US4171416A - α-Cyanoacrylate-type adhesive composition - Google Patents
α-Cyanoacrylate-type adhesive composition Download PDFInfo
- Publication number
- US4171416A US4171416A US05/897,882 US89788278A US4171416A US 4171416 A US4171416 A US 4171416A US 89788278 A US89788278 A US 89788278A US 4171416 A US4171416 A US 4171416A
- Authority
- US
- United States
- Prior art keywords
- group
- composition
- crown
- cyanoacrylate
- compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000853 adhesive Substances 0.000 title claims abstract description 85
- 230000001070 adhesive effect Effects 0.000 title claims abstract description 85
- 239000000203 mixture Substances 0.000 title claims abstract description 49
- IJVRPNIWWODHHA-UHFFFAOYSA-N 2-cyanoprop-2-enoic acid Chemical compound OC(=O)C(=C)C#N IJVRPNIWWODHHA-UHFFFAOYSA-N 0.000 claims abstract description 27
- 150000001875 compounds Chemical class 0.000 claims abstract description 17
- 229920000570 polyether Polymers 0.000 claims abstract description 9
- 239000004721 Polyphenylene oxide Substances 0.000 claims abstract description 7
- -1 3-chloropropyl group Chemical group 0.000 claims description 40
- 239000002633 crown compound Substances 0.000 claims description 24
- 238000010539 anionic addition polymerization reaction Methods 0.000 claims description 16
- 239000003112 inhibitor Substances 0.000 claims description 14
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 10
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 8
- 239000002562 thickening agent Substances 0.000 claims description 6
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical group CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 claims description 6
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 claims description 5
- 125000004430 oxygen atom Chemical group O* 0.000 claims description 5
- 238000010526 radical polymerization reaction Methods 0.000 claims description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 4
- 125000000217 alkyl group Chemical group 0.000 claims description 4
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 claims description 4
- 125000000816 ethylene group Chemical group [H]C([H])([*:1])C([H])([H])[*:2] 0.000 claims description 4
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 claims description 4
- 239000002304 perfume Substances 0.000 claims description 4
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 4
- 239000004014 plasticizer Substances 0.000 claims description 4
- 239000012760 heat stabilizer Substances 0.000 claims description 3
- 125000001340 2-chloroethyl group Chemical group [H]C([H])(Cl)C([H])([H])* 0.000 claims description 2
- 125000004200 2-methoxyethyl group Chemical group [H]C([H])([H])OC([H])([H])C([H])([H])* 0.000 claims description 2
- 125000001494 2-propynyl group Chemical group [H]C#CC([H])([H])* 0.000 claims description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 2
- 125000003342 alkenyl group Chemical group 0.000 claims description 2
- 125000003545 alkoxy group Chemical group 0.000 claims description 2
- 125000000304 alkynyl group Chemical group 0.000 claims description 2
- 125000003710 aryl alkyl group Chemical group 0.000 claims description 2
- 125000003118 aryl group Chemical group 0.000 claims description 2
- 125000005605 benzo group Chemical group 0.000 claims description 2
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 claims description 2
- 229910052796 boron Inorganic materials 0.000 claims description 2
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 claims description 2
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 claims description 2
- 125000005843 halogen group Chemical group 0.000 claims description 2
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 claims description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 2
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 claims description 2
- 125000005394 methallyl group Chemical group 0.000 claims description 2
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 claims description 2
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 claims description 2
- 229910052757 nitrogen Inorganic materials 0.000 claims description 2
- 125000004817 pentamethylene group Chemical group [H]C([H])([*:2])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[*:1] 0.000 claims description 2
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 claims description 2
- 229910052698 phosphorus Inorganic materials 0.000 claims description 2
- 239000011574 phosphorus Substances 0.000 claims description 2
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 claims description 2
- 125000004205 trifluoroethyl group Chemical group [H]C([H])(*)C(F)(F)F 0.000 claims description 2
- 239000005864 Sulphur Substances 0.000 claims 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 claims 1
- 239000003086 colorant Substances 0.000 claims 1
- VFTFKUDGYRBSAL-UHFFFAOYSA-N 15-crown-5 Chemical compound C1COCCOCCOCCOCCO1 VFTFKUDGYRBSAL-UHFFFAOYSA-N 0.000 abstract description 4
- XEZNGIUYQVAUSS-UHFFFAOYSA-N 18-crown-6 Chemical compound C1COCCOCCOCCOCCOCCO1 XEZNGIUYQVAUSS-UHFFFAOYSA-N 0.000 abstract description 4
- 239000000463 material Substances 0.000 description 14
- 238000012360 testing method Methods 0.000 description 14
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 12
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 12
- 150000003983 crown ethers Chemical class 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 10
- 239000002023 wood Substances 0.000 description 10
- 238000000034 method Methods 0.000 description 9
- 239000004926 polymethyl methacrylate Substances 0.000 description 9
- 240000007182 Ochroma pyramidale Species 0.000 description 7
- 230000002378 acidificating effect Effects 0.000 description 7
- 239000000178 monomer Substances 0.000 description 7
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 6
- 238000007906 compression Methods 0.000 description 5
- 230000006835 compression Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000004800 polyvinyl chloride Substances 0.000 description 5
- 229920000915 polyvinyl chloride Polymers 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 229910001868 water Inorganic materials 0.000 description 5
- 239000004830 Super Glue Substances 0.000 description 4
- 230000002411 adverse Effects 0.000 description 4
- 150000001450 anions Chemical class 0.000 description 4
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 3
- JFDZBHWFFUWGJE-UHFFFAOYSA-N benzonitrile Chemical compound N#CC1=CC=CC=C1 JFDZBHWFFUWGJE-UHFFFAOYSA-N 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 150000001768 cations Chemical class 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- BBGKDYHZQOSNMU-UHFFFAOYSA-N dicyclohexano-18-crown-6 Chemical compound O1CCOCCOC2CCCCC2OCCOCCOC2CCCCC21 BBGKDYHZQOSNMU-UHFFFAOYSA-N 0.000 description 3
- 239000000975 dye Substances 0.000 description 3
- FGBJXOREULPLGL-UHFFFAOYSA-N ethyl cyanoacrylate Chemical compound CCOC(=O)C(=C)C#N FGBJXOREULPLGL-UHFFFAOYSA-N 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000000049 pigment Substances 0.000 description 3
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 3
- 238000012552 review Methods 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- 125000000129 anionic group Chemical group 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- XXJWXESWEXIICW-UHFFFAOYSA-N diethylene glycol monoethyl ether Chemical compound CCOCCOCCO XXJWXESWEXIICW-UHFFFAOYSA-N 0.000 description 2
- 229940075557 diethylene glycol monoethyl ether Drugs 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 150000001455 metallic ions Chemical class 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- NROKBHXJSPEDAR-UHFFFAOYSA-M potassium fluoride Chemical compound [F-].[K+] NROKBHXJSPEDAR-UHFFFAOYSA-M 0.000 description 2
- 239000005060 rubber Substances 0.000 description 2
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 2
- FSSPGSAQUIYDCN-UHFFFAOYSA-N 1,3-Propane sultone Chemical compound O=S1(=O)CCCO1 FSSPGSAQUIYDCN-UHFFFAOYSA-N 0.000 description 1
- 235000018185 Betula X alpestris Nutrition 0.000 description 1
- 235000018212 Betula X uliginosa Nutrition 0.000 description 1
- 240000005109 Cryptomeria japonica Species 0.000 description 1
- 241000218691 Cupressaceae Species 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 244000043261 Hevea brasiliensis Species 0.000 description 1
- 241000218657 Picea Species 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 244000086363 Pterocarpus indicus Species 0.000 description 1
- 235000009984 Pterocarpus indicus Nutrition 0.000 description 1
- 239000004823 Reactive adhesive Substances 0.000 description 1
- 101150108015 STR6 gene Proteins 0.000 description 1
- 101100386054 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) CYS3 gene Proteins 0.000 description 1
- 229910021607 Silver chloride Inorganic materials 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 125000000218 acetic acid group Chemical group C(C)(=O)* 0.000 description 1
- 229920000800 acrylic rubber Polymers 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- SOIFLUNRINLCBN-UHFFFAOYSA-N ammonium thiocyanate Chemical compound [NH4+].[S-]C#N SOIFLUNRINLCBN-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000000536 complexating effect Effects 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 125000000853 cresyl group Chemical group C1(=CC=C(C=C1)C)* 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- YSSSPARMOAYJTE-UHFFFAOYSA-N dibenzo-18-crown-6 Chemical compound O1CCOCCOC2=CC=CC=C2OCCOCCOC2=CC=CC=C21 YSSSPARMOAYJTE-UHFFFAOYSA-N 0.000 description 1
- UNTITLLXXOKDTB-UHFFFAOYSA-N dibenzo-24-crown-8 Chemical compound O1CCOCCOCCOC2=CC=CC=C2OCCOCCOCCOC2=CC=CC=C21 UNTITLLXXOKDTB-UHFFFAOYSA-N 0.000 description 1
- QMLGNDFKJAFKGZ-UHFFFAOYSA-N dicyclohexano-24-crown-8 Chemical compound O1CCOCCOCCOC2CCCCC2OCCOCCOCCOC2CCCCC21 QMLGNDFKJAFKGZ-UHFFFAOYSA-N 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 239000010985 leather Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229920003052 natural elastomer Polymers 0.000 description 1
- 229920001194 natural rubber Polymers 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- LYGJENNIWJXYER-UHFFFAOYSA-N nitromethane Chemical compound C[N+]([O-])=O LYGJENNIWJXYER-UHFFFAOYSA-N 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- NWVVVBRKAWDGAB-UHFFFAOYSA-N p-methoxyphenol Chemical compound COC1=CC=C(O)C=C1 NWVVVBRKAWDGAB-UHFFFAOYSA-N 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- NNFCIKHAZHQZJG-UHFFFAOYSA-N potassium cyanide Chemical compound [K+].N#[C-] NNFCIKHAZHQZJG-UHFFFAOYSA-N 0.000 description 1
- 239000011698 potassium fluoride Substances 0.000 description 1
- 235000003270 potassium fluoride Nutrition 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 1
- 229910001961 silver nitrate Inorganic materials 0.000 description 1
- 230000003381 solubilizing effect Effects 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 101150035983 str1 gene Proteins 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 150000008053 sultones Chemical class 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J4/00—Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G75/00—Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J171/00—Adhesives based on polyethers obtained by reactions forming an ether link in the main chain; Adhesives based on derivatives of such polymers
- C09J171/02—Polyalkylene oxides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2666/00—Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
- C08L2666/02—Organic macromolecular compounds, natural resins, waxes or and bituminous materials
- C08L2666/04—Macromolecular compounds according to groups C08L7/00 - C08L49/00, or C08L55/00 - C08L57/00; Derivatives thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31678—Of metal
- Y10T428/31692—Next to addition polymer from unsaturated monomers
- Y10T428/31699—Ester, halide or nitrile of addition polymer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31826—Of natural rubber
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31855—Of addition polymer from unsaturated monomers
- Y10T428/3188—Next to cellulosic
- Y10T428/31895—Paper or wood
- Y10T428/31906—Ester, halide or nitrile of addition polymer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31855—Of addition polymer from unsaturated monomers
- Y10T428/31909—Next to second addition polymer from unsaturated monomers
- Y10T428/31928—Ester, halide or nitrile of addition polymer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31855—Of addition polymer from unsaturated monomers
- Y10T428/31935—Ester, halide or nitrile of addition polymer
Definitions
- This invention relates to an ⁇ -cyanoacrylate-type adhesive composition, and more particularly to an adhesive composition having a fast setting time.
