US5183657A - Antibodies for use in antilymphocyte antibody therapy - Google Patents
Antibodies for use in antilymphocyte antibody therapy Download PDFInfo
- Publication number
- US5183657A US5183657A US07/881,317 US88131792A US5183657A US 5183657 A US5183657 A US 5183657A US 88131792 A US88131792 A US 88131792A US 5183657 A US5183657 A US 5183657A
- Authority
- US
- United States
- Prior art keywords
- antibody
- antilymphocyte
- antibodies
- necrosis factor
- tnf
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000000781 anti-lymphocytic effect Effects 0.000 title claims abstract description 48
- 238000009175 antibody therapy Methods 0.000 title claims abstract description 25
- 241000282414 Homo sapiens Species 0.000 claims abstract description 24
- 230000035939 shock Effects 0.000 claims abstract description 14
- 108060008682 Tumor Necrosis Factor Proteins 0.000 claims abstract 6
- 102000003390 tumor necrosis factor Human genes 0.000 claims abstract 6
- 238000011282 treatment Methods 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 12
- 206010054094 Tumour necrosis Diseases 0.000 claims description 10
- 239000008194 pharmaceutical composition Substances 0.000 claims description 8
- 239000003085 diluting agent Substances 0.000 claims description 5
- 239000003937 drug carrier Substances 0.000 claims description 5
- 239000000546 pharmaceutical excipient Substances 0.000 claims description 5
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 4
- 208000035475 disorder Diseases 0.000 claims description 4
- 230000004957 immunoregulator effect Effects 0.000 claims description 4
- 230000002265 prevention Effects 0.000 claims description 4
- 239000000203 mixture Substances 0.000 abstract description 8
- 102000018594 Tumour necrosis factor Human genes 0.000 description 31
- 108050007852 Tumour necrosis factor Proteins 0.000 description 31
- 238000001802 infusion Methods 0.000 description 12
- 210000003819 peripheral blood mononuclear cell Anatomy 0.000 description 12
- 230000000694 effects Effects 0.000 description 9
- 239000012634 fragment Substances 0.000 description 8
- 210000004027 cell Anatomy 0.000 description 7
- 238000002965 ELISA Methods 0.000 description 6
- 108060003951 Immunoglobulin Proteins 0.000 description 6
- 210000001744 T-lymphocyte Anatomy 0.000 description 6
- 102000018358 immunoglobulin Human genes 0.000 description 6
- 206010013975 Dyspnoeas Diseases 0.000 description 4
- 241000283973 Oryctolagus cuniculus Species 0.000 description 4
- 210000004369 blood Anatomy 0.000 description 4
- 239000008280 blood Substances 0.000 description 4
- 210000001616 monocyte Anatomy 0.000 description 4
- 230000035755 proliferation Effects 0.000 description 4
- 238000002560 therapeutic procedure Methods 0.000 description 4
- 206010002383 Angina Pectoris Diseases 0.000 description 3
- 208000006820 Arthralgia Diseases 0.000 description 3
- 206010047700 Vomiting Diseases 0.000 description 3
- 230000036760 body temperature Effects 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 238000001990 intravenous administration Methods 0.000 description 3
- 210000003734 kidney Anatomy 0.000 description 3
- 229940029358 orthoclone okt3 Drugs 0.000 description 3
- 210000002966 serum Anatomy 0.000 description 3
- 102000004506 Blood Proteins Human genes 0.000 description 2
- 108010017384 Blood Proteins Proteins 0.000 description 2
- 208000009079 Bronchial Spasm Diseases 0.000 description 2
- 208000014181 Bronchial disease Diseases 0.000 description 2
- 206010006482 Bronchospasm Diseases 0.000 description 2
- 206010019233 Headaches Diseases 0.000 description 2
- 238000012404 In vitro experiment Methods 0.000 description 2
- 206010037423 Pulmonary oedema Diseases 0.000 description 2
- 108020004511 Recombinant DNA Proteins 0.000 description 2
- 208000001871 Tachycardia Diseases 0.000 description 2
- 206010052779 Transplant rejections Diseases 0.000 description 2
- 239000000427 antigen Substances 0.000 description 2
- 102000036639 antigens Human genes 0.000 description 2
- 108091007433 antigens Proteins 0.000 description 2
- 230000036772 blood pressure Effects 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 231100000869 headache Toxicity 0.000 description 2
- 210000004408 hybridoma Anatomy 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 210000004698 lymphocyte Anatomy 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 230000036470 plasma concentration Effects 0.000 description 2
- 230000002685 pulmonary effect Effects 0.000 description 2
- 230000003248 secreting effect Effects 0.000 description 2
- YEENEYXBHNNNGV-XEHWZWQGSA-M sodium;3-acetamido-5-[acetyl(methyl)amino]-2,4,6-triiodobenzoate;(2r,3r,4s,5s,6r)-2-[(2r,3s,4s,5r)-3,4-dihydroxy-2,5-bis(hydroxymethyl)oxolan-2-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol Chemical compound [Na+].CC(=O)N(C)C1=C(I)C(NC(C)=O)=C(I)C(C([O-])=O)=C1I.O[C@H]1[C@H](O)[C@@H](CO)O[C@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 YEENEYXBHNNNGV-XEHWZWQGSA-M 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- 230000006794 tachycardia Effects 0.000 description 2
- 229940104230 thymidine Drugs 0.000 description 2
- 230000006433 tumor necrosis factor production Effects 0.000 description 2
- 230000008673 vomiting Effects 0.000 description 2
- GEYOCULIXLDCMW-UHFFFAOYSA-N 1,2-phenylenediamine Chemical compound NC1=CC=CC=C1N GEYOCULIXLDCMW-UHFFFAOYSA-N 0.000 description 1
- 206010003445 Ascites Diseases 0.000 description 1
- 208000023275 Autoimmune disease Diseases 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 208000020446 Cardiac disease Diseases 0.000 description 1
- 206010009192 Circulatory collapse Diseases 0.000 description 1
- 108010047041 Complementarity Determining Regions Proteins 0.000 description 1
- 206010012735 Diarrhoea Diseases 0.000 description 1
- 108090000371 Esterases Proteins 0.000 description 1
- 102000006395 Globulins Human genes 0.000 description 1
- 108010044091 Globulins Proteins 0.000 description 1
- 229910003556 H2 SO4 Inorganic materials 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 description 1
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 description 1
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 1
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 1
- 108010067060 Immunoglobulin Variable Region Proteins 0.000 description 1
- 102000017727 Immunoglobulin Variable Region Human genes 0.000 description 1
- 208000019693 Lung disease Diseases 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 241001529936 Murinae Species 0.000 description 1
- 206010030113 Oedema Diseases 0.000 description 1
- 108090000526 Papain Proteins 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- 102000057297 Pepsin A Human genes 0.000 description 1
- 108090000284 Pepsin A Proteins 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- 239000012980 RPMI-1640 medium Substances 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- GUGOEEXESWIERI-UHFFFAOYSA-N Terfenadine Chemical compound C1=CC(C(C)(C)C)=CC=C1C(O)CCCN1CCC(C(O)(C=2C=CC=CC=2)C=2C=CC=CC=2)CC1 GUGOEEXESWIERI-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000009102 absorption Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 230000001387 anti-histamine Effects 0.000 description 1
- 230000001494 anti-thymocyte effect Effects 0.000 description 1
- 239000000739 antihistaminic agent Substances 0.000 description 1
- 239000008135 aqueous vehicle Substances 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 229940098773 bovine serum albumin Drugs 0.000 description 1
- 244000309466 calf Species 0.000 description 1
- 230000000747 cardiac effect Effects 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000007910 cell fusion Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 230000000779 depleting effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000035487 diastolic blood pressure Effects 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 230000006862 enzymatic digestion Effects 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 208000019622 heart disease Diseases 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 229940027941 immunoglobulin g Drugs 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 208000030159 metabolic disease Diseases 0.000 description 1
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 1
- 239000003226 mitogen Substances 0.000 description 1
- 230000007193 modulation by symbiont of host erythrocyte aggregation Effects 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 229940055729 papain Drugs 0.000 description 1
- 235000019834 papain Nutrition 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- 229940111202 pepsin Drugs 0.000 description 1
- 102000013415 peroxidase activity proteins Human genes 0.000 description 1
- 108040007629 peroxidase activity proteins Proteins 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- OIGNJSKKLXVSLS-VWUMJDOOSA-N prednisolone Chemical compound O=C1C=C[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 OIGNJSKKLXVSLS-VWUMJDOOSA-N 0.000 description 1
- 229960005205 prednisolone Drugs 0.000 description 1
- 238000011321 prophylaxis Methods 0.000 description 1
- 230000006337 proteolytic cleavage Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 206010039073 rheumatoid arthritis Diseases 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 238000013207 serial dilution Methods 0.000 description 1
- 206010040560 shock Diseases 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 210000004988 splenocyte Anatomy 0.000 description 1
- 230000003019 stabilising effect Effects 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000035488 systolic blood pressure Effects 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 206010043778 thyroiditis Diseases 0.000 description 1
- 238000000954 titration curve Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2803—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
- C07K16/2809—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against the T-cell receptor (TcR)-CD3 complex
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/24—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against cytokines, lymphokines or interferons
- C07K16/241—Tumor Necrosis Factors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/74—Inducing cell proliferation
Definitions
- This invention relates to antibodies against human alpha ( ⁇ )-tumour necrosis factor for use in antilymphocyte antibody therapy, to therapeutic compositions containing an antibody against human ⁇ -tumour necrosis factor and an antilymphocyte antibody, and to recombinant antibodies against human ⁇ -tumour necrosis factor.
