US3911098A - Medicament carrier - Google Patents
Medicament carrier Download PDFInfo
- Publication number
- US3911098A US3911098A US441695A US44169574A US3911098A US 3911098 A US3911098 A US 3911098A US 441695 A US441695 A US 441695A US 44169574 A US44169574 A US 44169574A US 3911098 A US3911098 A US 3911098A
- Authority
- US
- United States
- Prior art keywords
- eye
- poly
- glucosamine
- acetyl
- drug
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000003814 drug Substances 0.000 title claims abstract description 97
- QCHFTSOMWOSFHM-WPRPVWTQSA-N (+)-Pilocarpine Chemical compound C1OC(=O)[C@@H](CC)[C@H]1CC1=CN=CN1C QCHFTSOMWOSFHM-WPRPVWTQSA-N 0.000 claims abstract description 21
- QCHFTSOMWOSFHM-UHFFFAOYSA-N SJ000285536 Natural products C1OC(=O)C(CC)C1CC1=CN=CN1C QCHFTSOMWOSFHM-UHFFFAOYSA-N 0.000 claims abstract description 21
- 229960001416 pilocarpine Drugs 0.000 claims abstract description 21
- -1 POLY(N-ACETYL-D-GLUCOSAMINE) Polymers 0.000 claims description 88
- 229940079593 drug Drugs 0.000 claims description 83
- 210000001508 eye Anatomy 0.000 claims description 66
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 23
- 239000011159 matrix material Substances 0.000 claims description 19
- 239000012458 free base Substances 0.000 claims description 16
- 238000000034 method Methods 0.000 claims description 13
- 102000016943 Muramidase Human genes 0.000 claims description 12
- 108010014251 Muramidase Proteins 0.000 claims description 12
- 108010062010 N-Acetylmuramoyl-L-alanine Amidase Proteins 0.000 claims description 12
- 229960000274 lysozyme Drugs 0.000 claims description 11
- 239000004325 lysozyme Substances 0.000 claims description 11
- 235000010335 lysozyme Nutrition 0.000 claims description 11
- 230000014759 maintenance of location Effects 0.000 claims description 10
- MSWZFWKMSRAUBD-UHFFFAOYSA-N beta-D-galactosamine Natural products NC1C(O)OC(CO)C(O)C1O MSWZFWKMSRAUBD-UHFFFAOYSA-N 0.000 claims description 9
- 238000003780 insertion Methods 0.000 claims description 9
- 230000037431 insertion Effects 0.000 claims description 9
- 150000003839 salts Chemical class 0.000 claims description 9
- 238000012377 drug delivery Methods 0.000 claims description 6
- 210000005252 bulbus oculi Anatomy 0.000 claims description 5
- 230000002035 prolonged effect Effects 0.000 claims description 5
- GAWIXWVDTYZWAW-UHFFFAOYSA-N C[CH]O Chemical compound C[CH]O GAWIXWVDTYZWAW-UHFFFAOYSA-N 0.000 claims description 4
- 241000124008 Mammalia Species 0.000 claims description 4
- MSWZFWKMSRAUBD-QZABAPFNSA-N beta-D-glucosamine Chemical compound N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O MSWZFWKMSRAUBD-QZABAPFNSA-N 0.000 claims description 4
- 238000013270 controlled release Methods 0.000 abstract description 5
- 229920002101 Chitin Polymers 0.000 description 18
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 17
- 239000000243 solution Substances 0.000 description 17
- 239000000203 mixture Substances 0.000 description 16
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 15
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 12
- OVRNDRQMDRJTHS-UHFFFAOYSA-N N-acelyl-D-glucosamine Natural products CC(=O)NC1C(O)OC(CO)C(O)C1O OVRNDRQMDRJTHS-UHFFFAOYSA-N 0.000 description 12
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- 229950006780 n-acetylglucosamine Drugs 0.000 description 12
- 229920000642 polymer Polymers 0.000 description 12
- OVRNDRQMDRJTHS-FMDGEEDCSA-N N-acetyl-beta-D-glucosamine Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O OVRNDRQMDRJTHS-FMDGEEDCSA-N 0.000 description 11
- 239000000463 material Substances 0.000 description 10
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 9
- 239000002904 solvent Substances 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 8
- 210000001519 tissue Anatomy 0.000 description 7
- 229960000583 acetic acid Drugs 0.000 description 6
- 230000015556 catabolic process Effects 0.000 description 6
- 238000006731 degradation reaction Methods 0.000 description 6
- 239000003826 tablet Substances 0.000 description 6
- MSWZFWKMSRAUBD-IVMDWMLBSA-N 2-amino-2-deoxy-D-glucopyranose Chemical compound N[C@H]1C(O)O[C@H](CO)[C@@H](O)[C@@H]1O MSWZFWKMSRAUBD-IVMDWMLBSA-N 0.000 description 5
- 102000004190 Enzymes Human genes 0.000 description 5
- 108090000790 Enzymes Proteins 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- 229920000954 Polyglycolide Polymers 0.000 description 5
- 210000001124 body fluid Anatomy 0.000 description 5
- 239000010839 body fluid Substances 0.000 description 5
- 229940088598 enzyme Drugs 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 239000004633 polyglycolic acid Substances 0.000 description 5
- 238000006467 substitution reaction Methods 0.000 description 5
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 229960002442 glucosamine Drugs 0.000 description 4
- 239000008188 pellet Substances 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- 238000002560 therapeutic procedure Methods 0.000 description 4
- BYEAHWXPCBROCE-UHFFFAOYSA-N 1,1,1,3,3,3-hexafluoropropan-2-ol Chemical compound FC(F)(F)C(O)C(F)(F)F BYEAHWXPCBROCE-UHFFFAOYSA-N 0.000 description 3
- VAIZVCMDJPBJCM-UHFFFAOYSA-N 1,1,1,3,3,3-hexafluoropropan-2-one;trihydrate Chemical compound O.O.O.FC(F)(F)C(=O)C(F)(F)F.FC(F)(F)C(=O)C(F)(F)F VAIZVCMDJPBJCM-UHFFFAOYSA-N 0.000 description 3
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- 229920001661 Chitosan Polymers 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- 229910019142 PO4 Inorganic materials 0.000 description 3
- 150000001298 alcohols Chemical class 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 125000002057 carboxymethyl group Chemical group [H]OC(=O)C([H])([H])[*] 0.000 description 3
- 238000005266 casting Methods 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- HRYZWHHZPQKTII-UHFFFAOYSA-N chloroethane Chemical compound CCCl HRYZWHHZPQKTII-UHFFFAOYSA-N 0.000 description 3
- 230000007515 enzymatic degradation Effects 0.000 description 3
- 229960003750 ethyl chloride Drugs 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 230000007062 hydrolysis Effects 0.000 description 3
- 238000006460 hydrolysis reaction Methods 0.000 description 3
- 210000004379 membrane Anatomy 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 230000000144 pharmacologic effect Effects 0.000 description 3
- 239000010452 phosphate Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- UCTWMZQNUQWSLP-VIFPVBQESA-N (R)-adrenaline Chemical compound CNC[C@H](O)C1=CC=C(O)C(O)=C1 UCTWMZQNUQWSLP-VIFPVBQESA-N 0.000 description 2
- 229930182837 (R)-adrenaline Natural products 0.000 description 2
- RKDVKSZUMVYZHH-UHFFFAOYSA-N 1,4-dioxane-2,5-dione Chemical compound O=C1COC(=O)CO1 RKDVKSZUMVYZHH-UHFFFAOYSA-N 0.000 description 2
- CNIIGCLFLJGOGP-UHFFFAOYSA-N 2-(1-naphthalenylmethyl)-4,5-dihydro-1H-imidazole Chemical compound C=1C=CC2=CC=CC=C2C=1CC1=NCCN1 CNIIGCLFLJGOGP-UHFFFAOYSA-N 0.000 description 2
- GIKNHHRFLCDOEU-UHFFFAOYSA-N 4-(2-aminopropyl)phenol Chemical compound CC(N)CC1=CC=C(O)C=C1 GIKNHHRFLCDOEU-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- ULGZDMOVFRHVEP-RWJQBGPGSA-N Erythromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)C(=O)[C@H](C)C[C@@](C)(O)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 ULGZDMOVFRHVEP-RWJQBGPGSA-N 0.000 description 2
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 2
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N Lactic Acid Natural products CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 235000019483 Peanut oil Nutrition 0.000 description 2
- 229930182555 Penicillin Natural products 0.000 description 2
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 230000002924 anti-infective effect Effects 0.000 description 2
- 229940088710 antibiotic agent Drugs 0.000 description 2
- 229960005475 antiinfective agent Drugs 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 239000002775 capsule Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 210000000795 conjunctiva Anatomy 0.000 description 2
- 239000003433 contraceptive agent Substances 0.000 description 2
- 230000002254 contraceptive effect Effects 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 210000003717 douglas' pouch Anatomy 0.000 description 2
- OVXQHPWHMXOFRD-UHFFFAOYSA-M ecothiopate iodide Chemical compound [I-].CCOP(=O)(OCC)SCC[N+](C)(C)C OVXQHPWHMXOFRD-UHFFFAOYSA-M 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229960005139 epinephrine Drugs 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 230000035558 fertility Effects 0.000 description 2
- 210000001035 gastrointestinal tract Anatomy 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 150000004676 glycans Chemical class 0.000 description 2
- JYGXADMDTFJGBT-VWUMJDOOSA-N hydrocortisone Chemical compound O=C1CC[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 JYGXADMDTFJGBT-VWUMJDOOSA-N 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 230000003301 hydrolyzing effect Effects 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 238000002329 infrared spectrum Methods 0.000 description 2
- 208000007106 menorrhagia Diseases 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 230000003204 osmotic effect Effects 0.000 description 2
- 239000000312 peanut oil Substances 0.000 description 2
- 229940049954 penicillin Drugs 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 229940100008 phospholine iodide Drugs 0.000 description 2
- 229920001282 polysaccharide Polymers 0.000 description 2
- 239000005017 polysaccharide Substances 0.000 description 2
- 229960005205 prednisolone Drugs 0.000 description 2
- OIGNJSKKLXVSLS-VWUMJDOOSA-N prednisolone Chemical compound O=C1C=C[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 OIGNJSKKLXVSLS-VWUMJDOOSA-N 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 150000003431 steroids Chemical class 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 210000002784 stomach Anatomy 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- 229960005294 triamcinolone Drugs 0.000 description 2
- GFNANZIMVAIWHM-OBYCQNJPSA-N triamcinolone Chemical compound O=C1C=C[C@]2(C)[C@@]3(F)[C@@H](O)C[C@](C)([C@@]([C@H](O)C4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 GFNANZIMVAIWHM-OBYCQNJPSA-N 0.000 description 2
- 229940088594 vitamin Drugs 0.000 description 2
- 239000011782 vitamin Substances 0.000 description 2
- 229930003231 vitamin Natural products 0.000 description 2
- 235000013343 vitamin Nutrition 0.000 description 2
- GOWMBYUZXIZENX-CAUSLRQDSA-N 1-[(2r,3s,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-4-(hexadecylamino)pyrimidin-2-one Chemical compound O=C1N=C(NCCCCCCCCCCCCCCCC)C=CN1[C@H]1[C@@H](O)[C@H](O)[C@@H](CO)O1 GOWMBYUZXIZENX-CAUSLRQDSA-N 0.000 description 1
- QSAVEGSLJISCDF-UHFFFAOYSA-N 2-hydroxy-2-phenylacetic acid (1,2,2,6-tetramethyl-4-piperidinyl) ester Chemical compound C1C(C)(C)N(C)C(C)CC1OC(=O)C(O)C1=CC=CC=C1 QSAVEGSLJISCDF-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- YKFROQCFVXOUPW-UHFFFAOYSA-N 4-(methylthio) aniline Chemical compound CSC1=CC=C(N)C=C1 YKFROQCFVXOUPW-UHFFFAOYSA-N 0.000 description 1
- CDXHOBQTVYVWHA-UHFFFAOYSA-N 4-amino-n-(5-methyl-1,3,4-thiadiazol-2-yl)benzenesulfonimidic acid Chemical compound S1C(C)=NN=C1N=S(O)(=O)C1=CC=C(N)C=C1 CDXHOBQTVYVWHA-UHFFFAOYSA-N 0.000 description 1
- 229930000680 A04AD01 - Scopolamine Natural products 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 108010001478 Bacitracin Proteins 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- XNHCDVBCPNNANQ-MEVVYUPBSA-N CC(=O)N[C@H]1C(O)O[C@H](COCC(O)=O)[C@@H](O)[C@@H]1O Chemical compound CC(=O)N[C@H]1C(O)O[C@H](COCC(O)=O)[C@@H](O)[C@@H]1O XNHCDVBCPNNANQ-MEVVYUPBSA-N 0.000 description 1
- 235000021538 Chard Nutrition 0.000 description 1
- 239000004099 Chlortetracycline Substances 0.000 description 1
- XZMCDFZZKTWFGF-UHFFFAOYSA-N Cyanamide Chemical compound NC#N XZMCDFZZKTWFGF-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 240000002989 Euphorbia neriifolia Species 0.000 description 1
- 206010015946 Eye irritation Diseases 0.000 description 1
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 239000001828 Gelatine Substances 0.000 description 1
- 108010026389 Gramicidin Proteins 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 1
- STECJAGHUSJQJN-GAUPFVANSA-N Hyoscine Natural products C1([C@H](CO)C(=O)OC2C[C@@H]3N([C@H](C2)[C@@H]2[C@H]3O2)C)=CC=CC=C1 STECJAGHUSJQJN-GAUPFVANSA-N 0.000 description 1
- XQFRJNBWHJMXHO-RRKCRQDMSA-N IDUR Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(I)=C1 XQFRJNBWHJMXHO-RRKCRQDMSA-N 0.000 description 1
- GZENKSODFLBBHQ-ILSZZQPISA-N Medrysone Chemical compound C([C@@]12C)CC(=O)C=C1[C@@H](C)C[C@@H]1[C@@H]2[C@@H](O)C[C@]2(C)[C@@H](C(C)=O)CC[C@H]21 GZENKSODFLBBHQ-ILSZZQPISA-N 0.000 description 1
