-13 | Redwood Microsystems Inc | Low-power thermopneumatic microvalve |
| US20030160538A1 (en) * | 1999-02-23 | 2003-08-28 | Matsushita Electric Works, Ltd. | Semiconductor device |
| US6612535B1 (en) * | 1997-01-24 | 2003-09-02 | California Institute Of Technology | MEMS valve |
| US6653239B2 (en) * | 1999-07-30 | 2003-11-25 | Xactix, Inc. | Thermal isolation using vertical structures |
| WO2004031070A1 (en) * | 2002-10-03 | 2004-04-15 | Sharp Kabushiki Kaisha | Micro movable device |
| US6745567B1 (en) * | 2001-12-28 | 2004-06-08 | Zyvex Corporation | System and method for positional movement of microcomponents |
| US20040120836A1 (en) * | 2002-12-18 | 2004-06-24 | Xunhu Dai | Passive membrane microvalves |
| US20040159351A1 (en) * | 2002-12-27 | 2004-08-19 | Dmitry Znamensky | Micro electromechanical systems for delivering high purity fluids in a chemical delivery system |
| US20050046541A1 (en) * | 1997-12-16 | 2005-03-03 | Yves Fouillet | Microsystem with an element which can be deformed by a thermal sensor |
| US20060231521A1 (en) * | 2005-04-15 | 2006-10-19 | Chilcott Dan W | Technique for manufacturing micro-electro mechanical structures |
| US20070201797A1 (en) * | 2006-02-28 | 2007-08-30 | Grzybowski Richard R | Glass-based micropositioning systems and methods |
| US20070265439A1 (en) * | 2004-10-15 | 2007-11-15 | Walter Gumbrecht | Method for Controlling Valves During the Thermocyclisation of a Substance for the Purpose of Polymer Chain Reaction (Pcr) and Associated Arrangement |
| US20090137874A1 (en) * | 2007-11-26 | 2009-05-28 | The Hong Kong Polytechnic University | Polymer Microvalve with actuators and devices |
| US20090188576A1 (en) * | 2006-03-30 | 2009-07-30 | Wayne State University | Check valve diaphragm micropump |
| US20090314972A1 (en) * | 2008-06-20 | 2009-12-24 | Silverbrook Research Pty Ltd | Mechanically-Actuated Microfluidic Diaphragm Valve |
| US20090314368A1 (en) * | 2008-06-20 | 2009-12-24 | Silverbrook Research Pty Ltd | Microfluidic System Comprising Pinch Valve and On-Chip MEMS Pump |
| US20090317302A1 (en) * | 2008-06-20 | 2009-12-24 | Silverbrook Research Pty Ltd | Microfluidic System Comprising MEMS Integrated Circuit |
| US20090317301A1 (en) * | 2008-06-20 | 2009-12-24 | Silverbrook Research Pty Ltd | Bonded Microfluidics System Comprising MEMS-Actuated Microfluidic Devices |
| US20090314367A1 (en) * | 2008-06-20 | 2009-12-24 | Silverbrook Research Pty Ltd | Bonded Microfluidics System Comprising CMOS-Controllable Microfluidic Devices |
| US20090315126A1 (en) * | 2008-06-20 | 2009-12-24 | Silverbrook Research Pty Ltd | Bonded Microfluidic System Comprising Thermal Bend Actuated Valve |
| US7913928B2 (en) | 2005-11-04 | 2011-03-29 | Alliant Techsystems Inc. | Adaptive structures, systems incorporating same and related methods |
| US20110073788A1 (en) * | 2009-09-30 | 2011-03-31 | Marcus Michael A | Microvalve for control of compressed fluids |
| US8096642B2 (en) | 1997-08-11 | 2012-01-17 | Silverbrook Research Pty Ltd | Inkjet nozzle with paddle layer arranged between first and second wafers |
| US8102568B2 (en) | 1997-07-15 | 2012-01-24 | Silverbrook Research Pty Ltd | System for creating garments using camera and encoded card |
| US8274665B2 (en) | 1997-07-15 | 2012-09-25 | Silverbrook Research Pty Ltd | Image sensing and printing device |
| US8285137B2 (en) | 1997-07-15 | 2012-10-09 | Silverbrook Research Pty Ltd | Digital camera system for simultaneous printing and magnetic recording |
| US8421869B2 (en) | 1997-07-15 | 2013-04-16 | Google Inc. | Camera system for with velocity sensor and de-blurring processor |
| US8789939B2 (en) | 1998-11-09 | 2014-07-29 | Google Inc. | Print media cartridge with ink supply manifold |