- Antilymphocyte antibody therapy has become a recognised clinical technique for use when it is desired to supplement or modify the normal immune response in humans.
- the intravenous administration of polyclonal rabbit or horse antilymphocyte antibodies is an effective treatment for acute kidney allograft rejection.
- monoclonal antilymphocyte antibodies such as Orthoclone OKT3, have been used for this purpose.
- ⁇ -TNF ⁇ -tumour necrosis factor
- an antibody against human ⁇ -tumour necrosis factor for use in the prevention or treatment of shock-related conditions arising from antilymphocyte antibody therapy.
- antilymphocyte antibody therapy is especially to be understood to mean the use of an antilymphocyte antibody in the prophylaxis or treatment of immunoregulatory disorders in which rejection of self or non-self tissue occurs, for example in autoimmune diseases such as thyroiditis or rheumatoid arthritis, or, in particular, in a rejection episode following an organ or tissue transplant.
- the shock-related conditions which may arise from antilymphocyte antibody therapy and which may be prevented or treated according to the present invention may be any physiological conditions which are generally associated with a degree of circulatory collapse.
- Particular conditions include, for example, cardiac conditions such as tachycardia and angina, e.g. angina pectoris; pulmonary conditions such as bronchospasm; musculo-skeletal conditions, for example joint pains such as arthralgia; and general metabolic disorders such as oedema, e.g. pulmonary oedema, and abnormal body temperatures.
- anti-TNF ⁇ antibodies The antibodies against human ⁇ -tumour necrosis factor (hereinafter referred to as anti-TNF ⁇ antibodies) for use according to the invention may in general belong to any immunoglobulin class.
- the anti-TNF ⁇ antibody may be an immunoglobulin G or immunoglobulin M antibody.
- the anti-TNF ⁇ antibody may be of animal, for example mammalian origin and may be for example of murine, rat or human origin.
- the antibody may be a whole immunoglobulin, or a fragment thereof, for example a fragment derived by proteolytic cleavage of a whole antibody, such as F(ab') 2 , Fab' or Fab fragments, or fragments obtained by recombinant DNA techniques, for example Fv fragments (as described in International Patent Application No. PCT/GB 88/00747).
- the anti-TNF ⁇ antibody may be polyspecific but is preferably monospecific for human ⁇ -TNF.
- the antibodies may be polyclonal or monoclonal antibodies.
- Particularly useful antibodies for use according to the invention include recombinant anti-TNF ⁇ antibodies and fragments thereof, i.e. anti-TNF ⁇ antibodies or fragments which have been produced using recombinant DNA techniques. Such recombinant anti-TNF ⁇ antibodies are novel compounds and form another aspect of the invention.
- Especially useful recombinant antibodies include, (1) those having an antigen binding site at least part of which is derived from a different antibody, for example those in which the hypervariable or complementarity determining regions of one antibody have been grafted into the variable framework regions of a second, different antibody (as described in European Patent Specification No. 239400); (2) recombinant antibodies or fragments wherein non-Fv sequences have been substituted by non-Fv sequences from other, different antibodies (as described in European Patent Specifications Nos.
- the anti-TNF ⁇ antibodies may be prepared using well-known immunological techniques employing ⁇ -TNF as antigen.
- any suitable host may be injected with ⁇ -TNF and the serum collected to yield the desired polyclonal anti-TNF ⁇ antibody after appropriate purification and/or concentration, (for example by affinity chromatography using immobilised ⁇ -TNF as the affinity medium).
- splenocytes or lymphocytes may be recovered from the ⁇ -TNF-injected host and immortalised using for example the method of Kohler et al., Eur. J. Immunol. 6, 511, (1976), the resulting cells being segregated to obtain a single genetic line producing monoclonal anti-TNF ⁇ antibodies in accordance with conventional practice.
- Antibody fragments may be produced using conventional techniques, for example by enzymatic digestion of whole antibodies e.g. with pepsin [Parham, J. Immunol., 131, 2895, (1983)] or papain [Lamoyi and Nisonoff, J. Immunol. Meth., 56, 235, (1983)]. Where it is desired to produce recombinant anti-TNF ⁇ antibodies these may be produced using for example the general methods described in the above-mentioned patent specifications.
- anti-TNF ⁇ antibodies may in general be administered in an appropriate form and amount at any suitable time before or during the therapy and, where necessary, after the therapy has finished.
- the anti-TNF ⁇ antibodies may be administered seperately or together with antilymphocyte antibodies.
- each component for use in association with one another in antilymphocyte antibody therapy, said system comprising (1) a first component that is an anti-TNF ⁇ antibody, and (2) a second component that is an antilymphocyte antibody.
- anti-TNF ⁇ and antilymphocyte antibodies are administered separately, each may be formulated according to conventional practice.
- a pharmaceutical composition comprising an anti-TNF ⁇ antibody together with one or more pharmaceutically acceptable carriers, excipients or diluents for use in the prevention or treatment of shock conditions arising from antilymphocyte antibody therapy.
- compositions according to this aspect of the invention may contain other active ingredients.
- compositions which comprises an anti-TNF ⁇ antibody and an antilymphocyte antibody in admixture with one or more pharmaceutically acceptable carriers, excipients or diluents.
- composition which comprises an anti-TNF ⁇ antibody, and an antilymphocyte antibody in admixture with one or more pharmaceutically acceptable carriers, excipients or diluents, for use in antilymphocyte antibody therapy.
- a pharmaceutical composition for use in the prevention or treatment of shock conditions arising from antilymphocyte antibody therapy which comprises admixing an anti-TNF ⁇ antibody and one or more pharmaceutically acceptable carriers, excipients or diluents.
- the antilymphocyte antibody may be for example a polyclonal rabbit or horse antilymphocyte antibody, or a monoclonal antilymphocyte antibody such as Orthoclone OKT3.
- Such antibodies are readily available from known sources.
- compositions may take any suitable form for administration, and in particular will be in a form suitable for parenteral administration e.g. by injection or infusion, for example by bolus injection or continuous infusion.
- Compositions for injection or infusion may take such forms as suspensions, solutions or emulsions of the antibody in oily or aqueous vehicles, and, may contain formulatory agents such as suspending, stabilising and/or dispensing agents.
- the composition may be in a dry form, for reconstitution before use with an appropriate sterile liquid.
- the dose at which the anti-TNF ⁇ antibody will be administered will depend on the nature of the antilymphocyte antibody therapy in use and whether the anti-TNF ⁇ antibody is being used prophylactically or to treat an existing shock-related condition arising from antilymphocyte antibody therapy.
