US3996259A - Oxidation of organic compounds by aqueous hypohalites using phase transfer catalysis - Google Patents
Oxidation of organic compounds by aqueous hypohalites using phase transfer catalysis Download PDFInfo
- Publication number
- US3996259A US3996259A US05/629,338 US62933875A US3996259A US 3996259 A US3996259 A US 3996259A US 62933875 A US62933875 A US 62933875A US 3996259 A US3996259 A US 3996259A
- Authority
- US
- United States
- Prior art keywords
- organic compound
- organic
- aqueous
- quaternary ammonium
- hypohalite ion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 150000002894 organic compounds Chemical class 0.000 title claims abstract description 26
- 238000007254 oxidation reaction Methods 0.000 title description 9
- 230000003647 oxidation Effects 0.000 title description 7
- 238000003408 phase transfer catalysis Methods 0.000 title description 3
- 150000002500 ions Chemical class 0.000 claims abstract description 19
- 150000004714 phosphonium salts Chemical group 0.000 claims abstract description 9
- 150000001408 amides Chemical class 0.000 claims abstract description 7
- 150000001412 amines Chemical class 0.000 claims abstract description 7
- 150000003242 quaternary ammonium salts Chemical class 0.000 claims abstract description 7
- 239000012074 organic phase Substances 0.000 claims abstract description 6
- 239000007788 liquid Substances 0.000 claims abstract description 5
- 239000008346 aqueous phase Substances 0.000 claims abstract description 4
- 230000003197 catalytic effect Effects 0.000 claims abstract description 4
- 238000000034 method Methods 0.000 claims description 17
- -1 p-methylbenzyl Chemical group 0.000 claims description 10
- 238000006243 chemical reaction Methods 0.000 claims description 9
- WQYVRQLZKVEZGA-UHFFFAOYSA-N hypochlorite Chemical compound Cl[O-] WQYVRQLZKVEZGA-UHFFFAOYSA-N 0.000 claims description 8
- 125000004432 carbon atom Chemical group C* 0.000 claims description 6
- LSBDFXRDZJMBSC-UHFFFAOYSA-N 2-phenylacetamide Chemical compound NC(=O)CC1=CC=CC=C1 LSBDFXRDZJMBSC-UHFFFAOYSA-N 0.000 claims description 4
- 150000001450 anions Chemical class 0.000 claims description 4
- PAFZNILMFXTMIY-UHFFFAOYSA-N cyclohexylamine Chemical compound NC1CCCCC1 PAFZNILMFXTMIY-UHFFFAOYSA-N 0.000 claims description 4
- 125000001183 hydrocarbyl group Chemical group 0.000 claims description 3
- QAOWNCQODCNURD-UHFFFAOYSA-M hydrogensulfate Chemical compound OS([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-M 0.000 claims description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- 230000001590 oxidative effect Effects 0.000 claims description 3
- NHGXDBSUJJNIRV-UHFFFAOYSA-M tetrabutylammonium chloride Chemical group [Cl-].CCCC[N+](CCCC)(CCCC)CCCC NHGXDBSUJJNIRV-UHFFFAOYSA-M 0.000 claims description 3
- VBQDSLGFSUGBBE-UHFFFAOYSA-N benzyl(triethyl)azanium Chemical compound CC[N+](CC)(CC)CC1=CC=CC=C1 VBQDSLGFSUGBBE-UHFFFAOYSA-N 0.000 claims description 2
- QILSFLSDHQAZET-UHFFFAOYSA-N diphenylmethanol Chemical compound C=1C=CC=CC=1C(O)C1=CC=CC=C1 QILSFLSDHQAZET-UHFFFAOYSA-N 0.000 claims description 2
- AFMVESZOYKHDBJ-UHFFFAOYSA-N fluoren-9-ol Chemical compound C1=CC=C2C(O)C3=CC=CC=C3C2=C1 AFMVESZOYKHDBJ-UHFFFAOYSA-N 0.000 claims description 2
- 230000003472 neutralizing effect Effects 0.000 claims description 2
- IOQPZZOEVPZRBK-UHFFFAOYSA-N octan-1-amine Chemical compound CCCCCCCCN IOQPZZOEVPZRBK-UHFFFAOYSA-N 0.000 claims description 2
- 239000003960 organic solvent Substances 0.000 claims description 2
- 125000006503 p-nitrobenzyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1[N+]([O-])=O)C([H])([H])* 0.000 claims description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims 2
- PTHGDVCPCZKZKR-UHFFFAOYSA-N (4-chlorophenyl)methanol Chemical compound OCC1=CC=C(Cl)C=C1 PTHGDVCPCZKZKR-UHFFFAOYSA-N 0.000 claims 1
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 claims 1
- 235000019270 ammonium chloride Nutrition 0.000 claims 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 claims 1
