[go: up one dir, main page]

US3908247A - Apparatus for conveying elongated material such as textile material - Google Patents

Apparatus for conveying elongated material such as textile material Download PDF

Info

Publication number
US3908247A
US3908247A US409465A US40946573A US3908247A US 3908247 A US3908247 A US 3908247A US 409465 A US409465 A US 409465A US 40946573 A US40946573 A US 40946573A US 3908247 A US3908247 A US 3908247A
Authority
US
United States
Prior art keywords
strand
path
yarns
yarn
carrier strand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US409465A
Inventor
Lonnie A Murphy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WADSWORTH GREENWOOD CORP
Original Assignee
WADSWORTH GREENWOOD CORP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WADSWORTH GREENWOOD CORP filed Critical WADSWORTH GREENWOOD CORP
Priority to US409465A priority Critical patent/US3908247A/en
Priority to ZA00746106A priority patent/ZA746106B/en
Priority to IL45746A priority patent/IL45746A0/en
Priority to DE19742449138 priority patent/DE2449138A1/en
Priority to NL7413770A priority patent/NL7413770A/en
Priority to SE7413307A priority patent/SE7413307L/xx
Priority to JP49121551A priority patent/JPS5071979A/ja
Priority to IT28731/74A priority patent/IT1025153B/en
Priority to FR7435667A priority patent/FR2249203B3/fr
Priority to GB4636974A priority patent/GB1445013A/en
Priority to BE149868A priority patent/BE821471A/en
Application granted granted Critical
Publication of US3908247A publication Critical patent/US3908247A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B11/00Treatment of selected parts of textile materials, e.g. partial dyeing
    • D06B11/002Treatment of selected parts of textile materials, e.g. partial dyeing of moving yarns
    • D06B11/0036Treatment of selected parts of textile materials, e.g. partial dyeing of moving yarns specially disposed for a local treatment