- ⁇ -Cyanoacrylate-type adhesives because of the inherent anion-polymerizability of the ⁇ -cyanoacrylate monomer as a main component, begin to polymerize in the presence of a weak anion such as in the presence of slight moisture adhering to the surface of the adherend, and can firmly bond almost all materials except certain inert materials such as polyethylene and tetrafluoroethylene resins (e.g., Teflon) within several seconds to several minutes.
- Teflon tetrafluoroethylene resins
- the curing of ⁇ -cyanoacrylate-type adhesives is due to the anionic polymerization of the ⁇ -cyanoacrylate monomer.
- an adhesive is used to bond materials whose bonding surfaces are acidic, such as wood or surfaces which tend to permit the formation of an acidic oxide coating
- the anionic polymerization of the ⁇ -cyanoacrylate is inhibited, and the setting time of the adhesive is slow.
- the adhesion strength is sometimes not entirely satisfactory.
- wooden materials in general use have a moisture content of about 10% by weight under normal conditions (i.e., at 23° C. and a relative humidity of 55%).
- a chromate-treated surface of a metal is usually acidic, and a surface obtained by neutralizing the acidic surface using a Unichrome treatment has lower weatherability than the chromate-treated surface. Accordingly, where parts with weatherability are required, such preferably have an acidic chromate-treated surface. In bonding such a surface, ⁇ -cyanoacrylate-type adhesives have a slow setting time, and the adhesion strength of the bond is low.
- ⁇ -Cyanoacrylate-type adhesives are chemically reactive adhesives which cure by anionic polymerization. These adhesives usually have a low viscosity, and therefore, when they are applied to the adherend, an initial tackiness, as in the case of rubber-type adhesives, is not obtained with ⁇ -cyanoacrylate-type adhesives. The adherend must be fixed for several minutes until anionic polymerization begins.
- ⁇ -cyanoacrylate adhesives are "instantaneous" adhesives, it is necessary for them to cure on many materials with as fast a setting time as possible. The rapidity of the setting time will broaden the range of application of ⁇ -cyanoacrylate-type adhesives.
- an anion polymerization inhibitor such as sulfur dioxide, propane sultone or p-toluenesulfonic acid is incorporated in ⁇ -cyanoacrylate-type adhesives to inhibit the anionic polymerization of the monomer due to the presence of water, etc. in the container during storage.
- the addition of the inhibitor serves to inhibit the anionic polymerization of the monomer during storage, but retards the setting time of the adhesive.
- an adhesive composition comprising an ⁇ -cyanoacrylate and about 0.1 ppm or more of at least one macrocyclic polyether compound or an analogue thereof.
- the ⁇ -cyanoacrylate-type adhesive of this invention is an adhesive containing as a main component an ⁇ -cyanoacrylate of the formula (I) ##STR1## wherein R represents a straight chain or branched chain alkyl group having 1 to 12 carbon atom (which may be substituted with a substituent such as a halogen atom or an alkoxy group) a straight chain or branched chain alkenyl group having 2 to 12 carbon atoms, a straight chain or branched chain alkynyl group having 2 to 12 carbon atoms, a cycloalkyl group, an aralkyl group or an aryl group.
- R represents a straight chain or branched chain alkyl group having 1 to 12 carbon atom (which may be substituted with a substituent such as a halogen atom or an alkoxy group) a straight chain or branched chain alkenyl group having 2 to 12 carbon atoms, a straight chain or branched chain alkynyl group
- the groups for R are a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a pentyl group, a hexyl group, an allyl group, a methallyl group, a crotyl group, a propargyl group, a cyclohexyl group, a benzyl group, a phenyl group, a cresyl group, a 2-chloroethyl group, a 3-chloropropyl group, a 2-chlorobutyl group, a trifluoroethyl group, a 2-methoxyethyl group, a 3-methoxybutyl group and a 2-ethoxyethyl group.
- the ⁇ -cyanoacrylate monomer present can be a single ⁇ -cyanoacrylate monomer or a mixture of two or more ⁇ -cyanoacrylate monomers can be employed. Generally, the ⁇ -cyanoacrylate monomer alone has insufficient properties as an adhesive, and other components such as the following may be added.
- a suitable amount of the ⁇ -cyanoacrylate monomer present in the adhesive composition is about 80 to 99.9% by weight preferably 90 to 99.9% by weight, based on the total weight of the adhesive composition.
- an anionic polymerization inhibitor is added to the ⁇ -cyanoacrylate-type adhesive e.g., in an amount of about 1 to 1000 ppm based on the total weight of the adhesive composition, to increase the stability of the adhesive during storage, and examples of known inhibitors are sulfur dioxide, aromatic sulfonic acids, aliphatic sulfonic acids, sultones, and carbon dioxide.
- radical polymerization inhibitors include, for example, hydroquinone and hydroquinone monomethyl ether.
- a radical polymerization inhibitor is added e.g., in amount of about 1 to 5000 ppm based on the total weight of the adhesive composition, for the purpose of capturing radicals which are formed by light during storage.
- a thickener is added to increase the viscosity of the ⁇ -cyanoacrylate-type adhesive.
- the ⁇ -cyanoacrylate monomer generally has a low viscosity of about several centipoises, and therefore, the adhesive penetrates into porous materials such as wood and leather or adherends having a rough surface Thus, good adhesion strengths are difficult to obtain.
- Various polymers can be used as thickeners, and examples include poly(methyl methacrylate), a methacrylate-type copolymers, acrylic rubbers, cellulose derivatives, polyvinyl acetate and poly( ⁇ -cyanoacrylate).
- a suitable amount of thickener is generally about 20% by weight or less based on the total weight of the adhesive composition.
- plasticizers, perfumes, dyes, pigments, etc. may be added depending on use purposes in amounts which do not adversely affect the stability of the ⁇ -cyanoacrylate monomer.
- a suitable amount of the plasticizer is about 0.1 to 50% by weight, of the heat stabilizer is about 0.01 to about 5% by weight and of each of the perfume, the dyes and the pigments is about 0.01 to 5% by weight, based on the total weight of the adhesive composition.
- the crown compound used in this invention is a generic term for macrocyclic polyether compounds. Since the formation of these compounds was confirmed in 1967 by C. J. Pedersen of E. I. du Pont de Nemours & Co., U.S.A., many compounds falling within this category have been discovered.
- the name "crown ethers" comes from their structural form. The most typical cyclic hexamer of ethylene oxide is called 18-crown-6.
- the numeral 18 denotes the number of atoms in the ring, and the numeral 6 denotes the number of oxygen atoms in the ring. ##STR2##
- crown ethers have a unique property of solubilizing inorganic salts (such as silver nitrate, silver chloride, etc.), alkali metal salts (such as potassium cyanide, potassium fluoride, etc.), and ammonium salts (such as ammonium thiocyanate, ammonium chloride, etc.) in aprotic or weakly polar solvents such as organic solvents (e.g., nitromethane, dimethyl sulfoxide, dimethylformamide, benzonitrile, etc.).
- inorganic salts such as silver nitrate, silver chloride, etc.
- alkali metal salts such as potassium cyanide, potassium fluoride, etc.
- ammonium salts such as ammonium thiocyanate, ammonium chloride, etc.
- organic solvents e.g., nitromethane, dimethyl sulfoxide, dimethylformamide, benzonitrile, etc.
- crown ether compounds and their structures are shown in James J. Cristensen, Delbert J. Eatough and Reed M. Izatt, Chemical Reviews, 1974, Vol. 74, No. 3, pages 351-384. All of these compounds can be used in this invention. Good results can be obtained also with other crown compounds having a macrocyclic polyether structure and capable of selectively complexing with a metallic ion or an organic ion.
- Crown ethers having nitrogen, sulfur, phosphorus, boron, etc. wholly or partly replacing the oxygen atoms, such as dithia-15-crown-5 ##STR3## can also be used in the present invention.
- the second numeral designates the total number of oxygen atoms and analogue atoms present.
- Crown compounds can be produced using methods described in, for example, C. J. Pederson J. Am. Chem. Soc., 89, 7107 (1967), J. J. Christensen et al, Chem. Review, 74 351 (1974), G. W. Gokel et al, J. Org. Chem, 39, 2445 (1974) and C. J. Pederson J. Org. Chem, 36, 254 (1971).