- KXHPPCXNWTUNSB-UHFFFAOYSA-M benzyl(trimethyl)azanium;chloride Chemical compound [Cl-].C[N+](C)(C)CC1=CC=CC=C1 KXHPPCXNWTUNSB-UHFFFAOYSA-M 0.000 claims 1
- 125000004437 phosphorous atom Chemical group 0.000 claims 1
- 229910052698 phosphorus Inorganic materials 0.000 claims 1
- 239000012455 biphasic mixture Substances 0.000 abstract description 5
- 150000003333 secondary alcohols Chemical class 0.000 abstract description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 2
- 150000003138 primary alcohols Chemical class 0.000 abstract 1
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 12
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 10
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 9
- 150000003839 salts Chemical class 0.000 description 9
- 229910019093 NaOCl Inorganic materials 0.000 description 7
- 239000002904 solvent Substances 0.000 description 6
- 150000003863 ammonium salts Chemical class 0.000 description 4
- HUMNYLRZRPPJDN-UHFFFAOYSA-N benzaldehyde Chemical compound O=CC1=CC=CC=C1 HUMNYLRZRPPJDN-UHFFFAOYSA-N 0.000 description 4
- 239000003153 chemical reaction reagent Substances 0.000 description 4
- 238000004817 gas chromatography Methods 0.000 description 4
- 230000035484 reaction time Effects 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 3
- 239000005708 Sodium hypochlorite Substances 0.000 description 3
- JFDZBHWFFUWGJE-UHFFFAOYSA-N benzonitrile Chemical compound N#CC1=CC=CC=C1 JFDZBHWFFUWGJE-UHFFFAOYSA-N 0.000 description 3
- 235000019445 benzyl alcohol Nutrition 0.000 description 3
- 150000001649 bromium compounds Chemical class 0.000 description 3
- SHFJWMWCIHQNCP-UHFFFAOYSA-M hydron;tetrabutylazanium;sulfate Chemical compound OS([O-])(=O)=O.CCCC[N+](CCCC)(CCCC)CCCC SHFJWMWCIHQNCP-UHFFFAOYSA-M 0.000 description 3
- 150000002576 ketones Chemical class 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 150000002825 nitriles Chemical class 0.000 description 3
- RFFLAFLAYFXFSW-UHFFFAOYSA-N 1,2-dichlorobenzene Chemical compound ClC1=CC=CC=C1Cl RFFLAFLAYFXFSW-UHFFFAOYSA-N 0.000 description 2
- AFFLGGQVNFXPEV-UHFFFAOYSA-N 1-decene Chemical compound CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 description 2
- CCHNWURRBFGQCD-UHFFFAOYSA-N 2-chlorocyclohexan-1-one Chemical compound ClC1CCCCC1=O CCHNWURRBFGQCD-UHFFFAOYSA-N 0.000 description 2
- KMTDMTZBNYGUNX-UHFFFAOYSA-N 4-methylbenzyl alcohol Chemical compound CC1=CC=C(CO)C=C1 KMTDMTZBNYGUNX-UHFFFAOYSA-N 0.000 description 2
- 150000000565 5-membered heterocyclic compounds Chemical class 0.000 description 2
- 150000000644 6-membered heterocyclic compounds Chemical class 0.000 description 2
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- JGJLWPGRMCADHB-UHFFFAOYSA-N hypobromite Chemical compound Br[O-] JGJLWPGRMCADHB-UHFFFAOYSA-N 0.000 description 2
- 150000004694 iodide salts Chemical class 0.000 description 2
- LQNUZADURLCDLV-UHFFFAOYSA-N nitrobenzene Chemical compound [O-][N+](=O)C1=CC=CC=C1 LQNUZADURLCDLV-UHFFFAOYSA-N 0.000 description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 description 2
- FBUKVWPVBMHYJY-UHFFFAOYSA-N nonanoic acid Chemical compound CCCCCCCCC(O)=O FBUKVWPVBMHYJY-UHFFFAOYSA-N 0.000 description 2
- QNGNSVIICDLXHT-UHFFFAOYSA-N para-ethylbenzaldehyde Natural products CCC1=CC=C(C=O)C=C1 QNGNSVIICDLXHT-UHFFFAOYSA-N 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 2
- CGYGETOMCSJHJU-UHFFFAOYSA-N 2-chloronaphthalene Chemical compound C1=CC=CC2=CC(Cl)=CC=C21 CGYGETOMCSJHJU-UHFFFAOYSA-N 0.000 description 1
- XHKUWVGCDOVIAI-UHFFFAOYSA-M 3-decyl-1,3-thiazol-3-ium;chloride Chemical compound [Cl-].CCCCCCCCCC[N+]=1C=CSC=1 XHKUWVGCDOVIAI-UHFFFAOYSA-M 0.000 description 1
- QXFJJCJBDOXWDA-UHFFFAOYSA-M 4,4-dibutylmorpholin-4-ium;chloride Chemical compound [Cl-].CCCC[N+]1(CCCC)CCOCC1 QXFJJCJBDOXWDA-UHFFFAOYSA-M 0.000 description 1
- 125000006283 4-chlorobenzyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1Cl)C([H])([H])* 0.000 description 1
- BXRFQSNOROATLV-UHFFFAOYSA-N 4-nitrobenzaldehyde Chemical compound [O-][N+](=O)C1=CC=C(C=O)C=C1 BXRFQSNOROATLV-UHFFFAOYSA-N 0.000 description 1