- IJHNSHDBIRRJRN-UHFFFAOYSA-N N,N-dimethyl-3-phenyl-3-(2-pyridinyl)-1-propanamine Chemical compound C=1C=CC=NC=1C(CCN(C)C)C1=CC=CC=C1 IJHNSHDBIRRJRN-UHFFFAOYSA-N 0.000 description 1
- STECJAGHUSJQJN-UHFFFAOYSA-N N-Methyl-scopolamin Natural products C1C(C2C3O2)N(C)C3CC1OC(=O)C(CO)C1=CC=CC=C1 STECJAGHUSJQJN-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- 229930193140 Neomycin Natural products 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 239000004100 Oxytetracycline Substances 0.000 description 1
- 108010040201 Polymyxins Proteins 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- LRJOMUJRLNCICJ-JZYPGELDSA-N Prednisolone acetate Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(=O)COC(=O)C)(O)[C@@]1(C)C[C@@H]2O LRJOMUJRLNCICJ-JZYPGELDSA-N 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- NHUHCSRWZMLRLA-UHFFFAOYSA-N Sulfisoxazole Chemical compound CC1=NOC(NS(=O)(=O)C=2C=CC(N)=CC=2)=C1C NHUHCSRWZMLRLA-UHFFFAOYSA-N 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- BGDKAVGWHJFAGW-UHFFFAOYSA-N Tropicamide Chemical compound C=1C=CC=CC=1C(CO)C(=O)N(CC)CC1=CC=NC=C1 BGDKAVGWHJFAGW-UHFFFAOYSA-N 0.000 description 1
- 206010000269 abscess Diseases 0.000 description 1
- BZKPWHYZMXOIDC-UHFFFAOYSA-N acetazolamide Chemical compound CC(=O)NC1=NN=C(S(N)(=O)=O)S1 BZKPWHYZMXOIDC-UHFFFAOYSA-N 0.000 description 1
- 229960000571 acetazolamide Drugs 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000001800 adrenalinergic effect Effects 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 229940037003 alum Drugs 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 229940035674 anesthetics Drugs 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- REYFJDPCWQRWAA-UHFFFAOYSA-N antazoline Chemical compound N=1CCNC=1CN(C=1C=CC=CC=1)CC1=CC=CC=C1 REYFJDPCWQRWAA-UHFFFAOYSA-N 0.000 description 1
- 229960002469 antazoline Drugs 0.000 description 1
- 230000003509 anti-fertility effect Effects 0.000 description 1
- 229940121363 anti-inflammatory agent Drugs 0.000 description 1
- 239000002260 anti-inflammatory agent Substances 0.000 description 1
- 230000003110 anti-inflammatory effect Effects 0.000 description 1
- 230000002421 anti-septic effect Effects 0.000 description 1
- 229940055075 anticholinesterase parasympathomimetics Drugs 0.000 description 1
- 229940064004 antiseptic throat preparations Drugs 0.000 description 1
- 239000003443 antiviral agent Substances 0.000 description 1
- 229940121357 antivirals Drugs 0.000 description 1
- 229960003071 bacitracin Drugs 0.000 description 1
- 229930184125 bacitracin Natural products 0.000 description 1
- CLKOFPXJLQSYAH-ABRJDSQDSA-N bacitracin A Chemical compound C1SC([C@@H](N)[C@@H](C)CC)=N[C@@H]1C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]1C(=O)N[C@H](CCCN)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC=2N=CNC=2)C(=O)N[C@H](CC(O)=O)C(=O)N[C@@H](CC(N)=O)C(=O)NCCCC1 CLKOFPXJLQSYAH-ABRJDSQDSA-N 0.000 description 1
- 235000013871 bee wax Nutrition 0.000 description 1
- 239000012166 beeswax Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 229960004484 carbachol Drugs 0.000 description 1
- AIXAANGOTKPUOY-UHFFFAOYSA-N carbachol Chemical compound [Cl-].C[N+](C)(C)CCOC(N)=O AIXAANGOTKPUOY-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000004181 carboxyalkyl group Chemical group 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000013043 chemical agent Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229960005091 chloramphenicol Drugs 0.000 description 1
- WIIZWVCIJKGZOK-RKDXNWHRSA-N chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 description 1
- FOCAUTSVDIKZOP-UHFFFAOYSA-N chloroacetic acid Chemical compound OC(=O)CCl FOCAUTSVDIKZOP-UHFFFAOYSA-N 0.000 description 1
- CYDMQBQPVICBEU-UHFFFAOYSA-N chlorotetracycline Natural products C1=CC(Cl)=C2C(O)(C)C3CC4C(N(C)C)C(O)=C(C(N)=O)C(=O)C4(O)C(O)=C3C(=O)C2=C1O CYDMQBQPVICBEU-UHFFFAOYSA-N 0.000 description 1
- 229960003291 chlorphenamine Drugs 0.000 description 1
- SOYKEARSMXGVTM-UHFFFAOYSA-N chlorphenamine Chemical compound C=1C=CC=NC=1C(CCN(C)C)C1=CC=C(Cl)C=C1 SOYKEARSMXGVTM-UHFFFAOYSA-N 0.000 description 1
- 229960004475 chlortetracycline Drugs 0.000 description 1
- CYDMQBQPVICBEU-XRNKAMNCSA-N chlortetracycline Chemical compound C1=CC(Cl)=C2[C@](O)(C)[C@H]3C[C@H]4[C@H](N(C)C)C(O)=C(C(N)=O)C(=O)[C@@]4(O)C(O)=C3C(=O)C2=C1O CYDMQBQPVICBEU-XRNKAMNCSA-N 0.000 description 1
- 235000019365 chlortetracycline Nutrition 0.000 description 1
- 230000001713 cholinergic effect Effects 0.000 description 1
- 239000000544 cholinesterase inhibitor Substances 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- ALEXXDVDDISNDU-JZYPGELDSA-N cortisol 21-acetate Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(=O)COC(=O)C)(O)[C@@]1(C)C[C@@H]2O ALEXXDVDDISNDU-JZYPGELDSA-N 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 239000000850 decongestant Substances 0.000 description 1
- 229940124581 decongestants Drugs 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 239000007857 degradation product Substances 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- YHKBUDZECQDYBR-UHFFFAOYSA-L demecarium bromide Chemical compound [Br-].[Br-].C=1C=CC([N+](C)(C)C)=CC=1OC(=O)N(C)CCCCCCCCCCN(C)C(=O)OC1=CC=CC([N+](C)(C)C)=C1 YHKBUDZECQDYBR-UHFFFAOYSA-L 0.000 description 1
- 229960003715 demecarium bromide Drugs 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 229960003957 dexamethasone Drugs 0.000 description 1
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 description 1
- 230000001079 digestive effect Effects 0.000 description 1
- 230000000857 drug effect Effects 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 229960003276 erythromycin Drugs 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 230000006203 ethylation Effects 0.000 description 1
- 238000006200 ethylation reaction Methods 0.000 description 1
- 229950002420 eucatropine Drugs 0.000 description 1
- 231100000013 eye irritation Toxicity 0.000 description 1
- 210000000744 eyelid Anatomy 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- DWYMPOCYEZONEA-UHFFFAOYSA-L fluoridophosphate Chemical compound [O-]P([O-])(F)=O DWYMPOCYEZONEA-UHFFFAOYSA-L 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000008098 formaldehyde solution Substances 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000005227 gel permeation chromatography Methods 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 239000003193 general anesthetic agent Substances 0.000 description 1
- 239000012362 glacial acetic acid Substances 0.000 description 1
- 229960004905 gramicidin Drugs 0.000 description 1
- ZWCXYZRRTRDGQE-SORVKSEFSA-N gramicidina Chemical compound C1=CC=C2C(C[C@H](NC(=O)[C@@H](CC(C)C)NC(=O)[C@H](CC=3C4=CC=CC=C4NC=3)NC(=O)[C@@H](CC(C)C)NC(=O)[C@H](CC=3C4=CC=CC=C4NC=3)NC(=O)[C@@H](CC(C)C)NC(=O)[C@H](CC=3C4=CC=CC=C4NC=3)NC(=O)[C@H](C(C)C)NC(=O)[C@H](C(C)C)NC(=O)[C@@H](C(C)C)NC(=O)[C@H](C)NC(=O)[C@H](NC(=O)[C@H](C)NC(=O)CNC(=O)[C@@H](NC=O)C(C)C)CC(C)C)C(=O)NCCO)=CNC2=C1 ZWCXYZRRTRDGQE-SORVKSEFSA-N 0.000 description 1
- 239000000416 hydrocolloid Substances 0.000 description 1
- 229960000890 hydrocortisone Drugs 0.000 description 1
- 229960001067 hydrocortisone acetate Drugs 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 1
- 229950005360 hydroxyamfetamine Drugs 0.000 description 1
- 229960004716 idoxuridine Drugs 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 229910052806 inorganic carbonate Inorganic materials 0.000 description 1
- 210000000936 intestine Anatomy 0.000 description 1
- 230000007794 irritation Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229960001011 medrysone Drugs 0.000 description 1
- 229960000582 mepyramine Drugs 0.000 description 1
- YECBIJXISLIIDS-UHFFFAOYSA-N mepyramine Chemical compound C1=CC(OC)=CC=C1CN(CCN(C)C)C1=CC=CC=N1 YECBIJXISLIIDS-UHFFFAOYSA-N 0.000 description 1
- 229960001869 methapyrilene Drugs 0.000 description 1
- HNJJXZKZRAWDPF-UHFFFAOYSA-N methapyrilene Chemical compound C=1C=CC=NC=1N(CCN(C)C)CC1=CC=CS1 HNJJXZKZRAWDPF-UHFFFAOYSA-N 0.000 description 1
- 230000003547 miosis Effects 0.000 description 1
- 239000003604 miotic agent Substances 0.000 description 1
- 210000004877 mucosa Anatomy 0.000 description 1
- 229960005016 naphazoline Drugs 0.000 description 1
- 229960004927 neomycin Drugs 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- IAIWVQXQOWNYOU-FPYGCLRLSA-N nitrofural Chemical compound NC(=O)N\N=C\C1=CC=C([N+]([O-])=O)O1 IAIWVQXQOWNYOU-FPYGCLRLSA-N 0.000 description 1
- 229960001907 nitrofurazone Drugs 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- 229960000625 oxytetracycline Drugs 0.000 description 1
- IWVCMVBTMGNXQD-PXOLEDIWSA-N oxytetracycline Chemical compound C1=CC=C2[C@](O)(C)[C@H]3[C@H](O)[C@H]4[C@H](N(C)C)C(O)=C(C(N)=O)C(=O)[C@@]4(O)C(O)=C3C(=O)C2=C1O IWVCMVBTMGNXQD-PXOLEDIWSA-N 0.000 description 1
- 235000019366 oxytetracycline Nutrition 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 229960001190 pheniramine Drugs 0.000 description 1
- 229960001802 phenylephrine Drugs 0.000 description 1
- SONNWYBIRXJNDC-VIFPVBQESA-N phenylephrine Chemical compound CNC[C@H](O)C1=CC=CC(O)=C1 SONNWYBIRXJNDC-VIFPVBQESA-N 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- HZOTZTANVBDFOF-PBCQUBLHSA-N physostigmine salicylate Chemical compound OC(=O)C1=CC=CC=C1O.C12=CC(OC(=O)NC)=CC=C2N(C)[C@@H]2[C@@]1(C)CCN2C HZOTZTANVBDFOF-PBCQUBLHSA-N 0.000 description 1
- 229960002139 pilocarpine hydrochloride Drugs 0.000 description 1
- RNAICSBVACLLGM-GNAZCLTHSA-N pilocarpine hydrochloride Chemical compound Cl.C1OC(=O)[C@@H](CC)[C@H]1CC1=CN=CN1C RNAICSBVACLLGM-GNAZCLTHSA-N 0.000 description 1
- 229960001963 pilocarpine nitrate Drugs 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 238000003918 potentiometric titration Methods 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 229960002800 prednisolone acetate Drugs 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 210000000664 rectum Anatomy 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- YGSDEFSMJLZEOE-UHFFFAOYSA-M salicylate Chemical compound OC1=CC=CC=C1C([O-])=O YGSDEFSMJLZEOE-UHFFFAOYSA-M 0.000 description 1
- 229960001860 salicylate Drugs 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- STECJAGHUSJQJN-FWXGHANASA-N scopolamine Chemical compound C1([C@@H](CO)C(=O)O[C@H]2C[C@@H]3N([C@H](C2)[C@@H]2[C@H]3O2)C)=CC=CC=C1 STECJAGHUSJQJN-FWXGHANASA-N 0.000 description 1
- 229960002646 scopolamine Drugs 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- JXKPEJDQGNYQSM-UHFFFAOYSA-M sodium propionate Chemical compound [Na+].CCC([O-])=O JXKPEJDQGNYQSM-UHFFFAOYSA-M 0.000 description 1
- 239000004324 sodium propionate Substances 0.000 description 1
- 235000010334 sodium propionate Nutrition 0.000 description 1
- 229960003212 sodium propionate Drugs 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000007928 solubilization Effects 0.000 description 1
- 238000005063 solubilization Methods 0.000 description 1
- 229960002673 sulfacetamide Drugs 0.000 description 1
- SKIVFJLNDNKQPD-UHFFFAOYSA-N sulfacetamide Chemical compound CC(=O)NS(=O)(=O)C1=CC=C(N)C=C1 SKIVFJLNDNKQPD-UHFFFAOYSA-N 0.000 description 1
- 229960000654 sulfafurazole Drugs 0.000 description 1
- 229940124530 sulfonamide Drugs 0.000 description 1
- 150000003456 sulfonamides Chemical class 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 229940095064 tartrate Drugs 0.000 description 1
- IWVCMVBTMGNXQD-UHFFFAOYSA-N terramycin dehydrate Natural products C1=CC=C2C(O)(C)C3C(O)C4C(N(C)C)C(O)=C(C(N)=O)C(=O)C4(O)C(O)=C3C(=O)C2=C1O IWVCMVBTMGNXQD-UHFFFAOYSA-N 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 229960004791 tropicamide Drugs 0.000 description 1
- 210000004291 uterus Anatomy 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/30—Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
- A61K47/36—Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0048—Eye, e.g. artificial tears
- A61K9/0051—Ocular inserts, ocular implants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/20—Pills, tablets, discs, rods
- A61K9/2004—Excipients; Inactive ingredients
- A61K9/2022—Organic macromolecular compounds
- A61K9/205—Polysaccharides, e.g. alginate, gums; Cyclodextrin
Definitions
- the time of release of medicaments or drugs can be in part controlled by incorporating the drugs in a matrix of an enzymatically degradable form of poly(N-acetyl-D-glucosamine) so that said form is slowly enzymatically degraded over a period of time by body fluids and the drug is released into the body fluids at the time of use for a longer period than the drug would be released without the matrix carrier.