- crown compounds can be synthesized by condensing a compound having a structure of the formula HO--R'--OH, such as ethylene glycol, with a compound having the structure X--R"--X in which X is Cl or a p-toluene sulfonate group in the presence of about 2 to 3 mol of a base (such as sodium hydroxide, potassium hydroxide, etc.) per mole of the compound of the formula HO--R'--OH.
- a base such as sodium hydroxide, potassium hydroxide, etc.
- R' and R" represent --CH 2 ) n , --CH 2 CH 2 O) m CH 2 CH 2 --, --CH 2 CH 2 --S--CH 2 CH 2 --, ##STR6## and n is an integer of 1 to 4 and m is an integer of 1 to 10.
- the amount of the crown compound present in the ⁇ -cyanoacrylate-type adhesive is not particularly restricted as long as the storage stability of the adhesive composition is not adversely affected and as long as acceleration of the setting time of the adhesive composition is achieved.
- a suitable amount ranges from about 0.1 ppm to about 10% by weight, preferably from about 10 ppm to about 5% by weight, based on the total weight of the ⁇ -cyanoacrylate adhesive composition. Although such will vary to some extent, when the amount of the crown compound is less than about 0.1 ppm, the effect of accelerating the setting time of the adhesive is small.
- the amount of the crown compound exceeds about 10% by weight, the ⁇ -cyanoacrylate-type adhesive frequently gels during storage, and the storage stability of the ⁇ -cyanoacrylate-type adhesive composition is reduced.
- An extremely fast setting time and good storage stability are well balanced when the amount of the crown compound ranges from about 0.1 ppm to about 10% by weight.
- Suitable adherends which can be bonded using the ⁇ -cyanoacrylate adhesive composition of this invention include not only wooden materials and chromate-treated metallic materials described hereinabove, but also ordinary metallic materials, porous materials such as ceramics, plastics, rubbers, papers, etc.
- the ⁇ -cyanoacrylate adhesive composition of this invention can be easily used at normal temperatures and humidities e.g., about 0° to 35° C. and at about 30 to 100% R.H.
- the setting time was measured in accordance with the method for testing setting time in "Testing Method for ⁇ -Cyanoacrylate-Type Adhesives" in Standards of Japanese Adhesive Industry Association, JAI-4.
- the test piece used had a size of 5 mm ⁇ 20 mm (adhering surface) ⁇ 35 mm. Where the test piece was wood, the size was 12.7 mm ⁇ 12.7 mm ⁇ 38 mm, and the setting time of the adhesive at the grain surface in the horizontal direction of the wood was measured. The moisture content of the wood was measured using a Kett wood moisture meter.
- Compression shear strength was measured in accordance with JIS K-6852 relating to "Testing Method for Compression Shear Strength of Adhesives".
- the test piece had a size of 12.7 mm ⁇ 12.7 mm ⁇ 38 mm. Wooden test pieces are bonded to each other at the grain surfaces with a bonded area of 1.61 cm 2 . The rate of compression was 20 mm/min.
- Tensile strength was measured in accordance with the testing method for tensile strength in JAI-4 as in the case of measurement of setting time in (1) above.
- the test piece had a size of 5 mm ⁇ 10 mm (bonded surface) ⁇ 35 mm, and the rate of pulling was 20 mm/min.
- Storage stability was measured in accordance with the testing method for storage stability in JAI-4.
- the test piece was allowed to stand for 5 days at a constant temperature zone of 70° ⁇ 2° C., and then the change in viscosity and setting time of the adhesive were evaluated in comparison with a control.
- ⁇ -cyanoacrylate-type adhesive comprising 100 g of ethyl ⁇ -cyanoacrylate monomer, 50 ppm of sulfur dioxide as an anionic polymerization inhibitor and 200 ppm of hydroquinone as a radical polymerization inhibitor was dissolved 500 ppm of dicyclohexyl-18-crown-6 (CROWN ETHER C-18, a trademark for a product of Nippon Soda Co., Ltd.).
- the resulting adhesive composition was applied to an adherend of lauan timber (with a moisture content of 9.8%) in an atmosphere at 23° C. and an RH of 55%, and the setting time was measured.
- the adhesive composition set completely in 30 seconds. After aging for 24 hours, the compression shear strength was 120 kg/cm 2 , and the woody tissue of the lauan timber sample broke.
- ⁇ -cyanoacrylate-type adhesive consisting of 100 g of ethyl ⁇ -cyanoacrylate monomer, 50 ppm of sulfur dioxide and 200 ppm of hydroquinone was dissolved 500 ppm of each of the crown compounds shown in Table 1 below.
- the setting time of each of the adhesive compositions was measured in an atmosphere at 20° C. and RH of 35% using balsa wood (with a moisture content of 6.5%) as an adherend. The results are also shown in Table 1 below.
- ⁇ -cyanoacrylate-type adhesive having a viscosity at 20° C. of 200 centipoises obtained by adding 10 ppm of p-toluenesulfonic acid, 100 ppm of hydroquinone and 4% of poly(methyl methacrylate) to 100 g of ethyl ⁇ -cyanoacrylate monomer was dissolved 15-crown-5 (CROWN ETHER 0-5, a trademark for a product of Nippon Soda Co., Ltd.) in the amounts indicated in Table 2 below.
- the setting time and tensile strength of the adhesive compositions were measured in an atmosphere at 23° C. and RH 55% using a rigid polyvinyl chloride board (PVC), balsa wood (with a water content of 7.5%) and Japanese cypress (with a water content of 7.8%) as adherends. Furthermore, the storage stability of the adhesive compositions was tested at 70° ⁇ 2° C. The results obtained are shwon in Table 2 below.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Adhesives Or Adhesive Processes (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
A fast-setting α-cyanoacrylate-type adhesive composition having good storage stability comprising an α-cyanoacrylate and about 0.1 ppm or more of at least one macrocyclic polyether compound or an analogue thereof, such as 18-crown-6 or 15-crown-5.
Description
1. Field of the Invention
This invention relates to an α-cyanoacrylate-type adhesive composition, and more particularly to an adhesive composition having a fast setting time.
2. Description of the Prior Art
α-Cyanoacrylate-type adhesives, because of the inherent anion-polymerizability of the α-cyanoacrylate monomer as a main component, begin to polymerize in the presence of a weak anion such as in the presence of slight moisture adhering to the surface of the adherend, and can firmly bond almost all materials except certain inert materials such as polyethylene and tetrafluoroethylene resins (e.g., Teflon) within several seconds to several minutes. Hence, they have found extensive use as instantaneous adhesives in industry, in medical uses, in hobby applications, and in the home.
The curing of α-cyanoacrylate-type adhesives is due to the anionic polymerization of the α-cyanoacrylate monomer. When such an adhesive is used to bond materials whose bonding surfaces are acidic, such as wood or surfaces which tend to permit the formation of an acidic oxide coating, the anionic polymerization of the α-cyanoacrylate is inhibited, and the setting time of the adhesive is slow. Thus, the adhesion strength is sometimes not entirely satisfactory. For example, wooden materials in general use have a moisture content of about 10% by weight under normal conditions (i.e., at 23° C. and a relative humidity of 55%). In spite of this high water content in the woody tissue and on the surface of the wooden materials, a setting time of from several minutes to between ten and twenty minutes is required to bond these wooden materials with conventional α-cyanoacrylate-type adhesives. Since α-cyanoacrylate-type adhesives penetrate into the woody tissue during this period, it is generally considered difficult to bond wooden materials with these adhesives. Usually, wooden materials are acidic because of the presence of sap, etc. in the wood. If the surface of the material is acidic, naturally the anionic polymerization of the α-cyanoacrylate monomer would be hindered, and the speed of curing decreased. Consequently, the effect of the adhesives as instantaneous adhesives decreases drastically.
A chromate-treated surface of a metal is usually acidic, and a surface obtained by neutralizing the acidic surface using a Unichrome treatment has lower weatherability than the chromate-treated surface. Accordingly, where parts with weatherability are required, such preferably have an acidic chromate-treated surface. In bonding such a surface, α-cyanoacrylate-type adhesives have a slow setting time, and the adhesion strength of the bond is low.
α-Cyanoacrylate-type adhesives are chemically reactive adhesives which cure by anionic polymerization. These adhesives usually have a low viscosity, and therefore, when they are applied to the adherend, an initial tackiness, as in the case of rubber-type adhesives, is not obtained with α-cyanoacrylate-type adhesives. The adherend must be fixed for several minutes until anionic polymerization begins.
Furthermore, in a bonding operation on an assembly line, the adherend must be fixed for a certain period of time by a jig, etc., and therefore, the efficiency of operation decreases. Since α-cyanoacrylate adhesives are "instantaneous" adhesives, it is necessary for them to cure on many materials with as fast a setting time as possible. The rapidity of the setting time will broaden the range of application of α-cyanoacrylate-type adhesives.
Many methods for increasing the setting time of α-cyanoacrylate-type adhesives have been investigated heretofore. These methods include, for example, a method which involves increasing the purity of the α-cyanoacrylate monomer, and a method which involves decreasing the amount of anionic polymerization inhibitor to be added.
Generally, the activity of anionic polymerization tends to be markedly affected by very small amounts of impurities, and in anionic polymerization of an α-cyanoacrylate monomer, an attempt has been made to minimize the amounts of impurities such as the presence therein of starting materials, catalyst and polymers of low degrees of polymerization in order to increase the setting time of the resulting product. However, because an α-cyanoacrylate monomer has unique anionic polymerizability, difficulties, such as the provision of a feasible apparatus, are encountered in obtaining an α-cyanoacrylate monomer of a high purity. Accordingly, this method of increasing the purity of the monomer is difficult to perform on a commercial scale.