- QKOHEJBTNOEACF-UHFFFAOYSA-N 7-oxabicyclo[4.1.0]heptan-5-one Chemical compound O=C1CCCC2OC12 QKOHEJBTNOEACF-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- 101100386054 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) CYS3 gene Proteins 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 150000001339 alkali metal compounds Chemical group 0.000 description 1
- 125000002877 alkyl aryl group Chemical group 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 125000003710 aryl alkyl group Chemical group 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- YOUGRGFIHBUKRS-UHFFFAOYSA-N benzyl(trimethyl)azanium Chemical group C[N+](C)(C)CC1=CC=CC=C1 YOUGRGFIHBUKRS-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000002051 biphasic effect Effects 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000003518 caustics Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- FWFSEYBSWVRWGL-UHFFFAOYSA-N cyclohex-2-enone Chemical compound O=C1CCCC=C1 FWFSEYBSWVRWGL-UHFFFAOYSA-N 0.000 description 1
- WYWCVMXAHKTILD-UHFFFAOYSA-N diethyl(phenyl)azanium;hydrogen sulfate Chemical compound OS([O-])(=O)=O.CC[NH+](CC)C1=CC=CC=C1 WYWCVMXAHKTILD-UHFFFAOYSA-N 0.000 description 1
- 125000006575 electron-withdrawing group Chemical group 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- YLQWCDOCJODRMT-UHFFFAOYSA-N fluoren-9-one Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3C2=C1 YLQWCDOCJODRMT-UHFFFAOYSA-N 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000005911 haloform reaction Methods 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- AAUNBWYUJICUKP-UHFFFAOYSA-N hypoiodite Chemical compound I[O-] AAUNBWYUJICUKP-UHFFFAOYSA-N 0.000 description 1
- YQRNTVUSJHYLNZ-UHFFFAOYSA-N methyl(tridecyl)azanium;chloride Chemical class [Cl-].CCCCCCCCCCCCC[NH2+]C YQRNTVUSJHYLNZ-UHFFFAOYSA-N 0.000 description 1
- XKBGEWXEAPTVCK-UHFFFAOYSA-M methyltrioctylammonium chloride Chemical compound [Cl-].CCCCCCCC[N+](C)(CCCCCCCC)CCCCCCCC XKBGEWXEAPTVCK-UHFFFAOYSA-M 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- KPMKEVXVVHNIEY-UHFFFAOYSA-N norcamphor Chemical compound C1CC2C(=O)CC1C2 KPMKEVXVVHNIEY-UHFFFAOYSA-N 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- FXLOVSHXALFLKQ-UHFFFAOYSA-N p-tolualdehyde Chemical compound CC1=CC=C(C=O)C=C1 FXLOVSHXALFLKQ-UHFFFAOYSA-N 0.000 description 1
- 239000003444 phase transfer catalyst Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 239000012286 potassium permanganate Substances 0.000 description 1
- 238000003822 preparative gas chromatography Methods 0.000 description 1
- 150000003140 primary amides Chemical class 0.000 description 1
- 238000011027 product recovery Methods 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 101150035983 str1 gene Proteins 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 150000005621 tetraalkylammonium salts Chemical class 0.000 description 1
- 125000005490 tosylate group Chemical group 0.000 description 1
- HMJWAKCBJWAMPL-UHFFFAOYSA-M triethyl(phenyl)azanium;bromide Chemical compound [Br-].CC[N+](CC)(CC)C1=CC=CC=C1 HMJWAKCBJWAMPL-UHFFFAOYSA-M 0.000 description 1
- KUSDSMLUXMFMCB-UHFFFAOYSA-M trimethyl(2-phenylethyl)azanium;chloride Chemical class [Cl-].C[N+](C)(C)CCC1=CC=CC=C1 KUSDSMLUXMFMCB-UHFFFAOYSA-M 0.000 description 1
- YCYOWIYHCRGAAH-UHFFFAOYSA-M trimethyl(naphthalen-1-yl)azanium;chloride Chemical compound [Cl-].C1=CC=C2C([N+](C)(C)C)=CC=CC2=C1 YCYOWIYHCRGAAH-UHFFFAOYSA-M 0.000 description 1
- MQAYPFVXSPHGJM-UHFFFAOYSA-M trimethyl(phenyl)azanium;chloride Chemical compound [Cl-].C[N+](C)(C)C1=CC=CC=C1 MQAYPFVXSPHGJM-UHFFFAOYSA-M 0.000 description 1
- DGOVSCVARCXHRS-UHFFFAOYSA-M trimethyl-(4-methylphenyl)azanium;chloride Chemical compound [Cl-].CC1=CC=C([N+](C)(C)C)C=C1 DGOVSCVARCXHRS-UHFFFAOYSA-M 0.000 description 1
- VFJMZEKQTOYWLP-UHFFFAOYSA-N tritylazanium;fluoride Chemical compound [F-].C=1C=CC=CC=1C(C=1C=CC=CC=1)([NH3+])C1=CC=CC=C1 VFJMZEKQTOYWLP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C49/00—Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