Definitions

  • ABSTRACT Strands of yarn are dyed in a continuous process which includes: applying a dye to the yarn with a padder. printing a pattern on the yarn. fixing the dye with a steamer. washing the yarn. drying the yarn. heatsetting the yarn. cooling the yarn. coating the yarn, and finally taking the yarn up on a spool.
  • the yarn is conveyed through Stations performing these various processes by initially configuring parallel strands of the yarn into a plurality of warps which are then separated into two spaced arrays.
  • An entraining strand of yarn is then woven between the arrays of warps as the arrays are raised and lowered relative to one another.
  • the entraining strand of yarn is captured sequentially by a pair of parallel chains which carry the entraining strand and warps through the afore-mentioned processes.
  • the entraining strand of yarn is formed in a continuous loop which is dispensed from a shuttle upstream of the padding process and is retrieved from the parallel chains downstream of the cooling process. After coating the yarns. they are taken up on a rotating spool which is driven by a continuous belt that engages the yarn as the yarn coils about the spindle of the spool. In this Way. the yarn is conveyed through the various aforementioned proeesses while in a tensionless state.
  • the present invention relates to methods of and apparatus for dyeing yarn in a continuous process. More particularly, the present invention relates to methods of and apparatus for dyeing a plurality of strands of yarn in a continuous process involving a plurality of steps.
  • each strand of yarn must therefor maintain its firmness or stiffness.
  • each strand of yarn should retain a degree of elasticity or springiness.
  • This quality of springiness is exemplified by not only a longitudinal stiffness, but by a bulkiness or a tendency for separate filaments in each strand of yarn to expand laterally against the confines of the twist. It is this stiffness and firmness-that prior art techniques tend to attack when handling or conveying strands of yarn.
  • the primary culprit which must be combatted to maintain firmness and stiffness of the individual yarn strand is tension which, in some prior art processes, is applied to the strands of yarn as the strands are pulled by their own strength through various processing stations.
  • the general prior art approach to relieving tension on the strands is to simply lay the strands on a moving conveyor. This, of course, presents problems because, while the strands are being processed, they are subject to shrinking, stretching, fluid streams and the like, which tend to cause the strands of yarn to entangle or separate or, perhaps, become interwound with some of the processing machinery. When this happens, the process must be shut-down which, of course, results in economic losses.
  • the carpet industry has resorted to a knit and de-knit process, wherein the individual strands of yarn are knitted into a sock before the yarn undergoes the dyeing process.
  • the yarns knitted together they control one another, so that the process is essentially working on increments of a relatively large mass as the yarn is dyed.
  • the sock at least along some portions or in some work stations of the process, must be pulled by its own strength in order to advance. This, of
  • the socks present an additional problem in that as the individual strands are tensioned, they tend to squeeze together, forcing each filament of the strands into close engagement which is undesirable in that processing chemicals, such as dyestuffs, cannot penetrate between the fibers to dye the whole yarn. In this situation, after tension on the individual yarn strand is released and the fibers separate, the undyed portions become visible or show through which, of course, is not a desirable situation. Furthermore, in subsequent operations', such as steaming, washing or drying, the interior fibers may be shielded from fluid circulation which takes place during these processes. Consequently, these processes may not be complete or, if completed, they make take a longer time.
  • the instant invention contemplates a process for conveying a plurality of strands of material longitudinally along the path by dividing the strands of material into separate arrays and interweaving a carrier strand between the arrays to entrain the strands of material with the carrier strand.
  • the carrier strand As the carrier strand is interwoven with the arrays, the carrier strand itself is advanced. Tension is thus created in the carrier strand instead of in the individual strands of material, and the carrier strand acts as both a conveyor and a supporter.
  • apparatus for practicing the method of the instant invention contemplates conveying a plurality of webs along a planar path through a work station by using a guide means to divide the webs into two arrays, a displacement means for separating the two arrays, and shuttle means for interweaving a strand of material between the two arrays to entrain the two arrays.
  • Apparatus for practicing the instant invention also includes transport means for capturing and advancing the entraining strand of material to thereby convey the webs along the path.
  • apparatus for practicing the method of the instant invention may include a take-up reel on which the strands of yarn are wound by passing the yarn between the spindle of the take-up reel and a moving belt, roller or the like against which the yarn rests as it is being taken up.
  • FIG. 1 is a schematic illustration of apparatus for practicing the instant invention showing several processing stations which include an entraining station, a padding station, a printing station, a steaming station, a washing station, a drying station, a heat-setting station, a cooling station, a carrier strand removing station, a coating station, and a take-up station;
  • FIG. 2 is a top view of a conveyor mechanism, according to the instant invention, for conveying parallel webs or warps of textile material along a path through various processing stations of FIG. 1 by entraining the warps with an endless carrier strand;
  • FIG. 3 is a side view of the conveyor shown in FIG. 2 illustrating just how the warps are separated into a pair of arrays to receive the carrier strand, and are then directed back into substantially the same plane before passing through the various stations shown in FIG. 1;
  • FIG. 4 isan enlarged top view of a portion of FIG. 1 emphasizing that the carrier strand is disposed over one array of warps and under the other array of warps in an alternate fashion;
  • FIG. 5 is an end view of the arrangement of carrier strand and warps shown in FIG. 4;
  • FIG. 7 is a front view of the apparatus of FIG. 6 showing how a drive belt is positioned between flanges on the spools to engage the strands and cause the strands to wind around the spindles of the spools while holding the strands in firm engagement with the spindles;
  • FIG. 8 is a perspective view of the entraining station of FIG. 1 showing how a shuttle moves the carrier strand between the warps;
  • FIG. 9 is a view similar to FIG. 8, showing how the shuttle moves the carrier strand around an advancing pin carried by a chain to effect transport of the webs.
  • the dyeing apparatus 21 is a work station which includes a plurality of schematically shown processes which are practiced on textile material, designated generally by the numeral 22, which moves along a path through the processes in the direction of arrows 23.
  • textile material 22 first passes through an entraining station 24 where the material is interwoven with a carrier strand, as will be fully explained hereinafter.
  • the material 22 then passes sequentially through the following processing stations: a padding station 26, a squeezing station 27, a printing station 28, a steaming station 29, a washing station 31, a drying station 32, a cooling station 33, a carrier strand removal station 34, a coating station 35, and a take-up station 36.
  • the processes which occur at stations 26 through 32 and at station 35 are generally conventional processes which are currently practiced in the dyeing of yarn for use in articles such as tufted carpets and the like.
  • the material 22 traverses the afore-mentioned stations in a substantially tensionless state, while the material 22 is advanced in the form of a plurality of parallel strands.
  • each warp consists of a plurality of yarn strands 43.
  • the strands 43 are preferably two-ply, arranged in a false twist, and about 2600 denier. A filament count of 2600 denier means that each strand will have 1800 to 2600 separate filaments.
  • the warps of 42a and 42b pass between a pair of aligning rollers 44 and 45 which retain the warps in the same plane.
  • the roller 45 may simply rest on the roller 44, with the warps 42a and 42b disposed therebetween.
  • a means for accomplishing this is perhaps best seen in FIGS. 8 and 9, wherein the roller 63 is rigidly held in position, and the similar roller 62 is journalled to a pair of arms 46 which are pivoted to rotate about an axle 50.
  • the warps 42a and 42b After the warps 42a and 42b emerge from between the rollers 44 and 45, the warps 42a are displaced in one direction and the warps 42b are displaced in the opposite direction to create a gap 47 therebetween.
  • This gap is shown in FIGS. 1, 3, 8 and 9, and is effected by passing the web 42a through a first array of apertures 4848 in a first array of guides 4949 and by passing the webs 42b through a second array of apertures 5151 in a second array of guides 5252.
  • the guides 4949 are in a lowered po sition, while the guides 5252 are in a raised position.
  • the webs 42a and 42b have a first mode, which is shown in FIG. 3, and a second mode, which is shown in FIGS. 8 and 9.
  • the warps 42a and 42b may be switched back and forth between the two aforementioned modes by a rack and pinion type device, designated generally by the numeral 53.
  • the rack and pinion 53 is operated by a reciprocating rod 54 which has a rack section 55 thereon that engages a gear 56 rigidly secured to a pinion 57.
  • the rod 54 is preferably pneumatically actuated, but it may, of course, by operated by a magnetic solenoid or by mechanical means.
  • a rack 59 reciprocates the guides 4949 up and down, raising and lowering the warps 42a
  • a rack 61 reciprocates the guides 5252 up and down to raise and lower the warps 42b. Since the racks 59 and 61 are coupled by the pinion 57, the racks will move in opposite directions as the pinion 57 oscillates, shifting the warps 42a and 42b up and down to assume alternately the first and second modes. While a rack and pinion arrangement 53 has been shown in the illustrated embodiment and, perhaps, is preferred because of its relative quietness, a pneumatic system or electrical system may, of course, also be used to raise and lower the warps 42a and 42b.
  • warps 42a and 42b pass through their respective apertures 4848 and 51-5 1, they are passed between a second set of rollers 62 and 63, which again align the warps to advance in the same or substantially the same plane.
  • a carrier strand 65 is passed through the gap 47 in a direction transverse of the longitudinal path of the warps.
  • the carrier strand 65 is dispensed from a shuttle 66 which is in the form of a hollow tube through the bore of which the carrier strand passes.
  • the shuttle 66 is reciprocated back and forth in the direction of the double-headed arrow 67 to dispense the carrier strand 65 between the gap 47. Reciprocal motion may be imparted to shuttle 66 by any type of mechanical, pneumatic or electrical means suitable.
  • shuttle 66 is reciprocated by a pneumatic cylinder 68 into opposite ends of which air is injected and exhausted in a conventional manner to reciprocate the shuttle 66.
  • the shuttle 66 In operation, the shuttle 66 must proceed from one side of the warps 42a and 42b to the other side of the warps, and then return to its initial position before the rack and pinion 53 moves the warps to reverse their mode.
  • a conventional controller (not shown) is used to coordinate the operation of the pneumatic cylinder 68 with the reciprocation of rod 54, which controls the operation of the rack and pinion 53.
  • the shuttle 66 will dispense the carrier strand 65 over the warps 42a and under the warps 42b.
  • the carrier strand 65 Prior to traversing across the path of travel assumed by the warps 42a and 42b, the carrier strand 65 is intercepted by one of a plurality of pins 71 which project from tabs 72 carried by a chain 73.
  • the chain 73 is trained around a pair of sprockets 76 and 77 positioned on one side of the path travel of the warps through the dyeing apparatus 21 and disposed at the entraining station 24 and the carrier strand removal station 34.
  • the carrier strand 65 will assume an angular orientation with respect to the webs and the direction represented by the arrow 74.
