US4504547A - Process for producing supports for cell cultures and supports so obtained - Google Patents
Process for producing supports for cell cultures and supports so obtained Download PDFInfo
- Publication number
- US4504547A US4504547A US06/093,050 US9305079A US4504547A US 4504547 A US4504547 A US 4504547A US 9305079 A US9305079 A US 9305079A US 4504547 A US4504547 A US 4504547A
- Authority
- US
- United States
- Prior art keywords
- supports
- process according
- solution
- cell cultures
- beads
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000004113 cell culture Methods 0.000 title claims abstract description 23
- 238000000034 method Methods 0.000 title claims abstract description 19
- 229920001187 thermosetting polymer Polymers 0.000 claims abstract description 29
- 239000000463 material Substances 0.000 claims abstract description 13
- 230000001954 sterilising effect Effects 0.000 claims abstract description 8
- 238000004659 sterilization and disinfection Methods 0.000 claims abstract description 8
- 230000000694 effects Effects 0.000 claims abstract description 4
- 239000011324 bead Substances 0.000 claims description 30
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 claims description 20
- 229920005654 Sephadex Polymers 0.000 claims description 14
- 239000012507 Sephadex™ Substances 0.000 claims description 14
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 11
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 11
- ZTQSAGDEMFDKMZ-UHFFFAOYSA-N Butyraldehyde Chemical compound CCCC=O ZTQSAGDEMFDKMZ-UHFFFAOYSA-N 0.000 claims description 8
- 239000011521 glass Substances 0.000 claims description 7
- 229920000642 polymer Polymers 0.000 claims description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 6
- 239000000872 buffer Substances 0.000 claims description 5
- 239000011248 coating agent Substances 0.000 claims description 5
- 238000000576 coating method Methods 0.000 claims description 5
- 150000004676 glycans Chemical class 0.000 claims description 5
- 229920001282 polysaccharide Polymers 0.000 claims description 5
- 239000005017 polysaccharide Substances 0.000 claims description 5
- HGBOYTHUEUWSSQ-UHFFFAOYSA-N valeric aldehyde Natural products CCCCC=O HGBOYTHUEUWSSQ-UHFFFAOYSA-N 0.000 claims description 4
- -1 Mg++ ions Chemical class 0.000 claims description 3
- 125000003158 alcohol group Chemical group 0.000 claims description 3
- 150000001299 aldehydes Chemical class 0.000 claims description 3
- 239000007795 chemical reaction product Substances 0.000 claims description 3
- 235000019441 ethanol Nutrition 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 3
- 229920002554 vinyl polymer Polymers 0.000 claims description 3
- 210000001840 diploid cell Anatomy 0.000 abstract description 6
- 230000010261 cell growth Effects 0.000 abstract description 4
- 241001465754 Metazoa Species 0.000 abstract description 3
- 238000010899 nucleation Methods 0.000 abstract description 3
- 210000004027 cell Anatomy 0.000 description 18
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 15
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 14
- 239000000047 product Substances 0.000 description 9
- 239000001963 growth medium Substances 0.000 description 7
- 239000002609 medium Substances 0.000 description 7
- 229920003023 plastic Polymers 0.000 description 7
- 239000004033 plastic Substances 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- 239000008363 phosphate buffer Substances 0.000 description 5
- 210000002966 serum Anatomy 0.000 description 4
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- 239000004793 Polystyrene Substances 0.000 description 3
- 241000700605 Viruses Species 0.000 description 3
- 239000010419 fine particle Substances 0.000 description 3
- 235000015097 nutrients Nutrition 0.000 description 3
- 229920002223 polystyrene Polymers 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 231100000331 toxic Toxicity 0.000 description 3
- 230000002588 toxic effect Effects 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 229920000936 Agarose Polymers 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 102000014150 Interferons Human genes 0.000 description 1
- 108010050904 Interferons Proteins 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 229920000571 Nylon 11 Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004959 Rilsan Substances 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000012136 culture method Methods 0.000 description 1
- 238000010908 decantation Methods 0.000 description 1
- 125000001664 diethylamino group Chemical group [H]C([H])([H])C([H])([H])N(*)C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 239000012847 fine chemical Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 229940079322 interferon Drugs 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000011325 microbead Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 229960005486 vaccine Drugs 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/0068—General culture methods using substrates
- C12N5/0075—General culture methods using substrates using microcarriers
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/0068—General culture methods using substrates
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2533/00—Supports or coatings for cell culture, characterised by material
- C12N2533/30—Synthetic polymers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S435/00—Chemistry: molecular biology and microbiology
- Y10S435/8215—Microorganisms
- Y10S435/948—Microorganisms using viruses or cell lines
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2982—Particulate matter [e.g., sphere, flake, etc.]
- Y10T428/2991—Coated
- Y10T428/2998—Coated including synthetic resin or polymer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31551—Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
- Y10T428/31627—Next to aldehyde or ketone condensation product
- Y10T428/3163—Next to acetal of polymerized unsaturated alcohol [e.g., formal butyral, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31551—Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
- Y10T428/31645—Next to addition polymer from unsaturated monomers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31971—Of carbohydrate
Definitions
- the present invention relates to the field of cell cultures and more particularly to the use of thermosetting plastics materials for improving supports used for cell growth.
- cell cultures are generally produced either in monolayers on supports in the presence of liquid nutrient media, or in suspension in liquid nutrient medium, or in the presence of a semi-solid nutrient medium (agarose).