Usually, an anion polymerization inhibitor (stabilizer) such as sulfur dioxide, propane sultone or p-toluenesulfonic acid is incorporated in α-cyanoacrylate-type adhesives to inhibit the anionic polymerization of the monomer due to the presence of water, etc. in the container during storage. The addition of the inhibitor serves to inhibit the anionic polymerization of the monomer during storage, but retards the setting time of the adhesive. An attempt has therefore been made to decrease the amount of the anionic polymerization inhibitor and thereby to increase the setting time. This approach, however, is limited in application because a reduction in the storate stability of the adhesive occurs as well.
Extensive investigations have been made on a method for accelerating the setting time of α-cyanoacrylate-type adhesives which is simple and which does not result in adverse effects. These investigations have led to the discovery that by incorporating a macrocyclic polyether or analogue thereof in an α-cyanoacrylate-type adhesive, the setting time of the α-cyanoacrylate-type adhesive becomes remarkably fast with little change in the storage stability from that of conventional α-cyanoacrylate-type adhesives occurring.
According to the present invention, there is provided an adhesive composition comprising an α-cyanoacrylate and about 0.1 ppm or more of at least one macrocyclic polyether compound or an analogue thereof.
The α-cyanoacrylate-type adhesive of this invention is an adhesive containing as a main component an α-cyanoacrylate of the formula (I) ##STR1## wherein R represents a straight chain or branched chain alkyl group having 1 to 12 carbon atom (which may be substituted with a substituent such as a halogen atom or an alkoxy group) a straight chain or branched chain alkenyl group having 2 to 12 carbon atoms, a straight chain or branched chain alkynyl group having 2 to 12 carbon atoms, a cycloalkyl group, an aralkyl group or an aryl group. Specific examples of the groups for R are a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a pentyl group, a hexyl group, an allyl group, a methallyl group, a crotyl group, a propargyl group, a cyclohexyl group, a benzyl group, a phenyl group, a cresyl group, a 2-chloroethyl group, a 3-chloropropyl group, a 2-chlorobutyl group, a trifluoroethyl group, a 2-methoxyethyl group, a 3-methoxybutyl group and a 2-ethoxyethyl group.
The α-cyanoacrylate monomer present can be a single α-cyanoacrylate monomer or a mixture of two or more α-cyanoacrylate monomers can be employed. Generally, the α-cyanoacrylate monomer alone has insufficient properties as an adhesive, and other components such as the following may be added.
(1) An anionic polymerizaton inhibitor.
(2) A radical polymerization inhibitor.
(3) A thickener.
(4) Special additives such as plasticizers or heat stabilizers.
(5) Perfumes, dyes, pigments, etc.
A suitable amount of the α-cyanoacrylate monomer present in the adhesive composition is about 80 to 99.9% by weight preferably 90 to 99.9% by weight, based on the total weight of the adhesive composition.
As stated hereinabove, an anionic polymerization inhibitor is added to the α-cyanoacrylate-type adhesive e.g., in an amount of about 1 to 1000 ppm based on the total weight of the adhesive composition, to increase the stability of the adhesive during storage, and examples of known inhibitors are sulfur dioxide, aromatic sulfonic acids, aliphatic sulfonic acids, sultones, and carbon dioxide.
Suitable examples of radical polymerization inhibitors include, for example, hydroquinone and hydroquinone monomethyl ether. A radical polymerization inhibitor is added e.g., in amount of about 1 to 5000 ppm based on the total weight of the adhesive composition, for the purpose of capturing radicals which are formed by light during storage.
A thickener is added to increase the viscosity of the α-cyanoacrylate-type adhesive. The α-cyanoacrylate monomer generally has a low viscosity of about several centipoises, and therefore, the adhesive penetrates into porous materials such as wood and leather or adherends having a rough surface Thus, good adhesion strengths are difficult to obtain. Various polymers can be used as thickeners, and examples include poly(methyl methacrylate), a methacrylate-type copolymers, acrylic rubbers, cellulose derivatives, polyvinyl acetate and poly(α-cyanoacrylate). A suitable amount of thickener is generally about 20% by weight or less based on the total weight of the adhesive composition.
The plasticizers, perfumes, dyes, pigments, etc. may be added depending on use purposes in amounts which do not adversely affect the stability of the α-cyanoacrylate monomer. A suitable amount of the plasticizer is about 0.1 to 50% by weight, of the heat stabilizer is about 0.01 to about 5% by weight and of each of the perfume, the dyes and the pigments is about 0.01 to 5% by weight, based on the total weight of the adhesive composition.
The crown compound used in this invention is a generic term for macrocyclic polyether compounds. Since the formation of these compounds was confirmed in 1967 by C. J. Pedersen of E. I. du Pont de Nemours & Co., U.S.A., many compounds falling within this category have been discovered. The name "crown ethers" comes from their structural form. The most typical cyclic hexamer of ethylene oxide is called 18-crown-6. The numeral 18 denotes the number of atoms in the ring, and the numeral 6 denotes the number of oxygen atoms in the ring. ##STR2##
The oxygen atoms of the crown ether are aligned toward the interior of the ring, and by holding a metallic ion or an organic ion at the center of or at the upper or lower position of the ring by a coordination bond, crown ethers have a unique property of solubilizing inorganic salts (such as silver nitrate, silver chloride, etc.), alkali metal salts (such as potassium cyanide, potassium fluoride, etc.), and ammonium salts (such as ammonium thiocyanate, ammonium chloride, etc.) in aprotic or weakly polar solvents such as organic solvents (e.g., nitromethane, dimethyl sulfoxide, dimethylformamide, benzonitrile, etc.).
Typical crown ether compounds and their structures are shown in James J. Cristensen, Delbert J. Eatough and Reed M. Izatt, Chemical Reviews, 1974, Vol. 74, No. 3, pages 351-384. All of these compounds can be used in this invention. Good results can be obtained also with other crown compounds having a macrocyclic polyether structure and capable of selectively complexing with a metallic ion or an organic ion.
Crown ethers having nitrogen, sulfur, phosphorus, boron, etc. wholly or partly replacing the oxygen atoms, such as dithia-15-crown-5 ##STR3## can also be used in the present invention. In such case the second numeral designates the total number of oxygen atoms and analogue atoms present. Analogues of the crown ethers whose ethylene group has been partly replaced by benzo, cyclohexyl, decalyl, naphtho, methylbenzo, butylbenzo, vinylbenzo, butylcyclohexyl, oxocyclohexane, methylene, trimethylene, tetramethylene, or pentamethylene groups, and in which some of the hydrogen atoms of the ethylene group are replaced by methyl, ethyl, propyl, butyl, acetyl, phenyl, etc., groups, oxygen or fluoro atoms, etc. can also be used in this invention.
Typical examples of crown compounds that can be used in this invention are listed below. ##STR4##
[The nomenclature of these compounds is based on J.J. Christensen et al, Chem. Review, 74 351 (1974)]. Of these compounds (1) to (36), compounds (1), (3), (5), (7), (12), (13), (34), (35) and (36) are particularly preferred in the present invention.
Crown compounds can be produced using methods described in, for example, C. J. Pederson J. Am. Chem. Soc., 89, 7107 (1967), J. J. Christensen et al, Chem. Review, 74 351 (1974), G. W. Gokel et al, J. Org. Chem, 39, 2445 (1974) and C. J. Pederson J. Org. Chem, 36, 254 (1971). Generally, crown compounds can be synthesized by condensing a compound having a structure of the formula HO--R'--OH, such as ethylene glycol, with a compound having the structure X--R"--X in which X is Cl or a p-toluene sulfonate group in the presence of about 2 to 3 mol of a base (such as sodium hydroxide, potassium hydroxide, etc.) per mole of the compound of the formula HO--R'--OH. ##STR5## wherein R' and R" represent --CH2)n, --CH2 CH2 O)m CH2 CH2 --, --CH2 CH2 --S--CH2 CH2 --, ##STR6## and n is an integer of 1 to 4 and m is an integer of 1 to 10.
No definite theory has yet been established as to why a crown ether compound in an α-cyanoacrylate-type adhesive composition accelerates the setting time of an α-cyanoacrylate-type adhesive without adversely affecting the storage stability of the adhesive. It is assumed, however, that a crown compound in a α-cyanoacrylate-type adhesive reacts with an adherend surface such as a metal, metal oxide or water to take cations on the surface of the adherend into the ring structure of the crown compound whereby anions on the bonding surface become excessive and abrupt anionic polymerization takes place; or that cations in the α-cyanoacrylate-type adhesive are taken into the ring structure of the crown compound or cations are taken into the α-cyanoacrylate-type adhesive by the crown compound, whereby bare anions are formed, and at the time of bonding, the bare anions are further activated by the moisture on the surface of the adherend and polymerization and curing take place abruptly.
The amount of the crown compound present in the α-cyanoacrylate-type adhesive is not particularly restricted as long as the storage stability of the adhesive composition is not adversely affected and as long as acceleration of the setting time of the adhesive composition is achieved. Generally, a suitable amount ranges from about 0.1 ppm to about 10% by weight, preferably from about 10 ppm to about 5% by weight, based on the total weight of the α-cyanoacrylate adhesive composition. Although such will vary to some extent, when the amount of the crown compound is less than about 0.1 ppm, the effect of accelerating the setting time of the adhesive is small. On the other hand, if the amount of the crown compound exceeds about 10% by weight, the α-cyanoacrylate-type adhesive frequently gels during storage, and the storage stability of the α-cyanoacrylate-type adhesive composition is reduced. An extremely fast setting time and good storage stability are well balanced when the amount of the crown compound ranges from about 0.1 ppm to about 10% by weight.
Suitable adherends which can be bonded using the α-cyanoacrylate adhesive composition of this invention include not only wooden materials and chromate-treated metallic materials described hereinabove, but also ordinary metallic materials, porous materials such as ceramics, plastics, rubbers, papers, etc. The α-cyanoacrylate adhesive composition of this invention can be easily used at normal temperatures and humidities e.g., about 0° to 35° C. and at about 30 to 100% R.H.