  • the shuttle 66 After the shuttle 66 transports the carrier strand 65 completely across the warps 42a and 42b, the shuttle deposits the carrier strand in the path of travel of one of another array of pins 81 carried by tabs 82 projecting from a second chain 83.
  • the chain 83 also moves in the direction 74 in parallel relationship with the chain 73. Since the strand 65 is in the path of travel of one of the pins 81, it will be intercepted by one of the pins 81 and carried by the pin in the direction of the arrow 74.
  • the pneumatic actuator 68 withdraws the shuttle 66 and pulls the strand 65 back through the gap 47 to its initial position to complete one cycle of the entraining or interweaving step.
  • the shuttle 66 In order to facilitate looping the carrier strand 65 about the pins 71 and 81, the shuttle 66 has a downwardly extending portion 85 extending therefrom so that the pins may pass under the shuttle 66 without interference.
  • the rack and pinion 53 changes the mode of the warps 42a and 42b so that the warps 42a are raised and the warps 42b are lowered.
  • the carrier strand 65 is pressed into interwoven relationship with the warps 42a and 42b by the rollers 62 and 63 so that the warps move generally in the same plane, as shown in FIG. 5. Since the carrier strand 65 is moving in the direction of the arrow 74, the warps 42a and 4212, which are now entrained in the carrier strand, will also move in the direction of the arrow 74, thereby being carried through the dyeing apparatus 21.
  • the segment shown in FIG. 4 illustrates how the carrier strand 65 supports the warps 42b, which rest on top of the carrier strand.
  • the warps 42a are beneath the carrier strand and, consequently, are not supported thereby. It is therefor necessary to, on the next cycle, weave the carrier strand 65 beneath the warps 42a and above the warps 4212.
  • warps 42a are raised and the warps 42b are lowered. Consequently, when the shuttle 66 dispenses the carrier strand 65 in the gap 47, the carrier strand will be above the webs 42a and below the webs 42b, resulting in webs 42a being supported. Accordingly, the strand 65 will supply support for the webs 42b during one cycle, and during the subsequent cycle, will supply support for the webs 42a, thereby providing all of the webs with sufficient support as the web advance through the various stations shown in FIG. 1.
  • the carrier strand 65 prevents the webs or individual strands 43 composing the webs, from displacing upwardly into tangled engagement with mechanisms associated with various stations 26 through 33.
  • the strand 65 therefor restrains the webs 42a and 42b to motion along a parallel path through the stations of the dyeing apparatus 21. If any of the strands 43 composing the webs 42a and 42b for some reason happen to break, the broken strands will be supported by the carrier strand 65 and thereby prevent the broken strand from becoming entangled in the processing stations and possibly shutting down the dyeing operation.
  • the carrier strand 65 is the only strand under tension, while strands 43 composing the warps 42a and 42b simply rest on the carrier strand and are held in a substantially tensionless state.
  • the carrier strand 65 is removed from entrainment with the warps 42a and 42b at the strand removal station 34.
  • first and second reciprocating guides 8686 and 8787 respectively, which have apertures 88-88 and 8989, respectively, through which the warps 42a and 42b, respectively, pass.
  • the guides 8686 and 8787 are substantially identical to the upstream guides 4949 and 52-52, and may be operated by a rack and pinion arrangement (not shown) which is substantially similar to the rack and pinion arrangement 53.
  • rack and pinion arrangement not shown
  • the guides 86-86 and 8787 reciprocate relative to one another, they displace the warps 42a and 42b relative to one another to create a gap 91 therebetween.
  • the upstream guides 49-49 and 5252 form the gap 91 by assuming first and second modes.
  • the web 42a is raised relative to the web 42b so that the web 42a is high and te web 42 is low
  • the web 42b is raised relative to the web 42a so that the web 42b is higher or above the web 42a.
  • the warps 42a and 42b are restrained to move in the same plane, both upstream from and downstream from the guides 8686 and 8787 by upstream rollers 92 and 93 and downstream rollers 94 and 95 between which the warps pass.
  • the carrier strand 65 is endless.
  • the carrier strand forms a loop as it is dispensed from the entraining station 24, is removed from entrainment with warps 42a and 421; at the removal station 34, and is then returned to the dispensing station 24. Since the chains 73 and 83 continually advance the strand, the carrier strand is pulled from entrainment with the warps 42a and 4312 at the removal station by tension applied to the strand as the pins 71 and 81 engage the strand at the entraining station 24.
  • the strand removal station 34 is positioned adjacent to and just downstream of the downstream sprockets 77 and 77 while the carrier strand 65 is passed through a stationary tube 96 positioned just downstream of and just above the sprockets 77. Consequently, as the pins 71 and 81 move downwardly while going around the sprockets 77 and 77, the carrier strand 65 is pulled from engagement with the pins. As clearly seen in FIG. 2, the pins 71 and 81 are staggered relative to one another, giving the carrier strand 65 a zig-zag configuration.
  • two bars 103103 extend in the steaming station 29 parallel to the path of travel of the material 22.
  • One of the bars 103 is positioned in the space between the pins 71 and the edge of the material 22 while the other bar is positioned between the pins 81 and the other edge of the material. If the carrier strand 65 tends to fall from the pins 71 and 81, it will rest on the bars 103 and thereby be held in engagement with the pins.
  • the material passes through the coating station 35, in which a coating roller 104 deposits a coating 105 from a dish 106 onto the textile material. It is necessary before the coating process 35 to remove the carrier strand 65 from entrainment with the warps 42a and 42b to prevent small gaps in the coating from occurring on the individual strands 43 at the areas where the carrier strand engaged the individual strands.
  • take-up station 36 where it is wound on take-up spools, designated generally by the numeral 108.
  • take-up station 36 where it is wound on take-up spools, designated generally by the numeral 108.
  • a plurality of the take-up spool 108 are arranged on a rack 109.
  • Each spool 108 takes up a single strand 43 (see FIGS. 4 and 5) so that there must be one spool for each strand of yarn. In other words, if there are two hundred strands 43 of yarn, there must be two hundred spools 108.
  • spools 108 are disposed at an angle of about with the vertical, and rest against an endless drive belt 111 positioned adjacent to the spindles 112 of the spools.
  • Each spool 108 has a pair of circular flanges 113 positioned at the ends of the spindle 112.
  • the endless belt 111 is disposed between the flanges 113. Consequently, when the material 22 is inserted between the belt 111 and one of the spindles 112, the material will wind about the spindles as the belt advances in the direction of arrow 114.
  • each brace of rollers 116 includes a plurality of rollers 117, and is inclined at an angle with respect to the horizontal so that, as the textile material 22 accumulates around the spindle 112, the take-up spool 108 advances in a direction of the arrow 118 away from the drive belt 111. As the material 22 accumulates, the flanges 113 move in the direction of the arrow 118 to rotate on sequential ones of the rollers 117.
  • the braces 116 of rollers 117 are inclined slightly to the horizontal in order to cause the spools 108 to roll back into engagement with the belt 111 and rest thereagainst by the force of gravity.
  • the right-hand spools 108 are shown receiving the material 22.
  • any tension or stress on the individual strands 43 of the material is not as critical as tension and stress would be if applied during the dyeing process when the textile material is hot and wet.
  • each spool 108 may hold an 8 hour supply of material 22 or yarn in the form of a single strand 43.
  • the strands 43 advance at 100 ft/min. through the apparatus 21 and each spool 108 accumulates 60,000 feet of yarn. Since 3,000 feet of yarn weighs one pound, approximately pounds of yarn is wound on each spool 108. After the spools 108 are full, the yarn thereon is transferred to bobbin packages (not shown) which weigh three to five pounds for subsequent sale or use.
  • the carrier strand 65 may be made of yarn perhaps, perphas, glass fiber. It is only necessary that the carrier strand be strong enough to support the warps 42a and 4212 as the warps are advanced through the various processes in the dyeing station 21 and that the carrier strand be strong enough to withstand numerous bends the changes in environment without succumbing to fatigue.
  • the material composing the strand 65 should not interact with the textile material 22 or with the dyestuffs dispensed at station 26 and the steam dispensed at station 29. In choosing a material for the carrier strand 65, it should be remembered that substantially all of the tension applied in the conveyingsystem 41 is assumed by the carrier strand. In view of these considerations, it is believed that a glass fiber carrier strand 65 will give good service.
  • An apparatus for conveying a plurality of webs along a planar path through a work station comprising: guide means for dividing the webs into at least two arrays;
  • displacement means for separating the guide means to displace the two arrays laterally out of the plane of the path
  • shuttle means for carrying a strand of material between the two arrays and across the path when the arrays are displaced;
  • intercepting means for capturing the strand of material on each side of the path
  • transport means for moving the intercepting means parallel to the path so that the captured strand moves parallel to the path
  • activating means for reversing the displacement of the arrays to move the webs in opposite directions through the planer path after the intercepting means has captured the strand of material to thereby entrain the webs with the strand and cause the transport means to convey the webs along the path.
  • the guide means includes a series of apertures, each of which engages a separate web and alternate ones of which form an array.
  • the displacement means includes a pinion which reciprocates two racks relative to one another, wherein one rack displaces the apertures of one array and the other rack displaces the apertures of the other array.
  • the shuttle means includes a tube having a bore therethrough through which the strand passesand from which the strand is dispensed as the shuttle moves between the arrays.
  • the transport means includes a pair of parallel chains which advance parallel to the planer path and wherein the intercepting means includes a plurality of projections spaced along said chains around which the strand is carried to capture the strand.
  • a spool having a spindle for winding the webs thereon and a pair of circular flanges for retaining the webs on the spindle as the webs are wound;
  • bearing means for supporting the spool by rotatably engaging said flanges
  • the drive means includes a moving belt which fits between the flanges of said spool to engage the webs and hold the webs in wound engagement with the spindle.
  • bearing means comprises a plurality of rollers mounted on an inclined support and along which the flanges progress as the webs are taken up and the spindle displaces away from the belt.
  • An apparatus for dyeing textile yarns wherein the yarns are advanced along a path through a work station having a plurality of processes which are arranged in tandem and which include: padding, printing, steaming, washing, drying, heat-setting, cooling, and coating, wherein the improvement is characterized by:
  • the means for advancing the carrier strand includes a pair of endless conveyors disposed on opposite sides of the path.
  • the apparatus of claim 15, further including means positioned in the work station for reversing temporarily the direction of advance of the yarns during the steaming process to prolong exposure of the yarns to the steaming process.
  • An apparatus for conveying a plurality of yarns along a path comprising:
  • the means for advancing the capturing means including a pair of endless conveyors upon which the capturing means are mounted-and which are disposed to advance on opposite sides of the path and wherein the interweaving means distributes the carrier strand alternately between the capturing means on each conveyor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Textile Engineering (AREA)
  • Treatment Of Fiber Materials (AREA)