- Suitable supports for cell growth are particularly neutral glass or plastics, generally based on polystyrene, which have undergone special treatment to render them suitable for cell growth. These plastics are for a single use end are sterilized by a physical treatment with the exclusion of heat. Recently, the use has commenced, for cell cultures of microsupports based on glass, polysaccharides (“Sephadex”) or of plastics materials.
- the supports for cell cultures must be of such a nature that the cells adhere easily thereto; they must not be toxic for the cells nor inhibit their growth. In addition, they must permit microscopic observations to be carried out easily.
- microsupports tests have been carried out with glass beads or polystyrene beads; however these microsupports are not satisfactory for obtaining cultures on an industrial scale or are only satisfactory under certain conditions.
- a means has now been found for treating supports for cell cultures, which permits their use under various operational conditions and notably their use for seeding, growth and trypsination of cell cultures, in particular of human or animal diploid cell cultures, said means according to the invention consisting of applying on base supports a thermosetting plastics material under the conditions indicated below in detail.
- the present invention relates to a process for producing supports for cell cultures which consists of applying to base supports a solution of a thermosetting plastics material and of then subjecting said supports thus-coated to the effects of heat under conditions sufficient to permit the hardening of said thermosetting plastics and the sterilization of said thus-coated supports.
- the present invention also relates to supports for cell cultures constituted by a base support bearing a thermohardened coating.
- base supports or “basic supports” means any currently used support within the field concerned which are based on glass or polysaccharides; these supports can have a flat surface or a spherical surface.
- Petri dishes Petri dishes
- Roux dishes beads
- beads notably beads constituted from products known under the tradename "DEAE-Sephadex” and any other glass bottle or material used for cell cultures.
- Thermosetting plastics which are suitable for the purposes of the invention must not be toxic to the cells; they must, preferably, be transparent to permit microscopic observations; moreover, they must be such that the cells adhere easily and firmly to said coated supports. As regards the application to microsupports, these plastics must form a film around each microsupport without forming an aggregate. In addition, these plastics must resist the final autoclaving in liquid phase (sterilization).
- thermosetting plastics which are suitable for the purposes of the present invention, may be mentioned notably the reaction products of an aldehyde with a polyvinyl alcohol, for example the reaction product of formaldehyde or of butyraldehyde with a polyvinyl alcohol.
- thermosetting plastics By way of preferred thermosetting plastics according to the invention, may be mentioned the products known under the tradenames "RHOVINAL B” and RHOVINAL F” sold by the Societe RHONE POULENC Polymeres.
- RHOVINAL B polyvinyl butyral polymers which result from the reaction of butyraldehyde with polyvinyl alcohol; among these products, are particularly preferred “RHOVINAL B 10/20".
- the first figure indicates the viscosity in millipoises of a 5% solution of said product in 95° ethyl alcohol at 20° C. and the second figure indicates the percentage by weight of polyvinyl alcohol groups in the molecule.
- RHOVINAL F polyvinyl formals which result from the reaction of formal with polyvinyl alcohol.
- thermosetting plastics are applied in the process of the invention in the form of solutions in suitable solvents.
- the solvents which are suitable are the solvents for said plastics which are preferably volatile.
- the use of non-volatile solvents necessitates intensive washings to remove any trace of solvents which would be toxic to the cultures.
- chloroform, methanol or a mixture of chloroform and methanol are used.
- thermosetting plastics applied according to the process of the invention contain a sufficient amount of thermosetting plastics material to obtain under operational conditions a continuous film permitting optimal cell culture, that is to say cell multiplication for at least a week. It will be for the specialist to determine the concentration of the solution to be used.
- thermosetting plastic is "RHOVINAL B 10/20”
- 0.5 to 2% solutions, preferably 1%, of RHOVINAL B 10/20 are suitable, said percentages being counted in weight.
- microsupports treated according to the process of the invention are preferably washed before the application of the thermosetting plastics solution, by means for example of an isotonic buffer, such as a pH 7.2 phosphate buffer, and passed into the autoclave.
- an isotonic buffer such as a pH 7.2 phosphate buffer
- thermosetting plastics solution The supports treated with the thermosetting plastics solution are then heat treated, in an oven or an autoclave, at a sufficient temperature to permit the hardening of said thermosetting plastics and the sterilization of the said thus-coated support.
- a temperature comprised between about 120° C. (autoclave) and 180° C. (oven).
- the supports are in spherical form, for example in the form of fine particles of a size ranging from 100 to 200 ⁇ m (after swelling), it is advantageous to maintain the gel constituted from fine particles in suspension in the thermosetting plastics solution at a temperature of about 37° C. for a sufficient time, for example for 24 to 48 hours, for the thermosetting plastics material to adhere over their whole surface of the fine particles.
- the supports particularly the "Sephadex" microsupports, must be washed in an isotonic buffer to remove the traces of solvent, then sterilized and preserved until their use.
- the expression "pass into an autoclave” signifies that the supports are treated in an autoclave at a temperature of about 120° C. for a sufficient time for sterilization.
- the preferred supports according to the present invention are the supports for cell cultures, constituted by a basic support, such as glass or polysaccharides, of flat or spherical shape, for example Petri dishes, Roux dishes, i.e., bottles or flasks for the culture of bacteria and cells having a volume of from 30 ml to 5 l and having two parallel plane surfaces, or beads bearing a thermoset coating constituted by a polymer resulting from the product of the reaction of an aldehyde and of a polyvinyl alcohol, such as a polyvinyl butyral or polyvinyl formal polymer.