- OSMOTIC FLUID RESER- VOIR FOR OSMOTICALLY ACTIVATED LONG- TERM CONTINUOUS INJECTOR DEVICE osmotic pressure is used to propel a piston system so that a drug is slowly injected.
- Example l4 discloses a bioerodible ocular insert containing pilocarpine free base using a matrix of polyglycolic acid. Pilocarpine is mixed with polyvinyl alcohol and used as a core between two sheets of polyglycolic acid. (see page I 12). Page discloses polyesters of lactic and glycolic acid as a carrier.
- Page 73, line ll mentions chitin among other polysaccharides and plant hydrocolloids. Presumably, the reference is to the naturally occurring form of chitin.
- Claim 5 is drawn to bioerodibility by enzymatic cleavage.
- Claim 14 is drawn to cross-linked gelatin.
- Claim 50 is drawn to polylactic 0r polyglycolic release rate controlling materials.
- Carboxymethylchitin is disclosed in Carbohyd. Res. 7, 483-485 (1968), Ralph Trujillo.
- Chitin has been estimated to be the second most abundant polysaccharide in nature with a synthesis in the neighborhood of a billion tons a year by marine organisms. See Chitin, N. V. Tracey, Reviews of Pure and Applied Chemistry, Royal Australian Chemical Institute, Vol. 7, No. l, March I957, pages I to l4.
- PAG poly( N-acetyl-D-glucosamine) sometimes herein abbreviated as PAG
- PAG poly( N-acetyl-D-glucosamine)
- the enzyme lysozyme is particularly effective in the enzymatic degradation of the biodegradable forms of PAG.
- Various forms of PAG may have different degradation rates, and the degradation rate may vary with the location of the drug release device.
- an ocular insert may be designed to be placed adjacent to the eyeball inside the eyelid, in the cul-desac of the conjunctiva between the schlera of the eyeball and the lid.
- An insert needs to be soft so that it will cause a minimum of irritation to the eyeball and the degradation products are preferably such that they may be washed away by the flow of tears without the necessity for removal of the device after its drug content has been delivered.
- chitin is used herein to refer to the various although ll l5 be lmdel'smod that the device in naturally occurring forms of chitin including the promany form ay b0 used n Other lOCflllOHS tein and inorganic carbonate components.
- N-acetyl-D-glucosamine ha he form purified chitin is used to refer to chitin after purifica- 6 tion to remove calcium carbonate and other inorganic H OH salts and various proteins which may be present and is K essentially poly(N-acetyl-D-glucosamine).
- H used as a name for poly( N-acctyl-D-glucosamine) with- H 1 out specifying whether it is a naturally occurring material containing inorganic salts and proteins or whether H 3 E the term is intended to designate purified poly(N-acetu 5 yl-D'glucosamine) without specifying the degree of pu- O rity or the character of the impurities present.
- poly( N- acctyl-D-glucosamine) refers both to the purified poly( N-acetyl-D-glucosamine) from chitin itself as well as the carboxymethyl, hydroxyethyl, and O-ethyl derivatives, etc.
- the carboxymethyl derivative properly called poly[- N-acetyl-6-O-( carboxymethyl )-D-glucosamine] has the formula a, 0011 COOH NHAc NHAc v cH 00H coon
- the hydroxyethyl derivative, properly called poly[N- Groups below the plane of the paper are shown by a y y y y g has thc dotted bondv formula H OCH CH OH HQ NHAC l I W o I 0 We cm ocH 0H, OH
- P0ly(N-acetyl-D-glucosamine) has ascribed to it the The O-ethyl derivative. properly called poly-[N- formula (ring hydrogens omitted for clarity) acetyl-G-O-(ethyl)-D-glucosamine] has the formula 6 (3H. OH
- carboxymethylation, hydroxyethylation, or ethylation may not be l71 and may in part occur on the 3-hydroxyl.
- under or over-substitution of the poly[ N-acetyl-6-0-( carboxymethyl )-D-glucosamine] is to be included as a biodegradable form of PAS.
- the solubility in a specified solvent is one test of the degree of substitution.
- the ()-ethyl derivative is water soluble when the ethyl group to glucosamine ratio is about i and organic soluble when the degree of substitution is greater than 1.
- drug is used to refer to a substance other than a food intended to affect the structure or function of the body of man or other animal.
- the term is some what broader than medicine in that the term medicine" is sometimes considered to be restricted to an agent which is administered to affect or control a pathogenic condition.
- the broader term drug here is also used to include steroids and other fertility controlling agents which may be incorporated in an intrauterine contraceptive device or other materials which may be included to affect the fertility of females or males either as an intrauterine device or subcutaneously.
- dispensing is used to designate a method of administering a drug to man or other animal and includes the release of the drug to a desired location.
- the release over a prolonged period of time designates any decrease in the release rate of the drug over that which would be expected if the drug were administered alone and would include from the matter of a few minutes as, for example, in an ocular insert containing pilocarpine to a duration of six months to a year which might be desired for the administration of a steroid in an intrauterine contraceptive device.
- a longer period of administration such as the lifetime of the patient, could be desired but usually a period of a very few hours up to about six months includes the medically preferred range.
- the enzymatically degradable form of poly-(N-acetyl-D-glucosamine) is a solid which can be removed, a longacting repository pellet for insertion beneath the skin is quite practical as if for any medical reason it is desired to discontinue administration of the drug, the insert with the remaining drug charge may be removed simply by excision.
- enzymatically degradable refers to a form of poly( N-acetyl-D-glucosamine) or its derivatives which is broken down into body fluid soluble components and which are washed out as in tears, or transported elsewhere by tears, or other body fluid, and later degraded further or metabolized by the body or excreted by the body.
- the problem of retention by the body or disposal of the residual matrix is minimal or non-existent.
- Lysozyme occurs in practically all of the body fluids, particularly the tears, and effectively breaks down the polymer chain to water soluble or disposable components.
- Chitosan which is a common name for the deacylated form of poly(N-acetyl-D-glucosamine), and which is poly(D-glucosamine) is not enzymatically degradable by lysozyme.
- poly( N-acetyl-D-glucosamine) are not readily hydrolyzed by water.
- I in a phosphate buffer at pH 7.2 at 37C for 24 hours is not hydrolyzed whereas under the same time and temperature in the presence of lysozyme hydrolysis occurs,
- any of the drugs used to treat the eye and surrounding tissues can be incorporated with the enzymatically degradable form of PAG of this invention.
- drugs which will pass through the eye or the tissue surrounding the eye to the bloodstream, but which are not used in therapy of the eye itself can be incorporated in the enzymatically degradable PAG matrix.
- Suitable drugs for use in therapy of the eye with the present insert include, without limitation: Antiinfectives: such as antibiotics, including tetracycline, chlortetracycline, bacitracin, neomycin, polymyxin, gramicidin, oxytetracycline, chloramphenicol, and erythromycin; sulfonamides, including sulfacetamide, sulfamethazole, and sulfisoxazole; antivirals, including idoxuridine; and other anti-infectives including nitrofurazone and sodium propionate; Antiallergenics such as antazoline, methapyrilene, chlorpheniramine, pyrilamine and prophenpyridamine; Anti-inflammatories such as hydrocortisone, hydrocortisone acetate, dexamethasone, triamcinolone, medrysone, prednisolone, prednisolone 2l-phosphate and prednisol
- Decongestants such as phenylephrine, naphazoline, and tetrahydrazoline', Miotics and anticholinesterases such as pilocarpine, eserine salicylate, carbachol, disopropyl fluorophosphate, phospholine iodide, and demecarium bromide; matropine, scopolamine, tropicamide, eucatropine, and hydroxyamphetamine and sympathominetics such as epinephrine.
- Miotics and anticholinesterases such as pilocarpine, eserine salicylate, carbachol, disopropyl fluorophosphate, phospholine iodide, and demecarium bromide
- matropine, scopolamine, tropicamide, eucatropine, and hydroxyamphetamine and sympathominetics such as epinephrine.
- Drugs can be in various forms, such as unchanged molecules, components of molecular complexes, or nonir ritating, pharmacologically acceptable salts, such as hydrochloride, hydrobromide, sulfate, phosphate, nitrate, borate, acetate, maleate, tartrate, salicylate, etc. Furthermore. simple derivatives of the drugs (such as ethers, esters.
- the amount of drug incorporated in the ocular insert varies widely, depending on the particular drug, the desired therapeutic effect, and the time span for which the ocular insert will be used. Since the ocular insert is intended to provide the complete dosage regime for eye therapy for but a particular time span, such as 24 hours, there is no critical upper limit on the amount of drug incorporated in the device. The lower limit will depend on the activity of the drug and its capability of being released from the device. Thus, it is not practical to define a range for the therapeutically effective amount of drug incorporated into the device. However, typically, from I mi crogram to l milligram of drug is incorporated in each insert.
- the polymeric material used to form the ocular insert is chosen for its compatibility with a particular drug and its capability of releasing that drug at an appropriate rate over a prolonged period of time.