- the anti-TNF ⁇ antibody may be administered by infusion to a 70 kg man, usually at a total dose in the range 20-500 mg, over for example 2-3 days or for as long as the shock condition arising from the antilymphocyte antibody therapy persists.
- the antilymphocyte antibody may be infused at generally accepted doses depending on the antibody in use, for example with Orthoclone OKT3 at a dose of 5 mg/day for 10-14 days in a 70 kg man.
- a method of treatment of a human subject suffering from an immunoregulatory disorder which comprises administering effective amounts of an anti-TNF ⁇ antibody and an antilymphocyte antibody in association to the human subject.
- Immunoregulatory disorders include, for example, those described above.
- a method of treatment of a human subject suffering from a shock condition arising from antilymphocyte antibody therapy which comprises administering an effective amount of an effective amount of an anti-TNF ⁇ antibody to the human subject.
- ATG treatment consisted of intravenous administration of 100-300 mg ATG together with 50 mg prednisolone in 500 ml saline, infused over a 8-hr period. All patients received 4 mg of the antihistamine chlorepheniraminemaleate orally 1/2 hr before start of the infusion.
- EDTA-anticoagulated 5 ml blood samples were drawn from an intravenous line inserted in the arm opposite the one in which ATG was infused. Blood samples were immediately centrifuged and aliquots of plasma were stored at -70° C. for measurement of TNF concentration. During treatment patient temperature and blood pressure were monitored and the occurrence of other side effects of the treatment was registered.
- Plasma TNF concentrations were determined with a TNF-specific ELISA using monoclonal and polyclonal anti-TNF antibodies.
- Monoclonal antibodies were derived from anti-TNF secreting hybridomas obtained by a standard cell fusion procedure. Two different monoclonal antibodies were coated overnight at 4° C. in a flatbottom microtiter plate (Greiner, Nurtingen, FRG) at a final concentration of 5 ug Ig/ml. Plates were blocked with 1% (w/v) bovine serum albumin. Samples to be tested for TNF concentration were added to the wells and incubated for 11/2 hrs. at room temperature. A standard titration curve was obtained by making serial dilutions of a known sample of recombinant TNF.
- the amount of TNF bound to the wells was quantitated by sequential incubation with a 1:2000 dilution of rabbit immune serum and a 1:5000 dilution of peroxidase conjugated goat anti-rabbit antibody (Jackson, West Grove, PA; antibody not crossreactive with human serum proteins), followed by adding substrate (o-phenylenediamine: Sigma, St. Louis, MO) to the wells.
- the colour reaction was stopped with 0.1M H 2 SO 4 and absorption of light at 495 nm was measured with a microelisa autoreader (Flow, Irvine, UK).
- the lower detection limit of ELISA ranged between 5-10 pg/ml in plasma.
- TNF specific values were obtained by subtracting background absorptions due to non-TNF plasma proteins cross-linking in the ELISA, measured in the absence of either the monoclonal anti-TNF antibodies coated on the bottom of the ELISA plate or the second, rabbit anti-TNF antibodies.
- PBMC Peripheral blood mononuclear cells
- PBMC and monocytes were cultured in RPMI 1640 (Gibco, Paisley, Scotland) supplemented with 10% heat-inactivated (56° C., 20 min.) foetal calf serum (Boehringer, Mannheim, FRG) and 100 IU/ml penicillin and 100 ug/ml streptomycin (Flow, Irvine, UK).
- PBMC and monocytes were cultured in cluster wells (24-well plates, Greiner); In each well 2.5 ⁇ 10 8 PBMC and monocytes obtained after adherence of 2.5 ⁇ 10 8 T lymphocyte depleted PBMC per well were cultured in 600 ul medium.
- Table I gives the relevant data on all 7 patients. Maxium plasma TNF concentrations in these patients ranged between 111 and 731 pg/ml on the first day of treatment. On the second day of treatment, when side effects of the ATG infusion were considerably less, maximum TNF levels were much lower, i.e. between 0 and 55 pg/ml.
- ATG or OKT3 was added at different concentrations to cultures of peripheral blood mononuclear cells (PBMC) and after a 6 hour culture period, TNF concentration in the supernatant was determined. Both ATG and OKT3 induced in a dose-related manner the release of TNF by PBMC in vitro.
- OKT3 which is a T-cell mitogen, also induced T-lymphocyte proliferation.
- ATG induced TNF secretion was not accompanied by T-lymphocyte proliferation, indicating that proliferation of T-lymphocytes is not a necessary prerequisite for TNF production in these cultures.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Genetics & Genomics (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
PCT No. PCT/GB89/00254 Sec. 371 Date Oct. 22, 1990 Sec. 102(e) Date Oct. 22, 1990 PCT Filed Mar. 13, 1989 PCT Pub. No. WO89/08460 PCT Pub. Date Sep. 21, 1989.The use of antibodies against human alpha tumor necrosis factor in antilymphocyte antibody therapy is described. The anti-human alpha tumor necrosis factor antibodies may be used to prevent or treat shock-related conditions arising from antilymphocyte antibody therapy. Also described are compositions containing anti-human alpha tumor necrosis factor antibodies and antilymphocyte antibodies, as well as recombinant anti-human alpha tumor necrosis factor antibodies.
Description
This is a continuation of application Ser. No. 07/585,065, filed Oct. 22, 1990, now abandoned.
This invention relates to antibodies against human alpha (α)-tumour necrosis factor for use in antilymphocyte antibody therapy, to therapeutic compositions containing an antibody against human α-tumour necrosis factor and an antilymphocyte antibody, and to recombinant antibodies against human α-tumour necrosis factor.
Antilymphocyte antibody therapy has become a recognised clinical technique for use when it is desired to supplement or modify the normal immune response in humans. Thus, for example, the intravenous administration of polyclonal rabbit or horse antilymphocyte antibodies is an effective treatment for acute kidney allograft rejection. More recently, monoclonal antilymphocyte antibodies, such as Orthoclone OKT3, have been used for this purpose.
Despite the effectiveness of antilymphocyte antibody therapy, treatment has been hindered in many cases by the occurence of shock-related side effects, making it necessary to temporarily discontinue the antibody infusion. Side effects include fever and chills, arthralgias, nausea and vomiting, tachycardia, angina pectoris, dyspnoea due to bronchospasm, and, in the case of OKT3 infusion, pulmonary oedema. In addition to the discomfort these side effects can cause, the severity of some of the effects precludes the use of antilymphocyte antibody therapy in some patients, for example people with pulmonary or cardiac disease.
We have now found that patients who are undergoing antilymphocyte antibody therapy, and who are also experiencing shock-related side effects, have surprisingly high plasma levels of α-tumour necrosis factor (α-TNF). We have used this to develop means to control shock-related conditions arising from antilymphocyte antibody therapy.
Thus, according to one aspect of the invention we provide an antibody against human α-tumour necrosis factor for use in the prevention or treatment of shock-related conditions arising from antilymphocyte antibody therapy.
The term antilymphocyte antibody therapy as used herein is especially to be understood to mean the use of an antilymphocyte antibody in the prophylaxis or treatment of immunoregulatory disorders in which rejection of self or non-self tissue occurs, for example in autoimmune diseases such as thyroiditis or rheumatoid arthritis, or, in particular, in a rejection episode following an organ or tissue transplant.
The shock-related conditions which may arise from antilymphocyte antibody therapy and which may be prevented or treated according to the present invention may be any physiological conditions which are generally associated with a degree of circulatory collapse. Particular conditions include, for example, cardiac conditions such as tachycardia and angina, e.g. angina pectoris; pulmonary conditions such as bronchospasm; musculo-skeletal conditions, for example joint pains such as arthralgia; and general metabolic disorders such as oedema, e.g. pulmonary oedema, and abnormal body temperatures.
The antibodies against human α-tumour necrosis factor (hereinafter referred to as anti-TNFα antibodies) for use according to the invention may in general belong to any immunoglobulin class. Thus for example the anti-TNFα antibody may be an immunoglobulin G or immunoglobulin M antibody.