- C07C49/587—Unsaturated compounds containing a keto groups being part of a ring
- C07C49/657—Unsaturated compounds containing a keto groups being part of a ring containing six-membered aromatic rings
- C07C49/665—Unsaturated compounds containing a keto groups being part of a ring containing six-membered aromatic rings a keto group being part of a condensed ring system
- C07C49/675—Unsaturated compounds containing a keto groups being part of a ring containing six-membered aromatic rings a keto group being part of a condensed ring system having three rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C201/00—Preparation of esters of nitric or nitrous acid or of compounds containing nitro or nitroso groups bound to a carbon skeleton
- C07C201/06—Preparation of nitro compounds
- C07C201/12—Preparation of nitro compounds by reactions not involving the formation of nitro groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C253/00—Preparation of carboxylic acid nitriles
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/27—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
- C07C45/30—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with halogen containing compounds, e.g. hypohalogenation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2601/00—Systems containing only non-condensed rings
- C07C2601/12—Systems containing only non-condensed rings with a six-membered ring
- C07C2601/14—The ring being saturated
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2602/00—Systems containing two condensed rings
- C07C2602/36—Systems containing two condensed rings the rings having more than two atoms in common
- C07C2602/42—Systems containing two condensed rings the rings having more than two atoms in common the bicyclo ring system containing seven carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2603/00—Systems containing at least three condensed rings
- C07C2603/02—Ortho- or ortho- and peri-condensed systems
- C07C2603/04—Ortho- or ortho- and peri-condensed systems containing three rings
- C07C2603/06—Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members
- C07C2603/10—Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings
- C07C2603/12—Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings only one five-membered ring
- C07C2603/18—Fluorenes; Hydrogenated fluorenes
Definitions
- This invention relates to the oxidation of organic compounds by aqueous hypohalites. More particularly, this invention relates to the oxidation of organic compounds oxidizable by hypohalite ion in a biphasic mixture using phase transfer catalysis.
- Oxidations catalyzed by quaternary onium salts have been reported by C. M. Starks, J. Amer. Chem. Soc., 93, 195 (1971). There, nonanoic acid was prepared in 91 percent yield by reacting aqueous potassium permanganate with 1-decene in the presence of tricaprylmethylammonium chloride. However, no such catalyzed reaction has been reported where hypohalite ion was the oxidizing agent.
- a novel process for oxidizing organic compounds oxidizable by hypohalite ion in a biphasic mixture using phase transfer catalysis comprises reacting by contacting:
- the novel process proceeds under mild conditions in high yields and in reduced reaction time.
- the phase transfer catalyzed hypohalite oxidations are more efficient than the noncatalyzed hypohalite oxidations.
- said catalyzed hypohalite oxidations are highly selective.
- a secondary alcohol is quantitatively oxidized by this invention to a ketone before the ketone itself is oxidized via the haloform reaction to a carboxylic acid.
- Any organic compound oxidizable by aqueous hypohalite ion can be oxidized by this invention.
- Illustrative of these compounds are amines, amides, alkanals, primary and secondary alkanols, and organic compounds containing an activated double bond, i.e. an organic compound containing the structure ##STR1## wherein Z is an electron withdrawing group, such as carbonyl, nitrile, ester, etc.