Abstract

Strands of yarn are dyed in a continuous process which includes: applying a dye to the yarn with a padder, printing a pattern on the yarn, fixing the dye with a steamer, washing the yarn, drying the yarn, heat-setting the yarn, cooling the yarn, coating the yarn, and finally taking the yarn up on a spool. The yarn is conveyed through stations performing these various processes by initially configuring parallel strands of the yarn into a plurality of warps which are then separated into two spaced arrays. An entraining strand of yarn is then woven between the arrays of warps as the arrays are raised and lowered relative to one another. As the entraining strand of yarn is woven through the arrays of warps, it is captured sequentially by a pair of parallel chains which carry the entraining strand and warps through the afore-mentioned processes. The entraining strand of yarn is formed in a continuous loop which is dispensed from a shuttle upstream of the padding process and is retrieved from the parallel chains downstream of the cooling process. After coating the yarns, they are taken up on a rotating spool which is driven by a continuous belt that engages the yarn as the yarn coils about the spindle of the spool. In this way, the yarn is conveyed through the various afore-mentioned processes while in a tensionless state.

Description

United States Patent 11 1 Murphy 1451 Sept. 30, 1975 1 APPARATUS FOR CONVEYING ELONGATED MATERIAL SUCH AS TEXTILE MATERIAL [75] Inventor: Lonnie A. Murphy, Chattanooga.
Tenn.
[73] Assignee: Wadsworth-Greenwood Corporation. Dalton. Ga.
[22] Filed: Oct. 25, 1973 [2]] Appl. No.: 409,465
[52] US. Cl 28/1 R: 28/40: 28/75 R:
34/162; 242/68 [51} Int. Cl.'- D06? 3/00 [58] Field of Search 28/1 R, 28, 30, 54, 55.
Prinmry liramincr-Mervin Stein .-1Imrne v. Agent. or FirmSherman & Shalloway [57] ABSTRACT Strands of yarn are dyed in a continuous process which includes: applying a dye to the yarn with a padder. printing a pattern on the yarn. fixing the dye with a steamer. washing the yarn. drying the yarn. heatsetting the yarn. cooling the yarn. coating the yarn, and finally taking the yarn up on a spool. The yarn is conveyed through Stations performing these various processes by initially configuring parallel strands of the yarn into a plurality of warps which are then separated into two spaced arrays. An entraining strand of yarn is then woven between the arrays of warps as the arrays are raised and lowered relative to one another. As the entraining strand of yarn is woven through the arrays of warps, it is captured sequentially by a pair of parallel chains which carry the entraining strand and warps through the afore-mentioned processes. The entraining strand of yarn is formed in a continuous loop which is dispensed from a shuttle upstream of the padding process and is retrieved from the parallel chains downstream of the cooling process. After coating the yarns. they are taken up on a rotating spool which is driven by a continuous belt that engages the yarn as the yarn coils about the spindle of the spool. In this Way. the yarn is conveyed through the various aforementioned proeesses while in a tensionless state.
24 Claims, 9 Drawing Figures US. Patent Sept. 30,1975 Sheet 2 of5 3,908,247
US. Patent Sept. 30,1975 Sheet 4 of5 3,908,247
US. Patent Sept. 30,1975 Sheet 5 of5 3,908,247
wv k
APPARATUS FOR CONVEYING ELONGATED MATERIAL SUCH AS TEXTILE MATERIAL BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to methods of and apparatus for dyeing yarn in a continuous process. More particularly, the present invention relates to methods of and apparatus for dyeing a plurality of strands of yarn in a continuous process involving a plurality of steps.
2. Technical Considerations in Prior Art In the manufacture of textile materials, it is often necessary to dye strands of yarn which are subsequently woven into fabric composing the material. If the material happens to be used for carpets, especially tufted carpets, many problems are encountered in maintaining the quality of the yarn while achieving the desired color effect. Generally, these problems result from current practices in handling and conveying the yarn. Since it is necessary to process numerous strands of yarn simultaneously, in order to economically manufacture carpet, or for that matter, any other textile material, the methods of and apparatus for handling and conveying the material can become quite complex. As this complexity increases, it becomes more and more difficult to control the yarn being processed.
In order to produce high quality carpet, it is necessary that the tufts of yarn making up the carpet have certain qualities in order to give the carpet the desired feel of plushness. Each strand of yarn must therefor maintain its firmness or stiffness. In other words, each strand of yarn should retain a degree of elasticity or springiness. This quality of springiness is exemplified by not only a longitudinal stiffness, but by a bulkiness or a tendency for separate filaments in each strand of yarn to expand laterally against the confines of the twist. It is this stiffness and firmness-that prior art techniques tend to attack when handling or conveying strands of yarn.
The primary culprit which must be combatted to maintain firmness and stiffness of the individual yarn strand is tension which, in some prior art processes, is applied to the strands of yarn as the strands are pulled by their own strength through various processing stations. The general prior art approach to relieving tension on the strands is to simply lay the strands on a moving conveyor. This, of course, presents problems because, while the strands are being processed, they are subject to shrinking, stretching, fluid streams and the like, which tend to cause the strands of yarn to entangle or separate or, perhaps, become interwound with some of the processing machinery. When this happens, the process must be shut-down which, of course, results in economic losses.
In order to alleviate the afore-mentioned problems, which are essentially control problems, the carpet industry, among others, has resorted to a knit and de-knit process, wherein the individual strands of yarn are knitted into a sock before the yarn undergoes the dyeing process. By having the yarns knitted together, they control one another, so that the process is essentially working on increments of a relatively large mass as the yarn is dyed. By knitting the yarn into the afore-mentioned socks, some of the tension on the individual strands is reduced. However, the sock, at least along some portions or in some work stations of the process, must be pulled by its own strength in order to advance. This, of
course, tensions the individual strands. By tensioning the individual strands, some of the aforementioned firmness or stiffness is lost, especially if the strands are stressed beyond their elastic limit.
The socks present an additional problem in that as the individual strands are tensioned, they tend to squeeze together, forcing each filament of the strands into close engagement which is undesirable in that processing chemicals, such as dyestuffs, cannot penetrate between the fibers to dye the whole yarn. In this situation, after tension on the individual yarn strand is released and the fibers separate, the undyed portions become visible or show through which, of course, is not a desirable situation. Furthermore, in subsequent operations', such as steaming, washing or drying, the interior fibers may be shielded from fluid circulation which takes place during these processes. Consequently, these processes may not be complete or, if completed, they make take a longer time.
When the sock is deknitted, the yarn is full of kinks which are heat-set in the yarn due to the steaming and drying processes. These kinks prevent the yarn from standing erect after it is tufted into carpet- A rather obvious disadvantage of using the knit/deknit process is that the socks must be knitted prior to the dyeing process, and then deknitted subsequent to the dyeing process. This requires two expensive machines which must be inserted into the production line. Since one of these machines is a knitting machine, it will necessarily be rather complex and sensitive and, perhaps, will be subject to considerable down-time. This, of course, can shut down the entire dyeing process if not enough yarn sock has been knitted in reserve. If there is a reserve of yarn sock, it must, of course, be stored somewhere, which uses valuable space. Consequently. it is readily seen that disposal of the entire knit/deknit process would be quite desirable.
SUMMARY OF THE INVENTION In view of the afore-mentioned problems of the prior art, it is an object of the instant invention to provide a new and useful method of and apparatus for dyeing textiles.
It is another object of the instant invention to provide a new and useful method of and apparatus for dyeing textile materials, wherein strands of yarn used to fabricate the materials are subject to adequate control as the yarns undergo the dyeing process.
It is still another object of the instant invention to provide a new and improved method of and apparatus for dyeing textile materials, wherein the strands of yarn which are used to fabricate the materials are maintained in a substantially tensionless state as they undergo the dyeing process.
It is a further object of the instant invention to pro- .vide a new and improved method of and apparatus for dyeing textile materials, whereinfirmness and stiffness of individual yarns composing the fabric of the material is maintained.
It is still a further object of the instant invention to provide a new and improved method of and apparatus for dyeing textile materials, whereinentanglement of .dyeing textile materials, wherein dye penetration into individual yarns of the material to coat filaments composing the yarn is encouraged.
It is still another object of the instant invention to provide a new and improved method of and apparatus for conveying a plurality of yarns or the like through one or more processing stations.
It is still a further object of the instant invention to provide a method of and apparatus for taking strands of yarn up on a rotating drum or spool.
In accordance with these and other objects, the instant invention contemplates a process for conveying a plurality of strands of material longitudinally along the path by dividing the strands of material into separate arrays and interweaving a carrier strand between the arrays to entrain the strands of material with the carrier strand. As the carrier strand is interwoven with the arrays, the carrier strand itself is advanced. Tension is thus created in the carrier strand instead of in the individual strands of material, and the carrier strand acts as both a conveyor and a supporter.
In accordance with the afore-mentioned and other objects, apparatus for practicing the method of the instant invention contemplates conveying a plurality of webs along a planar path through a work station by using a guide means to divide the webs into two arrays, a displacement means for separating the two arrays, and shuttle means for interweaving a strand of material between the two arrays to entrain the two arrays. Apparatus for practicing the instant invention also includes transport means for capturing and advancing the entraining strand of material to thereby convey the webs along the path.
In addition, apparatus for practicing the method of the instant invention may include a take-up reel on which the strands of yarn are wound by passing the yarn between the spindle of the take-up reel and a moving belt, roller or the like against which the yarn rests as it is being taken up.
BRIEF DESCRIPTION OF THE DRAWINGS The present invention will become more fully understood from the following detailed description and accompanying drawings, in which:
FIG. 1 is a schematic illustration of apparatus for practicing the instant invention showing several processing stations which include an entraining station, a padding station, a printing station, a steaming station, a washing station, a drying station, a heat-setting station, a cooling station, a carrier strand removing station, a coating station, and a take-up station;
FIG. 2 is a top view of a conveyor mechanism, according to the instant invention, for conveying parallel webs or warps of textile material along a path through various processing stations of FIG. 1 by entraining the warps with an endless carrier strand;
FIG. 3 is a side view of the conveyor shown in FIG. 2 illustrating just how the warps are separated into a pair of arrays to receive the carrier strand, and are then directed back into substantially the same plane before passing through the various stations shown in FIG. 1;
FIG. 4 isan enlarged top view of a portion of FIG. 1 emphasizing that the carrier strand is disposed over one array of warps and under the other array of warps in an alternate fashion;
FIG. 5 is an end view of the arrangement of carrier strand and warps shown in FIG. 4;
port a plurality of spools that take the strands of yarn after the strands leave the coating station of FIG. 1;
FIG. 7 is a front view of the apparatus of FIG. 6 showing how a drive belt is positioned between flanges on the spools to engage the strands and cause the strands to wind around the spindles of the spools while holding the strands in firm engagement with the spindles;
FIG. 8 is a perspective view of the entraining station of FIG. 1 showing how a shuttle moves the carrier strand between the warps; and
FIG. 9 is a view similar to FIG. 8, showing how the shuttle moves the carrier strand around an advancing pin carried by a chain to effect transport of the webs.