The anti-TNFα antibody may be of animal, for example mammalian origin and may be for example of murine, rat or human origin. The antibody may be a whole immunoglobulin, or a fragment thereof, for example a fragment derived by proteolytic cleavage of a whole antibody, such as F(ab')2, Fab' or Fab fragments, or fragments obtained by recombinant DNA techniques, for example Fv fragments (as described in International Patent Application No. PCT/GB 88/00747).
The anti-TNFα antibody may be polyspecific but is preferably monospecific for human α-TNF. The antibodies may be polyclonal or monoclonal antibodies. Particularly useful antibodies for use according to the invention include recombinant anti-TNFα antibodies and fragments thereof, i.e. anti-TNFα antibodies or fragments which have been produced using recombinant DNA techniques. Such recombinant anti-TNFα antibodies are novel compounds and form another aspect of the invention.
Especially useful recombinant antibodies include, (1) those having an antigen binding site at least part of which is derived from a different antibody, for example those in which the hypervariable or complementarity determining regions of one antibody have been grafted into the variable framework regions of a second, different antibody (as described in European Patent Specification No. 239400); (2) recombinant antibodies or fragments wherein non-Fv sequences have been substituted by non-Fv sequences from other, different antibodies (as described in European Patent Specifications Nos. 171496, 173494 and 194276); or (3) recombinant antibodies or fragments possessing substantially the structure of a natural immunoglobulin but wherein the hinge region has a different number of cysteine residues from that found in the natural immunoglobulin, or wherein one or more cysteine residues in a surface pocket of the recombinant antibody or fragment is in the place of another amino acid residue present in the natural immunoglobulin (as described in International patent Applications Nos. PCT/GB 88/00730 and PCT/GB 88/00729 respectively).
The anti-TNFα antibodies may be prepared using well-known immunological techniques employing α-TNF as antigen. Thus, for example, any suitable host may be injected with α-TNF and the serum collected to yield the desired polyclonal anti-TNFα antibody after appropriate purification and/or concentration, (for example by affinity chromatography using immobilised α-TNF as the affinity medium). Alternatively, splenocytes or lymphocytes may be recovered from the α-TNF-injected host and immortalised using for example the method of Kohler et al., Eur. J. Immunol. 6, 511, (1976), the resulting cells being segregated to obtain a single genetic line producing monoclonal anti-TNFα antibodies in accordance with conventional practice. Antibody fragments may be produced using conventional techniques, for example by enzymatic digestion of whole antibodies e.g. with pepsin [Parham, J. Immunol., 131, 2895, (1983)] or papain [Lamoyi and Nisonoff, J. Immunol. Meth., 56, 235, (1983)]. Where it is desired to produce recombinant anti-TNFα antibodies these may be produced using for example the general methods described in the above-mentioned patent specifications.
In order to prevent or treat shock-related conditions arising from antilymphocyte antibody therapy, anti-TNFα antibodies may in general be administered in an appropriate form and amount at any suitable time before or during the therapy and, where necessary, after the therapy has finished. The anti-TNFα antibodies may be administered seperately or together with antilymphocyte antibodies.
Thus according to a further aspect of the invention we provide a two component system, each component for use in association with one another in antilymphocyte antibody therapy, said system comprising (1) a first component that is an anti-TNFα antibody, and (2) a second component that is an antilymphocyte antibody.
Where the anti-TNFα and antilymphocyte antibodies are administered separately, each may be formulated according to conventional practice. Thus, according to a further aspect of the invention, we provide a pharmaceutical composition comprising an anti-TNFα antibody together with one or more pharmaceutically acceptable carriers, excipients or diluents for use in the prevention or treatment of shock conditions arising from antilymphocyte antibody therapy.
The compositions according to this aspect of the invention may contain other active ingredients.
Where it is desired to administer the anti-TNFα and antilymphocyte antibody together, these may be conveniently formulated in the same composition. Thus according to a further aspect of the invention we provide a pharmaceutical composition which comprises an anti-TNFα antibody and an antilymphocyte antibody in admixture with one or more pharmaceutically acceptable carriers, excipients or diluents.
In yet a further aspect of the invention we provide a pharmaceutical composition which comprises an anti-TNFα antibody, and an antilymphocyte antibody in admixture with one or more pharmaceutically acceptable carriers, excipients or diluents, for use in antilymphocyte antibody therapy.
In a still further aspect of the invention, we provide a method for the manufacture of a pharmaceutical composition for use in the prevention or treatment of shock conditions arising from antilymphocyte antibody therapy which comprises admixing an anti-TNFα antibody and one or more pharmaceutically acceptable carriers, excipients or diluents.
In the compositions according to the invention the antilymphocyte antibody may be for example a polyclonal rabbit or horse antilymphocyte antibody, or a monoclonal antilymphocyte antibody such as Orthoclone OKT3. Such antibodies are readily available from known sources.
The compositions may take any suitable form for administration, and in particular will be in a form suitable for parenteral administration e.g. by injection or infusion, for example by bolus injection or continuous infusion. Compositions for injection or infusion may take such forms as suspensions, solutions or emulsions of the antibody in oily or aqueous vehicles, and, may contain formulatory agents such as suspending, stabilising and/or dispensing agents. Alternatively, the composition may be in a dry form, for reconstitution before use with an appropriate sterile liquid.
The dose at which the anti-TNFα antibody will be administered will depend on the nature of the antilymphocyte antibody therapy in use and whether the anti-TNFα antibody is being used prophylactically or to treat an existing shock-related condition arising from antilymphocyte antibody therapy. Thus, for example, the anti-TNFα antibody may be administered by infusion to a 70 kg man, usually at a total dose in the range 20-500 mg, over for example 2-3 days or for as long as the shock condition arising from the antilymphocyte antibody therapy persists.
Where the anti-TNFα antibody is infused concurrently with an antilymphocyte antibody, the antilymphocyte antibody may be infused at generally accepted doses depending on the antibody in use, for example with Orthoclone OKT3 at a dose of 5 mg/day for 10-14 days in a 70 kg man.
In a further aspect of the invention we provide a method of treatment of a human subject suffering from an immunoregulatory disorder which comprises administering effective amounts of an anti-TNFα antibody and an antilymphocyte antibody in association to the human subject.
Immunoregulatory disorders include, for example, those described above.
In another aspect of the invention we provide a method of treatment of a human subject suffering from a shock condition arising from antilymphocyte antibody therapy which comprises administering an effective amount of an effective amount of an anti-TNFα antibody to the human subject.
Informed consent was obtained from seven consecutive kidney transplant patients, treated for acute allograft rejection with antithymocyte globulin (ATG) at the Maastricht University Hospital, to take serial blood samples for plasma tumour necrosis factor (TNF) measurement during ATG treatment. ATG treatment consisted of intravenous administration of 100-300 mg ATG together with 50 mg prednisolone in 500 ml saline, infused over a 8-hr period. All patients received 4 mg of the antihistamine chlorepheniraminemaleate orally 1/2 hr before start of the infusion. EDTA-anticoagulated 5 ml blood samples were drawn from an intravenous line inserted in the arm opposite the one in which ATG was infused. Blood samples were immediately centrifuged and aliquots of plasma were stored at -70° C. for measurement of TNF concentration. During treatment patient temperature and blood pressure were monitored and the occurrence of other side effects of the treatment was registered.
Plasma TNF concentrations were determined with a TNF-specific ELISA using monoclonal and polyclonal anti-TNF antibodies. Monoclonal antibodies were derived from anti-TNF secreting hybridomas obtained by a standard cell fusion procedure. Two different monoclonal antibodies were coated overnight at 4° C. in a flatbottom microtiter plate (Greiner, Nurtingen, FRG) at a final concentration of 5 ug Ig/ml. Plates were blocked with 1% (w/v) bovine serum albumin. Samples to be tested for TNF concentration were added to the wells and incubated for 11/2 hrs. at room temperature. A standard titration curve was obtained by making serial dilutions of a known sample of recombinant TNF. The amount of TNF bound to the wells was quantitated by sequential incubation with a 1:2000 dilution of rabbit immune serum and a 1:5000 dilution of peroxidase conjugated goat anti-rabbit antibody (Jackson, West Grove, PA; antibody not crossreactive with human serum proteins), followed by adding substrate (o-phenylenediamine: Sigma, St. Louis, MO) to the wells. The colour reaction was stopped with 0.1M H2 SO4 and absorption of light at 495 nm was measured with a microelisa autoreader (Flow, Irvine, UK). The lower detection limit of ELISA ranged between 5-10 pg/ml in plasma. TNF specific values were obtained by subtracting background absorptions due to non-TNF plasma proteins cross-linking in the ELISA, measured in the absence of either the monoclonal anti-TNF antibodies coated on the bottom of the ELISA plate or the second, rabbit anti-TNF antibodies. Plasma samples of a large group (n=60) of healthy volunteers were shown to be negative for TNF (i.e.<5 pg/ml) as determined with our assay.