The following Examples and Comparative Examples are given to illustrate the present invention in greater detail.
All parts, percentages, ratios and the like in the examples are by weight, unless otherwise indicated. The various properties given in these examples were measured using the following methods.
(1) Setting Time
The setting time was measured in accordance with the method for testing setting time in "Testing Method for α-Cyanoacrylate-Type Adhesives" in Standards of Japanese Adhesive Industry Association, JAI-4. The test piece used had a size of 5 mm×20 mm (adhering surface)×35 mm. Where the test piece was wood, the size was 12.7 mm×12.7 mm×38 mm, and the setting time of the adhesive at the grain surface in the horizontal direction of the wood was measured. The moisture content of the wood was measured using a Kett wood moisture meter.
(2) Compression Shear Strength
Compression shear strength was measured in accordance with JIS K-6852 relating to "Testing Method for Compression Shear Strength of Adhesives". The test piece had a size of 12.7 mm×12.7 mm×38 mm. Wooden test pieces are bonded to each other at the grain surfaces with a bonded area of 1.61 cm2. The rate of compression was 20 mm/min.
(3) Tensile Strength
Tensile strength was measured in accordance with the testing method for tensile strength in JAI-4 as in the case of measurement of setting time in (1) above. The test piece had a size of 5 mm×10 mm (bonded surface)×35 mm, and the rate of pulling was 20 mm/min.
(4) Storage Stability
Storage stability was measured in accordance with the testing method for storage stability in JAI-4. The test piece was allowed to stand for 5 days at a constant temperature zone of 70°±2° C., and then the change in viscosity and setting time of the adhesive were evaluated in comparison with a control.
In an α-cyanoacrylate-type adhesive comprising 100 g of ethyl α-cyanoacrylate monomer, 50 ppm of sulfur dioxide as an anionic polymerization inhibitor and 200 ppm of hydroquinone as a radical polymerization inhibitor was dissolved 500 ppm of dicyclohexyl-18-crown-6 (CROWN ETHER C-18, a trademark for a product of Nippon Soda Co., Ltd.). The resulting adhesive composition was applied to an adherend of lauan timber (with a moisture content of 9.8%) in an atmosphere at 23° C. and an RH of 55%, and the setting time was measured. The adhesive composition set completely in 30 seconds. After aging for 24 hours, the compression shear strength was 120 kg/cm2, and the woody tissue of the lauan timber sample broke.
As Comparative Example 1, the setting time of the same α-cyanoacrylate-type adhesive but without the addition of dicyclohexyl-18-crown-6 was tested. When the adhesive was applied to the test sample and allowed to stand for more than 10 minutes, no bonding force due to the adhesive was generated.
When the adhesive compositions of Example 1 and Comparative Example 1 were tested for storage stability at 70°±2° C., no change was observed in viscosity and setting time for more than 5 days.
In an α-cyanoacrylate-type adhesive consisting of 100 g of ethyl α-cyanoacrylate monomer, 50 ppm of sulfur dioxide and 200 ppm of hydroquinone was dissolved 500 ppm of each of the crown compounds shown in Table 1 below. The setting time of each of the adhesive compositions was measured in an atmosphere at 20° C. and RH of 35% using balsa wood (with a moisture content of 6.5%) as an adherend. The results are also shown in Table 1 below.
Table 1
______________________________________
Example (Ex.) Setting Time
and Comparative on Balsa Wood
Example (CEx.)
Crown Compound (seconds)
______________________________________
Ex. 2 15-Crown-5 2
Ex. 3 18-Crown-6 2
Ex. 4 Dibenzo-18-crown-6 5
Ex. 5 Dicyclohexyl-18-crown-6
2
Ex. 6 Dibenzo-24-crown-8 5
Ex. 7 Dicyclohexyl-24-crown-8
2
CEx. 2 None 40
CEx. 3 Diethylene Glycol 40
CEx. 4 Diethylene Glycol Monoethyl
Ether 40
______________________________________
The results shown in Table 1 above demonstrate that the addition of the crown compounds markedly accelerates the setting time, but diethylene glycol and diethylene glycol monoethyl ether which are not crown compounds hardly produced any accelerating effect.
In an α-cyanoacrylate-type adhesive having a viscosity at 20° C. of 200 centipoises obtained by adding 10 ppm of p-toluenesulfonic acid, 100 ppm of hydroquinone and 4% of poly(methyl methacrylate) to 100 g of ethyl α-cyanoacrylate monomer was dissolved 15-crown-5 (CROWN ETHER 0-5, a trademark for a product of Nippon Soda Co., Ltd.) in the amounts indicated in Table 2 below.
The setting time and tensile strength of the adhesive compositions were measured in an atmosphere at 23° C. and RH 55% using a rigid polyvinyl chloride board (PVC), balsa wood (with a water content of 7.5%) and Japanese cypress (with a water content of 7.8%) as adherends. Furthermore, the storage stability of the adhesive compositions was tested at 70°±2° C. The results obtained are shwon in Table 2 below.
Table 2
__________________________________________________________________________
Example
(Ex.)
and Com-
Amount Tensile
parative
of 15-
Setting Time (Seconds)
Strength
Storage
Example
Crown-5
Balsa
Japanese PVC/PVC
Stability
(CEx.) (ppm) Wood Cypress
PVC (kg/cm.sup.2)
(70° C.)
__________________________________________________________________________
CEx. 5 None 30 More than
5 380 More than
300 5 days
Ex. 8 10 15 120 5 385 More than
5 days
Ex. 9 100 5 60 4 375 More than
5 days
Ex. 10 500 2 15 3 370 More than
5 days
Ex. 11 1000 2 15 2 380 More than
5 days
__________________________________________________________________________
The results shown in Table 2 above demonstrate that the addition of the crown ether compound accelerated the setting time on any of the adherend materials tested.
200 ppm of 18-crown-6 (CROWN ETHER 0-18, a trademark for a product of Nippon Soda Co., Ltd.) was dissolved in various adhesive compositions based on α-cyanoacrylates with different alkyl groups and an adhesive composition based on allyl α-cyanoacrylate (all containing 50 ppm of sulfur dioxide and 200 ppm of hydroquinone). The setting time of each adhesive composition was measured using a test piece of balsa wood (with a moisture content of 7.5%) and a test piece of steel as an adherend in an atmosphere at 23° C. and RH 55%. For comparison, the setting times of adhesive compositions of the α-cyanoacrylate type which did not contain the crown ethers were tested under the same conditions. The results obtained are shown in Table 3 below.
Table 3
__________________________________________________________________________
Example
(Ex.)
and Com-
Alkyl or Allyl Setting Time
parative
Group of (seconds)
Example
α-Cyanoacrylate Balsa
(CEx.) (R group) Thickener Wood Steel
__________________________________________________________________________
Ex. 12 Methyl None 2 15
Ex. 13 Ethyl None 2 10
Ex. 14 Isobutyl None 3 15
Ex. 15 Allyl None 2 10
Ex. 16 Methyl Poly(methyl methacryl-
ate), 3% 3 15
Ex. 17 Ethyl Poly(methyl methacryl-
ate), 3% 3 15
Ex. 18 Ethyl Poly(methyl methacryl-
ate), 6% 3 15
CEx. 6 Methyl None 30 50
CEx. 7 Ethyl None 20 40
CEx. 8 Isobutyl None 30 60
CEx. 9 Allyl None 30 40
CEx. 10
Methyl Poly(methyl methacryl-
ate), 3% 30 50
CEx. 11
Ethyl Poly(methyl methacryl-
ate), 3% 20 50
CEx. 12
Ethyl Poly(methyl methacryl-
ate), 6% 30 60
__________________________________________________________________________
The results demonstrate that the addition of the crown ether accelerated the setting time of α-cyanoacrylate-type adhesives regardless of the kind of alkyl group or allyl group substituent on the α-cyanoacrylate.
1,000 ppm of 15-crown-5 was dissolved in an α-cyanoacrylate-type adhesive comprising 100 g of methyl α-cyanoacrylate, 50 ppm of sulfur dioxide, 400 ppm of hydroquinone and 3% of poly(methyl methacrylate), and the setting time of the resulting adhesive composition on various materials was measured. For comparison, the setting time of an adhesive composition of the above formulation without the crown ether was measured. The measurement was performed in an atmosphere at 23° C. and RH 55%. The results obtained are shown in Table 4 below.
Table 4
______________________________________
Setting Time
Setting Time (seconds)
(seconds) in Comparative
Adherend in Example 19 Example 13
______________________________________
Balsa 2 30
Lauan 15 More than 300
Lauan Veneer
15 More than 300
Japanese Cedar
5 More than 300
Spruce 20 More than 300
Birch 15 120
Rosewood 2 10
Ceramics 60 More than 300
Rigid PVC 3 5
Natural Rubber
Less than 3 3
Steel 7 45
Aluminum 10 90
Cardboard 5 More than 300
______________________________________
These results in Table 4 demonstrate the addition of the crown ether accelerates the setting time of the adhesive composition on many materials such as wood, ceramics, plastics, rubber and metal.
While the invention has been described in detail and with reference to specific embodiments thereof, it will be apparent to one skilled in the art that various changes and modifications can be made therein without departing from the spirit and scope thereof.
Claims (11)
1. An adhesive composition comprising a minimum of 80% by weight of an alpha-cyanoacrylate represented by the general formula (I) ##STR7## wherein R represents a straight chain or branched chain alkyl group which may be substituted with a halogen atom or an alkoxy group, a straight chain or branched chain alkenyl group, a straight chain or branched chain alkynyl group, a cycloalkyl group, an aralkyl group or an aryl group, and about 0.1 ppm or more, based on the total weight of said adhesive composition, of at least one crown compound selected from the group consisting of macrocyclic polyethers and macrocyclic polyethers wherein nitrogen, sulphur, phosphorus or boron wholly or partially replace oxygen atoms of the macrocyclic polyether.