| US8823823B2 (en) | 1997-07-15 | 2014-09-02 | Google Inc. | Portable imaging device with multi-core processor and orientation sensor |
| US20140298913A1 (en) * | 2013-04-09 | 2014-10-09 | Honeywell International Inc. | Sensor with isolated diaphragm |
| US8866923B2 (en) | 1999-05-25 | 2014-10-21 | Google Inc. | Modular camera and printer |
| US8896724B2 (en) | 1997-07-15 | 2014-11-25 | Google Inc. | Camera system to facilitate a cascade of imaging effects |
| US8902333B2 (en) | 1997-07-15 | 2014-12-02 | Google Inc. | Image processing method using sensed eye position |
| US8908075B2 (en) | 1997-07-15 | 2014-12-09 | Google Inc. | Image capture and processing integrated circuit for a camera |
| US8936196B2 (en) | 1997-07-15 | 2015-01-20 | Google Inc. | Camera unit incorporating program script scanner |
| US9513242B2 (en) | 2014-09-12 | 2016-12-06 | Honeywell International Inc. | Humidity sensor |
| US20190203703A1 (en) * | 2016-09-13 | 2019-07-04 | Albert-Ludwigs-Universität Freiburg | Micro Valve, Fluid Pump, And Method Of Operating A Fluid Pump |
| US10585058B2 (en) | 2016-05-13 | 2020-03-10 | Honeywell International Inc. | FET based humidity sensor with barrier layer protecting gate dielectric |
| US10677747B2 (en) | 2015-02-17 | 2020-06-09 | Honeywell International Inc. | Humidity sensor |
| US10730740B2 (en) | 2014-04-01 | 2020-08-04 | Agiltron, Inc. | Microelectromechanical displacement structure and method for controlling displacement |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| AUPP922399A0 (en) | 1999-03-16 | 1999-04-15 | Silverbrook Research Pty Ltd | A method and apparatus (ij46p2) |
| RU168462U1 (en) * | 2016-07-01 | 2017-02-03 | Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет "Московский институт электронной техники" | HEAT MICROMECHANICAL ACTUATOR |
| DE102022209415A1 (en) | 2022-09-09 | 2024-03-14 | Robert Bosch Gesellschaft mit beschränkter Haftung | Microfluidic valve and microfluidic device |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4581624A (en) * | 1984-03-01 | 1986-04-08 | Allied Corporation | Microminiature semiconductor valve |
| US5050838A (en) * | 1990-07-31 | 1991-09-24 | Hewlett-Packard Company | Control valve utilizing mechanical beam buckling |
| US5058856A (en) * | 1991-05-08 | 1991-10-22 | Hewlett-Packard Company | Thermally-actuated microminiature valve |
| US5069419A (en) * | 1989-06-23 | 1991-12-03 | Ic Sensors Inc. | Semiconductor microactuator |
| US5161774A (en) * | 1989-06-19 | 1992-11-10 | Robert Bosch Gmbh | Microvalve |
| US5333831A (en) * | 1993-02-19 | 1994-08-02 | Hewlett-Packard Company | High performance micromachined valve orifice and seat |
| US5344117A (en) * | 1992-10-10 | 1994-09-06 | Robert Bosch Gmbh | Micro-actuator |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4824073A (en) * | 1986-09-24 | 1989-04-25 | Stanford University | Integrated, microminiature electric to fluidic valve |
-
1994
- 1994-08-24 US US08/295,127 patent/US5529279A/en not_active Expired - Fee Related
-
1995
- 1995-03-13 DE DE19509026A patent/DE19509026C2/en not_active Expired - Fee Related
- 1995-06-22 GB GB9512766A patent/GB2292608B/en not_active Expired - Fee Related
- 1995-08-24 JP JP7239230A patent/JPH08114278A/en active Pending
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4581624A (en) * | 1984-03-01 | 1986-04-08 | Allied Corporation | Microminiature semiconductor valve |
| US5161774A (en) * | 1989-06-19 | 1992-11-10 | Robert Bosch Gmbh | Microvalve |
| US5069419A (en) * | 1989-06-23 | 1991-12-03 | Ic Sensors Inc. | Semiconductor microactuator |
| US5050838A (en) * | 1990-07-31 | 1991-09-24 | Hewlett-Packard Company | Control valve utilizing mechanical beam buckling |