- specific, but nonlimiting, examples of combinations of drugs and polymers for use in forming the ocular insert include: poly- N-acetyl-6-O-(carboxymethyl )-D- glucosamine] and epinephrine; poly[N-acetyl-6-0- (carboxymethyl)-D-glucosamine] and mixture of pilocarpine hydrochloride and epiniphrine; poly[Nacetyl- 64H 2 '-hydroxyethyl )-D-glucosamine] and acetazolamide; poly[N-acetyl-b-(J-(ethyl)'D-glucosamine] and phospholine iodide; poly[N-acetyl-fi-(carboxymethyl)-D-glucos
- the degradation rate of the enzymatically degradable form of poly(N-acetyl-D-glucosamine) can be lowered by cross-linking, if a slower release rate is preferred.
- the ocular insert can be fabricated in any convenient shape for comfortable retention in the cul-de-sac. It is important. however, that the device have no sharp, jagged. or rough edges which can irritate the sensitive tissues of the eye.
- the marginal outline of the ocular insert can be ellipsoidal, bean-shaped, rectangular, etc. in cross section, it can be concavo-convex, rectangular, etc.
- the ocular insert is flexible and, in use, will assume essentially the configuration of the seleral curvature, the original shape of the device is not of controlling importance. Dimensions of the device can vary widely.
- the lower limit on the size of the device is governed by the amount of the particular drug to be applied to the eye and surrounding tissues to elicit the de sired pharmacological response, as well as by the smallest sized device which conveniently can be inserted and removed from the eye.
- the upper limit on the size of the device is governed by the limited space within the cul de-sac that conveniently and comfortably can be filled with an ocular insert.
- the ocular insert is 4 to millimeters in length, l to 12 millimeters in width, and 0.l to l millimeter in thickness.
- it is ellipsoidal in shape and about 6 X 4 X 0.5 millimeters in size.
- the matrix containing the drug of the present invention can include other drugs for other areas.
- a tablet of a size and shape adapted to being swallowed is preferred.
- a tablet or rod such that it may be placed under the skin in an appropriate location is selected. The amount of drug and the time over which it is to be dispensed are controlling in the choice of size of the implant.
- the drug may be combined with the enzymatically degradable form of PAG matrix in any convenient way, it is particularly convenient to dissolve both in a common solvent which permits casting of the enzymatically degradable form of PAG as a matrix containing the drug to be dispersed therein.
- HIPA hexafluoroisopropanol
- HFAS hexafluoroacetone sesquihydrate
- N-acetyl-6-()-( carboxymethyl )-D- glucosamine], l, poly[N-acetyl-(J-O-(2'-hydroxyethyl) D-glucosamine], ll, and poly[N-acetyl-6-O (ethyl J-D- glucosamine], III, are preferred because of cosolubility with many drugs in common solvents, including water. Non-toxic solvents are preferred.
- l and II are water soluble at the 5% level, and III is water soluble at the 5% level if the degree of substitution is not more than about 1, and organic solvent soluble if more than about 1.
- Organic solvents may be used such as alcohols, chloroform, benzene, toluene, mix tures of benzene and toluene with alcohols and l e tones.
- Pilocarpine or other drugs can be incorporated into matrices of these enzymatically degradable forms of PAG by hydrogen bonding, covalent bonding, ionic bonding or simple entrapment.
- the matrices themselves can be variably crosslinked with a variety of physical and chemical agents. They can be sterilized and when hydrated become quite pliable, while retaining adequate strength to resist manipulation.
- EXAMPLE V1 Poly( N-Acetyl-D-Glucosamine) Matrix Membranes of poly(N-acetyl-D-glucosamine) were prepared by dissolving poly(N-acetyl-D-glucosamine) in each of hexafluoroacetone sesquihydrate (1.4% solution) and hexafluoroisopropanol (2% solution).
- the films were tough, transparent, non-tacky, flexible and were quite pliable when hydrated yet retained adequate strength to resist manipulation.
- the membranes showed no hydrolysis after exposure to water for 5 days. In the presence of lysozyme, however, the films were degraded slowly. The films eroded release any drug in the film slowly.
- the autoclave was purged several times with nitrogen and 53.2 ml. of ethylene oxide was added (16 equivalents/equivalent of FAQ). The mixture was held at 50C. for 18 hours. The solution was then carefully neutralized with glacial acetic acid, dialyzed and then lyophilized.
- the hydroxyethyl derivative can be further purified by precipitating the polymer from aqueous solution with acetone.
- a freshly precipitated sample of poly[N- acetyl-6-0-(2'-hydroxyethyl)-D-glucosamine] readily dissolved in water. 5% aqueous sodium hydroxide, and 3% acetic acid and is precipitated from these solutions by acetone.
- Samples analyzed for C, H and N showed the composition to be one in which 1.5 hydroxyethyl groups had been substituted per glucosamine residue.
- the ethylchloride was mixed with benzene (75% of the amount of ethylchloride).
- the reaction time was 10 hours and the temperature was controlled as follows: 1 hour heating up to 60C.. 1 hour heating up to 80C., 1 hour heating up to lC. and 7 hours at 130C.
- An organic solvent soluble product was obtained.
- the following solvents are useful for solubilization (5% solution) of this polymer at room temperature: 0-xylene. benzene,
- toluene methylethyl ketone. 1.4 mixture of alcohol and benzene. chlorofomi and alcohols.
- the drug is bound ionically to the polymer.
- the attractive features of such a system are l slower drug delivery and (2) capability of delivering piloearpine as a free base which. as such. has a higher potency.
- piloearpine as the free base since it is unstable in this form and as a result is 0 usually delivered as the hydrochloride or nitrate salt.
- Effective medication for a treatment day is obtained by placing an insert 1 mm by l0 mm in the human eye.
- a method of dispensing an eye drug over a pro longed period of time comprising inserting in the conjunctival sac of the eye a bioerodible enzymatically cleavable occular insert which is shaped to conform to the curvature of the eye and is adapted for insertion and retention in the conjunctival sac of the eye of an eye drug intimately dispersed in an uncoated matrix directly contacting the conjunctival sac of the eye of an enzymatically degradable form of poly( N-acetyl-D- glucosamine) selected from the group consisting of poly[ N-acetyl-6-O-(carboxymethyl )-D-glucosamine poly[ N-acetyl-6-0-( 2'-hydroxyethyl )-D-glucosamine, and poly[ N-acetyl-6-0-( ethyl )-D-glucosamine whereby the said form of poly(N-acetyl-
- An enzymatically degradable bioerodible eye drug delivery occular insert device which is shaped to conform to the eye and is adapted for insertion and retention in the conjunctival sac of the eye for administering an eye drug to the eye of a living mammal comprising: an uncoated matrix adapted to directly contact the conjunctival sac of the eye consisting essentially of an enzymatically degradable form of poly(N-aeetyl-D- glucosamine) selected from the group consisting of poly[ N-acetyl6-O-( carboxymethyl )'D-glucosamine poly[ N-acetyl-6-0-( 2 '-hydroxyethyl )-D-glucosamine 1.
- a method for dispensing a free base form of an eye drug over a prolonged period of time comprising inserting in the conjunctiva] sac of the eye a bioerodible enzymatically cleavable oecular insert which is shaped to conform to the curvatuve of the eye and is adapted for insertion and retention in the conjunctival sac of the eye of the free base form of an eye drug intimately dispersed in and ionically bound to an enzymatically degradable form of poly[N-acetyl-6-()-(carhoxymethyl)- D-glucosamine], whereby the said poly[N-acetyl-6-()- carboxymethyl)-D-glucosamine] is slowly enzymatibase form of an at least slightly water soluble eye drug.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Medicinal Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Ophthalmology & Optometry (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicinal Preparation (AREA)
- Saccharide Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
A controlled release insert for a living eye consisting of a biologically effective form of pilocarpine and a biologically inert biodegradable carrier consisting essentially of poly(Nacetyl-6-O-(carboxymethyl)-D-glucosamine) gives effective treatment to the human eye for prolonged periods. Other medicaments and other enzymatically degradable forms of poly(Nacetyl-D-glucosamine) may be used for rate controlled release in the eye and other areas.
Description
United States Patent Capozza Oct. 7, 1975 1 MEDICAMENT CARRIER OTHER PUBLICATIONS [75] Inventor: R'chard Carl Capella Norwalk' Worden Rayon Textile Monthyl, Sept. 1941, XXIKQ),
Conn p 49 Developments in Organic NonCellulosic Fi- {731 Assignee: American Cyanamid Company, bmus Materials-v Stamford, Conn Chem. Abstracts 79 No. 32258n, (1973). [22] Filed: Febll 974 Chem. Abstracts 73 No. 43828011970),
l l pp NO-i 441,6 5 Primary ExaminerShep K. Rose Attorney, Agent, or FirmSamuel Branch Walker [52] US. Cl. 424/22; 128/260; 424/19 1511 1111. C1. A61K 9/52 1 1 ABSTRACT [53] Field of Search 128/260 3355; A controlled release insert for a living eye consisting 424/l922 of a biologically effective form of pilocarpine and a biologically inert biodegradable carrier consisting es 1 Retflences Clled sentially of polylN-acetyl-6-O-(carboxymethyl)-D- UNITED STATES PATENTS glucosamine] gives effective treatment to the human 2.040379 5/1936 Rigby 260/54 eye for prolonged periods. Other medicaments and 2940,8811 5/1936 Rigby 18/54 other enzymatically degradable forms of poly(N-acet- 2,168,374 8/1939 Thor 1 1 1 260/210 yl-D-glucosamine) may be used for rate controlled re 3,632.754 1/1972 Balassa 1 1 1 1. 424/180 lease in the eye and other areas, 3,736.646 6/1973 Schmitt et al l28/335.5 X 1845.201 10 1974 Huddad et a1, 1. 424/19 6 Clam, N0 Drawmgs MEDICAMENT CARRIER BACKGROUND OF THE INVENTION This invention relates to the controlled release of drugs. The time of release of medicaments or drugs can be in part controlled by incorporating the drugs in a matrix of an enzymatically degradable form of poly(N-acetyl-D-glucosamine) so that said form is slowly enzymatically degraded over a period of time by body fluids and the drug is released into the body fluids at the time of use for a longer period than the drug would be released without the matrix carrier.
The prior art shows many efforts over a long period by many individuals to alter the rate of release of drugs. Where it is considered that drugs may be administered to many areas and for many different conditions and that various drugs have different solubilities in both water and oil, and the period for desired administration may vary from almost instantly to a long period of up to and including years, it can be seen that there is a wide range of medicaments and a wide range of conditions to be controlled.
DESCRIPTION OF THE PRIOR ART US. Pat. No. 2,552,027, Bird and Rochow, May 8, 195], CASTING Gelatine TABLETS, discloses the incorporation of medicaments, particularly vitamins, into a gelatin-glycerine matrix, which are particularly useful for the administration of vitamins or other pharmaceutical materials which should be released in the stomach or digestive tract at comparatively slow rates."
In US. Pat. No. 3,604,417, Stolzenberg and Linkenheimer, Sept. 14, 197] OSMOTIC FLUID RESER- VOIR FOR OSMOTICALLY ACTIVATED LONG- TERM CONTINUOUS INJECTOR DEVICE osmotic pressure is used to propel a piston system so that a drug is slowly injected.
Many coating systems have been used on tablets for enteric release in which various capsules have been coated either as a single tablet or by coating particles in the tablets or capsules so that drugs are released into the stomach or intestine at a controlled rate and for a longer period than would result from the administration of the medicament without such coatings.
US. Pat. No. 3,739,773, Schmitt and Polistina, June 19, 1973, POLYGLYCOLIC ACID PROSTHETIC DEVICES, in Column 6, line 53, refers to polyglycolic acid in combination with other products as slowly digestible drug release devices. This patent in Column 7, lines 47 and following, mentions that dyes, antibiotics, antiseptics, anesthetics, and other materials may be present in polyglycolic acid devices. This last language also appears in Column 3, line 48 and following of US. Pat. No. 3,297,033, Schmitt and Polistina, Jan. l0, I967, SURGICAL SUTURES.
US. Pat. No. 3,435,008, Schmitt, Epstein and Polistina, Mar. 25, I969, METHOD FOR PREPARATION OF ISOMERICALLY PURE B-GLYCOLIDE AND POLYMERIZATION METHOD FOR GLYCOLIDE COMPOSITIONS EMPLOYING PARTIAL HYDRO- LYZATE OF SAID B-GLYCOLIDE in Column 7, line 19 and following, discloses glycolide polymers as coatings for medicaments to alter their digestive characteristics.