2. The composition of claim 1, wherein the amount of the crown compound is about 0.1 ppm to about 10% by weight based on the total weight of said adhesive composition.
3. The composition of claim 1, wherein the amount of the crown compound is 10 ppm to 5% by weight based on the amount of said adhesive composition.
4. The composition of claim 1, wherein R is a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a pentyl group, a hexyl group, an allyl group, a methallyl group, a crotyl group, a propargyl group, a cyclohexyl group, a benzyl group, a phenyl group, a 2-chloroethyl group, a 3-chloropropyl group, a 2-chlorobutyl group, a trifluoroethyl group, a 2-methoxyethyl group, a 3-methoxybutyl group or a 2-ethoxyethyl group.
5. The composition of claim 1, wherein said macrocyclic polyether compound is ##STR8##
6. The composition of claim 1, wherein said crown compound are represented by ##STR9## wherein R' and R" represent --CH2)n, --CH2 CH2 O)m CH2 CH2 --, --CH2 CH2 --S--CH2 CH2 --, ##STR10## and n is an integer of 1 to 4 and m is an integer of 1 to 10.
7. The composition of claim 1, wherein said crown compounds are synthesized by condensing a compound having a structure of the formula HO--R'--OH, with a compound having the structure X--R"--X in which X is Cl or a p-toluene sulfonate group in the presence of about 2 to 3 mol of a base per mol of the compound of the formula HO--R'--OH, wherein R' and R" represent --CH2)n, --CH2 CH2 O)m CH2 CH2 --, --CH2 CH2 --S--CH2 CH2 --, ##STR11## and n is an integer of 1 to 4 and m is an integer of 1 to 10.
8. The composition of claim 7, wherein ethylene groups of said crown compounds are partly replaced by benzo, cyclohexyl, decalyl, naphtho, methylbenzo, butylbenzo, vinylbenzo, butylcyclohexyl, oxocyclohexane, methylene, trimethylene, tetramethylene, or pentamethylene groups, and in which some of the hydrogen atoms of the ethylene group are replaced by methyl, ethyl, propyl, butyl, acetyl or phenyl.
9. The composition of claim 1, wherein said crown compound is a compound selected from the group consisting of ##STR12##
10. The composition of claim 1, wherein said composition additionally contains an anionic polymerization inhibitor and a radical polymerization inhibitor.
11. The composition of claim 10, wherein said composition further contains at least one of a thickener, a plasticizer, a heat stabilizer, a perfume, or a colorant.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP52-44129 | 1977-04-19 | ||
| JP4412977A JPS53129231A (en) | 1977-04-19 | 1977-04-19 | Adhesion composition |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US4171416A true US4171416A (en) | 1979-10-16 |
Family
ID=12682998
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US05/897,882 Expired - Lifetime US4171416A (en) | 1977-04-19 | 1978-04-19 | α-Cyanoacrylate-type adhesive composition |
Country Status (7)
| Country | Link |
|---|---|
| US (1) | US4171416A (en) |
| JP (1) | JPS53129231A (en) |
| AU (1) | AU514544B2 (en) |
| CA (1) | CA1133192A (en) |
| DE (1) | DE2816836C2 (en) |
| FR (1) | FR2388034A1 (en) |
| GB (1) | GB1573491A (en) |
Cited By (46)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4405721A (en) * | 1980-03-22 | 1983-09-20 | Behringwerke Aktiengesellschaft | Diagnostic agent for the detection of ketone bodies |
| US4460759A (en) * | 1981-11-20 | 1984-07-17 | Minnesota Mining & Manufacturing Company | Adhesive compositions and bonding methods employing the same |
| US4556700A (en) * | 1984-01-30 | 1985-12-03 | Loctite Limited | Instant adhesive composition utilizing calixarene accelerators |
| US4565883A (en) * | 1982-10-27 | 1986-01-21 | Teroson Gmbh | Cyanoacrylate adhesive composition |
| US4615348A (en) * | 1981-12-11 | 1986-10-07 | Taoka Chemical Company Limited | Method for adhering artificial nail |
| US4636539A (en) * | 1984-01-30 | 1987-01-13 | Loctite (Ireland) Limited | Instant adhesive composition utilizing calixarene accelerators |
| US4695615A (en) * | 1984-11-21 | 1987-09-22 | Loctite (Ireland) Limited | Instant adhesive composition utilizing mixed functionality calixarenes as accelerators |
| DE3717545A1 (en) * | 1986-05-23 | 1987-11-26 | Toa Gosei Chem Ind | CYANACRYLATE COMPOSITIONS |
| US4718966A (en) * | 1984-01-30 | 1988-01-12 | Loctite (Ireland) Ltd. | Bonding method utilizing cyanoacrylate adhesive having calixarene accelerator |
| US4816307A (en) * | 1987-01-20 | 1989-03-28 | Honeycutt Travis W | Novel infectious waste containment |
| US4866198A (en) * | 1986-08-29 | 1989-09-12 | Loctite Corporation | Calixarene derivatives and use as accelerators in adhesive compositions |
| US4900500A (en) * | 1987-01-20 | 1990-02-13 | Isolyser Co., Inc. | Point-of-use infectious waste disposal system |
| US4906317A (en) * | 1983-11-10 | 1990-03-06 | Loctite Corporation | Instant adhesive composition and bonding method employing same |
| US4986884A (en) * | 1986-11-08 | 1991-01-22 | Bayer Aktiengesellschaft | Process for the production of monomeric α-cyanoacrylates |
| US5589554A (en) * | 1993-09-17 | 1996-12-31 | Three Bond Co., Ltd. | Adhesive composition and process for preparing it |
| US5961498A (en) * | 1997-08-29 | 1999-10-05 | Schneider (Europe) Gmbh | Catheter with two-ply adhesive layer |
| US6010444A (en) * | 1997-09-05 | 2000-01-04 | Isolyser Company, Inc. | Infectious waste containment system |
| US6165166A (en) * | 1997-04-25 | 2000-12-26 | Schneider (Usa) Inc. | Trilayer, extruded medical tubing and medical devices incorporating such tubing |
| US6319228B1 (en) | 1996-04-26 | 2001-11-20 | Schneider (Europe) A.G. | Multilayer interventional catheter |
| US6323275B2 (en) | 1992-05-28 | 2001-11-27 | Toagosei Co., Ltd. | Cyanoacrylate adhesive composition |
| US6352704B1 (en) | 1999-06-30 | 2002-03-05 | Closure Medical Corporation | Flavored cyanoacrylate compositions |
| US6471673B1 (en) | 1993-10-27 | 2002-10-29 | Schneider (Europe) A.G. | Catheter with multilayer tube |
| US6547985B1 (en) * | 1999-04-07 | 2003-04-15 | Togosei Co., Ltd. | Composition of 2-cyanoacrylate, Lewis acid metal salt and clathrate |
| US6602970B2 (en) | 2000-06-13 | 2003-08-05 | Toagosei Co., Ltd. | 2-cyanoacrylate composition |
| US6659977B2 (en) | 1993-10-27 | 2003-12-09 | Schneider (Europe) A.G. | Multilayer interventional catheter |
| US20040059030A1 (en) * | 2001-01-09 | 2004-03-25 | Kizuku Wakatsuki | Alpha-cyanoacrylate adhesive systems |
| US20050069667A1 (en) * | 2003-09-30 | 2005-03-31 | Wacker Carl E. | Method for attachment of tire pressure sensor |
| US20080319063A1 (en) * | 2007-06-25 | 2008-12-25 | Sheng Zhang | Curing accelerator and method of making |
| US20090050019A1 (en) * | 2005-05-30 | 2009-02-26 | Toagosei Co., Ltd. | 2-Cyanoacrylate Composition |
| US7815625B2 (en) | 1998-10-23 | 2010-10-19 | Boston Scientific Scimed, Inc. | Catheter having improved bonding region |
| US20110117047A1 (en) * | 2008-06-23 | 2011-05-19 | Adhezion Biomedical, Llc | Cyanoacrylate tissue adhesives with desirable permeability and tensile strength |
| US8198344B2 (en) | 2008-06-20 | 2012-06-12 | Adhezion Biomedical, Llc | Method of preparing adhesive compositions for medical use: single additive as both the thickening agent and the accelerator |
| US8216498B2 (en) | 2008-09-10 | 2012-07-10 | Boston Scientific Scimed, Inc. | Catheter having a coextruded fluoropolymer layer |
| US8293838B2 (en) | 2008-06-20 | 2012-10-23 | Adhezion Biomedical, Llc | Stable and sterile tissue adhesive composition with a controlled high viscosity |
| US8609128B2 (en) | 2008-10-31 | 2013-12-17 | Adhezion Biomedical, Llc | Cyanoacrylate-based liquid microbial sealant drape |
| US8613952B2 (en) | 2007-11-14 | 2013-12-24 | Adhezion Biomedical, Llc | Cyanoacrylate tissue adhesives |
| US8652510B2 (en) | 2008-10-31 | 2014-02-18 | Adhezion Biomedical, Llc | Sterilized liquid compositions of cyanoacrylate monomer mixtures |
| US9254133B2 (en) | 2008-10-31 | 2016-02-09 | Adhezion Biomedical, Llc | Sterilized liquid compositions of cyanoacrylate monomer mixtures |