Peripheral blood mononuclear cells (PBMC) were prepared by buoyant density centrifugation on Lymphoprep (Nyegaard, Oslo, Norway) of buffy coats of donor blood. Monocytes were obtained by depleting PBMC of T-lymphocytes through rosetting with sheep red blood cells and centrifugation on Lymphoprep after which the interface layer cells were left to adhere to plastic for 1/2 hr at 37° C. After extensive washing, to remove non-adherent cells, the cells were shown to consist of more than 95% of esterase-positive cells. PBMC and monocytes were cultured in RPMI 1640 (Gibco, Paisley, Scotland) supplemented with 10% heat-inactivated (56° C., 20 min.) foetal calf serum (Boehringer, Mannheim, FRG) and 100 IU/ml penicillin and 100 ug/ml streptomycin (Flow, Irvine, UK). PBMC and monocytes were cultured in cluster wells (24-well plates, Greiner); In each well 2.5×108 PBMC and monocytes obtained after adherence of 2.5×108 T lymphocyte depleted PBMC per well were cultured in 600 ul medium. To these cultures different concentrations of ATG and of the anti-CD3 monoclonal antibody OKT3 (ascites derived from an OKT3-secreting hybridoma, purchased from the ATCC, Rockville, MD) were added and at different times samples of cell-free supernatant were harvested to measure TNF concentration. Lymphocyte proliferation was determined by measuring the incorporation of 3 H-thymidine. 0.5 μCi 3 H-thymidine (Amersham, UK; specific activity 5.0 Ci/mmol) was added to a sample of 100 μl of the cell cultures transferred into round-bottomed microtiter plates (Greiner) and after a 4 hour culture period the radioactivity incorporated in the cells was measured with a liquid scintillation counter.
All 7 patients treated for kidney graft rejection with ATG showed elevated plasma TNF levels, starting about 1 hour and reaching peak levels between 2-3 hrs after the start of the ATG infusion. Plasma TNF returned to zero level at about 6 hrs after the beginning of therapy. All patients developed a rise in body temperature shortly after plasma TNF had reached peak values. Body temperature normalized on the average 6 hr after TNF disappeared from the circulation. In most of the patients a slight rise in blood pressure accompanied with an increased heart rate was observed during the ATG infusion. All patients experienced mild to severe side effects, which coincided in time with the period of elevated plasma TNF levels, and which made it necessary to temporarily discontinue the ATG-infusion in several patients. In all patients symptoms waned shortly after TNF plasma levels has returned to normal. All patients experienced a feeling of great fatigue at the end of the therapy. Table I gives the relevant data on all 7 patients. Maxium plasma TNF concentrations in these patients ranged between 111 and 731 pg/ml on the first day of treatment. On the second day of treatment, when side effects of the ATG infusion were considerably less, maximum TNF levels were much lower, i.e. between 0 and 55 pg/ml.
In vitro experiments were performed in order to elucidate the cell source and mechanism of production of TNF in these patients. ATG or OKT3 was added at different concentrations to cultures of peripheral blood mononuclear cells (PBMC) and after a 6 hour culture period, TNF concentration in the supernatant was determined. Both ATG and OKT3 induced in a dose-related manner the release of TNF by PBMC in vitro. OKT3, which is a T-cell mitogen, also induced T-lymphocyte proliferation. However, ATG induced TNF secretion was not accompanied by T-lymphocyte proliferation, indicating that proliferation of T-lymphocytes is not a necessary prerequisite for TNF production in these cultures.
The kinetics of the ATG- and OKT3-induced release of TNF by PBMC was compatible with the rapid release of TNF in the circulation of the ATG-treated patients.
TABLE 1
__________________________________________________________________________
Plasma TNF Concentrations And Other Relevant Data of ATG-treated
Patients
highest
treatment TNF conc.
highest
RR**
Patient*
day treatment
(pg/ml)
temp (°C.)
(mm Hg)
symptoms
__________________________________________________________________________
1 m 33 yr
1 300 mg ATG
560 39.4 +50/+5
chills,
vomiting
2 200 mg ATG
55 37.9 0/0 none
2 f 54 yr
1 100 mg ATG
179 39.5 +10/0 chills,
dyspnoea
3 f 35 yr
1 200 mg ATG
111 39.0 +5/+5 chills
2 200 mg ATG
24 38.0 0/0 none
4 m 49 yr
1 200 mg ATG
125 38.4 -30/-20
chills,
dyspnoea,
vomiting
2 200 mg ATG
11 37.2 0/0 none
5 f 61 yr
1 200 mg ATG
138 38.2 +15/0 none
6 f 54 yr
1 200 mg ATG
731 40.4 +10/-10
chills,
dyspnoea,
headache
2 100 mg ATG
0 37.4 0/0 none
7 m 43 yr
1 200 mg ATG
593 39.5 +15/-10
chills,
diarrhea,
headache
__________________________________________________________________________
*m = male; f = female
**Expressed as difference between systolic/diastolic blood pressure
measured before start of the ATG infusion and at the time of the highest
plasma TNF concentration
Claims (8)
1. A pharmaceutical composition which comprises an antibody against human α-tumour necrosis and an antilymphocyte antibody in admixture with one or more pharmaceutically acceptable carriers, excipients or diluents.
2. A pharmaceutical composition according to claim 1 wherein the antilymphocyte antibody is a monoclonal antilymphocyte antibody.
3. A pharmaceutical composition according to claim 2 wherein the monoclonal antilymphocyte antibody is Orthoclone OKT3™.
4. A two component system, each component for use in association with one another in antilymphocyte antibody therapy, said system comprising (1) a first component that is an antinbody against human α-tumour necrosis factor, and (2) a second component that is an antilymphocyte antibody.
5. A method of treatment of a human subject suffering from an immunoregulatory disorder amenable to treatment by antilymphocyte antibody therapy which comprises administering to said human subject an effective amount of an anti-TNFα antibody in association with an antilymphocyte antibody.
6. A pharmaceutical composition according to any one of claims 1 to 3 wherein the antibody against human α tumor necrosis factor is recombinant α tumor necrosis factor.
7. A method of treatment of a human subject suffering from a shock condition arising from antilymphocyte antibody therapy which comprises administering an effective amount of an antibody against human α-tumor necrosis factor to the human subject.