U.S. Ser. No. l79,l29, filed Sept. 9, I971, by Takeru Higuchi, Anwar A. Hussain and John W. Shell, and the Netherlands rights to which are assigned to the Alza Corporation, is referred to in the Derwent Publications, LTD. Patent Index, and is available through conventional documents in the file of Netherlands 7,2 l2,272, in Example l4 discloses a bioerodible ocular insert containing pilocarpine free base using a matrix of polyglycolic acid. Pilocarpine is mixed with polyvinyl alcohol and used as a core between two sheets of polyglycolic acid. (see page I 12). Page discloses polyesters of lactic and glycolic acid as a carrier. Page 73, line ll, mentions chitin among other polysaccharides and plant hydrocolloids. Presumably, the reference is to the naturally occurring form of chitin. Claim 5 is drawn to bioerodibility by enzymatic cleavage. Claim 14 is drawn to cross-linked gelatin. Claim 50 is drawn to polylactic 0r polyglycolic release rate controlling materials.
Sterile peanut oil and similar materials have been used as a repository for penicillin for some time. The penicillin is slowly released from the repository. Unfortunately, the peanut oil or beeswax remains behind and is apt to form a sterile abscess rather than be absorbed by tissues.
Carboxymethylchitin is disclosed in Carbohyd. Res. 7, 483-485 (1968), Ralph Trujillo.
This article mentions the hydrolysis of both chitin and carboxymethylchitin by lysozyme.
Chitin has been estimated to be the second most abundant polysaccharide in nature with a synthesis in the neighborhood of a billion tons a year by marine organisms. See Chitin, N. V. Tracey, Reviews of Pure and Applied Chemistry, Royal Australian Chemical Institute, Vol. 7, No. l, March I957, pages I to l4.
The above patents and articles are herein hereby incorporated by this reference thereto for background information on chitin, its properties and derivatives.
Although it is well recognized that systems for the controlled release of drugs are very much in demand, the wide range of requirements is such that useful contributions are still being sought and major efforts are being made by many research organizations to improve drug delivery devices.
SUMMARY OF THE INVENTION It has now been found that enzymatically degradable forms of poly( N-acetyl-D-glucosamine) sometimes herein abbreviated as PAG, are comparatively storage stable and resistant to hydrolytic degradation so that medicaments may be incorporated and stored in a matrix of such biodegradable form of PAG, and the medicament then released in the tissue of living mammals by the enzymatic degradation of the biodegradable form of PAG. The enzyme lysozyme is particularly effective in the enzymatic degradation of the biodegradable forms of PAG. Various forms of PAG may have different degradation rates, and the degradation rate may vary with the location of the drug release device.
Usually it is desired that the drug release device be mechanically acceptable at a location of use. For instance, an ocular insert may be designed to be placed adjacent to the eyeball inside the eyelid, in the cul-desac of the conjunctiva between the schlera of the eyeball and the lid. An insert needs to be soft so that it will cause a minimum of irritation to the eyeball and the degradation products are preferably such that they may be washed away by the flow of tears without the necessity for removal of the device after its drug content has been delivered. For other locations, such as implanta- 3 4 tion beneath the surface of the skin or insertion in the Poly( N-acetyl-D-glucosamine) is a major component uterus as an anti-fertility device, the likelihood ofirrita of naturally occurring chitin. The naturally occurring tion from the mechanical aspects of the device are mat i l has not only the poly(N-acetyl-D much less. glucosamine) but also inorganic salts thought to be Because the requirements for use in the eye are 5 forms of calcium carbonate and proteinaceous mateamOrtg h m e Tig I' h p e nt device Will be rial, the composition of which is not presently known. scribed Particularly in Conjunction Wllh use in y The term chitin" is used herein to refer to the various although ll l5 be lmdel'smod that the device in naturally occurring forms of chitin including the promany form ay b0 used n Other lOCflllOHS tein and inorganic carbonate components. The term N-acetyl-D-glucosamine ha he form purified chitin" is used to refer to chitin after purifica- 6 tion to remove calcium carbonate and other inorganic H OH salts and various proteins which may be present and is K essentially poly(N-acetyl-D-glucosamine). Some con- 5 fusion exists in the literature in that the name chitin is H used as a name for poly( N-acctyl-D-glucosamine) with- H 1 out specifying whether it is a naturally occurring material containing inorganic salts and proteins or whether H 3 E the term is intended to designate purified poly(N-acetu 5 yl-D'glucosamine) without specifying the degree of pu- O rity or the character of the impurities present. or The term enzymatically degradable form of poly( N- acctyl-D-glucosamine)" refers both to the purified poly( N-acetyl-D-glucosamine) from chitin itself as well as the carboxymethyl, hydroxyethyl, and O-ethyl derivatives, etc.
The carboxymethyl derivative, properly called poly[- N-acetyl-6-O-( carboxymethyl )-D-glucosamine] has the formula a, 0011 COOH NHAc NHAc v cH 00H coon The hydroxyethyl derivative, properly called poly[N- Groups below the plane of the paper are shown by a y y y y g has thc dotted bondv formula H OCH CH OH HQ NHAC l I W o I 0 We cm ocH 0H, OH
P0ly(N-acetyl-D-glucosamine) has ascribed to it the The O-ethyl derivative. properly called poly-[N- formula (ring hydrogens omitted for clarity) acetyl-G-O-(ethyl)-D-glucosamine] has the formula 6 (3H. OH
\O/ z I l 0 s HO- NHA on ocii on,
III
The above forms are sometimes hereinafter designated by the Roman Numeral below the formula,
Other similar derivatives which are enzymatically degradable, particularly by lysozyme, are included within the generic term enzymatically degradable form of poly(N-acetyl-D-glucosamine)."
Because of the nature of the polymers, carboxymethylation, hydroxyethylation, or ethylation may not be l71 and may in part occur on the 3-hydroxyl. Unless otherwise specified, under or over-substitution of the poly[ N-acetyl-6-0-( carboxymethyl )-D-glucosamine] is to be included as a biodegradable form of PAS. The solubility in a specified solvent is one test of the degree of substitution. For example, the ()-ethyl derivative is water soluble when the ethyl group to glucosamine ratio is about i and organic soluble when the degree of substitution is greater than 1.
The term drug" is used to refer to a substance other than a food intended to affect the structure or function of the body of man or other animal. The term is some what broader than medicine in that the term medicine" is sometimes considered to be restricted to an agent which is administered to affect or control a pathogenic condition. The broader term drug here is also used to include steroids and other fertility controlling agents which may be incorporated in an intrauterine contraceptive device or other materials which may be included to affect the fertility of females or males either as an intrauterine device or subcutaneously.
The term dispensing" is used to designate a method of administering a drug to man or other animal and includes the release of the drug to a desired location. This would include the eye, gastrointestinal tract (alimentary), intrauterinely, intramuscularly, subcutaneously, or into the mucosa of the nose, mouth (sublingual), or rectum, etc. The release over a prolonged period of time designates any decrease in the release rate of the drug over that which would be expected if the drug were administered alone and would include from the matter of a few minutes as, for example, in an ocular insert containing pilocarpine to a duration of six months to a year which might be desired for the administration of a steroid in an intrauterine contraceptive device. For some conditions, even a longer period of administration, such as the lifetime of the patient, could be desired but usually a period of a very few hours up to about six months includes the medically preferred range.
Because the enzymatically degradable form of poly-(N-acetyl-D-glucosamine) is a solid which can be removed, a longacting repository pellet for insertion beneath the skin is quite practical as if for any medical reason it is desired to discontinue administration of the drug, the insert with the remaining drug charge may be removed simply by excision.
The term enzymatically degradable" refers to a form of poly( N-acetyl-D-glucosamine) or its derivatives which is broken down into body fluid soluble components and which are washed out as in tears, or transported elsewhere by tears, or other body fluid, and later degraded further or metabolized by the body or excreted by the body. The problem of retention by the body or disposal of the residual matrix is minimal or non-existent.
While other enzymes may also affect the enzymatic degradation of the poly( N-acetyl-D-glucosamine) matrix, the enzyme which is most widely distributed in the body and here very effective is lysozyme. Lysozyme occurs in practically all of the body fluids, particularly the tears, and effectively breaks down the polymer chain to water soluble or disposable components.
Chitosan, which is a common name for the deacylated form of poly(N-acetyl-D-glucosamine), and which is poly(D-glucosamine) is not enzymatically degradable by lysozyme.
By contrast, the present enzymatically degradable forms of poly( N-acetyl-D-glucosamine) are not readily hydrolyzed by water. For instance, I in a phosphate buffer at pH 7.2 at 37C for 24 hours is not hydrolyzed whereas under the same time and temperature in the presence of lysozyme hydrolysis occurs,
It is highly advantageous to have the degradation of the enzymatically degradable form of poly(N-acetyl-D- glucosamine) occur only by the action of an enzyme as the resistance to hydrolytic degradation markedly reduces problems of manufacture and storage in the presence of ambient moisture, and ensures a steady smooth surface erosion rather than a fragmentation process commonly experienced by polymers which are hydrolyzed by small molecules.
Any of the drugs used to treat the eye and surrounding tissues can be incorporated with the enzymatically degradable form of PAG of this invention. Also, it is practical to use the eye and surrounding tissues as a point of entry for systemic drugs that enter circulation in the blood stream and produce a pharmacological response at a site remote from the point of application of drug and the enzymatically degradable form of PAG matrix. Thus, drugs which will pass through the eye or the tissue surrounding the eye to the bloodstream, but which are not used in therapy of the eye itself, can be incorporated in the enzymatically degradable PAG matrix.
Suitable drugs for use in therapy of the eye with the present insert include, without limitation: Antiinfectives: such as antibiotics, including tetracycline, chlortetracycline, bacitracin, neomycin, polymyxin, gramicidin, oxytetracycline, chloramphenicol, and erythromycin; sulfonamides, including sulfacetamide, sulfamethazole, and sulfisoxazole; antivirals, including idoxuridine; and other anti-infectives including nitrofurazone and sodium propionate; Antiallergenics such as antazoline, methapyrilene, chlorpheniramine, pyrilamine and prophenpyridamine; Anti-inflammatories such as hydrocortisone, hydrocortisone acetate, dexamethasone, triamcinolone, medrysone, prednisolone, prednisolone 2l-phosphate and prednisolone acetate. Decongestants such as phenylephrine, naphazoline, and tetrahydrazoline', Miotics and anticholinesterases such as pilocarpine, eserine salicylate, carbachol, disopropyl fluorophosphate, phospholine iodide, and demecarium bromide; matropine, scopolamine, tropicamide, eucatropine, and hydroxyamphetamine and sympathominetics such as epinephrine. Drugs can be in various forms, such as unchanged molecules, components of molecular complexes, or nonir ritating, pharmacologically acceptable salts, such as hydrochloride, hydrobromide, sulfate, phosphate, nitrate, borate, acetate, maleate, tartrate, salicylate, etc. Furthermore. simple derivatives of the drugs (such as ethers, esters.
amides. etc.) which have desirable retention and re lease characterics but which are easily hydrolyzed by body pH, enzymes. etc. can be employed. The amount of drug incorporated in the ocular insert varies widely, depending on the particular drug, the desired therapeutic effect, and the time span for which the ocular insert will be used. Since the ocular insert is intended to provide the complete dosage regime for eye therapy for but a particular time span, such as 24 hours, there is no critical upper limit on the amount of drug incorporated in the device. The lower limit will depend on the activity of the drug and its capability of being released from the device. Thus, it is not practical to define a range for the therapeutically effective amount of drug incorporated into the device. However, typically, from I mi crogram to l milligram of drug is incorporated in each insert.
In each case, the polymeric material used to form the ocular insert is chosen for its compatibility with a particular drug and its capability of releasing that drug at an appropriate rate over a prolonged period of time. Specific, but nonlimiting, examples of combinations of drugs and polymers for use in forming the ocular insert include: poly- N-acetyl-6-O-(carboxymethyl )-D- glucosamine] and epinephrine; poly[N-acetyl-6-0- (carboxymethyl)-D-glucosamine] and mixture of pilocarpine hydrochloride and epiniphrine; poly[Nacetyl- 64H 2 '-hydroxyethyl )-D-glucosamine] and acetazolamide; poly[N-acetyl-b-(J-(ethyl)'D-glucosamine] and phospholine iodide; poly[N-acetyl-fi-(carboxymethyl)-D-glucosamine] and triamcinolone, or in general any of the drugs listed above and the enzymatically degradable form of poly(N-acetyl-D-glucosamine), including degrees of substitution greater or less than l, and related derivatives such as other lower alkyl derivatives instead of poly[ N-acetyl-o-0-( ethyl )-D- glyucosamine], other carboxyalkyl derivatives, and their esters and salts, hydroxyalkyl derivatives, etc.
The degradation rate of the enzymatically degradable form of poly(N-acetyl-D-glucosamine) can be lowered by cross-linking, if a slower release rate is preferred.