| US5058856A (en) * | 1991-05-08 | 1991-10-22 | Hewlett-Packard Company | Thermally-actuated microminiature valve |
| US5344117A (en) * | 1992-10-10 | 1994-09-06 | Robert Bosch Gmbh | Micro-actuator |
| US5333831A (en) * | 1993-02-19 | 1994-08-02 | Hewlett-Packard Company | High performance micromachined valve orifice and seat |
Cited By (115)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6475639B2 (en) | 1996-01-18 | 2002-11-05 | Mohsen Shahinpoor | Ionic polymer sensors and actuators |
| US6109852A (en) * | 1996-01-18 | 2000-08-29 | University Of New Mexico | Soft actuators and artificial muscles |
| US6142444A (en) * | 1996-11-25 | 2000-11-07 | Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. | Piezoelectrically actuated microvalve |
| DE19703415A1 (en) * | 1996-11-25 | 1998-11-05 | Fraunhofer Ges Forschung | Piezo-electrically operated micro valve |
| DE19703415C2 (en) * | 1996-11-25 | 1999-06-02 | Fraunhofer Ges Forschung | Piezo-electrically operated micro valve |
| WO1998023869A1 (en) | 1996-11-25 | 1998-06-04 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Piezo-electrically actuated microvalve |
| US6131879A (en) * | 1996-11-25 | 2000-10-17 | Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. | Piezoelectrically actuated microvalve |
| US6612535B1 (en) * | 1997-01-24 | 2003-09-02 | California Institute Of Technology | MEMS valve |
| EP0981710A4 (en) * | 1997-05-21 | 2003-08-13 | Redwood Microsystems Inc | Low-power thermopneumatic microvalve |
| US9544451B2 (en) | 1997-07-12 | 2017-01-10 | Google Inc. | Multi-core image processor for portable device |
| US8902340B2 (en) | 1997-07-12 | 2014-12-02 | Google Inc. | Multi-core image processor for portable device |
| US8947592B2 (en) | 1997-07-12 | 2015-02-03 | Google Inc. | Handheld imaging device with image processor provided with multiple parallel processing units |
| US9338312B2 (en) | 1997-07-12 | 2016-05-10 | Google Inc. | Portable handheld device with multi-core image processor |
| US9124737B2 (en) | 1997-07-15 | 2015-09-01 | Google Inc. | Portable device with image sensor and quad-core processor for multi-point focus image capture |
| US8421869B2 (en) | 1997-07-15 | 2013-04-16 | Google Inc. | Camera system for with velocity sensor and de-blurring processor |
| US9060128B2 (en) | 1997-07-15 | 2015-06-16 | Google Inc. | Portable hand-held device for manipulating images |
| US9055221B2 (en) | 1997-07-15 | 2015-06-09 | Google Inc. | Portable hand-held device for deblurring sensed images |
| US8953061B2 (en) | 1997-07-15 | 2015-02-10 | Google Inc. | Image capture device with linked multi-core processor and orientation sensor |
| US8953178B2 (en) | 1997-07-15 | 2015-02-10 | Google Inc. | Camera system with color display and processor for reed-solomon decoding |
| US8953060B2 (en) | 1997-07-15 | 2015-02-10 | Google Inc. | Hand held image capture device with multi-core processor and wireless interface to input device |
| US8947679B2 (en) | 1997-07-15 | 2015-02-03 | Google Inc. | Portable handheld device with multi-core microcoded image processor |
| US6087638A (en) * | 1997-07-15 | 2000-07-11 | Silverbrook Research Pty Ltd | Corrugated MEMS heater structure |
| US8908051B2 (en) | 1997-07-15 | 2014-12-09 | Google Inc. | Handheld imaging device with system-on-chip microcontroller incorporating on shared wafer image processor and image sensor |
| US8937727B2 (en) | 1997-07-15 | 2015-01-20 | Google Inc. | Portable handheld device with multi-core image processor |
| US8936196B2 (en) | 1997-07-15 | 2015-01-20 | Google Inc. | Camera unit incorporating program script scanner |
| US9584681B2 (en) | 1997-07-15 | 2017-02-28 | Google Inc. | Handheld imaging device incorporating multi-core image processor |