8. A method for the prevention or treatment of shock-related conditions arising from antilymphocyte antibody therapy comprising administering to a person in need of same an effective amount of an antibody against human α-tumor necrosis factor.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US07/881,317 US5183657A (en) | 1988-03-11 | 1989-03-13 | Antibodies for use in antilymphocyte antibody therapy |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| GB8805792 | 1988-03-11 | ||
| GB888805792A GB8805792D0 (en) | 1988-03-11 | 1988-03-11 | Medicaments |
| US07/881,317 US5183657A (en) | 1988-03-11 | 1989-03-13 | Antibodies for use in antilymphocyte antibody therapy |
| US58506590A | 1990-10-22 | 1990-10-22 |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US58506590A Continuation | 1988-03-11 | 1990-10-22 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US5183657A true US5183657A (en) | 1993-02-02 |
Family
ID=27263820
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US07/881,317 Expired - Fee Related US5183657A (en) | 1988-03-11 | 1989-03-13 | Antibodies for use in antilymphocyte antibody therapy |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US5183657A (en) |
Cited By (30)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1996022790A1 (en) * | 1995-01-23 | 1996-08-01 | Xenotech Incorporated | Composition to ameliorate osteolysis and metastasis |
| US5811524A (en) * | 1995-06-07 | 1998-09-22 | Idec Pharmaceuticals Corporation | Neutralizing high affinity human monoclonal antibodies specific to RSV F-protein and methods for their manufacture and therapeutic use thereof |
| US5919452A (en) * | 1991-03-18 | 1999-07-06 | New York University | Methods of treating TNFα-mediated disease using chimeric anti-TNF antibodies |
| US6193969B1 (en) * | 1993-06-03 | 2001-02-27 | Protherics Inc. | Antibody fragments in therapy |
| US6235281B1 (en) * | 1994-02-07 | 2001-05-22 | Knoll Aktiengesellschaft | Use of anti-TNF antibodies as drugs for the treatment of disorders with an elevated serum level of interleukin-6 |
| US6241985B1 (en) | 1996-05-15 | 2001-06-05 | Altarex Corp. | Method and composition for reconforming multi-epitopic antigens to initiate an immune response |
| US20030135029A1 (en) * | 1992-02-18 | 2003-07-17 | Rathjen Deborah Ann | Tumour necrosis factor binding ligands |
| US20030225254A1 (en) * | 1989-08-07 | 2003-12-04 | Rathjen Deborah Ann | Tumour necrosis factor binding ligands |
| WO2003026692A3 (en) * | 2001-09-26 | 2003-12-18 | Isis Innovation | Treatment of chronic joint inflammation using an antibody against the cd3 antigen complex |
| US20040131612A1 (en) * | 2003-01-08 | 2004-07-08 | Watkins Jeffry D. | TNF-alpha binding molecules |
| US20040131609A1 (en) * | 2000-01-27 | 2004-07-08 | Young James F. | Ultra high affinity neutralizing antibodies |
| US20050031619A1 (en) * | 2001-03-21 | 2005-02-10 | Nicodemus Christopher F. | Therapeutic compositions that alter the immune response |
| US20050049402A1 (en) * | 2002-12-02 | 2005-03-03 | Babcook John S. | Antibodies directed to tumor necrosis factor and uses thereof |
| US20050063976A1 (en) * | 1996-05-15 | 2005-03-24 | Altarex --Medical-- Corp. | Combination therapy for treating disease |
| US20050220789A1 (en) * | 1997-08-29 | 2005-10-06 | The Brigham And Women's Hospital Inc. | Novel T-cell membrane protein (TIRC7), peptides and antibodies derived therefrom and uses thereof |
| US20050271663A1 (en) * | 2001-06-28 | 2005-12-08 | Domantis Limited | Compositions and methods for treating inflammatory disorders |
| US20060073141A1 (en) * | 2001-06-28 | 2006-04-06 | Domantis Limited | Compositions and methods for treating inflammatory disorders |
| US20060269549A1 (en) * | 2004-01-08 | 2006-11-30 | Watkins Jeffry D | Tnf-alpha binding molecules |
| US20070092522A1 (en) * | 1998-03-20 | 2007-04-26 | Altarex Medical Corp. | Method and composition for reconforming multi-epitopic antigens to initiate an immune response |
| US20090104205A1 (en) * | 1994-08-15 | 2009-04-23 | Medimmune, Llc | Human-Murine Chimeric Antibodies Against Respiratory Syncytial Virus |
| US7605233B2 (en) | 1989-08-07 | 2009-10-20 | Arana Therapeutics Limited | Tumour necrosis factor binding ligands |
| US20090291075A1 (en) * | 2002-04-11 | 2009-11-26 | Altarex Medical Corp. | Binding agents and their use in targeting tumor cells |
| US7635568B2 (en) | 2000-11-28 | 2009-12-22 | Medimmune, Llc | Methods of administering/dosing anti-RSV antibodies for prophylaxis and treatment |
| US20100028948A1 (en) * | 2000-11-28 | 2010-02-04 | Medimmune, Llc | Methods of administering/dosing anti-rsv antibodies for prophylaxis and treatment |
| US7700735B2 (en) | 2000-03-01 | 2010-04-20 | Medimmune, Llc | High potency recombinant antibodies and method for producing them |
| US7785592B2 (en) | 2002-06-14 | 2010-08-31 | Medimmune, Llc | Stabilized liquid anti-RSV antibody formulations |
| US20100239593A1 (en) * | 2007-06-01 | 2010-09-23 | Medimmune Limited | Rsv-specific binding molecules and means for producing them |
| US20100291103A1 (en) * | 2007-06-06 | 2010-11-18 | Domantis Limited | Polypeptides, antibody variable domains and antagonists |
| US20110158985A1 (en) * | 2004-10-29 | 2011-06-30 | Medimmune, Llc | Methods of preventing and treating rsv infections and related conditions |
| US8568726B2 (en) | 2009-10-06 | 2013-10-29 | Medimmune Limited | RSV specific binding molecule |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0218868A2 (en) * | 1985-08-29 | 1987-04-22 | New York Blood Center, Inc. | Preparation of pure human tumor necrosis factor and hybridomas producing monoclonal antibodies to human tumor necrosis factor |
-
1989
- 1989-03-13 US US07/881,317 patent/US5183657A/en not_active Expired - Fee Related
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0218868A2 (en) * | 1985-08-29 | 1987-04-22 | New York Blood Center, Inc. | Preparation of pure human tumor necrosis factor and hybridomas producing monoclonal antibodies to human tumor necrosis factor |
Non-Patent Citations (7)
| Title |
|---|
| Chemical Abstracts, abstract 154301t, vol. 106, 1987. * |
| Debets et al Transplantation, vol. 47, No. 3 pp. 487 492, Mar. 1989. * |
| Debets et al Transplantation, vol. 47, No. 3 pp. 487-492, Mar. 1989. |
| Robinson, Muromonab CD3 (Orthoclone OKT3 ) A Review, Drugs of Today, pp. 603 609, vol. 22, No. 12, 1986. * |
| Robinson, Muromonab-CD3 (Orthoclone OKT3®)-A Review, Drugs of Today, pp. 603-609, vol. 22, No. 12, 1986. |
| Tracey et al Nature, vol. 330 Dec. 17, 1987 pp. 662 664. * |
| Tracey et al Nature, vol. 330 Dec. 17, 1987 pp. 662-664. |
Cited By (98)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20030162948A1 (en) * | 1989-08-07 | 2003-08-28 | Rathjen Deborah Ann | Tumour necrosis factor binding ligands |
| US20060140951A1 (en) * | 1989-08-07 | 2006-06-29 | Rathjen Deborah A | Tumour necrosis factor binding ligands |
| US7517963B2 (en) | 1989-08-07 | 2009-04-14 | Arana Therapeutics Limited | Tumour necrosis factor binding ligands |
| US20060233802A1 (en) * | 1989-08-07 | 2006-10-19 | Peptech Limited | Tumour necrosis factor binding ligands |
| US20060204499A1 (en) * | 1989-08-07 | 2006-09-14 | Peptech Limited | Tumour necrosis factor binding ligands |
| US20030216552A1 (en) * | 1989-08-07 | 2003-11-20 | Rathjen Deborah Ann | Tumour necrosis factor peptide binding antibodies |