- a basic support such as glass or polysaccharides, of flat or spherical shape
- Petri dishes, Roux dishes i.e., bottles or flasks for the culture of bacteria and cells having a volume of from 30 ml to 5 l and having two parallel plane surfaces
- beads bearing a thermoset coating constituted by a polymer resulting from the product of the reaction of an alde
- the supports according to the invention can be used for the cultivation of human or animal diploid cells or any other cell (primary explant, continuous line) adapted for cultivation in monolayers.
- these supports may be used for any conventional operations of seeding and of trypsination of cell cultures.
- the cells which multiply on microsupports according to the invention may be used as a substrate for virus production.
- the virus harvesting is carred out by a taking up of the medium after decantation of the beads. This virus can then be purified for the preparation of vaccines and of viral antigenes.
- the cell cultures obtained by this process may also serve for the production of interferon, of enzymes or of hormones, or of any other substances of cellular origin.
- RHOVINAL B10/20 was dissolved in chloroform to a concentration of 0.5 to 1%.
- the "RHOVINAL” was poured into a cell culture dish so as to fill the dish.
- the contents were poured into a second dish, and then successively into all the dishes.
- the dishes were allowed to drain for five minutes on the flask stand and then they were sterilized in the oven for one hour at 180° C. During the sterilization, the film of "Rhovinal" solution which adhered to the surface of the dish was hardened by the heat.
- Beads constituted by the product known under the tradename "DEAE-Sephadex A-50" were used; these beads had a diameter of 80 to 100 ⁇ m.
- the thus treated beads can be preserved in sterile condition until their use; it is then recommended to rinse them once in a culture medium containing 10% of veal serum.
- a Roux dish treated according to Example 1, 100 ml of culture medium was introduced (Eagle base medium or Eagle minimum medium) containing about 10% of veal serum; it was seeded with 50,000 human diploid cells per ml of culture medium. At the end of 24 hours, the cells had adhered 100% to the support according to the invention. Then the culture was continued for 7 to 8 days so as to obtain a minimal final concentration of 200,000 cells/per cm 2 of support.
- culture medium Eagle base medium or Eagle minimum medium
- 50,000 human diploid cells per ml of culture medium At the end of 24 hours, the cells had adhered 100% to the support according to the invention. Then the culture was continued for 7 to 8 days so as to obtain a minimal final concentration of 200,000 cells/per cm 2 of support.
- the culture medium (Eagle base medium or Eagle minimum medium) containing about 10% of veal serum and 1 to 2 mg/ml of "DEAE-Sephadex A-50" treated with "Rhovinal” as in Example 2. It was seeded with 10 5 human diploid cells per ml of culture medium (MRC 5 cell line).
- the cells were slowly stirred (60 rmp) and had adhered 100% to the beads; then the cell culture was continued for 7 to 8 days (90 rpm) so as to obtain a final cell concentration of 10 6 cells/ml. During the 7 to 8 days of cultivation, it was necessary to keep the pH at a constant value: 7.2-7.4.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Genetics & Genomics (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Cell Biology (AREA)
- Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
The present invention relates to the use of thermosetting plastics for improving supports used for cell growth. The process according to the invention consists of applying to base supports, a solution of a thermosetting plastics material and of then subjecting the thus-coated supports to the effect of heat under conditions sufficient to permit the hardening of the thermosetting plastics material and sterilization of the thus-coated supports. The supports according to the invention are suitable for any conventional seeding and trypsination operations on cell cultures; they can also be used for the cultivation of human or animal diploid cells.
Description
This is a continuation of Ser. No. 930,226, filed Aug. 2, 1978, abandoned.
1. Field of the Invention
The present invention relates to the field of cell cultures and more particularly to the use of thermosetting plastics materials for improving supports used for cell growth.
2. Description of the Prior Art
It is known that cell cultures are generally produced either in monolayers on supports in the presence of liquid nutrient media, or in suspension in liquid nutrient medium, or in the presence of a semi-solid nutrient medium (agarose).
Suitable supports for cell growth are particularly neutral glass or plastics, generally based on polystyrene, which have undergone special treatment to render them suitable for cell growth. These plastics are for a single use end are sterilized by a physical treatment with the exclusion of heat. Recently, the use has commenced, for cell cultures of microsupports based on glass, polysaccharides ("Sephadex") or of plastics materials.
The supports for cell cultures must be of such a nature that the cells adhere easily thereto; they must not be toxic for the cells nor inhibit their growth. In addition, they must permit microscopic observations to be carried out easily.
As regards microsupports, tests have been carried out with glass beads or polystyrene beads; however these microsupports are not satisfactory for obtaining cultures on an industrial scale or are only satisfactory under certain conditions.
In this connection, reference may be made to the article of A. L. Van Wezel entitled "Microcarrier Cultures of Animal Cells" in the treaties "Tissue Culture Methods and Application" edited by Paul F. KRUSE JR and M. K. PATTERSON JR Academic Press New York and London 1973. It is, for example, indicated that cells do not adhere in a sufficiently fast manner to plastics beads, such as polystyrene beads or beads of "Rilsan", trademark for a polyamide also knows as nylon 11, which beads have undergone special treatment. On the other hand, it is pointed out that tests have been carried with "Spherosil" beads, "Spherosil" being the tradename for microbeads made of silica; these beads do not seem suitable for industrial cultures considering the relatively high density of these beads in the culture media. It is noted also that the various types of ion exchange resins comprised of dextran chains cross-linked to form a tridimensional matrice of polysaccharide and having diethylamino functional groups, known under the commercial name "DEAE-Sephadex" and available from PHARMACIA FINE CHEMICALS AB, UPPSALA, SWEDEN, do not all have the same properties as supports for cell cultures.