DETAILED DESCRIPTION Referring now to FIG. 1, there is shown dyeing apparatus, designated generally by the numeral 21, which is used to practice the process of the instant invention. The dyeing apparatus 21 is a work station which includes a plurality of schematically shown processes which are practiced on textile material, designated generally by the numeral 22, which moves along a path through the processes in the direction of arrows 23. In accordance with the present invention, textile material 22 first passes through an entraining station 24 where the material is interwoven with a carrier strand, as will be fully explained hereinafter. The material 22 then passes sequentially through the following processing stations: a padding station 26, a squeezing station 27, a printing station 28, a steaming station 29, a washing station 31, a drying station 32, a cooling station 33, a carrier strand removal station 34, a coating station 35, and a take-up station 36.
The processes which occur at stations 26 through 32 and at station 35 are generally conventional processes which are currently practiced in the dyeing of yarn for use in articles such as tufted carpets and the like. However, by utilizing the apparatus 21, the material 22 traverses the afore-mentioned stations in a substantially tensionless state, while the material 22 is advanced in the form of a plurality of parallel strands.
Referring now to FIG. 2, there is shown a conveying apparatus, generally designated by the numeral 41, which is used to advance the material 22 through the afore-mentioned processing stations, numbered 26 through 33. In accordance with the present invention, the material 22 is advanced from a storage creel or the like (not shown) separated into warps, generally designated by the numerals 42a and 42b. As best seen in FIGS. 4 and 5, each warp consists of a plurality of yarn strands 43. In the manufacture of some tufted carpet, the strands 43 are preferably two-ply, arranged in a false twist, and about 2600 denier. A filament count of 2600 denier means that each strand will have 1800 to 2600 separate filaments.
Referring again to FIG. 2, in conjunction with FIG. 3, the warps of 42a and 42b pass between a pair of aligning rollers 44 and 45 which retain the warps in the same plane. To accomplish this, the roller 45 may simply rest on the roller 44, with the warps 42a and 42b disposed therebetween. A means for accomplishing this is perhaps best seen in FIGS. 8 and 9, wherein the roller 63 is rigidly held in position, and the similar roller 62 is journalled to a pair of arms 46 which are pivoted to rotate about an axle 50.
After the warps 42a and 42b emerge from between the rollers 44 and 45, the warps 42a are displaced in one direction and the warps 42b are displaced in the opposite direction to create a gap 47 therebetween. This gap is shown in FIGS. 1, 3, 8 and 9, and is effected by passing the web 42a through a first array of apertures 4848 in a first array of guides 4949 and by passing the webs 42b through a second array of apertures 5151 in a second array of guides 5252. As shown in FIG. 3, the guides 4949 are in a lowered po sition, while the guides 5252 are in a raised position. However, these positions may be reversed so that the apertures 4848 and guides 4949 are raised, while the apertures 5151 and guides 5252 are lowered, so that the webs 42a are above the webs 42b, as shown in FIGS. 8 and 9. In other words, the webs 42a and 42b have a first mode, which is shown in FIG. 3, and a second mode, which is shown in FIGS. 8 and 9.
As seen in FIG. 3, the warps 42a and 42b may be switched back and forth between the two aforementioned modes by a rack and pinion type device, designated generally by the numeral 53. The rack and pinion 53 is operated by a reciprocating rod 54 which has a rack section 55 thereon that engages a gear 56 rigidly secured to a pinion 57. The rod 54 is preferably pneumatically actuated, but it may, of course, by operated by a magnetic solenoid or by mechanical means. As the pinion 57 oscillates in the directions of the double-headed arrow 58, a rack 59 reciprocates the guides 4949 up and down, raising and lowering the warps 42a, while a rack 61 reciprocates the guides 5252 up and down to raise and lower the warps 42b. Since the racks 59 and 61 are coupled by the pinion 57, the racks will move in opposite directions as the pinion 57 oscillates, shifting the warps 42a and 42b up and down to assume alternately the first and second modes. While a rack and pinion arrangement 53 has been shown in the illustrated embodiment and, perhaps, is preferred because of its relative quietness, a pneumatic system or electrical system may, of course, also be used to raise and lower the warps 42a and 42b.
After the warps 42a and 42b pass through their respective apertures 4848 and 51-5 1, they are passed between a second set of rollers 62 and 63, which again align the warps to advance in the same or substantially the same plane.
Before the warps 42a and 42b pass between the rollers 62 and 63, a carrier strand 65 is passed through the gap 47 in a direction transverse of the longitudinal path of the warps. The carrier strand 65 is dispensed from a shuttle 66 which is in the form of a hollow tube through the bore of which the carrier strand passes. The shuttle 66 is reciprocated back and forth in the direction of the double-headed arrow 67 to dispense the carrier strand 65 between the gap 47. Reciprocal motion may be imparted to shuttle 66 by any type of mechanical, pneumatic or electrical means suitable. In the illustrated embodiment, however, shuttle 66 is reciprocated by a pneumatic cylinder 68 into opposite ends of which air is injected and exhausted in a conventional manner to reciprocate the shuttle 66. In operation, the shuttle 66 must proceed from one side of the warps 42a and 42b to the other side of the warps, and then return to its initial position before the rack and pinion 53 moves the warps to reverse their mode. A conventional controller (not shown) is used to coordinate the operation of the pneumatic cylinder 68 with the reciprocation of rod 54, which controls the operation of the rack and pinion 53.
When the warps 42a and 4217 are in the first mode, in other words, the mode shown in FIG. 3, the shuttle 66 will dispense the carrier strand 65 over the warps 42a and under the warps 42b. Prior to traversing across the path of travel assumed by the warps 42a and 42b, the carrier strand 65 is intercepted by one of a plurality of pins 71 which project from tabs 72 carried by a chain 73. The chain 73 is trained around a pair of sprockets 76 and 77 positioned on one side of the path travel of the warps through the dyeing apparatus 21 and disposed at the entraining station 24 and the carrier strand removal station 34.
For purposes of simplification in FIG. 2, only the upstream and downstream ends of the chain 73 are shown, the rest being broken away. However, it is to be understood that the chain 73 is supported in a conventional manner with a suitable array of idler sprockets. The chain moves in the direction of the arrow 74 and may be driven by any suitable means (not shown). As the chain 73 moves, it advances the pins 71 and, thus,
the portions of the carrier strand 65 which the pins intercept. Consequently, as the carrier strand 65 moves in the direction of the arrow 74 and as the carrier strand is displaced normally across the path of travel of the webs 42a and 42b, the carrier strand will assume an angular orientation with respect to the webs and the direction represented by the arrow 74.
After the shuttle 66 transports the carrier strand 65 completely across the warps 42a and 42b, the shuttle deposits the carrier strand in the path of travel of one of another array of pins 81 carried by tabs 82 projecting from a second chain 83. The chain 83 also moves in the direction 74 in parallel relationship with the chain 73. Since the strand 65 is in the path of travel of one of the pins 81, it will be intercepted by one of the pins 81 and carried by the pin in the direction of the arrow 74. After the strand is captured by the pin 81, the pneumatic actuator 68 withdraws the shuttle 66 and pulls the strand 65 back through the gap 47 to its initial position to complete one cycle of the entraining or interweaving step. In order to facilitate looping the carrier strand 65 about the pins 71 and 81, the shuttle 66 has a downwardly extending portion 85 extending therefrom so that the pins may pass under the shuttle 66 without interference.
After a cycle is completed, the rack and pinion 53 changes the mode of the warps 42a and 42b so that the warps 42a are raised and the warps 42b are lowered. After this happens, the carrier strand 65 is pressed into interwoven relationship with the warps 42a and 42b by the rollers 62 and 63 so that the warps move generally in the same plane, as shown in FIG. 5. Since the carrier strand 65 is moving in the direction of the arrow 74, the warps 42a and 4212, which are now entrained in the carrier strand, will also move in the direction of the arrow 74, thereby being carried through the dyeing apparatus 21.
The segment shown in FIG. 4 illustrates how the carrier strand 65 supports the warps 42b, which rest on top of the carrier strand. The warps 42a, however, are beneath the carrier strand and, consequently, are not supported thereby. It is therefor necessary to, on the next cycle, weave the carrier strand 65 beneath the warps 42a and above the warps 4212. When the warps 42a and 42b are switched from the first to the second mode, the
warps 42a are raised and the warps 42b are lowered. Consequently, when the shuttle 66 dispenses the carrier strand 65 in the gap 47, the carrier strand will be above the webs 42a and below the webs 42b, resulting in webs 42a being supported. Accordingly, the strand 65 will supply support for the webs 42b during one cycle, and during the subsequent cycle, will supply support for the webs 42a, thereby providing all of the webs with sufficient support as the web advance through the various stations shown in FIG. 1.
In addition to supplying support for the alternate arrays of webs 42a and 42b, the carrier strand 65 prevents the webs or individual strands 43 composing the webs, from displacing upwardly into tangled engagement with mechanisms associated with various stations 26 through 33. The strand 65 therefor restrains the webs 42a and 42b to motion along a parallel path through the stations of the dyeing apparatus 21. If any of the strands 43 composing the webs 42a and 42b for some reason happen to break, the broken strands will be supported by the carrier strand 65 and thereby prevent the broken strand from becoming entangled in the processing stations and possibly shutting down the dyeing operation. It can be readily seen that the carrier strand 65 is the only strand under tension, while strands 43 composing the warps 42a and 42b simply rest on the carrier strand and are held in a substantially tensionless state.
Referring now to mainly FIGS. 2 and 3, the carrier strand 65 is removed from entrainment with the warps 42a and 42b at the strand removal station 34. The
strand removal station 34 includes first and second reciprocating guides 8686 and 8787, respectively, which have apertures 88-88 and 8989, respectively, through which the warps 42a and 42b, respectively, pass. The guides 8686 and 8787 are substantially identical to the upstream guides 4949 and 52-52, and may be operated by a rack and pinion arrangement (not shown) which is substantially similar to the rack and pinion arrangement 53. As the guides 86-86 and 8787 reciprocate relative to one another, they displace the warps 42a and 42b relative to one another to create a gap 91 therebetween. Just as the first and second modes are created by the downstream guides 86--86 and 8787 as the downstream guides reciprocate, the upstream guides 49-49 and 5252 form the gap 91 by assuming first and second modes. In the first mode, the web 42a is raised relative to the web 42b so that the web 42a is high and te web 42 is low, and in the second mode, the web 42b is raised relative to the web 42a so that the web 42b is higher or above the web 42a.
The warps 42a and 42b are restrained to move in the same plane, both upstream from and downstream from the guides 8686 and 8787 by upstream rollers 92 and 93 and downstream rollers 94 and 95 between which the warps pass.
In the illustrated preferred embodiment, as best seen in FIG. 2, the carrier strand 65 is endless. In other words, the carrier strand forms a loop as it is dispensed from the entraining station 24, is removed from entrainment with warps 42a and 421; at the removal station 34, and is then returned to the dispensing station 24. Since the chains 73 and 83 continually advance the strand, the carrier strand is pulled from entrainment with the warps 42a and 4312 at the removal station by tension applied to the strand as the pins 71 and 81 engage the strand at the entraining station 24.
The strand removal station 34 is positioned adjacent to and just downstream of the downstream sprockets 77 and 77 while the carrier strand 65 is passed through a stationary tube 96 positioned just downstream of and just above the sprockets 77. Consequently, as the pins 71 and 81 move downwardly while going around the sprockets 77 and 77, the carrier strand 65 is pulled from engagement with the pins. As clearly seen in FIG. 2, the pins 71 and 81 are staggered relative to one another, giving the carrier strand 65 a zig-zag configuration. Since the pins 71 and 81 are staggered relative to one another, the protion of the strand 65 which has been pulled from engagement with the pin 81 has a chance to be completely drawn through the removal tube 96 just before the pin 71 has moved adjacent to the end of the tube 96 and starts on its downward motion around the sprocket 77 to release the carrier strand to the tube. By utilizing this staggered arrangement of the pins 71 and 81, entanglement of the carrier strand 65 is prevented.