| US20060182746A1 (en) * | 1989-08-07 | 2006-08-17 | Rathjen Deborah A | Tumour necrosis factor binding ligands |
| US7605233B2 (en) | 1989-08-07 | 2009-10-20 | Arana Therapeutics Limited | Tumour necrosis factor binding ligands |
| US7553641B2 (en) | 1989-08-07 | 2009-06-30 | Arana Therapeutics Limited | Tumour necrosis factor binding ligands |
| US7528237B2 (en) | 1989-08-07 | 2009-05-05 | Arana Therapeutics Limited | Tumour necrosis factor binding ligands |
| US20070077248A1 (en) * | 1989-08-07 | 2007-04-05 | Peptech Limited | Tumour necrosis factor binding ligands |
| US7544782B2 (en) | 1989-08-07 | 2009-06-09 | Arana Therapeutics Limited | Tumour necrosis factor binding ligands |
| US20060159677A1 (en) * | 1989-08-07 | 2006-07-20 | Peptech Limited | Tumour necrosis factor peptide binding antibodies |
| US20070287177A1 (en) * | 1989-08-07 | 2007-12-13 | Rathjen Deborah A | Tumour necrosis factor binding ligands |
| US20040002589A1 (en) * | 1989-08-07 | 2004-01-01 | Rathjen Deborah Ann | Tumour necrosis factor peptide binding antibodies |
| US20030225254A1 (en) * | 1989-08-07 | 2003-12-04 | Rathjen Deborah Ann | Tumour necrosis factor binding ligands |
| US20030166874A1 (en) * | 1989-08-07 | 2003-09-04 | Rathjen Deborah Ann | Tumour necrosis factor peptide binding antibodies |
| US20040002590A1 (en) * | 1989-08-07 | 2004-01-01 | Rathjen Deborah Ann | Tumour necrosis factor peptide binding antibodies |
| US20030171554A1 (en) * | 1989-08-07 | 2003-09-11 | Rathjen Deborah Ann | Tumour necrosis factor peptide binding antibodies |
| US20030171553A1 (en) * | 1989-08-07 | 2003-09-11 | Rathjen Deborah Ann | Tumour necrosis factor binding ligands |
| US20030208047A1 (en) * | 1989-08-07 | 2003-11-06 | Rathjen Deborah Ann | Tumour necrosis factor peptide binding antibodies |
| US20030232970A1 (en) * | 1989-08-07 | 2003-12-18 | Rathjen Deborah Ann | Tumour necrosis factor binding ligands |
| US5919452A (en) * | 1991-03-18 | 1999-07-06 | New York University | Methods of treating TNFα-mediated disease using chimeric anti-TNF antibodies |
| US20030139580A1 (en) * | 1992-02-18 | 2003-07-24 | Rathjen Deborah Ann | Tumour necrosis factor binding ligands |
| US20030135029A1 (en) * | 1992-02-18 | 2003-07-17 | Rathjen Deborah Ann | Tumour necrosis factor binding ligands |
| US20030208049A1 (en) * | 1992-02-18 | 2003-11-06 | Rathjen Deborah Ann | Tumour necrosis factor binding ligands |
| US20030170204A1 (en) * | 1992-02-18 | 2003-09-11 | Rathjen Deborah Ann | Tumour necrosis factor binding ligands |
| US20030139577A1 (en) * | 1992-02-18 | 2003-07-24 | Rathjen Deborah Ann | Tumour necrosis factor binding ligands |
| US20040214993A2 (en) * | 1992-02-18 | 2004-10-28 | Deborah Rathjen | Tumour necrosis factor binding ligands |
| US6193969B1 (en) * | 1993-06-03 | 2001-02-27 | Protherics Inc. | Antibody fragments in therapy |
| US6235281B1 (en) * | 1994-02-07 | 2001-05-22 | Knoll Aktiengesellschaft | Use of anti-TNF antibodies as drugs for the treatment of disorders with an elevated serum level of interleukin-6 |
| US20090104205A1 (en) * | 1994-08-15 | 2009-04-23 | Medimmune, Llc | Human-Murine Chimeric Antibodies Against Respiratory Syncytial Virus |
| US7704505B2 (en) | 1994-08-15 | 2010-04-27 | Medimmune, Llc | Human-murine chimeric antibodies against respiratory syncytial virus |
| US8562994B2 (en) | 1994-08-15 | 2013-10-22 | Medimmune, Llc | Human-murine chimeric antibodies against respiratory syncytial virus |
| WO1996022790A1 (en) * | 1995-01-23 | 1996-08-01 | Xenotech Incorporated | Composition to ameliorate osteolysis and metastasis |
| AU703222B2 (en) * | 1995-01-23 | 1999-03-18 | Xenotech Incorporated | Composition to ameliorate osteolysis and metastasis |
| US20050244414A1 (en) * | 1995-01-23 | 2005-11-03 | Xenotech Incorporated | Method to ameliorate osteolysis and metastasis |
| US5955364A (en) * | 1995-06-07 | 1999-09-21 | Idec Pharmaceuticals Corporation | Neutralizing high affinity human monoclonal antibodies specific to RSV F-protein and methods for their manufacture and therapeutic use thereof |
| US5939068A (en) * | 1995-06-07 | 1999-08-17 | Idec Pharmaceuticals Corporation | Neutralizing high affinity human monoclonal antibodies specific to RSV F-protein and methods for their manufacture and therapeutic use thereof |
| US5866125A (en) * | 1995-06-07 | 1999-02-02 | Idec Pharmaceuticals Corporation | Neutralizing high affinity human monoclonal antibodies specific to RSV F-protein and methods for their manufacture and therapeutic use thereof |
| US5840298A (en) * | 1995-06-07 | 1998-11-24 | Idec Pharmaceuticals Corporation | Neutralizing high affinity human monoclonal antibodies specific to RSV F-protein and methods for their manufacture and therapeutic use thereof |
| US5811524A (en) * | 1995-06-07 | 1998-09-22 | Idec Pharmaceuticals Corporation | Neutralizing high affinity human monoclonal antibodies specific to RSV F-protein and methods for their manufacture and therapeutic use thereof |
| US8038994B2 (en) | 1996-05-15 | 2011-10-18 | Quest Pharmatech Inc. | Combination therapy for treating disease |
| US6241985B1 (en) | 1996-05-15 | 2001-06-05 | Altarex Corp. | Method and composition for reconforming multi-epitopic antigens to initiate an immune response |
| US20050063976A1 (en) * | 1996-05-15 | 2005-03-24 | Altarex --Medical-- Corp. | Combination therapy for treating disease |
| US20070036798A1 (en) * | 1996-05-15 | 2007-02-15 | Altarex Medical Corp. | Method and composition for reconforming multi-epitopic antigens to initiate an immune response |
| US20010036457A1 (en) * | 1996-05-15 | 2001-11-01 | Ragupathy Madiyalakan | Method and composition for reconforming multi-epitopic antigens to initiate an immune response |
| US20080311127A1 (en) * | 1996-05-15 | 2008-12-18 | Altarex Medical Corp. | Combination therapy for treating disease |
| US7863418B2 (en) | 1997-08-29 | 2011-01-04 | The Brigham And Women's Hospital, Inc. | T-cell membrane protein (TIRC7) and peptides derived therefrom |
| US20050220789A1 (en) * | 1997-08-29 | 2005-10-06 | The Brigham And Women's Hospital Inc. | Novel T-cell membrane protein (TIRC7), peptides and antibodies derived therefrom and uses thereof |
| US20070092522A1 (en) * | 1998-03-20 | 2007-04-26 | Altarex Medical Corp. | Method and composition for reconforming multi-epitopic antigens to initiate an immune response |
| US20090202560A1 (en) * | 1998-03-20 | 2009-08-13 | Altarex Medical Corp. | Method for diagnosing efficacy of xenotypic antibody therapy |
| US7740851B2 (en) | 2000-01-27 | 2010-06-22 | Medimmune, Llc | Ultra high affinity neutralizing antibodies |
| US20040131609A1 (en) * | 2000-01-27 | 2004-07-08 | Young James F. | Ultra high affinity neutralizing antibodies |
| US8153133B2 (en) | 2000-03-01 | 2012-04-10 | Medimmune, Llc | High potency recombinant antibodies and method for producing them |
| US7700735B2 (en) | 2000-03-01 | 2010-04-20 | Medimmune, Llc | High potency recombinant antibodies and method for producing them |
| US20100239574A1 (en) * | 2000-03-01 | 2010-09-23 | Medimmune, Llc | High potency recombinant antibodies and method for producing them |
| US7635568B2 (en) | 2000-11-28 | 2009-12-22 | Medimmune, Llc | Methods of administering/dosing anti-RSV antibodies for prophylaxis and treatment |
| US7847082B2 (en) | 2000-11-28 | 2010-12-07 | Medimmune, Llc | Methods of administering/dosing anti-RSV antibodies for prophylaxis and treatment |