| US9560221B2 (en) | 1997-07-15 | 2017-01-31 | Google Inc. | Handheld imaging device with VLIW image processor |
| US8934027B2 (en) | 1997-07-15 | 2015-01-13 | Google Inc. | Portable device with image sensors and multi-core processor |
| US9432529B2 (en) | 1997-07-15 | 2016-08-30 | Google Inc. | Portable handheld device with multi-core microcoded image processor |
| US8934053B2 (en) | 1997-07-15 | 2015-01-13 | Google Inc. | Hand-held quad core processing apparatus |
| US8928897B2 (en) | 1997-07-15 | 2015-01-06 | Google Inc. | Portable handheld device with multi-core image processor |
| US9237244B2 (en) | 1997-07-15 | 2016-01-12 | Google Inc. | Handheld digital camera device with orientation sensing and decoding capabilities |
| US9219832B2 (en) | 1997-07-15 | 2015-12-22 | Google Inc. | Portable handheld device with multi-core image processor |
| US9197767B2 (en) | 1997-07-15 | 2015-11-24 | Google Inc. | Digital camera having image processor and printer |
| US9191529B2 (en) | 1997-07-15 | 2015-11-17 | Google Inc | Quad-core camera processor |
| US9191530B2 (en) | 1997-07-15 | 2015-11-17 | Google Inc. | Portable hand-held device having quad core image processor |
| US9185247B2 (en) | 1997-07-15 | 2015-11-10 | Google Inc. | Central processor with multiple programmable processor units |
| US8908069B2 (en) | 1997-07-15 | 2014-12-09 | Google Inc. | Handheld imaging device with quad-core image processor integrating image sensor interface |
| US9185246B2 (en) | 1997-07-15 | 2015-11-10 | Google Inc. | Camera system comprising color display and processor for decoding data blocks in printed coding pattern |
| US9179020B2 (en) | 1997-07-15 | 2015-11-03 | Google Inc. | Handheld imaging device with integrated chip incorporating on shared wafer image processor and central processor |
| US9168761B2 (en) | 1997-07-15 | 2015-10-27 | Google Inc. | Disposable digital camera with printing assembly |
| US9148530B2 (en) | 1997-07-15 | 2015-09-29 | Google Inc. | Handheld imaging device with multi-core image processor integrating common bus interface and dedicated image sensor interface |
| US9143635B2 (en) | 1997-07-15 | 2015-09-22 | Google Inc. | Camera with linked parallel processor cores |
| US8922791B2 (en) | 1997-07-15 | 2014-12-30 | Google Inc. | Camera system with color display and processor for Reed-Solomon decoding |
| US8102568B2 (en) | 1997-07-15 | 2012-01-24 | Silverbrook Research Pty Ltd | System for creating garments using camera and encoded card |
| US9143636B2 (en) | 1997-07-15 | 2015-09-22 | Google Inc. | Portable device with dual image sensors and quad-core processor |
| US8274665B2 (en) | 1997-07-15 | 2012-09-25 | Silverbrook Research Pty Ltd | Image sensing and printing device |
| US8285137B2 (en) | 1997-07-15 | 2012-10-09 | Silverbrook Research Pty Ltd | Digital camera system for simultaneous printing and magnetic recording |
| US9124736B2 (en) | 1997-07-15 | 2015-09-01 | Google Inc. | Portable hand-held device for displaying oriented images |
| US9137398B2 (en) | 1997-07-15 | 2015-09-15 | Google Inc. | Multi-core processor for portable device with dual image sensors |
| US9137397B2 (en) | 1997-07-15 | 2015-09-15 | Google Inc. | Image sensing and printing device |
| US8908075B2 (en) | 1997-07-15 | 2014-12-09 | Google Inc. | Image capture and processing integrated circuit for a camera |
| US8823823B2 (en) | 1997-07-15 | 2014-09-02 | Google Inc. | Portable imaging device with multi-core processor and orientation sensor |
| US8836809B2 (en) | 1997-07-15 | 2014-09-16 | Google Inc. | Quad-core image processor for facial detection |
| US9131083B2 (en) | 1997-07-15 | 2015-09-08 | Google Inc. | Portable imaging device with multi-core processor |