- Typical oxidation reactions include amines to N-haloimines or nitriles, amides to N-haloimines or nitriles, alkanals to carboxylic acids, primary alkanols to alkanals, secondary alkanols to ketones, and enones to epoxies, i.e., 2-cyclohexenone to 2-cyclohexenone oxide.
- hypohalites here used are hypochlorite, hypobromite, hypoiodite, or any combination thereof. Any suitable source of hypohalite ion can be used in the practice of this invention, but typically the alkali metal hypohalites are used. Due to reasons of familiarity and general availability, hypochlorite is preferred over the other hypohalites.
- the catalysts here used are quaternary ammonium and phosphonium salts and are known in the art as phase transfer catalysts.
- the salts are described by Starks and Napier in British patent 1,227,144 and by Starks in the J. Amer. Chem. Soc., 93, 195 (1971).
- Suitable onium salts have a minimum solubility of at least about 1 weight percent in both the organic phase and the aqueous phase at 25° C.
- the ammonium salts are preferred over the phosphonium salts and benzyltrimethyl-, benzyltriethyl-, and tetra-n-butylammonium chlorides and bromides are most preferred.
- suitable ammonium salts are represented by the formula R 1 R 2 R 3 R 4 N +A - wherein R 1 -R 4 are hydrocarbyl groups, i.e. alkyl, aryl, alkylaryl, arylalkyl, cycloalkyl, etc., and R 1 can join with R 2 , or R 2 with R 3 , etc. to form a 5- or 6-membered heterocyclic compound having at least 1 quaternized nitrogen atom in the ring and may also contain 1 non-adjacent atom of oxygen or sulfur within the ring.
- R 1 -R 4 are hydrocarbyl groups of from 1 to about 16 carbon atoms each, with a combined minimum total of about 10 carbon atoms.
- Preferred ammonium salts have from about 10 to about 30 carbon atoms.
- a similar formula can be drawn for the phosphonium salts.
- the neutralizing anion portion of the salt i.e. A - in the above generic formula, may be varied to convenience.
- Chloride and bromide are the preferred anions, but other representative anions include fluoride, iodide, tosylate, acetate, bisulfate, etc.
- tetraalkylammonium salts such as tetra-n-butyl-, tri-n-butylmethyl-, tetrahexyl-, trioctylmethyl-, hexadecyltriethyl-, and tridecylmethyl-ammonium chlorides, bromides, iodides, bisulfates, tosylates, etc; aralkylammonium salts, such as tetrabenzyl-, benzyltrimethyl-, benzyltriethyl-, benzyltributyl-, and phenethyltrimethylammonium chlorides, bromides, iodides, etc; arylammonium salts, such as triphenylmethylammonium fluoride, chloride or bromide, N,N,N-trimethylanilinium chloride, N,N,N-triethylanilinium bromid
- hypohalite ion preferably an excess of hypohalite ion is employed to promote a quantitative reaction.
- the particular ratio of organic compound to hypohalite ion will vary with the particular reagents. For example, amines are oxidized in best yields when at least a 2-fold excess of hypohalite ion is used. For amide oxidization, at least a 4-fold excess of hypohalite ion is desirable. The determination of the proper ratio of reagents is well within the skill of the ordinary artisan.
- a catalytic amount of the onium salt is required in the practice of this invention. Again, the concentration will vary with particular reagents employed. However, best results are generally achieved when the onium salt concentration is from about 1 mole percent to about 30 mole percent based upon the organic compound to be oxidized. Concentrations between about 2 mole percent and about 10 mole percent are preferred.
- reaction can be conducted neat, it is preferably conducted in the presence of an inert, water-immiscible organic solvent.
- Typical solvents include benzene, chlorobenzene, o-dichlorobenzene, hexane, methylene chloride, chloroform, carbon tetrachloride, and the like. Not only do these solvents contribute to the formation of a biphasic reaction mixture, but they also aid in moderating reaction rate and temperature.
- the amount of solvent used is equal in volume to the amount of aqueous hypohalite used. Practical considerations of reaction vessel size, product recovery, etc. are the only limitations upon the maximum amount of solvent that can be used.
- p-Methylbenzyl alcohol (1.2515 g, 0.0103 mole) 2-chloronaphthalene (0.8747 g, used as an internal standard for gas chromatography), and tetra-n-butylammonium bisulfate (0.1841 g, 0.0005 mole) were dissolved in 25 ml of methylene chloride. To this solution was added 25 ml of 12 percent aqueous sodium hypochlorite (2.95 g, 0.04 mole). The biphasic mixture was stirred under ambient conditions (24° C, atmospheric pressure) and monitored periodically by gas chromatography. After 1.9 hours reaction time, 85.2 percent of the p-methylbenzyl alcohol had been converted to p-tolualdehyde.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Organic compounds oxidizable by hypohalite ion, such as amines, amides, primary and secondary alcohols, and alkanals are efficiently oxidized in a biphasic mixture comprising:
A. a water immiscible, liquid organic phase comprising an organic compound oxidizable by hypohalite ion; with
B. an aqueous phase containing hypohalite ion; and
C. a catalytic amount of a quaternary ammonium salt and/or a quaternary phosphonium salt.
Description
1. Field of the Invention
This invention relates to the oxidation of organic compounds by aqueous hypohalites. More particularly, this invention relates to the oxidation of organic compounds oxidizable by hypohalite ion in a biphasic mixture using phase transfer catalysis.