As best seen in FIG. 1, the textile material 22, which in the preferred embodiment is composed of the warps 42a and 42b, undergoes three passes in the steaming station 29. This is done to prolong exposure of the material 22 to the steaming process and is accomplished by simply training the chains 73 and 83 about the sprockets 101 and 102 positioned in the steaming station. While three passes through the steaming station are shown,'it is to be understood that more passes may be utilized if it is desired to further increase exposure of the textile material 22 to the steaming process 29. As the chains 73 and 83 move between the sprockets 101 and 102, the material 22 is turned upside down and the pins 71 and 81 project downwardly instead of upwardly. Consequently, gravity will tend to cause the carrier strand 65 to drop from the pins 71 and 81. In order to prevent this, two bars 103103 (only one of which is shown) extend in the steaming station 29 parallel to the path of travel of the material 22. One of the bars 103 is positioned in the space between the pins 71 and the edge of the material 22 while the other bar is positioned between the pins 81 and the other edge of the material. If the carrier strand 65 tends to fall from the pins 71 and 81, it will rest on the bars 103 and thereby be held in engagement with the pins.
Referring still to FIG. 1, it is seen that after the textile material 22, composed of the warps 42a and 42b, leaves the carrier strand removal station 34, the material passes through the coating station 35, in which a coating roller 104 deposits a coating 105 from a dish 106 onto the textile material. It is necessary before the coating process 35 to remove the carrier strand 65 from entrainment with the warps 42a and 42b to prevent small gaps in the coating from occurring on the individual strands 43 at the areas where the carrier strand engaged the individual strands.
As the textile material 22 leaves the coating station 35, it proceeds to a take-up station 36 where it is wound on take-up spools, designated generally by the numeral 108. Referring now to FIGS. 6 and 7, where the take-up station 36 is shown in detail, a plurality of the take-up spool 108 are arranged on a rack 109. Each spool 108 takes up a single strand 43 (see FIGS. 4 and 5) so that there must be one spool for each strand of yarn. In other words, if there are two hundred strands 43 of yarn, there must be two hundred spools 108.
As seen in FIG. 6, spools 108 are disposed at an angle of about with the vertical, and rest against an endless drive belt 111 positioned adjacent to the spindles 112 of the spools. Each spool 108 has a pair of circular flanges 113 positioned at the ends of the spindle 112. As seen in FIG. 7, the endless belt 111 is disposed between the flanges 113. Consequently, when the material 22 is inserted between the belt 111 and one of the spindles 112, the material will wind about the spindles as the belt advances in the direction of arrow 114.
As best seen in FIG. 6, the flange 113 above each of the spools 108 rest on braces of roller 116. Each brace of rollers 116 includes a plurality of rollers 117, and is inclined at an angle with respect to the horizontal so that, as the textile material 22 accumulates around the spindle 112, the take-up spool 108 advances in a direction of the arrow 118 away from the drive belt 111. As the material 22 accumulates, the flanges 113 move in the direction of the arrow 118 to rotate on sequential ones of the rollers 117. The braces 116 of rollers 117 are inclined slightly to the horizontal in order to cause the spools 108 to roll back into engagement with the belt 111 and rest thereagainst by the force of gravity. In FIG. 6, the right-hand spools 108 are shown receiving the material 22.
It should be noted that as the textile material 22 moves between the carrier strand removal station 34 and the take-up spool 108, very little tension will be applied to the individual strands 43 because, as the material is taken up on the spools 108, it is being conveyed out of the carrier strand removal station. Accordingly, the only tension applied to each individual strand of yarn 43 is enough tension to keep the material supported against the force of gravity. Even this tension may be deleted by utilizing some type of support, other than the coating station 35 between the carrier strand removal station and the take-up station 36. Consequently, the textile material 22 need not be pulled by its own strength between the carrier strand removal station 34 and the spools 108 of the takeup station 36. In addition, it should be noted that, at this point, the material 22 is already dyed and has been dryed and cooled in the station 32. Therefore, any tension or stress on the individual strands 43 of the material is not as critical as tension and stress would be if applied during the dyeing process when the textile material is hot and wet.
By way of example, each spool 108 may hold an 8 hour supply of material 22 or yarn in the form of a single strand 43. Generally, the strands 43 advance at 100 ft/min. through the apparatus 21 and each spool 108 accumulates 60,000 feet of yarn. Since 3,000 feet of yarn weighs one pound, approximately pounds of yarn is wound on each spool 108. After the spools 108 are full, the yarn thereon is transferred to bobbin packages (not shown) which weigh three to five pounds for subsequent sale or use.
The carrier strand 65 may be made of yarn perhaps, perphas, glass fiber. It is only necessary that the carrier strand be strong enough to support the warps 42a and 4212 as the warps are advanced through the various processes in the dyeing station 21 and that the carrier strand be strong enough to withstand numerous bends the changes in environment without succumbing to fatigue. The material composing the strand 65 should not interact with the textile material 22 or with the dyestuffs dispensed at station 26 and the steam dispensed at station 29. In choosing a material for the carrier strand 65, it should be remembered that substantially all of the tension applied in the conveyingsystem 41 is assumed by the carrier strand. In view of these considerations, it is believed that a glass fiber carrier strand 65 will give good service.
While the methods and apparatus of the instant invention have been illustrated by way of the foregoing drawings and embodiments, which are for purposes of illustration only, the methods of the instant invention and the apparatus for practicing the instant invention are limited only by way of the following appended claims.
What is claimed is: 1. An apparatus for conveying a plurality of webs along a planar path through a work station, comprising: guide means for dividing the webs into at least two arrays;
displacement means for separating the guide means to displace the two arrays laterally out of the plane of the path;
shuttle means for carrying a strand of material between the two arrays and across the path when the arrays are displaced;
intercepting means for capturing the strand of material on each side of the path;
transport means for moving the intercepting means parallel to the path so that the captured strand moves parallel to the path; and
activating means for reversing the displacement of the arrays to move the webs in opposite directions through the planer path after the intercepting means has captured the strand of material to thereby entrain the webs with the strand and cause the transport means to convey the webs along the path.
2. An apparatus according to claim 1, wherein the guide means includes a series of apertures, each of which engages a separate web and alternate ones of which form an array.
3. An apparatus according to claim 2, wherein the displacement means includes a pinion which reciprocates two racks relative to one another, wherein one rack displaces the apertures of one array and the other rack displaces the apertures of the other array.
4. An apparatus according to claim 1, wherein the shuttle means includes a tube having a bore therethrough through which the strand passesand from which the strand is dispensed as the shuttle moves between the arrays.
5. An apparatus according to claim 1, wherein the transport means includes a pair of parallel chains which advance parallel to the planer path and wherein the intercepting means includes a plurality of projections spaced along said chains around which the strand is carried to capture the strand.
6. An apparatus according to claim 5, wherein the projections on one chain lead the projections on the other chain so that the projections on opposite chains are staggered in relation to one another and so that the strand follows a zig-zag path in relation to the planer path.
7. The apparatus of claim 1, further including means to take-up the webs after the webs pass through the work station, wherein the take-up means comprises:
a spool having a spindle for winding the webs thereon and a pair of circular flanges for retaining the webs on the spindle as the webs are wound;
bearing means for supporting the spool by rotatably engaging said flanges; and
drive means for rotating the spool to take-up the webs by frictionally engaging the webs to wind the webs about the spindle.
8. The apparatus of claim 7, wherein the drive means includes a moving belt which fits between the flanges of said spool to engage the webs and hold the webs in wound engagement with the spindle.
9. The apparatus of claim 8, wherein the bearing means is inclined with respect to the horizontal to cause the webs winding on the spool to bear against the belt.
10. The apparatus of claim 9, wherein the bearing means comprises a plurality of rollers mounted on an inclined support and along which the flanges progress as the webs are taken up and the spindle displaces away from the belt.
11. An apparatus for dyeing textile yarns, wherein the yarns are advanced along a path through a work station having a plurality of processes which are arranged in tandem and which include: padding, printing, steaming, washing, drying, heat-setting, cooling, and coating, wherein the improvement is characterized by:
a carrier strand for conveying the yarns along the path;
means for interweaving the carrier strand between the yarns to entrain the yarns therein upstream of the work station;
means for capturing the carrier strand to support the carrier strand on opposite sides of the path assumed by the yarns; and
means for advancing the capturing means to move the carrier strand along the path through the work station to thereby convey the yarns through the work station, said advancing means being laterally spaced from the path of said yarns.
12. The apparatus of claim 11, further including:
means for removing the carrier strand from between the entrained yarns downstream of the work station.
13. The apparatus of claim 12, wherein the carrier strand is a continuous loop which returns from downstream of the work station to upstream of the work station to continuously entrain and convey the yarns.
14. The apparatus of claim 1 1, wherein the means for advancing the carrier strand includes a pair of endless conveyors disposed on opposite sides of the path.
15. The apparatus of claim 14, wherein the means for capturing the carrier strand include projections which extend from the endless conveyors around which the carrier strand is looped.
16. The apparatus of claim 15, further including means positioned in the work station for reversing temporarily the direction of advance of the yarns during the steaming process to prolong exposure of the yarns to the steaming process.
17. The apparatus of claim 16, wherein the reversing means includes:
means for reversing the direction of the endless conveyors; and
retaining means extending in the work station for engaging the carrier strand to hold the carrier strand around the projections upon reversing the direction of the endless conveyors.
18. An apparatus for conveying a plurality of yarns along a path, comprising:
a carrier strand for conveying the yarns along the path;
means for interweaving the carrier strand with the yarns to entrain the yarns therein at an upstream station;
means for capturing the carrier strand to support the carrier strand on opposite sides of the path assumed by the yarns; and
means laterally spaced from said path for advancing the capturing means to move the carrier strand over the path to thereby convey the plurality of yarns.
19. The apparatus of claim 18, wherein the carrier strand supports the yarns against forces normal to the path after the carrier strand is captured by the capturing means.
20. The apparatus of claim 18, further including:
means for removing the carrier strand from between the entrained yarns after the yarns have been conveyed by the carrier strand.
21. The apparatus of claim 20, wherein the carrier strand is a continuous loop which is returned from the removing means to the interweaving means as the yarns are conveyed.
22. The apparatus of claim 18, wherein the means for advancing the capturing means including a pair of endless conveyors upon which the capturing means are mounted-and which are disposed to advance on opposite sides of the path and wherein the interweaving means distributes the carrier strand alternately between the capturing means on each conveyor.
23. The apparatus of claim 22, wherein the means for capturing the carrier strand include projections which extend from the endless conveyors and around which the carrier strand is looped.
24. The apparatus of claim 22, wherein the capturing means on one conveyor is staggered with respect to the capturing means on the other, so that the capturing means in the act of capturing the carrier strand is downstream of the capturing means on the other conveyor which is to subsequently capture the carrier strand.