To improve the properties of "DEAE-Sephadex A 50" beads, it has already been proposed to coat them with nitrocellulose (see the article of A. L. Van Wezel mentioned above).
A means has now been found for treating supports for cell cultures, which permits their use under various operational conditions and notably their use for seeding, growth and trypsination of cell cultures, in particular of human or animal diploid cell cultures, said means according to the invention consisting of applying on base supports a thermosetting plastics material under the conditions indicated below in detail.
Thus, the present invention relates to a process for producing supports for cell cultures which consists of applying to base supports a solution of a thermosetting plastics material and of then subjecting said supports thus-coated to the effects of heat under conditions sufficient to permit the hardening of said thermosetting plastics and the sterilization of said thus-coated supports.
The present invention also relates to supports for cell cultures constituted by a base support bearing a thermohardened coating.
In the present description, the expression "base supports" or "basic supports" means any currently used support within the field concerned which are based on glass or polysaccharides; these supports can have a flat surface or a spherical surface.
By way of examples of such supports, may be mentioned Petri dishes, Roux dishes, beads, notably beads constituted from products known under the tradename "DEAE-Sephadex" and any other glass bottle or material used for cell cultures.
Thermosetting plastics which are suitable for the purposes of the invention must not be toxic to the cells; they must, preferably, be transparent to permit microscopic observations; moreover, they must be such that the cells adhere easily and firmly to said coated supports. As regards the application to microsupports, these plastics must form a film around each microsupport without forming an aggregate. In addition, these plastics must resist the final autoclaving in liquid phase (sterilization).
Among the thermosetting plastics which are suitable for the purposes of the present invention, may be mentioned notably the reaction products of an aldehyde with a polyvinyl alcohol, for example the reaction product of formaldehyde or of butyraldehyde with a polyvinyl alcohol.
By way of preferred thermosetting plastics according to the invention, may be mentioned the products known under the tradenames "RHOVINAL B" and RHOVINAL F" sold by the Societe RHONE POULENC Polymeres.
The products known by the tradename "RHOVINAL B" are polyvinyl butyral polymers which result from the reaction of butyraldehyde with polyvinyl alcohol; among these products, are particularly preferred "RHOVINAL B 10/20".
In the above-mentioned names, the first figure indicates the viscosity in millipoises of a 5% solution of said product in 95° ethyl alcohol at 20° C. and the second figure indicates the percentage by weight of polyvinyl alcohol groups in the molecule.
The products known under the tradename "RHOVINAL F" are polyvinyl formals which result from the reaction of formal with polyvinyl alcohol.
The thermosetting plastics are applied in the process of the invention in the form of solutions in suitable solvents. The solvents which are suitable are the solvents for said plastics which are preferably volatile. The use of non-volatile solvents necessitates intensive washings to remove any trace of solvents which would be toxic to the cultures. Preferably, chloroform, methanol or a mixture of chloroform and methanol are used.
The solutions of thermosetting plastics applied according to the process of the invention contain a sufficient amount of thermosetting plastics material to obtain under operational conditions a continuous film permitting optimal cell culture, that is to say cell multiplication for at least a week. It will be for the specialist to determine the concentration of the solution to be used.
By way of example, it may be indicated that when the thermosetting plastic is "RHOVINAL B 10/20", 0.5 to 2% solutions, preferably 1%, of RHOVINAL B 10/20 are suitable, said percentages being counted in weight.
The microsupports treated according to the process of the invention are preferably washed before the application of the thermosetting plastics solution, by means for example of an isotonic buffer, such as a pH 7.2 phosphate buffer, and passed into the autoclave.
The supports treated with the thermosetting plastics solution are then heat treated, in an oven or an autoclave, at a sufficient temperature to permit the hardening of said thermosetting plastics and the sterilization of the said thus-coated support. Generally, one operates at a temperature comprised between about 120° C. (autoclave) and 180° C. (oven).
When the supports are in spherical form, for example in the form of fine particles of a size ranging from 100 to 200 μm (after swelling), it is advantageous to maintain the gel constituted from fine particles in suspension in the thermosetting plastics solution at a temperature of about 37° C. for a sufficient time, for example for 24 to 48 hours, for the thermosetting plastics material to adhere over their whole surface of the fine particles.
After the heat treatment in an autoclave, the supports, particularly the "Sephadex" microsupports, must be washed in an isotonic buffer to remove the traces of solvent, then sterilized and preserved until their use.
In a modification of the operation of the process of the invention, it is advantageous to wash the supports (beads and microsupports) after the heat treatment with an isotonic buffer containing Ca++ or Mg++ ions and to pass them to the autoclave; this treatment improves the adherence of the cells to the microsupports.
In the present description, the expression "pass into an autoclave" signifies that the supports are treated in an autoclave at a temperature of about 120° C. for a sufficient time for sterilization.
Before their use, it is advantageous to rinse the microsupports in a culture medium containing about 10% of veal serum.