2. Description of the Prior Art
Various methods are known for oxidizing organic compounds by hypohalite ion. For example, C. Y. Meyers, J. Org. Chem., 26, 1046 (1961), teaches the preparation of benzaldehyde by reacting benzyl alcohol with aqueous, methanolic inorganic hypochlorite. E. S. Wallis and J. F. Lane, Org. Reactions, 3, 267 (1947), teach the Hoffman rearrangement of amides to amines by reacting alkali metal hypohalite and a primary amide in aqueous caustic.
Oxidations catalyzed by quaternary onium salts have been reported by C. M. Starks, J. Amer. Chem. Soc., 93, 195 (1971). There, nonanoic acid was prepared in 91 percent yield by reacting aqueous potassium permanganate with 1-decene in the presence of tricaprylmethylammonium chloride. However, no such catalyzed reaction has been reported where hypohalite ion was the oxidizing agent.
A novel process for oxidizing organic compounds oxidizable by hypohalite ion in a biphasic mixture using phase transfer catalysis has been discovered. The process comprises reacting by contacting:
A. A WATER-IMMISCIBLE, LIQUID ORGANIC PHASE COMPRISING AN ORGANIC COMPOUND OXIDIZABLE BY HYPOHALITE ION; WITH
B. AN AQUEOUS PHASE CONTAINING HYPOHALITE ION; AND
C. A CATALYTIC AMOUNT OF A QUATERNARY AMMONIUM SALT AND/OR A QUATERNARY PHOSPHONIUM SALT. The novel process proceeds under mild conditions in high yields and in reduced reaction time. In every case, the phase transfer catalyzed hypohalite oxidations are more efficient than the noncatalyzed hypohalite oxidations. Moreover, said catalyzed hypohalite oxidations are highly selective. For example, a secondary alcohol is quantitatively oxidized by this invention to a ketone before the ketone itself is oxidized via the haloform reaction to a carboxylic acid.
Any organic compound oxidizable by aqueous hypohalite ion can be oxidized by this invention. Illustrative of these compounds are amines, amides, alkanals, primary and secondary alkanols, and organic compounds containing an activated double bond, i.e. an organic compound containing the structure ##STR1## wherein Z is an electron withdrawing group, such as carbonyl, nitrile, ester, etc. Typical oxidation reactions include amines to N-haloimines or nitriles, amides to N-haloimines or nitriles, alkanals to carboxylic acids, primary alkanols to alkanals, secondary alkanols to ketones, and enones to epoxies, i.e., 2-cyclohexenone to 2-cyclohexenone oxide.
The hypohalites here used are hypochlorite, hypobromite, hypoiodite, or any combination thereof. Any suitable source of hypohalite ion can be used in the practice of this invention, but typically the alkali metal hypohalites are used. Due to reasons of familiarity and general availability, hypochlorite is preferred over the other hypohalites.
The catalysts here used are quaternary ammonium and phosphonium salts and are known in the art as phase transfer catalysts. The salts are described by Starks and Napier in British patent 1,227,144 and by Starks in the J. Amer. Chem. Soc., 93, 195 (1971). Suitable onium salts have a minimum solubility of at least about 1 weight percent in both the organic phase and the aqueous phase at 25° C. The ammonium salts are preferred over the phosphonium salts and benzyltrimethyl-, benzyltriethyl-, and tetra-n-butylammonium chlorides and bromides are most preferred.
To further illustrate the type of ammonium salt which can be used, suitable ammonium salts are represented by the formula R1 R2 R3 R4 N+A - wherein R1 -R4 are hydrocarbyl groups, i.e. alkyl, aryl, alkylaryl, arylalkyl, cycloalkyl, etc., and R1 can join with R2, or R2 with R3, etc. to form a 5- or 6-membered heterocyclic compound having at least 1 quaternized nitrogen atom in the ring and may also contain 1 non-adjacent atom of oxygen or sulfur within the ring. Typically, R1 -R4 are hydrocarbyl groups of from 1 to about 16 carbon atoms each, with a combined minimum total of about 10 carbon atoms. Preferred ammonium salts have from about 10 to about 30 carbon atoms. A similar formula can be drawn for the phosphonium salts.