| EP2995664A1 (en) | 2014-09-12 | 2016-03-16 | Afinitica Technologies, S. L. | Fast and universal adhesive |
| EP2995663A1 (en) | 2014-09-12 | 2016-03-16 | Afinitica Technologies, S. L. | Fast and elastic adhesive |
| US9309019B2 (en) | 2010-05-21 | 2016-04-12 | Adhezion Biomedical, Llc | Low dose gamma sterilization of liquid adhesives |
| US9353299B2 (en) | 2012-09-11 | 2016-05-31 | Toagosei Co., Ltd. | 2-cyanoacrylate-based adhesive composition |
| US9421297B2 (en) | 2014-04-02 | 2016-08-23 | Adhezion Biomedical, Llc | Sterilized compositions of cyanoacrylate monomers and naphthoquinone 2,3-oxides |
| EP3124509A1 (en) | 2015-07-31 | 2017-02-01 | Afinitica Technologies, S. L. | Fast light curing cyanoacrylate compositions |
| CN109415602A (en) * | 2016-06-28 | 2019-03-01 | 东亚合成株式会社 | 2- cyanoacrylate system adhesive composite |
| CN112175527A (en) * | 2020-09-21 | 2021-01-05 | 禹城市三星科技有限公司 | Single-component photo frame adhesive and preparation method thereof |
Families Citing this family (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5647471A (en) * | 1979-09-28 | 1981-04-30 | Japan Synthetic Rubber Co Ltd | Instantaneous adhesive composition |
| DE3006017C2 (en) * | 1980-02-18 | 1982-06-03 | Teroson Gmbh, 6900 Heidelberg | Cyanoacrylate adhesive composition |
| JPS63108010A (en) * | 1986-05-23 | 1988-05-12 | Toagosei Chem Ind Co Ltd | Cyanoacrylate composition |
| JPH0667980B2 (en) * | 1986-12-29 | 1994-08-31 | 凸版印刷株式会社 | Method for producing α-cyanoacrylic acid ester polymer |
| JPH0670105B2 (en) * | 1986-12-29 | 1994-09-07 | 凸版印刷株式会社 | Method for producing monodisperse polymer |
| DE4009621A1 (en) * | 1990-03-26 | 1991-10-02 | Henkel Kgaa | (ALPHA) -CYANACRYLATE ADHESIVE COMPOSITIONS |
| MX2008000578A (en) * | 2005-07-11 | 2008-03-18 | Henkel Corp | Toughened cyanoacrylate compositions. |
| JP4848847B2 (en) * | 2006-06-08 | 2011-12-28 | 東亞合成株式会社 | 2-Cyanoacrylate adhesive composition |
| JP6176123B2 (en) * | 2013-01-31 | 2017-08-09 | 東亞合成株式会社 | 2-Cyanoacrylate adhesive composition |
| TWI653268B (en) | 2013-12-05 | 2019-03-11 | 東亞合成股份有限公司 | Method for strengthening three-dimensional space molding |
| JP6354836B2 (en) | 2014-03-11 | 2018-07-11 | 東亞合成株式会社 | 2-Cyanoacrylate adhesive composition |
| JP6273538B2 (en) | 2014-03-12 | 2018-02-07 | 東亞合成株式会社 | 2-Cyanoacrylate adhesive composition |
| JP7293584B2 (en) * | 2018-07-18 | 2023-06-20 | 東亞合成株式会社 | 2-cyanoacrylate adhesive composition |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3527841A (en) * | 1968-04-10 | 1970-09-08 | Eastman Kodak Co | Alpha-cyanoacrylate adhesive compositions |
| US3701758A (en) * | 1967-08-02 | 1972-10-31 | Nat Starch Chem Corp | Pressure-sensitive adhesives of cyanoacrylate polymers |
| US3759264A (en) * | 1966-04-07 | 1973-09-18 | Eastman Kodak Co | Surgical method |
| US3890278A (en) * | 1972-10-03 | 1975-06-17 | Poudres & Explosifs Ste Nale | Anionic polymerization |
-
1977
- 1977-04-19 JP JP4412977A patent/JPS53129231A/en active Granted
-
1978
- 1978-04-12 AU AU34999/78A patent/AU514544B2/en not_active Expired
- 1978-04-13 CA CA301,040A patent/CA1133192A/en not_active Expired
- 1978-04-18 GB GB15306/78A patent/GB1573491A/en not_active Expired
- 1978-04-18 DE DE2816836A patent/DE2816836C2/en not_active Expired
- 1978-04-19 US US05/897,882 patent/US4171416A/en not_active Expired - Lifetime
- 1978-04-19 FR FR7811601A patent/FR2388034A1/en active Granted
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3759264A (en) * | 1966-04-07 | 1973-09-18 | Eastman Kodak Co | Surgical method |
| US3701758A (en) * | 1967-08-02 | 1972-10-31 | Nat Starch Chem Corp | Pressure-sensitive adhesives of cyanoacrylate polymers |
| US3527841A (en) * | 1968-04-10 | 1970-09-08 | Eastman Kodak Co | Alpha-cyanoacrylate adhesive compositions |
| US3890278A (en) * | 1972-10-03 | 1975-06-17 | Poudres & Explosifs Ste Nale | Anionic polymerization |
Cited By (79)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4405721A (en) * | 1980-03-22 | 1983-09-20 | Behringwerke Aktiengesellschaft | Diagnostic agent for the detection of ketone bodies |
| US4460759A (en) * | 1981-11-20 | 1984-07-17 | Minnesota Mining & Manufacturing Company | Adhesive compositions and bonding methods employing the same |
| US4615348A (en) * | 1981-12-11 | 1986-10-07 | Taoka Chemical Company Limited | Method for adhering artificial nail |
| US4565883A (en) * | 1982-10-27 | 1986-01-21 | Teroson Gmbh | Cyanoacrylate adhesive composition |
| US4906317A (en) * | 1983-11-10 | 1990-03-06 | Loctite Corporation | Instant adhesive composition and bonding method employing same |
| US4718966A (en) * | 1984-01-30 | 1988-01-12 | Loctite (Ireland) Ltd. | Bonding method utilizing cyanoacrylate adhesive having calixarene accelerator |
| US4636539A (en) * | 1984-01-30 | 1987-01-13 | Loctite (Ireland) Limited | Instant adhesive composition utilizing calixarene accelerators |
| US4556700A (en) * | 1984-01-30 | 1985-12-03 | Loctite Limited | Instant adhesive composition utilizing calixarene accelerators |
| US4695615A (en) * | 1984-11-21 | 1987-09-22 | Loctite (Ireland) Limited | Instant adhesive composition utilizing mixed functionality calixarenes as accelerators |
| DE3717545A1 (en) * | 1986-05-23 | 1987-11-26 | Toa Gosei Chem Ind | CYANACRYLATE COMPOSITIONS |
| DE3717545C2 (en) * | 1986-05-23 | 2001-04-19 | Toagosei Co | Cyanoacrylate compositions |
| US4837260A (en) * | 1986-05-23 | 1989-06-06 | Toagosei Chemical Industry Co., Ltd. | Cyanoacrylate compositions |
| US4866198A (en) * | 1986-08-29 | 1989-09-12 | Loctite Corporation | Calixarene derivatives and use as accelerators in adhesive compositions |
| US4986884A (en) * | 1986-11-08 | 1991-01-22 | Bayer Aktiengesellschaft | Process for the production of monomeric α-cyanoacrylates |
| US4816307A (en) * | 1987-01-20 | 1989-03-28 | Honeycutt Travis W | Novel infectious waste containment |
| US4900500A (en) * | 1987-01-20 | 1990-02-13 | Isolyser Co., Inc. | Point-of-use infectious waste disposal system |
| US6323275B2 (en) | 1992-05-28 | 2001-11-27 | Toagosei Co., Ltd. | Cyanoacrylate adhesive composition |
| US5589554A (en) * | 1993-09-17 | 1996-12-31 | Three Bond Co., Ltd. | Adhesive composition and process for preparing it |
| US6471673B1 (en) | 1993-10-27 | 2002-10-29 | Schneider (Europe) A.G. | Catheter with multilayer tube |
| US20040092866A1 (en) * | 1993-10-27 | 2004-05-13 | Schneider (Europe) A.G. | Multilayer interventional catheter |
| US8066666B2 (en) | 1993-10-27 | 2011-11-29 | Schneider (Europe) A.G. | Multilayer interventional catheter |
| US20100094210A1 (en) * | 1993-10-27 | 2010-04-15 | Schneider (Europe) Ag | Catheter with Multilayer Tube |
| US7635347B2 (en) | 1993-10-27 | 2009-12-22 | Schneider (Europe) A.G. | Catheter with multilayer tube |
| US20060015064A1 (en) * | 1993-10-27 | 2006-01-19 | Schneider (Europe) A.G. | Catheter with multilayer tube |
| US6960187B2 (en) | 1993-10-27 | 2005-11-01 | Schneider Gmbh | Catheter with multilayer tube |
| US20090137954A1 (en) * | 1993-10-27 | 2009-05-28 | Schneider (Europe) Gmbh | Multilayer Interventional Catheter |
| US20030088265A1 (en) * | 1993-10-27 | 2003-05-08 | Schneider (Europe) A.G. | Catheter with multilayer tube |
| US7485108B2 (en) | 1993-10-27 | 2009-02-03 | Schneider (Europe) A.G. | Multilayer interventional catheter |
| US7942849B2 (en) | 1993-10-27 | 2011-05-17 | Schneider Gmbh | Catheter with multilayer tube |
| US6659977B2 (en) | 1993-10-27 | 2003-12-09 | Schneider (Europe) A.G. | Multilayer interventional catheter |
| US6319228B1 (en) | 1996-04-26 | 2001-11-20 | Schneider (Europe) A.G. | Multilayer interventional catheter |
| US6165166A (en) * | 1997-04-25 | 2000-12-26 | Schneider (Usa) Inc. | Trilayer, extruded medical tubing and medical devices incorporating such tubing |
| US6464683B1 (en) | 1997-04-25 | 2002-10-15 | Schneider (Usa) Inc. | Trilayer, extruded medical tubing and medical devices incorporating such tubbing |