The ocular insert can be fabricated in any convenient shape for comfortable retention in the cul-de-sac. It is important. however, that the device have no sharp, jagged. or rough edges which can irritate the sensitive tissues of the eye. Thus, the marginal outline of the ocular insert can be ellipsoidal, bean-shaped, rectangular, etc. in cross section, it can be concavo-convex, rectangular, etc. As the ocular insert is flexible and, in use, will assume essentially the configuration of the seleral curvature, the original shape of the device is not of controlling importance. Dimensions of the device can vary widely. The lower limit on the size of the device is governed by the amount of the particular drug to be applied to the eye and surrounding tissues to elicit the de sired pharmacological response, as well as by the smallest sized device which conveniently can be inserted and removed from the eye. The upper limit on the size of the device is governed by the limited space within the cul de-sac that conveniently and comfortably can be filled with an ocular insert. Typically, the ocular insert is 4 to millimeters in length, l to 12 millimeters in width, and 0.l to l millimeter in thickness. Preferably, it is ellipsoidal in shape and about 6 X 4 X 0.5 millimeters in size.
While particularly convenient for an insert in the eye, the matrix containing the drug of the present invention can include other drugs for other areas. For instance, if the drug is to be taken orally, a tablet of a size and shape adapted to being swallowed is preferred. If it is to be placed subcutaneously, a tablet or rod such that it may be placed under the skin in an appropriate location is selected. The amount of drug and the time over which it is to be dispensed are controlling in the choice of size of the implant.
While the drug may be combined with the enzymatically degradable form of PAG matrix in any convenient way, it is particularly convenient to dissolve both in a common solvent which permits casting of the enzymatically degradable form of PAG as a matrix containing the drug to be dispersed therein.
Poly(N-acetyl-Dglucosamine) is reported to be in soluble in all solvents except 88% phosphoric acid which badly degrades the polymer. Unexpectedly, it has now been found that hexafluoroisopropanol (HIPA) and hexafluoroacetone sesquihydrate (HFAS) are solvents for the polymer, These are extremely powerful solvents, and so much so that care must be used in selecting drugs which are compatible with such solvents to form solutions for casting.
I Poly[ N-acetyl-6-()-( carboxymethyl )-D- glucosamine], l, poly[N-acetyl-(J-O-(2'-hydroxyethyl) D-glucosamine], ll, and poly[N-acetyl-6-O (ethyl J-D- glucosamine], III, are preferred because of cosolubility with many drugs in common solvents, including water. Non-toxic solvents are preferred.
l and II are water soluble at the 5% level, and III is water soluble at the 5% level if the degree of substitution is not more than about 1, and organic solvent soluble if more than about 1. Organic solvents may be used such as alcohols, chloroform, benzene, toluene, mix tures of benzene and toluene with alcohols and l e tones.
Pilocarpine or other drugs can be incorporated into matrices of these enzymatically degradable forms of PAG by hydrogen bonding, covalent bonding, ionic bonding or simple entrapment. The matrices themselves can be variably crosslinked with a variety of physical and chemical agents. They can be sterilized and when hydrated become quite pliable, while retaining adequate strength to resist manipulation.
Present day therapy of topical drug application consists of drops and ointments. There are several deficiencies associated with these methods of delivery 1 it is impossible to achieve 24 hour control of the disease (2) it is wasteful with respect to the amount of drug used (3) some people show strong sensitivity to cholinergic and adrenergic drops (4) many patients fail to apply the medication as directed resulting in poor control of the disease (5) side effects result from the drug passing through the lachrymal duct into the circulatory system. The herein described invention eleminates these problems and provides a means of releasing medication into the tear films in therapeutic levels continuously. The device is biodegradable and, hence, it is not necessary to remove from the eye and also capable of delivering large dosages giving it broad drug applicability. This invention constitutes a more efficient means of drug delivery that prolongs and enhances the drug effect.
As the scope of this invention is broad, it is illustrated by the following typical examples in which temperatures are centigrade, and parts are by weight unless clearly otherwise specified.
EXAMPLE 1 Purification of Chitin A commercial grade of chitin (Cal-Biochemicals) was finely ground in a ball mill overnight to pass a 6 mm screen and be retained by a 1 mm screen. 149 g. of this finely ground material was decalcified by extracting with 825 ml. of 2N HCl at 4C for 48 hours, in a flask stirred with a magnetic stirrer. The material was collected by centrifugation and washed repeatedly with water until neutral. The ash content was 04-05%. The decalcified chitin was then stirred at room temperature with 1500 m1. of 90% formic acid overnight. The mixture was centrifuged and the residue repeatedly washed with water. The washed chitin was then suspended in 2 l. of NaOH solution and heated at 90l00C. for 2.5 hours. The solution was filtered, the cake washed with water until neutral, washed several times with absolute ethanol and ether, and dried at 40 C. under reduced pressure; yield 66 g. of poly( N-acetyl-D- glucosamine). Infrared spectrum (KBr pellet) shows bands at 3500 cm" (S), 2900 (W), 1652 (S), 1619 (S), 1550 (S), 1370 (S), 1300 (M), 1070 (Broad). (S is strong, M is medium, W is weak).
EXAMPLE 11 Poly N-acetyl-6-0-( carboxymethyl )-D-glucosamine] 15 g. of the poly(N-acetyl-D-glucosamine) from Example l was swollen with 100 ml. of dimethylsulfoxide (DMSO). To this highly swollen suspension was added 400 ml. of 2-propanol and the mixture was stirred vigorously under nitrogen while 40 ml. of aqueous NaOH was added over an interval of 30 minutes at room temperature. After stirring for an additional hour, 18 g. of chloracetic acid dissolved in 40 ml. of water was added dropwise over a 30 minute period. The mixture was then heated at 55C. for 24 hours. The mixture was decanted and to the residue was added 100 ml. of 70% methanol. The suspension was then neutralized with 5 ml. of 90% acetic acid. The mixture was filtered, washed with 70% methanol, absolute methanol and dried at 40C. in vacuo. Yield 24 g. of poly[N- acetyl-6-0-(carboxymethyl)-D-glucosamine], l. lnfrared (KBr pellet) shows bands at 3500 cm. (S), 2900 (M), 1600 Broad (S), 1400 (M), 1320 (M), 1100 Broad (S). A sample was titrated and shown to have 4.03 meq acid/g indicating 100% of the repeating mers were carboxylated. Films easily removed from glass were cast from water solution and shown to be transparent, flexible and tough.
EXAMPLE [[1 Preparation of poly(D-glucosamine) A procedure similar to that described by P. Broussignoc, Chemie and lndustrie, 99 (9) (68), 1243 was used. To a solution of 180 g. of 96% ethanol and 180 g. ethylene glycol was added 360 g. KOH with stirring. To this solution was then added 54 g. of poly(N-acetyl-D- glucosamine) (purified Chitin) from Example I and the mixture heated at 120C. for 6 hours. After cooling an equal volume of water was added to the mixture. The mixture was filtered and washed several times with water until neutral, then twice with acetone, and dried in vacuo. Yield 42.6 g. of poly(D-glucosamine), sometimes called chitosan. Infrared spectrum (KBr pellet) showed bands at 3450 cm. (S), 2900 (M), 1620 (S), 1600 (S), 1370 [Broad (5)], 1050 [Broad (5)]. Upon potentiometric titration of the sample 81.4% of the mers were found to be deacylated. The product is soluble in 3% acetic acid and forms clear, flexible, tough films from this solution. lt is not enzymatically biodegradable by lysozyme.
EXAMPLE IV Poly(D-Glucosamine )lPilocarpine Film To 5 ml. of 3% acetic acid was added 0.25 g. of poly(D-glucosamine) from Example 111. To the solution thus formed was then added 50 mg. pilocarpine free base and 100 ul of tritiated pilocarpine, and the mixture was cast as a film (40 mil wet thickness) on glass. This film was crosslinked by dipping the film in 37% formaldehyde solution for 5 hours. This film showed zero order release over a period of 3 days at which time it was still releasing pilocarpine at a zero order rate. About percent of the pilocarpine remained in the film matrix after 3 days. The use of tritiated pilocarpine permits the use ofa liquid scintillation counter to monitor the release rate accurately and conveniently. Radiological hazards are associated with such tritiated material in the treatment of human subjects so experimental animals are preferred to study release rates.
EXAMPLE V Poly[N-Acetyl-6-0-( carboxymethyl )-D- Glucosamine]/Pilocarpine Film To a 5% solution of poly[N-acetyl-6-0-carboxymethyl)-D-glucosamine] (0.95 g.) in water was added 50 mg. of pilocarpine nitrate and 100 ul of tritiated pilocarpine. A film 40 mils thick was cast on a glass plate and allowed to dry. The film was crosslinked by dipping into 10% alum for 5 hours. Release of pilocarpine from this film in an aqueous solution approximating human tears is essentially first order, with of the pilocarpine being released within about 5 hours.
EXAMPLE V1 Poly( N-Acetyl-D-Glucosamine) Matrix Membranes of poly(N-acetyl-D-glucosamine) were prepared by dissolving poly(N-acetyl-D-glucosamine) in each of hexafluoroacetone sesquihydrate (1.4% solution) and hexafluoroisopropanol (2% solution). The films were tough, transparent, non-tacky, flexible and were quite pliable when hydrated yet retained adequate strength to resist manipulation. The membranes showed no hydrolysis after exposure to water for 5 days. In the presence of lysozyme, however, the films were degraded slowly. The films eroded release any drug in the film slowly.
EXAMPLE Vll Biodegradability of Poly[ N-Acetyl-6-0-(carboxymethyl )-D-Glucosamine] After 24 hours incubation at 37C. in phosphate buHer pH 7.2 containing 1500 units/ml of lysozyme, poly[ N-acetyl-6-0-( carboxymethyl )-D-glucosamine] was hydrolyzed to oligomers as determined by Gel Permeation Chromatography. A control containing no enzyme was not hydrolyzed under the same conditions.
EXAMPLE Vlll In Vivo Results Using Polyl N-Acetyl-6-O-( Carboxymcthyl )-D- Glucosamine]lPilocarpine Membranes of poly[ N-acetyl-6-0-( carboxymcthyl Dglucosamine] were evaluated in vivo for sustained pharmacological effect and eye irritation. ln the right eye of each of three rabbits was placed a l mm X l l EXAMPLE lX Poly[ N-Acetyl-60-( 2 '-Hydroxyethyl )-D- Glucosamine] Into a screw cap bottle was placed 13.6 g. of purified PAG milled so that it passes a 1 mm. sieve. To the bottle was added 200 ml. of cold (05C.) aqueous 43% NaOH and the contents stirred for 2 hours under nitrogen and then held at 04C. for [0 hours. The swollen alkali derivative was then squeezed to 3 times its original weight in a sintered glass funnel, disintegrated and frozen at 20C. under nitrogen for 1 hour and then thawed at room temperature for l hour. The freezethaw cycle was repeated 3 times. To the alkali derivative was then added I20 ml. of dimethylsulfoxide (DMSO) and the slurry added immediately to a stirred autoclave. The autoclave was purged several times with nitrogen and 53.2 ml. of ethylene oxide was added (16 equivalents/equivalent of FAQ). The mixture was held at 50C. for 18 hours. The solution was then carefully neutralized with glacial acetic acid, dialyzed and then lyophilized.
The hydroxyethyl derivative can be further purified by precipitating the polymer from aqueous solution with acetone. A freshly precipitated sample of poly[N- acetyl-6-0-(2'-hydroxyethyl)-D-glucosamine] readily dissolved in water. 5% aqueous sodium hydroxide, and 3% acetic acid and is precipitated from these solutions by acetone. Samples analyzed for C, H and N showed the composition to be one in which 1.5 hydroxyethyl groups had been substituted per glucosamine residue.
EXAMPLE X Poly[N-Acetyl-6-0-( Ethyl )-D-Glucosamine] The procedure of Example IX was followed except 75 ml. of ethylchloride was added instead of ethylene oxide and the reaction held at 50C. for hours. A water soluble derivative is obtained.
To obtain an organic soluble derivative, the ethylchloride was mixed with benzene (75% of the amount of ethylchloride). The reaction time was 10 hours and the temperature was controlled as follows: 1 hour heating up to 60C.. 1 hour heating up to 80C., 1 hour heating up to lC. and 7 hours at 130C. An organic solvent soluble product was obtained. The following solvents are useful for solubilization (5% solution) of this polymer at room temperature: 0-xylene. benzene,
toluene. methylethyl ketone. 1.4 mixture of alcohol and benzene. chlorofomi and alcohols.
In the following example using piloearpine free base, the drug is bound ionically to the polymer. The attractive features of such a system are l slower drug delivery and (2) capability of delivering piloearpine as a free base which. as such. has a higher potency. Up to now, it was not possible to deliver piloearpine as the free base since it is unstable in this form and as a result is 0 usually delivered as the hydrochloride or nitrate salt.