The neutralizing anion portion of the salt, i.e. A- in the above generic formula, may be varied to convenience. Chloride and bromide are the preferred anions, but other representative anions include fluoride, iodide, tosylate, acetate, bisulfate, etc. The following compounds serve as a further illustration: tetraalkylammonium salts, such as tetra-n-butyl-, tri-n-butylmethyl-, tetrahexyl-, trioctylmethyl-, hexadecyltriethyl-, and tridecylmethyl-ammonium chlorides, bromides, iodides, bisulfates, tosylates, etc; aralkylammonium salts, such as tetrabenzyl-, benzyltrimethyl-, benzyltriethyl-, benzyltributyl-, and phenethyltrimethylammonium chlorides, bromides, iodides, etc; arylammonium salts, such as triphenylmethylammonium fluoride, chloride or bromide, N,N,N-trimethylanilinium chloride, N,N,N-triethylanilinium bromide, N,N-diethylanilinium bisulfate, trimethylnaphthyl ammonium chloride, p-methylphenyltrimethylammonium chloride or tosylate, etc; 5- and 6-membered heterocyclic compounds containing at least 1 quaternary nitrogen atom in the ring, such as N,N-dibutylmorpholinium chloride, N-decylthiazolium chloride, etc, and the corresponding phosphonium salts.
Although stoichiometric amounts of oxidizable organic compound and hypohalite ion are necessary, preferably an excess of hypohalite ion is employed to promote a quantitative reaction. Of course, the particular ratio of organic compound to hypohalite ion will vary with the particular reagents. For example, amines are oxidized in best yields when at least a 2-fold excess of hypohalite ion is used. For amide oxidization, at least a 4-fold excess of hypohalite ion is desirable. The determination of the proper ratio of reagents is well within the skill of the ordinary artisan.
A catalytic amount of the onium salt is required in the practice of this invention. Again, the concentration will vary with particular reagents employed. However, best results are generally achieved when the onium salt concentration is from about 1 mole percent to about 30 mole percent based upon the organic compound to be oxidized. Concentrations between about 2 mole percent and about 10 mole percent are preferred.
Temperature and pressure are not critical to this invention as long as the biphasic mixture remains a liquid. Best results are obtained when the reaction temperatures range from about 0° to about 35° C with ambient temperature and pressure preferred.
Although the reaction can be conducted neat, it is preferably conducted in the presence of an inert, water-immiscible organic solvent. Typical solvents include benzene, chlorobenzene, o-dichlorobenzene, hexane, methylene chloride, chloroform, carbon tetrachloride, and the like. Not only do these solvents contribute to the formation of a biphasic reaction mixture, but they also aid in moderating reaction rate and temperature.
Generally, at least sufficient solvent to dissolve the oxidizable organic compound is used and preferably the amount of solvent used is equal in volume to the amount of aqueous hypohalite used. Practical considerations of reaction vessel size, product recovery, etc. are the only limitations upon the maximum amount of solvent that can be used.
The following examples are illustrative embodiments of this invention.
A solution of benzyl alcohol (1 g, 0.0093 mole), naphthalene (1.02 g, used as an internal standard for gas chromatography), and tetra-n-butylammonium chloride (0.122 g, 0.00044 mole) in 40 ml of methylene chloride, was stirred at approximately 23° C with 40 ml of 12 percent aqueous sodium hypochlorite solution (4.96 g, 0.067 mole). The reaction mixture was occasionally cooled by an external water bath to keep the reaction temperature from exceeding 30° C. The reaction was monitored by gas chromatography. At 6.8 hours reaction time, 97 percent of the benzyl alcohol had been converted to benzaldehyde.
p-Methylbenzyl alcohol (1.2515 g, 0.0103 mole) 2-chloronaphthalene (0.8747 g, used as an internal standard for gas chromatography), and tetra-n-butylammonium bisulfate (0.1841 g, 0.0005 mole) were dissolved in 25 ml of methylene chloride. To this solution was added 25 ml of 12 percent aqueous sodium hypochlorite (2.95 g, 0.04 mole). The biphasic mixture was stirred under ambient conditions (24° C, atmospheric pressure) and monitored periodically by gas chromatography. After 1.9 hours reaction time, 85.2 percent of the p-methylbenzyl alcohol had been converted to p-tolualdehyde.