Claims (24)

1. An apparatus for conveying a plurality of webs along a planar path through a work station, comprising: guide means for dividing the webs into at least two arrays; displacement means for separating the guide means to displace the two arrays laterally out of the plane of the path; shuttle means for carrying a strand of material between the two arrays and across the path when the arrays are displaced; intercepting means for capturing the strand of material on each side of the path; transport means for moving the intercepting means parallel to the path so that the captured strand moves parallel to the path; and activating means for reversing the displacement of the arrays to move the webs in opposite directions through the planer path after the intercepting means has captured the strand of material to thereby entrain the webs with the strand and cause the transport means to convey the webs along the path.
2. An apparatus according to claim 1, wherein the guide means includes a series of apertures, each of which engages a separate web and alternate ones of which form an array.
3. An apparatus according to claim 2, wherein the displacement means includes a pinion which reciprocates two racks relative to one another, wherein one rack displaces the apertures of one array and the other rack displaces the apertures of the other array.
4. An apparatus according to claim 1, wherein the shuttle means includes a tube having a bore therethrough through which the strand passes and from which the strAnd is dispensed as the shuttle moves between the arrays.
5. An apparatus according to claim 1, wherein the transport means includes a pair of parallel chains which advance parallel to the planer path and wherein the intercepting means includes a plurality of projections spaced along said chains around which the strand is carried to capture the strand.
6. An apparatus according to claim 5, wherein the projections on one chain lead the projections on the other chain so that the projections on opposite chains are staggered in relation to one another and so that the strand follows a zig-zag path in relation to the planer path.
7. The apparatus of claim 1, further including means to take-up the webs after the webs pass through the work station, wherein the take-up means comprises: a spool having a spindle for winding the webs thereon and a pair of circular flanges for retaining the webs on the spindle as the webs are wound; bearing means for supporting the spool by rotatably engaging said flanges; and drive means for rotating the spool to take-up the webs by frictionally engaging the webs to wind the webs about the spindle.
8. The apparatus of claim 7, wherein the drive means includes a moving belt which fits between the flanges of said spool to engage the webs and hold the webs in wound engagement with the spindle.
9. The apparatus of claim 8, wherein the bearing means is inclined with respect to the horizontal to cause the webs winding on the spool to bear against the belt.
10. The apparatus of claim 9, wherein the bearing means comprises a plurality of rollers mounted on an inclined support and along which the flanges progress as the webs are taken up and the spindle displaces away from the belt.
11. An apparatus for dyeing textile yarns, wherein the yarns are advanced along a path through a work station having a plurality of processes which are arranged in tandem and which include: padding, printing, steaming, washing, drying, heat-setting, cooling, and coating, wherein the improvement is characterized by: a carrier strand for conveying the yarns along the path; means for interweaving the carrier strand between the yarns to entrain the yarns therein upstream of the work station; means for capturing the carrier strand to support the carrier strand on opposite sides of the path assumed by the yarns; and means for advancing the capturing means to move the carrier strand along the path through the work station to thereby convey the yarns through the work station, said advancing means being laterally spaced from the path of said yarns.
12. The apparatus of claim 11, further including: means for removing the carrier strand from between the entrained yarns downstream of the work station.
13. The apparatus of claim 12, wherein the carrier strand is a continuous loop which returns from downstream of the work station to upstream of the work station to continuously entrain and convey the yarns.
14. The apparatus of claim 11, wherein the means for advancing the carrier strand includes a pair of endless conveyors disposed on opposite sides of the path.
15. The apparatus of claim 14, wherein the means for capturing the carrier strand include projections which extend from the endless conveyors around which the carrier strand is looped.
16. The apparatus of claim 15, further including means positioned in the work station for reversing temporarily the direction of advance of the yarns during the steaming process to prolong exposure of the yarns to the steaming process.
17. The apparatus of claim 16, wherein the reversing means includes: means for reversing the direction of the endless conveyors; and retaining means extending in the work station for engaging the carrier strand to hold the carrier strand around the projections upon reversing the direction of the endless conveyors.
18. An apparatus for conveying a plurality of yarns along a path, comprising: a carrier strand for conveying the yarns along the path; means for interweaving the carrier strand with the yarns to entrain the yarns therein at an upstream station; means for capturing the carrier strand to support the carrier strand on opposite sides of the path assumed by the yarns; and means laterally spaced from said path for advancing the capturing means to move the carrier strand over the path to thereby convey the plurality of yarns.
19. The apparatus of claim 18, wherein the carrier strand supports the yarns against forces normal to the path after the carrier strand is captured by the capturing means.
20. The apparatus of claim 18, further including: means for removing the carrier strand from between the entrained yarns after the yarns have been conveyed by the carrier strand.
21. The apparatus of claim 20, wherein the carrier strand is a continuous loop which is returned from the removing means to the interweaving means as the yarns are conveyed.
22. The apparatus of claim 18, wherein the means for advancing the capturing means including a pair of endless conveyors upon which the capturing means are mounted and which are disposed to advance on opposite sides of the path and wherein the interweaving means distributes the carrier strand alternately between the capturing means on each conveyor.
23. The apparatus of claim 22, wherein the means for capturing the carrier strand include projections which extend from the endless conveyors and around which the carrier strand is looped.
24. The apparatus of claim 22, wherein the capturing means on one conveyor is staggered with respect to the capturing means on the other, so that the capturing means in the act of capturing the carrier strand is downstream of the capturing means on the other conveyor which is to subsequently capture the carrier strand.
US409465A 1973-10-25 1973-10-25 Apparatus for conveying elongated material such as textile material Expired - Lifetime US3908247A (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
US409465A US3908247A (en) 1973-10-25 1973-10-25 Apparatus for conveying elongated material such as textile material
ZA00746106A ZA746106B (en) 1973-10-25 1974-09-25 Methods of and apparatus for conveying textile material
IL45746A IL45746A0 (en) 1973-10-25 1974-09-27 Methods of and apparatus for conveying textile material
DE19742449138 DE2449138A1 (en) 1973-10-25 1974-10-16 METHOD AND DEVICE FOR CONVEYING A VARIETY OF MATERIAL TRAINS ALONG A SPECIFIED CONVEYOR PATH
NL7413770A NL7413770A (en) 1973-10-25 1974-10-21 METHOD AND DEVICE FOR TRANSPORTING AND DYEING TEXTILE MATERIAL.
SE7413307A SE7413307L (en) 1973-10-25 1974-10-22
JP49121551A JPS5071979A (en) 1973-10-25 1974-10-23
IT28731/74A IT1025153B (en) 1973-10-25 1974-10-23 PROCEDURE AND EQUIPMENT FOR TRANSPORTING TEXTILE MATERIAL
FR7435667A FR2249203B3 (en) 1973-10-25 1974-10-24
GB4636974A GB1445013A (en) 1973-10-25 1974-10-25 Methods of and apparatus for conveying a plurality of yarns
BE149868A BE821471A (en) 1973-10-25 1974-10-25 METHODS AND APPARATUS FOR THE TRANSPORT OF TEXTILE MATERIALS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US409465A US3908247A (en) 1973-10-25 1973-10-25 Apparatus for conveying elongated material such as textile material