| US8922670B2 (en) | 1997-07-15 | 2014-12-30 | Google Inc. | Portable hand-held device having stereoscopic image camera |
| US8866926B2 (en) | 1997-07-15 | 2014-10-21 | Google Inc. | Multi-core processor for hand-held, image capture device |
| US8896724B2 (en) | 1997-07-15 | 2014-11-25 | Google Inc. | Camera system to facilitate a cascade of imaging effects |
| US8896720B2 (en) | 1997-07-15 | 2014-11-25 | Google Inc. | Hand held image capture device with multi-core processor for facial detection |
| US8902324B2 (en) | 1997-07-15 | 2014-12-02 | Google Inc. | Quad-core image processor for device with image display |
| US8902357B2 (en) | 1997-07-15 | 2014-12-02 | Google Inc. | Quad-core image processor |
| US8902333B2 (en) | 1997-07-15 | 2014-12-02 | Google Inc. | Image processing method using sensed eye position |
| US8913182B2 (en) | 1997-07-15 | 2014-12-16 | Google Inc. | Portable hand-held device having networked quad core processor |
| US8913151B2 (en) | 1997-07-15 | 2014-12-16 | Google Inc. | Digital camera with quad core processor |
| US8913137B2 (en) | 1997-07-15 | 2014-12-16 | Google Inc. | Handheld imaging device with multi-core image processor integrating image sensor interface |
| US8096642B2 (en) | 1997-08-11 | 2012-01-17 | Silverbrook Research Pty Ltd | Inkjet nozzle with paddle layer arranged between first and second wafers |
| US6390791B1 (en) * | 1997-08-20 | 2002-05-21 | Westonbridge International Limited | Micro pump comprising an inlet control member for its self-priming |
| US6003833A (en) * | 1997-10-16 | 1999-12-21 | Industrial Technology Research Institute | Integrated micro pressure-resistant flow control module |
| US5975485A (en) * | 1997-10-16 | 1999-11-02 | Industrial Technology Research Institute | Integrated micro thermistor type flow control module |
| US7356913B2 (en) | 1997-12-16 | 2008-04-15 | Commissariat A L'energie Atomique | Process for manufacturing a microsystem |
| US20050046541A1 (en) * | 1997-12-16 | 2005-03-03 | Yves Fouillet | Microsystem with an element which can be deformed by a thermal sensor |
| US6070851A (en) * | 1998-06-08 | 2000-06-06 | Industrial Technology Research Institute | Thermally buckling linear micro structure |
| US6206022B1 (en) * | 1998-10-30 | 2001-03-27 | Industrial Technology Research Institute | Integrated flow controller module |
| US8789939B2 (en) | 1998-11-09 | 2014-07-29 | Google Inc. | Print media cartridge with ink supply manifold |
| US20030160538A1 (en) * | 1999-02-23 | 2003-08-28 | Matsushita Electric Works, Ltd. | Semiconductor device |
| US6791233B2 (en) | 1999-02-23 | 2004-09-14 | Matsushita Electric Works, Ltd. | Semiconductor device |
| US8866923B2 (en) | 1999-05-25 | 2014-10-21 | Google Inc. | Modular camera and printer |
| US6653239B2 (en) * | 1999-07-30 | 2003-11-25 | Xactix, Inc. | Thermal isolation using vertical structures |
| US6592098B2 (en) * | 2000-10-18 | 2003-07-15 | The Research Foundation Of Suny | Microvalve |
| WO2002033268A3 (en) * | 2000-10-18 | 2002-11-21 | Univ New York State Res Found | Microvalve |
| US6745567B1 (en) * | 2001-12-28 | 2004-06-08 | Zyvex Corporation | System and method for positional movement of microcomponents |
| WO2004031070A1 (en) * | 2002-10-03 | 2004-04-15 | Sharp Kabushiki Kaisha | Micro movable device |
| US20040120836A1 (en) * | 2002-12-18 | 2004-06-24 | Xunhu Dai | Passive membrane microvalves |
| US20040159351A1 (en) * | 2002-12-27 | 2004-08-19 | Dmitry Znamensky | Micro electromechanical systems for delivering high purity fluids in a chemical delivery system |
| US7195026B2 (en) | 2002-12-27 | 2007-03-27 | American Air Liquide, Inc. | Micro electromechanical systems for delivering high purity fluids in a chemical delivery system |