| US5961498A (en) * | 1997-08-29 | 1999-10-05 | Schneider (Europe) Gmbh | Catheter with two-ply adhesive layer |
| US6010444A (en) * | 1997-09-05 | 2000-01-04 | Isolyser Company, Inc. | Infectious waste containment system |
| US8292874B2 (en) | 1998-10-23 | 2012-10-23 | Boston Scientific Scimed, Inc. | Catheter having improved bonding region |
| US8636717B2 (en) | 1998-10-23 | 2014-01-28 | Boston Scientific Scimed, Inc. | Catheter having improved bonding region |
| US20110034904A1 (en) * | 1998-10-23 | 2011-02-10 | Boston Scientific Scimed, Inc. | Catheter having improved bonding region |
| US7815625B2 (en) | 1998-10-23 | 2010-10-19 | Boston Scientific Scimed, Inc. | Catheter having improved bonding region |
| US6830704B2 (en) | 1999-04-07 | 2004-12-14 | Toagosei Co., Ltd. | Composition of 2-cyanoacrylate, lewis acid metal salt and clathrate |
| US20030135016A1 (en) * | 1999-04-07 | 2003-07-17 | Toagosei Co., Ltd. | 2-cyanoacrylate composition |
| US6547985B1 (en) * | 1999-04-07 | 2003-04-15 | Togosei Co., Ltd. | Composition of 2-cyanoacrylate, Lewis acid metal salt and clathrate |
| US6352704B1 (en) | 1999-06-30 | 2002-03-05 | Closure Medical Corporation | Flavored cyanoacrylate compositions |
| US6602970B2 (en) | 2000-06-13 | 2003-08-05 | Toagosei Co., Ltd. | 2-cyanoacrylate composition |
| KR100827264B1 (en) * | 2001-01-09 | 2008-05-07 | 다오카가가쿠고교가부시키가이샤 | Alpha-cyanoacrylate adhesive system |
| US7118013B2 (en) * | 2001-01-09 | 2006-10-10 | Taoka Chemical Company, Limited | α-cyanoacrylate adhesive systems |
| US20040059030A1 (en) * | 2001-01-09 | 2004-03-25 | Kizuku Wakatsuki | Alpha-cyanoacrylate adhesive systems |
| US20050069667A1 (en) * | 2003-09-30 | 2005-03-31 | Wacker Carl E. | Method for attachment of tire pressure sensor |
| US20050126704A1 (en) * | 2003-09-30 | 2005-06-16 | Wacker Carl E. | Method for attachment of tire pressure sensor |
| US7863358B2 (en) * | 2005-05-30 | 2011-01-04 | Toagosei Co., Ltd. | 2-cyanoacrylate composition |
| US20090050019A1 (en) * | 2005-05-30 | 2009-02-26 | Toagosei Co., Ltd. | 2-Cyanoacrylate Composition |
| US8980947B2 (en) | 2007-06-25 | 2015-03-17 | Adhezion Biomedical, Llc | Curing accelerator and method of making |
| US20080319063A1 (en) * | 2007-06-25 | 2008-12-25 | Sheng Zhang | Curing accelerator and method of making |
| US9018254B2 (en) | 2007-06-25 | 2015-04-28 | Adhezion Biomedical, Llc | Cyanoacrylate tissue adhesives with desirable permeability and tensile strength |
| US8729121B2 (en) * | 2007-06-25 | 2014-05-20 | Adhezion Biomedical, Llc | Curing accelerator and method of making |
| US9878041B2 (en) | 2007-11-14 | 2018-01-30 | Adhezion Biomedical, Llc | Cyanoacrylate tissue adhesives |
| US8613952B2 (en) | 2007-11-14 | 2013-12-24 | Adhezion Biomedical, Llc | Cyanoacrylate tissue adhesives |
| US8198344B2 (en) | 2008-06-20 | 2012-06-12 | Adhezion Biomedical, Llc | Method of preparing adhesive compositions for medical use: single additive as both the thickening agent and the accelerator |
| US8293838B2 (en) | 2008-06-20 | 2012-10-23 | Adhezion Biomedical, Llc | Stable and sterile tissue adhesive composition with a controlled high viscosity |
| US8603451B2 (en) | 2008-06-20 | 2013-12-10 | Adhezion Biomedical, Llc | Adhesive compositions for medical use: single additive as both the thickening agent and the accelerator |
| US20110117047A1 (en) * | 2008-06-23 | 2011-05-19 | Adhezion Biomedical, Llc | Cyanoacrylate tissue adhesives with desirable permeability and tensile strength |
| US8216498B2 (en) | 2008-09-10 | 2012-07-10 | Boston Scientific Scimed, Inc. | Catheter having a coextruded fluoropolymer layer |
| US8652510B2 (en) | 2008-10-31 | 2014-02-18 | Adhezion Biomedical, Llc | Sterilized liquid compositions of cyanoacrylate monomer mixtures |
| US9254133B2 (en) | 2008-10-31 | 2016-02-09 | Adhezion Biomedical, Llc | Sterilized liquid compositions of cyanoacrylate monomer mixtures |
| US8609128B2 (en) | 2008-10-31 | 2013-12-17 | Adhezion Biomedical, Llc | Cyanoacrylate-based liquid microbial sealant drape |
| US9309019B2 (en) | 2010-05-21 | 2016-04-12 | Adhezion Biomedical, Llc | Low dose gamma sterilization of liquid adhesives |
| US9353299B2 (en) | 2012-09-11 | 2016-05-31 | Toagosei Co., Ltd. | 2-cyanoacrylate-based adhesive composition |
| US9421297B2 (en) | 2014-04-02 | 2016-08-23 | Adhezion Biomedical, Llc | Sterilized compositions of cyanoacrylate monomers and naphthoquinone 2,3-oxides |
| EP2995664A1 (en) | 2014-09-12 | 2016-03-16 | Afinitica Technologies, S. L. | Fast and universal adhesive |
| WO2016038514A1 (en) | 2014-09-12 | 2016-03-17 | Afinitica Technologies, S. L. | Fast and elastic adhesive |
| EP2995663A1 (en) | 2014-09-12 | 2016-03-16 | Afinitica Technologies, S. L. | Fast and elastic adhesive |
| US10626299B2 (en) | 2014-09-12 | 2020-04-21 | Afinitica Technologies, S.L. | Fast and elastic adhesive |
| EP3124509A1 (en) | 2015-07-31 | 2017-02-01 | Afinitica Technologies, S. L. | Fast light curing cyanoacrylate compositions |
| WO2017021785A1 (en) | 2015-07-31 | 2017-02-09 | Afinitica Technologies, S.L. | Fast light curing cyanoacrylate compositions |
| US10626310B2 (en) | 2015-07-31 | 2020-04-21 | Afinitica Technologies, S.L. | Fast light curing cyanoacrylate compositions |
| CN109415602A (en) * | 2016-06-28 | 2019-03-01 | 东亚合成株式会社 | 2- cyanoacrylate system adhesive composite |
| US10793749B2 (en) * | 2016-06-28 | 2020-10-06 | Toagosei Co., Ltd. | 2-cyanoacrylate-based adhesive composition |
| CN109415602B (en) * | 2016-06-28 | 2021-05-25 | 东亚合成株式会社 | 2-cyanoacrylate adhesive composition |
| CN112175527A (en) * | 2020-09-21 | 2021-01-05 | 禹城市三星科技有限公司 | Single-component photo frame adhesive and preparation method thereof |
Also Published As
| Publication number | Publication date |
|---|---|
| FR2388034A1 (en) | 1978-11-17 |
| AU3499978A (en) | 1979-10-18 |
| AU514544B2 (en) | 1981-02-12 |
| CA1133192A (en) | 1982-10-05 |
| FR2388034B1 (en) | 1983-03-11 |
| JPS552238B2 (en) | 1980-01-18 |
| GB1573491A (en) | 1980-08-28 |
| DE2816836A1 (en) | 1978-10-26 |
| DE2816836C2 (en) | 1987-03-05 |
| JPS53129231A (en) | 1978-11-11 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US4171416A (en) | α-Cyanoacrylate-type adhesive composition | |
| US4170585A (en) | Adhesive composition | |
| US4933407A (en) | Functionalized oxacalixarenes, their preparation and use in instant adhesive compositions | |
| US4906317A (en) | Instant adhesive composition and bonding method employing same | |
| US6835762B1 (en) | Cure accelerators for anaerobic curable compositions | |
| US6475331B1 (en) | Cyanoacrylate compositions | |
| KR100227459B1 (en) | Cyanoacrylate adhesive with improved cured thermal properties | |
| US6897277B1 (en) | Cure accelerators for anaerobic curable compositions | |
| US5288794A (en) | Cyanoacrylate adhesives with improved cured thermal properties utilizing substituted aromatic additive | |
| US6835789B1 (en) | Cyanoacrylate compositions | |
| US20060094833A1 (en) | Shock resistant cyanoacrylate compositions | |
| AU658332B2 (en) | Thermally resistant cyanoacrylates employing substituted naphthosultone additive | |
| EP3371268B1 (en) | Cyanoacrylate compositions | |
| US4656229A (en) | Anaerobic adhesive compositions | |
| US4602073A (en) | Adhesive compositions | |
| US5306752A (en) | Cyanoacrylate adhesives utilizing quinoid compound polymer stabilizer | |
| US6093780A (en) | Cyanoacrylate adhesive compositions with improved cured thermal properties | |
| EP1908786B1 (en) | 2-cyanoacrylate composition | |
| US5034456A (en) | Adhesive composition | |
| US4421909A (en) | Cyanacrylic acid ester based glues with a content of a diester of a polyoxyalkylene glycol | |
| US20040131827A1 (en) | Toughened cyanoacrylate compositions | |
| EP0142327A1 (en) | Instant adhesive composition | |
| US8303705B2 (en) | Cyanoacrylate compositions | |
| JPH04211484A (en) | Adhesive and sealant curable in the absence of oxygen | |
| US8519023B2 (en) | Fast,curing two part anaerobic adhesive composition |