| US20100028948A1 (en) * | 2000-11-28 | 2010-02-04 | Medimmune, Llc | Methods of administering/dosing anti-rsv antibodies for prophylaxis and treatment |
| US20050031619A1 (en) * | 2001-03-21 | 2005-02-10 | Nicodemus Christopher F. | Therapeutic compositions that alter the immune response |
| US20050271663A1 (en) * | 2001-06-28 | 2005-12-08 | Domantis Limited | Compositions and methods for treating inflammatory disorders |
| US20060073141A1 (en) * | 2001-06-28 | 2006-04-06 | Domantis Limited | Compositions and methods for treating inflammatory disorders |
| US20050037004A1 (en) * | 2001-09-26 | 2005-02-17 | Isis Innovation Limited | Treatment of chronic joint inflammation |
| AU2008207338B2 (en) * | 2001-09-26 | 2011-12-08 | Oxford University Innovation Limited | Treatment of chronic joint inflammation using an antibody against the CD3 antigen complex |
| EP2199307A1 (en) | 2001-09-26 | 2010-06-23 | Isis Innovation Ltd | Treatment of chronic joint inflammation using an antibody against the cd3 antigen complex |
| EP1803466A1 (en) * | 2001-09-26 | 2007-07-04 | Isis Innovation Limited | Treatment of chronic joint inflammation by an anti-CD3 antibody |
| WO2003026692A3 (en) * | 2001-09-26 | 2003-12-18 | Isis Innovation | Treatment of chronic joint inflammation using an antibody against the cd3 antigen complex |
| US20090291075A1 (en) * | 2002-04-11 | 2009-11-26 | Altarex Medical Corp. | Binding agents and their use in targeting tumor cells |
| US8206951B2 (en) | 2002-06-14 | 2012-06-26 | Medimmune, Llc | Stabilized liquid anti-RSV antibody formulations |
| US11180542B2 (en) | 2002-06-14 | 2021-11-23 | Arexis Ab | Stabilized liquid anti-RSV antibody formulations |
| US10604560B2 (en) | 2002-06-14 | 2020-03-31 | Arexis Ab | Stabilized liquid anti-RSV antibody formulations |
| US9879067B2 (en) | 2002-06-14 | 2018-01-30 | Medimmune, Llc | Stabilized liquid anti-RSV antibody formulations |
| US9272032B2 (en) | 2002-06-14 | 2016-03-01 | Medimmune, Llc | Stabilized liquid anti-RSV antibody formulations |
| US8986686B2 (en) | 2002-06-14 | 2015-03-24 | Medimmune, Llc | Stabilized liquid anti-RSV antibody formulations |
| US7785592B2 (en) | 2002-06-14 | 2010-08-31 | Medimmune, Llc | Stabilized liquid anti-RSV antibody formulations |
| US8007793B2 (en) | 2002-06-14 | 2011-08-30 | Medimmune, Llc | Stabilized liquid anti-RSV antibody formulations |
| US8460663B2 (en) | 2002-06-14 | 2013-06-11 | Medimmune, Llc | Stabilized liquid anti-RSV antibody formulations |
| US20080187531A1 (en) * | 2002-12-02 | 2008-08-07 | Babcook John S | Antibodies directed to tumor necrosis factor and uses thereof |
| US8101178B2 (en) | 2002-12-02 | 2012-01-24 | Amgen Fremont Inc. | Antibodies directed to tumor necrosis factor and uses thereof |
| US7285269B2 (en) | 2002-12-02 | 2007-10-23 | Amgen Fremont, Inc. | Antibodies directed to tumor necrosis factor |
| US20050049402A1 (en) * | 2002-12-02 | 2005-03-03 | Babcook John S. | Antibodies directed to tumor necrosis factor and uses thereof |
| US7101978B2 (en) | 2003-01-08 | 2006-09-05 | Applied Molecular Evolution | TNF-α binding molecules |
| US20040131612A1 (en) * | 2003-01-08 | 2004-07-08 | Watkins Jeffry D. | TNF-alpha binding molecules |
| US7435799B2 (en) | 2004-01-08 | 2008-10-14 | Applied Molecular Evolution | TNF-α binding molecules |
| US20060269549A1 (en) * | 2004-01-08 | 2006-11-30 | Watkins Jeffry D | Tnf-alpha binding molecules |
| US20110158985A1 (en) * | 2004-10-29 | 2011-06-30 | Medimmune, Llc | Methods of preventing and treating rsv infections and related conditions |
| US9321831B2 (en) | 2007-06-01 | 2016-04-26 | Medimmune Limited | RSV-specific binding molecules and means for producing them |
| US10059757B2 (en) | 2007-06-01 | 2018-08-28 | Medimmune Limited | RSV-specific binding molecules and means for producing them |
| US20100239593A1 (en) * | 2007-06-01 | 2010-09-23 | Medimmune Limited | Rsv-specific binding molecules and means for producing them |
| US10730931B2 (en) | 2007-06-01 | 2020-08-04 | Medimmune Limited | RSV-specific binding molecules and means for producing them |
| US8562996B2 (en) | 2007-06-01 | 2013-10-22 | Medimmune Limited | RSV-specific binding molecules and means for producing them |
| US8877186B2 (en) | 2007-06-06 | 2014-11-04 | Domantis Limited | Polypeptides, antibody variable domains and antagonists |
| US20100291103A1 (en) * | 2007-06-06 | 2010-11-18 | Domantis Limited | Polypeptides, antibody variable domains and antagonists |
| US8568726B2 (en) | 2009-10-06 | 2013-10-29 | Medimmune Limited | RSV specific binding molecule |
| US9283274B2 (en) | 2009-10-06 | 2016-03-15 | Medimmune Limited | RSV specific binding molecule |
| US10035843B2 (en) | 2009-10-06 | 2018-07-31 | Medimmune Limited | RSV-specific binding molecule |
| US10723786B2 (en) | 2009-10-06 | 2020-07-28 | Medimmune, Limited | RSV-specific binding molecule |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US5183657A (en) | Antibodies for use in antilymphocyte antibody therapy | |
| EP0403558B1 (en) | Antibodies for use in antilymphocyte antibody therapy | |
| Hooks et al. | Muromonab CD‐3: a review of its pharmacology, pharmacokinetics, and clinical use in transplantation | |
| US6338848B1 (en) | Use of IL-12 and IL-12 antagonists in the treatment of autoimmune diseases | |
| US5980892A (en) | Monoclonal antibodies reactive with defined regions of the T cell antigen receptor | |
| US6333032B1 (en) | Treatment of autoimmune diseases | |
| JP3383303B2 (en) | CDw52-specific antibodies for the treatment of multiple sclerosis | |
| EP0625912B1 (en) | Treatment for inflammatory bowel disease | |
| JP5027512B2 (en) | Immunomodulation | |
| US8012475B2 (en) | Use of IL-12 and IL-12 antagonists in the treatment of autoimmune diseases | |
| Combe et al. | Human placenta-eluted gammaglobulins in immunomodulating treatment of rheumatoid arthritis | |
| MXPA01010985A (en) | Method and compositions for preventing or reducing hiv infection by use of inhibitors for leucine aminopeptidase. | |
| EP0397764A1 (en) | Method of reducing immunoglobulin e responses | |
| CA2563260C (en) | Methods of treating autoimmune and inflammatory diseases | |
| Shoda et al. | Cutaneous vasculitis developed in a patient with breast cancer undergoing aromatase inhibitor treatment | |
| US20030059428A1 (en) | Treatment of autoimmune diseases | |
| US5874228A (en) | Methods and kits for determining the levels of IGE-BF | |
| Larue et al. | Optimization of mouse IgG fragmentation technique in the selection of monoclonal antibodies for myocardial infarct imaging | |
| Tanimoto | (3) Lymphocyte Function in autoimmune Disease | |
| HK1099525B (en) | Methods of treating atherosclerosis | |
| HK1007683B (en) | Treatment for inflammatory bowel disease | |
| HK1098085B (en) | Methods of modulating immunity | |
| AU1247300A (en) | Methods for the treatment of inflammatory joint disease |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
| CC | Certificate of correction | ||
| FPAY | Fee payment |
Year of fee payment: 4 |
|
| FPAY | Fee payment |
Year of fee payment: 8 |
|
| REMI | Maintenance fee reminder mailed | ||
| LAPS | Lapse for failure to pay maintenance fees | ||
| STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
| FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20050202 |