| US20070265439A1 (en) * | 2004-10-15 | 2007-11-15 | Walter Gumbrecht | Method for Controlling Valves During the Thermocyclisation of a Substance for the Purpose of Polymer Chain Reaction (Pcr) and Associated Arrangement |
| US9267616B2 (en) * | 2004-10-15 | 2016-02-23 | Boehringer Ingelheim Vetmedica Gmbh | Method for controlling valves during the thermocyclization of a substance for the purpose of polymer chain reaction (PCR) and associated arrangement |
| US20060231521A1 (en) * | 2005-04-15 | 2006-10-19 | Chilcott Dan W | Technique for manufacturing micro-electro mechanical structures |
| US7214324B2 (en) * | 2005-04-15 | 2007-05-08 | Delphi Technologies, Inc. | Technique for manufacturing micro-electro mechanical structures |
| US8534570B2 (en) | 2005-11-04 | 2013-09-17 | Alliant Techsystems Inc. | Adaptive structures, systems incorporating same and related methods |
| US7913928B2 (en) | 2005-11-04 | 2011-03-29 | Alliant Techsystems Inc. | Adaptive structures, systems incorporating same and related methods |
| US20070201797A1 (en) * | 2006-02-28 | 2007-08-30 | Grzybowski Richard R | Glass-based micropositioning systems and methods |
| US7480432B2 (en) | 2006-02-28 | 2009-01-20 | Corning Incorporated | Glass-based micropositioning systems and methods |
| US20090188576A1 (en) * | 2006-03-30 | 2009-07-30 | Wayne State University | Check valve diaphragm micropump |
| US8475144B2 (en) * | 2006-03-30 | 2013-07-02 | Wayne State University | Check valve diaphragm micropump |
| US9103336B2 (en) | 2006-03-30 | 2015-08-11 | Wayne State University | Check valve diaphragm micropump |
| US8152136B2 (en) * | 2007-11-26 | 2012-04-10 | The Hong Kong Polytechnic University | Polymer microvalve with actuators and devices |
| US20090137874A1 (en) * | 2007-11-26 | 2009-05-28 | The Hong Kong Polytechnic University | Polymer Microvalve with actuators and devices |
| US20090314368A1 (en) * | 2008-06-20 | 2009-12-24 | Silverbrook Research Pty Ltd | Microfluidic System Comprising Pinch Valve and On-Chip MEMS Pump |
| US20090314972A1 (en) * | 2008-06-20 | 2009-12-24 | Silverbrook Research Pty Ltd | Mechanically-Actuated Microfluidic Diaphragm Valve |
| US20090317302A1 (en) * | 2008-06-20 | 2009-12-24 | Silverbrook Research Pty Ltd | Microfluidic System Comprising MEMS Integrated Circuit |
| US20090314367A1 (en) * | 2008-06-20 | 2009-12-24 | Silverbrook Research Pty Ltd | Bonded Microfluidics System Comprising CMOS-Controllable Microfluidic Devices |
| US20090315126A1 (en) * | 2008-06-20 | 2009-12-24 | Silverbrook Research Pty Ltd | Bonded Microfluidic System Comprising Thermal Bend Actuated Valve |
| US8092761B2 (en) * | 2008-06-20 | 2012-01-10 | Silverbrook Research Pty Ltd | Mechanically-actuated microfluidic diaphragm valve |
| US20090317301A1 (en) * | 2008-06-20 | 2009-12-24 | Silverbrook Research Pty Ltd | Bonded Microfluidics System Comprising MEMS-Actuated Microfluidic Devices |
| US20110073788A1 (en) * | 2009-09-30 | 2011-03-31 | Marcus Michael A | Microvalve for control of compressed fluids |
| US9156676B2 (en) * | 2013-04-09 | 2015-10-13 | Honeywell International Inc. | Sensor with isolated diaphragm |
| US20140298913A1 (en) * | 2013-04-09 | 2014-10-09 | Honeywell International Inc. | Sensor with isolated diaphragm |
| US10730740B2 (en) | 2014-04-01 | 2020-08-04 | Agiltron, Inc. | Microelectromechanical displacement structure and method for controlling displacement |
| US10752492B2 (en) | 2014-04-01 | 2020-08-25 | Agiltron, Inc. | Microelectromechanical displacement structure and method for controlling displacement |
| US9513242B2 (en) | 2014-09-12 | 2016-12-06 | Honeywell International Inc. | Humidity sensor |