EXAMPLE Xl Pilocarpine/Poly[ N'Acetyl-o-(HCarboxymethyl )-D Glucosamine] Inserts A 5% solution of poly[N-acetyl--fl-(carboxymethyl )-D-glucosamine] was prepared in deionized water. The solution was acidified with acetic acid and the polymer precipitated by slowly adding this solution to acetone. The polymer was dried in vacuo at 40C. overnight. Films were prepared from 5% aqueous solutions containing the following relative weights:
PolylN-Acetyl-6-0(Carhoxy- Drug Dose per The films were cut into strips approximately 1 mm X [0 mm weighing 1.5 mg each. In this manner, the drug dosages are delivered from each respective strip. when inserted in the eye.
Effective medication for a treatment day is obtained by placing an insert 1 mm by l0 mm in the human eye.
I claimi l. A method of dispensing an eye drug over a pro longed period of time comprising inserting in the conjunctival sac of the eye a bioerodible enzymatically cleavable occular insert which is shaped to conform to the curvature of the eye and is adapted for insertion and retention in the conjunctival sac of the eye of an eye drug intimately dispersed in an uncoated matrix directly contacting the conjunctival sac of the eye of an enzymatically degradable form of poly( N-acetyl-D- glucosamine) selected from the group consisting of poly[ N-acetyl-6-O-(carboxymethyl )-D-glucosamine poly[ N-acetyl-6-0-( 2'-hydroxyethyl )-D-glucosamine, and poly[ N-acetyl-6-0-( ethyl )-D-glucosamine whereby the said form of poly(N-acetyl-D-glucosamine) is slowly enzymatically degraded by lysozyme in the tears over a period of time, and said eye drug is slowly thereby released into tears, and contacts the eyeball.
2. The method of claim I in which the eye drug is pilocarpine free base or a salt thereof.
3. An enzymatically degradable bioerodible eye drug delivery occular insert device which is shaped to conform to the eye and is adapted for insertion and retention in the conjunctival sac of the eye for administering an eye drug to the eye of a living mammal comprising: an uncoated matrix adapted to directly contact the conjunctival sac of the eye consisting essentially of an enzymatically degradable form of poly(N-aeetyl-D- glucosamine) selected from the group consisting of poly[ N-acetyl6-O-( carboxymethyl )'D-glucosamine poly[ N-acetyl-6-0-( 2 '-hydroxyethyl )-D-glucosamine 1.
and poly[ N-acetyl-6-0-( ethyl )-D-glucosamine], and
intimately dispersed an at least slightly water soluble eye drug.
4. The occular insert of claim 3 in which the eye drug is pilocarpine free base or a salt thereof.
5. A method for dispensing a free base form of an eye drug over a prolonged period of time comprising inserting in the conjunctiva] sac of the eye a bioerodible enzymatically cleavable oecular insert which is shaped to conform to the curvatuve of the eye and is adapted for insertion and retention in the conjunctival sac of the eye of the free base form of an eye drug intimately dispersed in and ionically bound to an enzymatically degradable form of poly[N-acetyl-6-()-(carhoxymethyl)- D-glucosamine], whereby the said poly[N-acetyl-6-()- carboxymethyl)-D-glucosamine] is slowly enzymatibase form of an at least slightly water soluble eye drug.
Claims (6)
1. A METHOD OF DISPENSING AN EYE DRUG OVER A PROLONGED PERIOD OF TINE COMPRISING INSERTING THE CONJUNCTIVAL SAC OF THE EYE A BIOERODIBLE ENZYMATICALLY CLEAVABLE OCCULAR INSERT WHICH IS SHAPED TO CONFORM TO THE CURATURE OF THE EYE AND IS ADAPTED FOR INSERTION AND RETENTION IN THE CONJUNCTIVAL SAC OF THE EYE OF AN EYE DRUG INITIALLY DISPERSED IN AN UNCOATED MATRIX DIRECTLY CONTACTING THE CONJUNCTIVAL SAC OF THE EYE OF AN ENZMATICALLY DEGRADABLE FROM OF POLY(N-ACETYL-D-GLUCOSAMINE) SELECTED FROM THE GROUP CONSISTING OF POLY(N-ACETYL-60-(CARBOXYMETHYL)-D-GLUCOSAMINE, POLY(N-ACETYL-6-0-(2''HYDROXYETHYL)-D-GLUCOSAMINE, AND POLY(N-ACETYL-6-0-(ETHYL)D-GLUCOSAMINE), WHEREBY THE SAID FORM OF POLY(N-ACETYL-DGLUCOSAMINE) IS SLOWLY ENZYMATICALLY DEGRADED BY LYSOZYME IN THE TEARS OVER A PERIOD OF TIME, AND SAID EYE DRUG IS SLOWLY THEREBY RELEASED INTO TEARS, AND CONTACTS THE EYEBALL.
2. The method of claim 1 in which the eye drug is pilocarpine free base or a salt thereof.
3. An enzymatically degradable bioerodible eye drug delivery occular insert device which is shaped to conform to the eye and is adapted for insertion and retention in the conjunctival sac of the eye for administering an eye drug to the eye of a living mammal comprising: an uncoated matrix adapted to directly contact the conjunctival sac of the eye consisting essentially of an enzymatically degradable form of poly(N-acetyl-D-glucosamine) selected from the group consisting of poly(N-acetyl-6-0-(carboxymethyl)-D-glucosamine), poly(N-acetyl-6-0-(2''-hydroxyethyl)-D-glucosamine), and poly(N-acetyl-6-0-(ethyl)-D-glucosamine), and intimately dispersed an at least slightly water soluble eye drug.
4. The occular insert of claim 3 in which the eye drug is pilocarpine free base or a salt thereof.
5. A method for dispensing a free base form of an eye drug over a prolonged period of time comprising inserting in the conjunctival sac of the eye a bioerodible enzymatically cleavable occular insert which is shaped to conform to the curvatuve of the eye and is adapted for insertion and retention in the conjunctival sac of the eye of the free base form of an eye drug intimately dispersed in and ionically bound to an enzymatically degradable form of poly(N-acetyl-6-0-(carboxymethyl)-D-glucosamine), whereby the said poly(N-acetyl-6-0-carboxymethyl)-D-glucosamine) is slowly enzymatically degraded over a period of time, and said free base form of said eye drug is slowly thereby released into tears.
6. An enzymatically degradable bioerodible eye drug delivery occular insert device which is shaped to conform to the eye and is adapted for insertion and retention in the conjunctival sac of the eye for administering the free base form of an eye drug to the eye of a living mammal comprising: a matrix consisting essentially of an enzymatically degradable form of poly(N-acetyl-6-0-(carboxymethyl)-D-glucosamine), and intimately dispersed therein and ionically bound thereto, the free base form of an at least slightly water soluble eye drug.
Priority Applications (20)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US441695A US3911098A (en) | 1974-02-11 | 1974-02-11 | Medicament carrier |
| AR257455A AR206618A1 (en) | 1974-02-11 | 1975-01-01 | ENZYMATICALLY DEGRADABLE BIODESGASTABLE AGENT USEFUL AS A VEHICLE TO SUPPLY A SLIGHTLY WATER-SOLUBLE DRUG |
| ZA00750472A ZA75472B (en) | 1974-02-11 | 1975-01-22 | Medicament carrier |
| IL46496A IL46496A (en) | 1974-02-11 | 1975-01-23 | Enzymatic degradable ocular device comprising poly (n-acetyld-glucosamine) as medicament carrier |
| AU77602/75A AU492714B2 (en) | 1975-01-24 | Medicament carrier | |
| GB4193/75A GB1499751A (en) | 1974-02-11 | 1975-01-30 | Pharmaceutical preparation |
| PH16765A PH13485A (en) | 1974-02-11 | 1975-01-31 | Medicament carrier |
| NL7501365A NL7501365A (en) | 1974-02-11 | 1975-02-05 | METHOD OF CONTROLLING THE DELAYED TIME OF A MEDICINAL PRODUCT. |
| IT48048/75A IT1036866B (en) | 1974-02-11 | 1975-02-06 | COMPOSITION FOR THE CONTROLLED DELIVERY OF ME DICAMENTI |
| DE19752505305 DE2505305A1 (en) | 1974-02-11 | 1975-02-07 | ENZYMATICALLY DEGRADABLE BIO-ERODABLE MEDICINAL CARRIERS |
| CA219,603A CA1045975A (en) | 1974-02-11 | 1975-02-07 | Enzyme degradable medicament carriers |
| RO7581371A RO68711A (en) | 1974-02-11 | 1975-02-10 | PROCESS FOR PACKAGING OPHTHALMIC DRUGS |
| BE153217A BE825367A (en) | 1974-02-11 | 1975-02-10 | DRUG MATRIX FOR PROGRESSIVE RELEASE |
| SE7501464A SE7501464L (en) | 1974-02-11 | 1975-02-10 | |
| PL17794875A PL177948A1 (en) | 1974-02-11 | 1975-02-10 | Sposob wytwarzania enzymatycznie rozkladalnych ulegajacych bioerozji lekow |
| FR7504245A FR2260356B1 (en) | 1974-02-11 | 1975-02-11 | |
| CS75860A CS207808B1 (en) | 1974-02-11 | 1975-02-11 | Matrix |
| DD184115A DD118801A5 (en) | 1974-02-11 | 1975-02-11 | |
| ES434618A ES434618A1 (en) | 1974-02-11 | 1975-02-11 | Medicament carrier |
| JP50016958A JPS50123815A (en) | 1974-02-11 | 1975-02-12 |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US441695A US3911098A (en) | 1974-02-11 | 1974-02-11 | Medicament carrier |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3911098A true US3911098A (en) | 1975-10-07 |
Family
ID=23753927
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US441695A Expired - Lifetime US3911098A (en) | 1974-02-11 | 1974-02-11 | Medicament carrier |
Country Status (19)
| Country | Link |
|---|---|
| US (1) | US3911098A (en) |
| JP (1) | JPS50123815A (en) |
| AR (1) | AR206618A1 (en) |
| BE (1) | BE825367A (en) |
| CA (1) | CA1045975A (en) |
| CS (1) | CS207808B1 (en) |
| DD (1) | DD118801A5 (en) |
| DE (1) | DE2505305A1 (en) |
| ES (1) | ES434618A1 (en) |
| FR (1) | FR2260356B1 (en) |
| GB (1) | GB1499751A (en) |
| IL (1) | IL46496A (en) |
| IT (1) | IT1036866B (en) |
| NL (1) | NL7501365A (en) |
| PH (1) | PH13485A (en) |
| PL (1) | PL177948A1 (en) |
| RO (1) | RO68711A (en) |
| SE (1) | SE7501464L (en) |
| ZA (1) | ZA75472B (en) |
Cited By (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4066747A (en) * | 1976-04-08 | 1978-01-03 | Alza Corporation | Polymeric orthoesters housing beneficial drug for controlled release therefrom |
| US4287175A (en) * | 1978-06-22 | 1981-09-01 | Merck & Co., Inc. | Contact lens wetting agents |
| US4343787A (en) * | 1975-07-29 | 1982-08-10 | Merck & Co., Inc. | Shaped ophthalmic inserts for treating dry eye syndrome |
| EP0136013A3 (en) * | 1983-08-08 | 1986-02-12 | Unitika Ltd. | Method for manufacture of biodegradable drug donor and drug donor made thereby |
| EP0159139A3 (en) * | 1984-03-16 | 1987-02-04 | Unitika Ltd. | Method for preparation of a shaped chitin body containing a physiologically active substance |
| US5277900A (en) * | 1982-08-07 | 1994-01-11 | Henkel Kommanditgesellschaft Auf Aktien | Method for blood coagulation on hard tissues |
| US5290752A (en) * | 1984-03-16 | 1994-03-01 | Unitika Ltd. | Method for preparation of a shaped chitin body containing a physiologically active substance |
| US5741329A (en) * | 1994-12-21 | 1998-04-21 | Board Of Regents, The University Of Texas System | Method of controlling the pH in the vicinity of biodegradable implants |
| US6065476A (en) * | 1994-12-21 | 2000-05-23 | Board Of Regents, University Of Texas System | Method of enhancing surface porosity of biodegradable implants |
| US20030225381A1 (en) * | 2002-05-30 | 2003-12-04 | Van Dalen Johan T.W. | Apparatus and method for delivering controlled quantities of one or more agents to the eye |
| US6767899B1 (en) | 2000-08-29 | 2004-07-27 | Leiner Health Services Corp. | Composition and method for treatment of conditions having an inflammatory component |
| US20070156248A1 (en) * | 2005-03-01 | 2007-07-05 | Doron Marco | Bioerodible self-deployable intragastric implants |