The preferred supports according to the present invention are the supports for cell cultures, constituted by a basic support, such as glass or polysaccharides, of flat or spherical shape, for example Petri dishes, Roux dishes, i.e., bottles or flasks for the culture of bacteria and cells having a volume of from 30 ml to 5 l and having two parallel plane surfaces, or beads bearing a thermoset coating constituted by a polymer resulting from the product of the reaction of an aldehyde and of a polyvinyl alcohol, such as a polyvinyl butyral or polyvinyl formal polymer.
The supports according to the invention can be used for the cultivation of human or animal diploid cells or any other cell (primary explant, continuous line) adapted for cultivation in monolayers. In addition, these supports may be used for any conventional operations of seeding and of trypsination of cell cultures.
The cells which multiply on microsupports according to the invention may be used as a substrate for virus production. The virus harvesting is carred out by a taking up of the medium after decantation of the beads. This virus can then be purified for the preparation of vaccines and of viral antigenes. The cell cultures obtained by this process may also serve for the production of interferon, of enzymes or of hormones, or of any other substances of cellular origin.
The present invention will now be illustrated in more detail by the following non-limiting examples.
RHOVINAL B10/20 was dissolved in chloroform to a concentration of 0.5 to 1%. The "RHOVINAL" was poured into a cell culture dish so as to fill the dish. The contents were poured into a second dish, and then successively into all the dishes. The dishes were allowed to drain for five minutes on the flask stand and then they were sterilized in the oven for one hour at 180° C. During the sterilization, the film of "Rhovinal" solution which adhered to the surface of the dish was hardened by the heat.
Beads constituted by the product known under the tradename "DEAE-Sephadex A-50" were used; these beads had a diameter of 80 to 100 μm.
10 g of "DEAE-Sephadex A-50" beads were washed several times by means of a pH 7.2 isotonic phosphate buffer and passed in an autoclave. The beads were suspended in 600 ml of chloroform solution of "Rhovinal B 10/20" (1 l of chloroform contained 15 g of Rhovinal). The suspension thus obtained was left for one hour at 37° C. The excess chloroform solution (lower phase) was removed, preserving the DEAE-Sephadex gel (upper phase). The gel was placed for 24 hours at 37° C. and then for one hour in the autoclave (120° C.). The beads were then washed several times during 24 hours in a pH=7.2 isotonic phosphate buffer, then passed into the autoclave in the presence of a phosphate buffer containing Ca++ and Mg++ ions.
The thus treated beads can be preserved in sterile condition until their use; it is then recommended to rinse them once in a culture medium containing 10% of veal serum.
Beads constituted by the product known under the tradename "DEAE-Sephadex A-50" were again used.
After washing with an isotonic phosphate buffer, 10 g of "DEAE-Sephadex A-50" were rinsed in 600 ml of methanol. After 24 hours at 37° C., the excess of methanol above the gel was removed and the beads were suspended in 600 ml of 0.5% "Rhovinal B 10/20" solution; the solvent used was constituted by a mixture of chloroform (75%) and methanol (25%). After 48 hours at 37° C., the excess of "Rhovinal" solution was removed and the gel was treated for one hour in the autoclave (120° C.). The beads were then washed and rinsed by the operational method described in Example 2.
In a Roux dish, treated according to Example 1, 100 ml of culture medium was introduced (Eagle base medium or Eagle minimum medium) containing about 10% of veal serum; it was seeded with 50,000 human diploid cells per ml of culture medium. At the end of 24 hours, the cells had adhered 100% to the support according to the invention. Then the culture was continued for 7 to 8 days so as to obtain a minimal final concentration of 200,000 cells/per cm2 of support.
Into a flask with stirring, were introduced the culture medium (Eagle base medium or Eagle minimum medium) containing about 10% of veal serum and 1 to 2 mg/ml of "DEAE-Sephadex A-50" treated with "Rhovinal" as in Example 2. It was seeded with 105 human diploid cells per ml of culture medium (MRC 5 cell line).
For 24 hours at 37° C. the cells were slowly stirred (60 rmp) and had adhered 100% to the beads; then the cell culture was continued for 7 to 8 days (90 rpm) so as to obtain a final cell concentration of 106 cells/ml. During the 7 to 8 days of cultivation, it was necessary to keep the pH at a constant value: 7.2-7.4.
By way of comparison, a cultivation of diploid cells under the same conditions as above but using "DEAE-Sephadex A-50" beads which had not been treated in accordance with the proess of the invention, was carried out. After 7 to 8 days of cultivation, the final cell concentration was only 105 cells per ml.
Claims (11)
1. Process for producing supports for cell cultures, comprising applying to glass or polysaccharide base supports a solution of a thermosetting plastic material comprising the reaction product of an aldehyde with a polyvinyl alcohol and then subjecting said support thus-coated to the effect of heat under sufficient conditions to permit hardening of said thermosetting plastic material and the sterilization of said thus-coated supports.
2. Process according to claim 1, wherein the solution of thermosetting plastic material is applied to the surface or surfaces that will contact the cell cultures.
3. Process according to claim 1, wherein the thermosetting plastics material is a polyvinyl butyral polymer resulting from the reaction of butyraldehyde with a polyvinyl alcohol whose viscosity of 20° C. of a 5% solution in 95° ethyl alcohol is 10 millipoises and whose percentage by weight of polyvinyl alcohol groups is 20.
4. Process according to claim 1, wherein the base supports are Petri dishes, Roux dishes or "DEAE-Sephadex" beads.
5. Process according to claim 1, wherein said support coated with the thermosetting plastics solution is subjected to the effect of heat at a temperature comprised between 120° and 180° C.