| US10677747B2 (en) | 2015-02-17 | 2020-06-09 | Honeywell International Inc. | Humidity sensor |
| US10585058B2 (en) | 2016-05-13 | 2020-03-10 | Honeywell International Inc. | FET based humidity sensor with barrier layer protecting gate dielectric |
| US20190203703A1 (en) * | 2016-09-13 | 2019-07-04 | Albert-Ludwigs-Universität Freiburg | Micro Valve, Fluid Pump, And Method Of Operating A Fluid Pump |
| US11181104B2 (en) * | 2016-09-13 | 2021-11-23 | Albert-Ludwigs-Universitat Freiburg | Micro valve fluid pump, and method of operating a fluid pump having a diaphragm attached to a body and deflectable to open and close a fluidic pathway by contacting a valve seat having a stretchable elastic body with a changing height |
Also Published As
| Publication number | Publication date |
|---|---|
| GB9512766D0 (en) | 1995-08-23 |
| GB2292608B (en) | 1997-10-29 |
| DE19509026C2 (en) | 2001-11-22 |
| JPH08114278A (en) | 1996-05-07 |
| DE19509026A1 (en) | 1996-02-29 |
| GB2292608A (en) | 1996-02-28 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US5529279A (en) | Thermal isolation structures for microactuators | |
| JP2807085B2 (en) | Micro valve | |
| US5400824A (en) | Microvalve | |
| EP0512521B1 (en) | Thermally actuated microminiature valve | |
| US6056269A (en) | Microminiature valve having silicon diaphragm | |
| EP0478716B1 (en) | Semiconductor microactuator | |
| US5441597A (en) | Microstructure gas valve control forming method | |
| US5050838A (en) | Control valve utilizing mechanical beam buckling | |
| US5333831A (en) | High performance micromachined valve orifice and seat | |
| Jerman | Electrically-activated, micromachined diaphragm valves | |
| US5176358A (en) | Microstructure gas valve control | |
| US5681024A (en) | Microvalve | |
| US6523560B1 (en) | Microvalve with pressure equalization | |
| US6142444A (en) | Piezoelectrically actuated microvalve | |
| US6149123A (en) | Integrated electrically operable micro-valve | |
| US4821997A (en) | Integrated, microminiature electric-to-fluidic valve and pressure/flow regulator | |
| AU625229B2 (en) | Integrated, microminiature electric-to-fluidic valve and pressure/flow regulator | |
| US7175772B2 (en) | Small scale actuators and methods for their formation and use | |
| CA2243239C (en) | Actuator and holding device | |
| JPH1038110A (en) | Asymmetric-heat-operated microactuator | |
| US20010017358A1 (en) | Microelectromechanical valves including single crystalline material components | |
| EP1089109A2 (en) | Mems variable optical attenuator | |
| JP2000507681A (en) | Piezo-actuated microvalve | |
| EP1296067B1 (en) | Passive microvalve | |
| Hsu et al. | A two-way membrane-type micro-actuator with continuousdeflections |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: HEWLETT-PACKARD COMPANY, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BEATTY, CHRISTOPHER C.;BAKER, JAMES W.;REEL/FRAME:007166/0810;SIGNING DATES FROM 19940824 TO 19940908 |
|
| FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
| FPAY | Fee payment |
Year of fee payment: 4 |
|
| AS | Assignment |
Owner name: HEWLETT-PACKARD COMPANY, A DELAWARE CORPORATION, C Free format text: MERGER;ASSIGNOR:HEWLETT-PACKARD COMPANY, A CALIFORNIA CORPORATION;REEL/FRAME:010841/0649 Effective date: 19980520 |
|
| AS | Assignment |
Owner name: AGILENT TECHNOLOGIES INC, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HEWLETT-PACKARD COMPANY;REEL/FRAME:010977/0540 Effective date: 19991101 |
|
| FPAY | Fee payment |
Year of fee payment: 8 |
|
| REMI | Maintenance fee reminder mailed | ||
| LAPS | Lapse for failure to pay maintenance fees | ||
| STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
| FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20080625 |