Publications (1)

Publication Number Publication Date
US3908247A true US3908247A (en) 1975-09-30

Family

ID=23620609

Family Applications (1)

Application Number Title Priority Date Filing Date
US409465A Expired - Lifetime US3908247A (en) 1973-10-25 1973-10-25 Apparatus for conveying elongated material such as textile material

Country Status (11)

Country Link
US (1) US3908247A (en)
JP (1) JPS5071979A (en)
BE (1) BE821471A (en)
DE (1) DE2449138A1 (en)
FR (1) FR2249203B3 (en)
GB (1) GB1445013A (en)
IL (1) IL45746A0 (en)
IT (1) IT1025153B (en)
NL (1) NL7413770A (en)
SE (1) SE7413307L (en)
ZA (1) ZA746106B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4185364A (en) * 1976-05-21 1980-01-29 Roselon Industries, Inc. Method of making multicolored yarn
US4198735A (en) * 1978-03-29 1980-04-22 Wwg Industries Inc. Method for forming temporary fabrics
FR2569212A1 (en) * 1982-09-07 1986-02-21 Hitco APPARATUS FOR REMOVING A WIRE FROM A BAND
US5802649A (en) * 1996-02-12 1998-09-08 Fypro Method and apparatus for dyeing a traveling textile strand
US5881411A (en) * 1996-12-23 1999-03-16 Fypro Thread Company, Inc. Twisted, dyed and bonded filaments
KR100395303B1 (en) * 2000-05-16 2003-08-25 김호주 Hank dyeing method
US20240157661A1 (en) * 2021-03-26 2024-05-16 Mitsui Chemicals, Inc. Production apparatus for producing a fiber-reinforced resin and a production method for producing a fiber-reinforced resin

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61108762A (en) * 1984-10-27 1986-05-27 日本レヂボン株式会社 Resin coating of yarn

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE718407C (en) * 1938-06-07 1942-03-11 Sucker G M B H Geb Method for monitoring the thread breakage in threads which pass through wet treatment devices, in particular sizing machines, in bundles of threads
US2335880A (en) * 1942-04-10 1943-12-07 Stacy P Ouzts Slasher
US2367730A (en) * 1940-11-20 1945-01-23 Masland Charles Henry Textile dyeing and finishing, method and product
US2752660A (en) * 1952-08-29 1956-07-03 Saco Lowell Shops Slasher
US3039169A (en) * 1955-10-12 1962-06-19 Owens Corning Fiberglass Corp Method and apparatus for forming cloth-like mats of oriented continuous strands
US3536019A (en) * 1968-11-18 1970-10-27 Fuji Spinning Co Ltd Sheet-type yarn group and an apparatus for producing it
US3791132A (en) * 1970-12-03 1974-02-12 Techn Ind Inst Textile De Fr C Process for sizing textile fibres

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE718407C (en) * 1938-06-07 1942-03-11 Sucker G M B H Geb Method for monitoring the thread breakage in threads which pass through wet treatment devices, in particular sizing machines, in bundles of threads
US2367730A (en) * 1940-11-20 1945-01-23 Masland Charles Henry Textile dyeing and finishing, method and product
US2335880A (en) * 1942-04-10 1943-12-07 Stacy P Ouzts Slasher
US2752660A (en) * 1952-08-29 1956-07-03 Saco Lowell Shops Slasher
US3039169A (en) * 1955-10-12 1962-06-19 Owens Corning Fiberglass Corp Method and apparatus for forming cloth-like mats of oriented continuous strands
US3536019A (en) * 1968-11-18 1970-10-27 Fuji Spinning Co Ltd Sheet-type yarn group and an apparatus for producing it
US3791132A (en) * 1970-12-03 1974-02-12 Techn Ind Inst Textile De Fr C Process for sizing textile fibres

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4185364A (en) * 1976-05-21 1980-01-29 Roselon Industries, Inc. Method of making multicolored yarn
US4198735A (en) * 1978-03-29 1980-04-22 Wwg Industries Inc. Method for forming temporary fabrics
FR2569212A1 (en) * 1982-09-07 1986-02-21 Hitco APPARATUS FOR REMOVING A WIRE FROM A BAND
US5802649A (en) * 1996-02-12 1998-09-08 Fypro Method and apparatus for dyeing a traveling textile strand
US5868010A (en) * 1996-02-12 1999-02-09 Fypro Thread Company, Inc. Method for dyeing a traveling textile strand
US5881411A (en) * 1996-12-23 1999-03-16 Fypro Thread Company, Inc. Twisted, dyed and bonded filaments
KR100395303B1 (en) * 2000-05-16 2003-08-25 김호주 Hank dyeing method
US20240157661A1 (en) * 2021-03-26 2024-05-16 Mitsui Chemicals, Inc. Production apparatus for producing a fiber-reinforced resin and a production method for producing a fiber-reinforced resin

Also Published As

Publication number Publication date
ZA746106B (en) 1975-11-26
NL7413770A (en) 1975-04-29
JPS5071979A (en) 1975-06-14
GB1445013A (en) 1976-08-04
FR2249203B3 (en) 1977-08-05
SE7413307L (en) 1975-04-28
IL45746A0 (en) 1974-11-29
IT1025153B (en) 1978-08-10
BE821471A (en) 1975-02-17
FR2249203A1 (en) 1975-05-23
DE2449138A1 (en) 1975-05-28

Similar Documents

Publication Publication Date Title
KR101223343B1 (en) Knitted fabric, method and device for producing said fabric
US6494235B1 (en) Bias-bound fabric, method for making same and weaving machine for continuously making such a fabric
US3707083A (en) Apparatus for supplying weft threads to a warp knitting machine
CA1163530A (en) Parallel thread supply
US3908247A (en) Apparatus for conveying elongated material such as textile material
US3523432A (en) Apparatus for forming a system of weft threads
US3902644A (en) Apparatus for the treatment of yarn
US4118842A (en) Weave-de-weave process
US5142753A (en) Process for treating textile pieces by high pressure water jets
RU2474627C2 (en) Technological process of production of non-laddering knitted fabric
US2842079A (en) Method of making pile fabrics with loops of different height and apparatus for practicing the method
CA1046710A (en) Apparatus and method for treating yarn
US3466718A (en) Methods for producing textured fabric material
US4271688A (en) Apparatus for treating plaited yarns
CN216473779U (en) Knitting variable-pattern circular flat crochet machine
EP0091549B1 (en) Method for the simultaneous sizing and drafting of a series of continuous thermoplastic yarns with substantially parallel filaments, for use in fabric production
US3680332A (en) Apparatus for feeding filling threads to a warp knitting machine
US3621780A (en) Production of random dyed pile textiles
US3861176A (en) Apparatus for twisting together and knitting yarns
US2977745A (en) Method of and apparatus for treating textile strands
US2192880A (en) Method of and machine for finishing fabric
US2884882A (en) Sewing machine with finger to control bobbin thread
US3447215A (en) Production of random dyed pile textiles
US3950132A (en) Method for dyeing and continuous heat setting of textile yarns
US4472234A (en) Device for producing a web of parallel yarns and different complex articles comprising such a web