6. Process according to claim 1, wherein, before the application of the thermosetting plastics solution, the supports are washed by means of an isotonic buffer and then passed into an autoclave.
7. Process according to claim 1, wherein the base supports are beads or microsupports and, after heat treatment in an autoclave, the beads or microsupports are rinsed with an isotonic buffer containing Ca++ and Mg++ ions and passed into the autoclave for sterilization.
8. Supports for cell cultures obtained by the process according to claim 1.
9. Supports for cell cultures according to claim 8, wherein the base support has a flat shape or a spherical shape and bears a thermoset coating.
10. Supports according to claim 8, wherein the thermoset coating is constituted by a polyvinyl butyral or polyvinyl formal polymer.
11. Supports according to claim 9, wherein the thermoset coating is constituted by a polymer of polyvinyl butyral resulting from the reaction of butyraldehyde with a polyvinyl alcohol whose viscosity at 20° C. of a 5% solution in 95° ethyl alcohol is 10 millipoises and whose percentage by weight of polyvinyl alcohol groups is 20.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| FR7724421A FR2400063A1 (en) | 1977-08-08 | 1977-08-08 | PROCESS FOR OBTAINING SUPPORTS FOR CELLULAR CULTURES AND SUPPORTS OBTAINED |
| FR7724421 | 1977-08-08 |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US05930226 Continuation | 1978-08-02 |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US06/493,715 Division US4537790A (en) | 1977-08-08 | 1983-05-11 | Process for growing cell cultures of diploid cells on cell supports |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US4504547A true US4504547A (en) | 1985-03-12 |
Family
ID=9194362
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US06/093,050 Expired - Lifetime US4504547A (en) | 1977-08-08 | 1979-11-13 | Process for producing supports for cell cultures and supports so obtained |
| US06/493,715 Expired - Fee Related US4537790A (en) | 1977-08-08 | 1983-05-11 | Process for growing cell cultures of diploid cells on cell supports |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US06/493,715 Expired - Fee Related US4537790A (en) | 1977-08-08 | 1983-05-11 | Process for growing cell cultures of diploid cells on cell supports |
Country Status (8)
| Country | Link |
|---|---|
| US (2) | US4504547A (en) |
| BE (1) | BE869459A (en) |
| CA (1) | CA1124588A (en) |
| CH (1) | CH634100A5 (en) |
| DE (1) | DE2834067A1 (en) |
| FR (1) | FR2400063A1 (en) |
| GB (1) | GB2001871B (en) |
| NL (1) | NL7808266A (en) |
Cited By (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4696901A (en) * | 1982-12-23 | 1987-09-29 | Shell Internationale Research Maatschappij B.V. | Immobilization of microorganisms on a plastic carrier |
| US4910142A (en) * | 1984-01-28 | 1990-03-20 | Pfeifer & Langen | Cell culture microcarrier, method for preparing same and use thereof for cultivating anchorage-dependent cells |
| US5015584A (en) * | 1987-10-14 | 1991-05-14 | Board Of Regents, The University Of Texas System | Epidermal graft system |
| US5073495A (en) * | 1988-10-21 | 1991-12-17 | Large Scale Biology Corporation | Apparatus for isolating cloned vectors and cells having a recovery device |
| US5092466A (en) * | 1988-10-21 | 1992-03-03 | Large Scale Biology Corportion | Apparatus and method for storing samples of protein gene products, insert-containing cells or dna |
| US5098784A (en) * | 1990-01-17 | 1992-03-24 | Shinwa Chemical Industries Ltd | Supports for gas chromatography comprising aggregates of finely divided carbon particles and process for preparing the same |
| US20040072363A1 (en) * | 1998-08-21 | 2004-04-15 | Schembri Carol T. | Apparatus and method for mixing a film of fluid |
| JP2019115323A (en) * | 2017-12-27 | 2019-07-18 | 積水化学工業株式会社 | Stem cell culture container |
| CN113166719A (en) * | 2019-05-15 | 2021-07-23 | 积水化学工业株式会社 | Scaffold material for cell culture and vessel for cell culture |
| CN113366100A (en) * | 2019-03-29 | 2021-09-07 | 积水化学工业株式会社 | Scaffold material for cell culture, vessel for cell culture, carrier for cell culture, fiber for cell culture, and method for culturing cells |
| CN113383066A (en) * | 2019-03-29 | 2021-09-10 | 积水化学工业株式会社 | Scaffold material for cell culture, vessel for cell culture, fiber for cell culture, and method for culturing cells |
Families Citing this family (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR2522014A1 (en) * | 1982-02-25 | 1983-08-26 | Pasteur Institut | Silicone elastomer support for cellular culture - in film or bead form |
| DE3341771A1 (en) * | 1983-11-18 | 1985-05-30 | KMS Fusion, Inc., Ann Arbor, Mich. | Microcarriers for use as growth sites for anchorage-dependent cells, and process for their preparation |
| GB8729889D0 (en) * | 1987-12-22 | 1988-02-03 | Unilever Plc | Bio-catalysts support systems |