| US20110015665A1 (en) * | 2005-03-01 | 2011-01-20 | Tulip Medical Ltd. | Bioerodible self-deployable intragastric implants |
| US9320645B2 (en) | 2013-05-29 | 2016-04-26 | Terry Glasser | Approach to administering ocular medication |
| US10507127B2 (en) | 2012-06-07 | 2019-12-17 | Epitomee Medical Ltd. | Expandable device |
| US11129793B2 (en) | 2013-12-05 | 2021-09-28 | Epitomee Medical Ltd | Retentive devices and systems for in-situ release of pharmaceutical active agents |
Families Citing this family (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0000291B1 (en) * | 1977-06-28 | 1981-09-30 | University of Strathclyde | A pharmaceutical composition for tropical diseases |
| JPS57134412A (en) * | 1981-02-12 | 1982-08-19 | Unitika Ltd | Biodegradable drug donor |
| EP0086627B1 (en) * | 1982-02-12 | 1985-08-28 | Unitika Ltd. | Anti-cancer device |
| JPS62193638A (en) * | 1986-02-20 | 1987-08-25 | Kao Corp | Granules |
| US4931551A (en) * | 1988-07-05 | 1990-06-05 | University Of Delaware | Dispersions of chitin and product therefrom |
| AU2572692A (en) | 1991-09-09 | 1993-04-05 | Government Of The United States Of America, As Represented By The Secretary Of The Department Of Health And Human Services, The | Methods and devices for treating hemophilia and aids |
| US5383873A (en) * | 1992-12-09 | 1995-01-24 | Regents Of The University Of Minnesota | Smooth muscle chemical pacemaker |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2040880A (en) * | 1934-06-21 | 1936-05-19 | Du Pont | Process for the preparation of films and filaments and products thereof |
| US2040879A (en) * | 1934-06-21 | 1936-05-19 | Du Pont | Substantially undegraded deacetylated chitin and process for producing the same |
| US2168374A (en) * | 1936-07-09 | 1939-08-08 | Visking Corp | Chemical compounds and products produced therefrom |
| US3632754A (en) * | 1968-02-12 | 1972-01-04 | Lescarden Ltd | Use of chitin for promoting wound healing |
| US3736646A (en) * | 1971-10-18 | 1973-06-05 | American Cyanamid Co | Method of attaching surgical needles to multifilament polyglycolic acid absorbable sutures |
| US3845201A (en) * | 1972-04-24 | 1974-10-29 | S Loucas | Solid state ophthalmic medication delivery method |
-
1974
- 1974-02-11 US US441695A patent/US3911098A/en not_active Expired - Lifetime
-
1975
- 1975-01-01 AR AR257455A patent/AR206618A1/en active
- 1975-01-22 ZA ZA00750472A patent/ZA75472B/en unknown
- 1975-01-23 IL IL46496A patent/IL46496A/en unknown
- 1975-01-30 GB GB4193/75A patent/GB1499751A/en not_active Expired
- 1975-01-31 PH PH16765A patent/PH13485A/en unknown
- 1975-02-05 NL NL7501365A patent/NL7501365A/en not_active Application Discontinuation
- 1975-02-06 IT IT48048/75A patent/IT1036866B/en active
- 1975-02-07 DE DE19752505305 patent/DE2505305A1/en not_active Withdrawn
- 1975-02-07 CA CA219,603A patent/CA1045975A/en not_active Expired
- 1975-02-10 SE SE7501464A patent/SE7501464L/ not_active Application Discontinuation
- 1975-02-10 RO RO7581371A patent/RO68711A/en unknown
- 1975-02-10 BE BE153217A patent/BE825367A/en unknown
- 1975-02-10 PL PL17794875A patent/PL177948A1/en unknown
- 1975-02-11 DD DD184115A patent/DD118801A5/xx unknown
- 1975-02-11 ES ES434618A patent/ES434618A1/en not_active Expired
- 1975-02-11 CS CS75860A patent/CS207808B1/en unknown
- 1975-02-11 FR FR7504245A patent/FR2260356B1/fr not_active Expired
- 1975-02-12 JP JP50016958A patent/JPS50123815A/ja active Pending
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2040880A (en) * | 1934-06-21 | 1936-05-19 | Du Pont | Process for the preparation of films and filaments and products thereof |
| US2040879A (en) * | 1934-06-21 | 1936-05-19 | Du Pont | Substantially undegraded deacetylated chitin and process for producing the same |
| US2168374A (en) * | 1936-07-09 | 1939-08-08 | Visking Corp | Chemical compounds and products produced therefrom |
| US3632754A (en) * | 1968-02-12 | 1972-01-04 | Lescarden Ltd | Use of chitin for promoting wound healing |
| US3736646A (en) * | 1971-10-18 | 1973-06-05 | American Cyanamid Co | Method of attaching surgical needles to multifilament polyglycolic acid absorbable sutures |
| US3845201A (en) * | 1972-04-24 | 1974-10-29 | S Loucas | Solid state ophthalmic medication delivery method |
Cited By (29)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4343787A (en) * | 1975-07-29 | 1982-08-10 | Merck & Co., Inc. | Shaped ophthalmic inserts for treating dry eye syndrome |
| US4066747A (en) * | 1976-04-08 | 1978-01-03 | Alza Corporation | Polymeric orthoesters housing beneficial drug for controlled release therefrom |
| US4287175A (en) * | 1978-06-22 | 1981-09-01 | Merck & Co., Inc. | Contact lens wetting agents |
| US5277900A (en) * | 1982-08-07 | 1994-01-11 | Henkel Kommanditgesellschaft Auf Aktien | Method for blood coagulation on hard tissues |
| EP0136013A3 (en) * | 1983-08-08 | 1986-02-12 | Unitika Ltd. | Method for manufacture of biodegradable drug donor and drug donor made thereby |
| US4704268A (en) * | 1983-08-08 | 1987-11-03 | Unitika Ltd. | Method for manufacture of biodegradable drug donor and drug donor made thereby |
| EP0159139A3 (en) * | 1984-03-16 | 1987-02-04 | Unitika Ltd. | Method for preparation of a shaped chitin body containing a physiologically active substance |
| US5290752A (en) * | 1984-03-16 | 1994-03-01 | Unitika Ltd. | Method for preparation of a shaped chitin body containing a physiologically active substance |
| US5741329A (en) * | 1994-12-21 | 1998-04-21 | Board Of Regents, The University Of Texas System | Method of controlling the pH in the vicinity of biodegradable implants |
| US6065476A (en) * | 1994-12-21 | 2000-05-23 | Board Of Regents, University Of Texas System | Method of enhancing surface porosity of biodegradable implants |
| US6767899B1 (en) | 2000-08-29 | 2004-07-27 | Leiner Health Services Corp. | Composition and method for treatment of conditions having an inflammatory component |
| US20040234599A1 (en) * | 2000-08-29 | 2004-11-25 | Leiner Health Services Corp. | Composition and method for maintaining healthy mobile joints and cartilage |
| US7338942B2 (en) | 2000-08-29 | 2008-03-04 | Leiner Health Services, Corp. | Composition and method for maintaining healthy mobile joints and cartilage |
| US20030225381A1 (en) * | 2002-05-30 | 2003-12-04 | Van Dalen Johan T.W. | Apparatus and method for delivering controlled quantities of one or more agents to the eye |
| US7018646B2 (en) | 2002-05-30 | 2006-03-28 | Van Dalen Johan T W | Apparatus and method for delivering controlled quantities of one or more agents to the eye |
| US20070156248A1 (en) * | 2005-03-01 | 2007-07-05 | Doron Marco | Bioerodible self-deployable intragastric implants |
| US8845673B2 (en) | 2005-03-01 | 2014-09-30 | Tulip Medical Ltd. | Bioerodible self-deployable intragastric implants and methods for use thereof |
| US20110015665A1 (en) * | 2005-03-01 | 2011-01-20 | Tulip Medical Ltd. | Bioerodible self-deployable intragastric implants |
| US20110015666A1 (en) * | 2005-03-01 | 2011-01-20 | Tulip Medical Ltd. | Bioerodible self-deployable intragastric implants |
| US20110022072A1 (en) * | 2005-03-01 | 2011-01-27 | Tulip Medical Ltd. | Bioerodible self-deployable intragastric implants |
| US20110040318A1 (en) * | 2005-03-01 | 2011-02-17 | Tulip Medical Ltd. | Bioerodible self-deployable intragastric implants |
| US8267888B2 (en) | 2005-03-01 | 2012-09-18 | Tulip Medical Ltd. | Bioerodible self-deployable intragastric implants |
| US7699863B2 (en) * | 2005-03-01 | 2010-04-20 | Tulip Medical Ltd. | Bioerodible self-deployable intragastric implants |
| US8858496B2 (en) | 2005-03-01 | 2014-10-14 | Tulip Medical Ltd. | Bioerodible self-deployable intragastric implants |
| US8864784B2 (en) | 2005-03-01 | 2014-10-21 | Tulip Medical Ltd. | Bioerodible self-deployable intragastric implants |
| US10507127B2 (en) | 2012-06-07 | 2019-12-17 | Epitomee Medical Ltd. | Expandable device |
| US11712356B2 (en) | 2012-06-07 | 2023-08-01 | Epitomee Medical Ltd | Expanded device |
| US9320645B2 (en) | 2013-05-29 | 2016-04-26 | Terry Glasser | Approach to administering ocular medication |
| US11129793B2 (en) | 2013-12-05 | 2021-09-28 | Epitomee Medical Ltd | Retentive devices and systems for in-situ release of pharmaceutical active agents |
Also Published As
| Publication number | Publication date |
|---|---|
| SE7501464L (en) | 1975-08-12 |
| AU7760275A (en) | 1976-07-29 |
| GB1499751A (en) | 1978-02-01 |
| PL177948A1 (en) | 1978-04-10 |
| AR206618A1 (en) | 1976-08-06 |
| IL46496A (en) | 1978-08-31 |
| ES434618A1 (en) | 1977-04-16 |
| FR2260356A1 (en) | 1975-09-05 |
| ZA75472B (en) | 1976-01-28 |
| CS207808B1 (en) | 1981-08-31 |
| IL46496A0 (en) | 1975-06-25 |
| BE825367A (en) | 1975-08-11 |
| CA1045975A (en) | 1979-01-09 |
| IT1036866B (en) | 1979-10-30 |
| NL7501365A (en) | 1975-08-13 |
| FR2260356B1 (en) | 1978-07-28 |
| RO68711A (en) | 1980-10-30 |
| PH13485A (en) | 1980-05-21 |
| JPS50123815A (en) | 1975-09-29 |
| DD118801A5 (en) | 1976-03-20 |
| DE2505305A1 (en) | 1975-08-21 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3911098A (en) | Medicament carrier | |
| CA1311686C (en) | Controlled release bioerodible drug delivery system | |
| US3962414A (en) | Structured bioerodible drug delivery device | |
| Hashizoe et al. | Scleral plug of biodegradable polymers for controlled drug release in the vitreous | |
| US3867519A (en) | Bioerodible drug delivery device | |
| AU762677B2 (en) | Prolonged release bioadhesive vaginal gel dosage form | |
| US4136173A (en) | Mixed xanthan gum and locust beam gum therapeutic compositions | |
| US5888493A (en) | Ophthalmic aqueous gel formulation and related methods | |
| US5766619A (en) | Pharmaceutical dosage form for ocular administration and preparation process | |
| US11534459B2 (en) | Compositions and methods of treating dry eye syndrome and other traumatized non-keratinized epithelial surfaces | |
| JP2009509982A (en) | Pharmaceutical composition for treating inner ear diseases | |
| JPS6145608B2 (en) | ||
| JP2001519787A (en) | Intravesical drug delivery system | |
| IE912033A1 (en) | Reversible gelation compositions and methods of use | |
| EP1804751A2 (en) | Ocular delivery of polymeric delivery formulations | |
| WO1997038698A1 (en) | Methods for treating middle and inner ear disorders | |
| WO1994005257A1 (en) | Sustained release of ophthalmic drugs from a soluble polymer drug delivery vehicle | |
| JPS597684B2 (en) | Ophthalmic sustained release controlled drug using collagen | |
| RU2139093C1 (en) | Medicinal agent delivery device and method of its manufacture | |
| Dhage et al. | In-situ gel-new formulation trend | |
| RU2098079C1 (en) | Eyegel | |
| CA1093467A (en) | Xanthan gum or locust bean gum therapeutic compositions | |
| RU2404779C1 (en) | Eye medicinal film | |
| CN100408046C (en) | Macrolide antibiotics sodium hyaluronate eye transfer system | |
| Sparer | Controlled release of drugs from glycosaminoglycan drug complexes |