| JP2950519B2 (en) * | 1991-02-28 | 1999-09-20 | アンティキャンサー インコーポレイテッド | Native tissue culture method for skin |
| EP0531562A1 (en) * | 1991-09-11 | 1993-03-17 | Doerr, Hans-Wilhelm, Prof. Dr. med. | Culturing of mammalian cells |
| EP4286508A3 (en) | 2017-12-27 | 2024-02-28 | Sekisui Chemical Co., Ltd. | Scaffolding material for stem cell cultures and stem cell culture method using same |
| ES2996885T3 (en) | 2017-12-27 | 2025-02-13 | Sekisui Chemical Co Ltd | Scaffolding material for stem cell cultures and stem cell culture method using same |
| US12152228B2 (en) | 2017-12-27 | 2024-11-26 | Sekisui Chemical Co., Ltd. | Scaffolding material for cell cultures and cell culture method using same |
| JP7480037B2 (en) * | 2019-03-29 | 2024-05-09 | 積水化学工業株式会社 | Scaffold material for cell culture and cell culture vessel |
| JP7716196B2 (en) * | 2019-05-28 | 2025-07-31 | 積水化学工業株式会社 | Scaffold material for cell culture, resin film formed from scaffold material for cell culture, and cell culture vessel |
| JP7610368B2 (en) * | 2019-08-02 | 2025-01-08 | 積水化学工業株式会社 | Scaffolding material for cell culture and cell culture vessel |
Citations (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3097070A (en) * | 1958-11-06 | 1963-07-09 | Falcon Plastic Products | Plastic ware for scientific use |
| US3102082A (en) * | 1961-07-17 | 1963-08-27 | John H Brewer | Apparatus and method for culturing micro-organisms |
| US3282722A (en) * | 1963-07-22 | 1966-11-01 | Du Pont | Method of flame treating polyvinyl butyral and the product thereof |
| US3437553A (en) * | 1966-06-16 | 1969-04-08 | Du Pont | Glass laminate |
| US3532605A (en) * | 1967-03-02 | 1970-10-06 | Jose Vinas Riera | Container for biological cultures |
| US3746196A (en) * | 1971-01-29 | 1973-07-17 | Green Cross Corp | Coated plastic container for liquid medicine |
| US3767790A (en) * | 1972-02-11 | 1973-10-23 | Nat Patent Dev Corp | Microorganisms |
| US3860490A (en) * | 1972-02-11 | 1975-01-14 | Nat Patent Dev Corp | Process of subjecting a microorganism susceptible material to a microorganism |
| US3910819A (en) * | 1974-02-19 | 1975-10-07 | California Inst Of Techn | Treatment of surfaces to stimulate biological cell adhesion and growth |
| US4036693A (en) * | 1976-02-02 | 1977-07-19 | Massachusetts Institute Of Technology | Treatment of cell culture microcarries |
-
1977
- 1977-08-08 FR FR7724421A patent/FR2400063A1/en active Granted
-
1978
- 1978-08-02 BE BE78189656A patent/BE869459A/en not_active IP Right Cessation
- 1978-08-03 DE DE19782834067 patent/DE2834067A1/en not_active Withdrawn
- 1978-08-04 CA CA308,773A patent/CA1124588A/en not_active Expired
- 1978-08-04 GB GB7832276A patent/GB2001871B/en not_active Expired
- 1978-08-07 CH CH838278A patent/CH634100A5/en not_active IP Right Cessation
- 1978-08-07 NL NL787808266A patent/NL7808266A/en not_active Application Discontinuation
-
1979
- 1979-11-13 US US06/093,050 patent/US4504547A/en not_active Expired - Lifetime
-
1983
- 1983-05-11 US US06/493,715 patent/US4537790A/en not_active Expired - Fee Related
Patent Citations (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3097070A (en) * | 1958-11-06 | 1963-07-09 | Falcon Plastic Products | Plastic ware for scientific use |
| US3102082A (en) * | 1961-07-17 | 1963-08-27 | John H Brewer | Apparatus and method for culturing micro-organisms |
| US3282722A (en) * | 1963-07-22 | 1966-11-01 | Du Pont | Method of flame treating polyvinyl butyral and the product thereof |
| US3437553A (en) * | 1966-06-16 | 1969-04-08 | Du Pont | Glass laminate |
| US3532605A (en) * | 1967-03-02 | 1970-10-06 | Jose Vinas Riera | Container for biological cultures |
| US3746196A (en) * | 1971-01-29 | 1973-07-17 | Green Cross Corp | Coated plastic container for liquid medicine |
| US3767790A (en) * | 1972-02-11 | 1973-10-23 | Nat Patent Dev Corp | Microorganisms |
| US3860490A (en) * | 1972-02-11 | 1975-01-14 | Nat Patent Dev Corp | Process of subjecting a microorganism susceptible material to a microorganism |
| US3910819A (en) * | 1974-02-19 | 1975-10-07 | California Inst Of Techn | Treatment of surfaces to stimulate biological cell adhesion and growth |
| US4036693A (en) * | 1976-02-02 | 1977-07-19 | Massachusetts Institute Of Technology | Treatment of cell culture microcarries |
Cited By (19)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4696901A (en) * | 1982-12-23 | 1987-09-29 | Shell Internationale Research Maatschappij B.V. | Immobilization of microorganisms on a plastic carrier |
| US4910142A (en) * | 1984-01-28 | 1990-03-20 | Pfeifer & Langen | Cell culture microcarrier, method for preparing same and use thereof for cultivating anchorage-dependent cells |
| US5015584A (en) * | 1987-10-14 | 1991-05-14 | Board Of Regents, The University Of Texas System | Epidermal graft system |
| US5334527A (en) * | 1987-10-14 | 1994-08-02 | Board Of Regents, The University Of Texas System | Epidermal graft system |
| US5073495A (en) * | 1988-10-21 | 1991-12-17 | Large Scale Biology Corporation | Apparatus for isolating cloned vectors and cells having a recovery device |
| US5092466A (en) * | 1988-10-21 | 1992-03-03 | Large Scale Biology Corportion | Apparatus and method for storing samples of protein gene products, insert-containing cells or dna |
| US5098784A (en) * | 1990-01-17 | 1992-03-24 | Shinwa Chemical Industries Ltd | Supports for gas chromatography comprising aggregates of finely divided carbon particles and process for preparing the same |
| US7371349B2 (en) * | 1998-08-21 | 2008-05-13 | Agilent Technologies, Inc. | Apparatus and method for mixing a film of fluid |
| US20040072363A1 (en) * | 1998-08-21 | 2004-04-15 | Schembri Carol T. | Apparatus and method for mixing a film of fluid |
| US20080279037A1 (en) * | 1998-08-21 | 2008-11-13 | Schembri Carol T | Apparatus and method for mixing a film of fluid |
| US20100248982A1 (en) * | 1998-08-21 | 2010-09-30 | Agilent Technologies, Inc. | Apparatus and Method for Mixing a Film of Fluid |
| US8012765B2 (en) | 1998-08-21 | 2011-09-06 | Agilent Technologies, Inc. | Method for mixing a film of fluid |
| JP2019115323A (en) * | 2017-12-27 | 2019-07-18 | 積水化学工業株式会社 | Stem cell culture container |
| JP6996972B2 (en) | 2017-12-27 | 2022-01-17 | 積水化学工業株式会社 | Stem cell culture container |
| CN113366100A (en) * | 2019-03-29 | 2021-09-07 | 积水化学工业株式会社 | Scaffold material for cell culture, vessel for cell culture, carrier for cell culture, fiber for cell culture, and method for culturing cells |
| CN113383066A (en) * | 2019-03-29 | 2021-09-10 | 积水化学工业株式会社 | Scaffold material for cell culture, vessel for cell culture, fiber for cell culture, and method for culturing cells |
| CN113166719A (en) * | 2019-05-15 | 2021-07-23 | 积水化学工业株式会社 | Scaffold material for cell culture and vessel for cell culture |
| CN115926568A (en) * | 2019-05-15 | 2023-04-07 | 积水化学工业株式会社 | Resin film formed from scaffold material for cell culture, carrier for cell culture, and vessel for cell culture |
| CN115926568B (en) * | 2019-05-15 | 2025-05-09 | 积水化学工业株式会社 | Resin film formed of cell culture scaffold material, cell culture carrier and cell culture container |
Also Published As
| Publication number | Publication date |
|---|---|
| GB2001871A (en) | 1979-02-14 |
| FR2400063A1 (en) | 1979-03-09 |
| US4537790A (en) | 1985-08-27 |
| NL7808266A (en) | 1979-02-12 |
| CH634100A5 (en) | 1983-01-14 |
| DE2834067A1 (en) | 1979-03-01 |
| FR2400063B1 (en) | 1980-01-18 |
| BE869459A (en) | 1979-02-02 |
| GB2001871B (en) | 1982-04-28 |
| CA1124588A (en) | 1982-06-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US4504547A (en) | Process for producing supports for cell cultures and supports so obtained | |
| DE3033885C2 (en) | ||
| EP0058689B1 (en) | Cell culture medium, improved process of growing animal cells, method of producing microcarriers and microcarriers | |
| US4511653A (en) | Process for the industrial preparation of collagenous materials from human placental tissues, human collagenous materials obtained and their application as biomaterials | |
| US4927761A (en) | Immobilization of cells with alginate and agarose | |
| US5489261A (en) | Hydrogels capable of supporting cell growth | |
| WO1989010397A1 (en) | Process for culturing animal cells on a large scale and process for preparing supporting substrate for that process | |
| US4824946A (en) | Cell culture microcarrier, method for preparing same and use thereof for cultivating anchorage-dependent cells | |
| JPH0923876A (en) | Method for manufacturing cell culture support | |
| EP0420171A1 (en) | Carrier for culturing animal cells and a process for preparing it | |
| JP2755880B2 (en) | Culture device and method for producing the same | |
| JP3311074B2 (en) | Cell culture substrate | |
| JPH02234670A (en) | Substrate for cell culture | |
| JPH06209759A (en) | Method for surface sticking of dialdehyde starch flour and its product | |
| JPS6152280A (en) | Cell cultivation bed | |
| JP2606213B2 (en) | Complexes of Modified Microbial Cellulose with Gels and Animal Cell Membrane | |
| JPS6251982A (en) | Substrate for cultivating cell | |
| JPS63501474A (en) | A method for producing a microcarrier for culturing cells and a microcarrier produced by the method | |
| JPS6371173A (en) | Micro-carrier for cell culture | |
| JP2001128659A (en) | Granular microcarriers for cell culture | |
| JPH06133766A (en) | Carrier for cell culture and its production | |
| JPS6149957B2 (en) | ||
| TWI358304B (en) | Process of forming material for supporting cell cu | |
| CN114258909A (en) | Cell fixing agent and cell fixing method | |
| JPH04360682A (en) | Carrier for cell culture |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: INSTITUT PASTEUR 28, RUE DU DOCTEUR ROUX 75724 PAR Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:HORODNICEANU, FLORIAN;LE FUR, RAPHAEL;REEL/FRAME:004304/0219 Effective date: 19780724 |
|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
| CC | Certificate of correction |