A mixture of α-phenylacetamide (1.3535 g, 0.01 mole), nitrobenzene (1.034 g, employed as an internal standard for gas phase chromatography) and tetra-n-butylammonium bisulfate (0.125 g, 0.00037 mole) in 25 ml of methylene chloride was stirred under ambient conditions (23° C, atmospheric pressure) with 50 ml of 12 percent aqueous sodium hypochlorite (5.85 g, 0.079 mole). After 2.5 hours reaction time, the organic phase was analyzed by vapor phase chromatography and was found to contain 62 percent benzonitrile.
Under conditions similar to Example 1, various other organic compounds were oxidized. The particular reagents and results are tabulated in Table I.
TABLE I
__________________________________________________________________________
Organic Quaternary
Alkali Metal
Compound Onium Salt
Hypohalite Reaction
Product
Ex
(Mole) (Mole) (Mole) Solvent
(minutes)
(%)
__________________________________________________________________________
4 p-Nitrobenzyl
Bu.sub.4 NCl.sup.1
KOCl CH.sub.2 Cl.sub.2
65 p-Nitrobenzaldehyde
Alcohol (0.086)
(0.008)
(0.04) (83)
5 o-Methoxybenzyl
Bu.sub.4 NHSO.sub.4.sup.2
NaOCl CH.sub.2 Cl.sub.2
316 o-Methoxybenzalde-
Alcohol (0.4)
(0.02) (0.04) hyde (84)
6 p-Chlorobenzyl
Bu.sub.4 NHSO.sub.4
NaOCl CH.sub.2 Cl.sub.2
335 p-Chlorobenzalde-
Alcohol (0.4)
(0.02) (0.04) hyde (98)
7 9-Fluorenol
Bu.sub.4 NHSO.sub.4
NaOCl CH.sub.2 Cl.sub.2
51 9-Fluorenone
(0.4) (0.02) (0.04) (93)
8 Benzhydrol
Bu.sub.4 NHSO.sub.4
NaOCl CH.sub.2 Cl.sub.2
345 Benzophenone
(0.4) (0.02) (0.04) (95)
9 Norbornyl ammonium
Bu.sub.4 NCl
NaOCl CHCl.sub.3
90 Norbornanone
chloride (0.01)
(0.0002)
(0.08) (70)
10
Cyclohexylamine
Bu.sub.4 NCl
NaOCl CH.sub.2 Cl.sub.2
120 Cyclohexanone (38)
(0.01) (0.0002)
(0.08) 2-chlorocyclo-
hexanone (55)
11
n-Octyl Amine
Bu.sub.4 NCl
NaOCl CH.sub.2 Cl.sub.2
95 Octanoyl Nitrile
(0.01) (0.0005)
(0.08) (57)
__________________________________________________________________________
Footnotes:
.sup.1 Tetra-n-butylammonium chloride
.sup.2 Tetra-n-butylammonium bisulfate
Claims (13)
1. A process for oxidizing an organic compound selected from the group consisting of amines, amides, alkanals, primary and secondary alkanols, and organic compounds containing an activated double bond with aqueous hypohalite ion comprising reacting by contacting:
a. a water-immiscible, liquid organic phase comprising the organic compound; with
b. an aqueous phase containing hypohalite ion; and
c. a catalytic amount of a quaternary ammonium salt and/or a quaternary phosphonium salt.
2. The process of claim 1 wherein the hypohalite ion is hypochlorite.
3. The process of claim 2 wherein the quaternary ammonium and phosphonium salts are of the formula R1 R2 R3 R4 Q+A - wherein Q+ is a quaternized nitrogen or phosphorus atom, A- is a neutralizing anion, and R1 -R4 are individually hydrocarbyl groups of from 1 to about 16 carbon atoms each, with a combined minimum total of about 10 carbon atoms.
4. The process of claim 3 wherein the quaternary ammonium and phosphonium salts have from about 10 to about 30 carbon atoms.
5. The process of claim 2 wherein the quaternary ammonium salt is tetra-n-butylammonium-, benzyltriethylammonium-, or benzyltrimethylammonium chloride or bisulfate.
6. The process of claim 5 wherein the reaction is conducted at a temperature of from about 0° to about 35° C.
7. The process of claim 6 wherein the water-immiscible, liquid organic phase comprises the organic compound and an inert, water-immiscible organic solvent.
8. The process of claim 1 wherein the organic compound is a primary or secondary alkanol.
9. The process of claim 1 wherein the organic compound is 9-fluorenol, benzhydrol, or benzyl, p-methylbenzyl, p-nitrobenzyl, o-methoxybenzyl or p-chlorobenzyl alcohol.
10. The process of claim 1 wherein the organic compound is an amine or amide.
11. The process of claim 1 wherein the organic compound is α-phenylacetamide, cyclohexylamine, n-octyl amine or norbornyl ammonium chloride.
12. The process of claim 1 wherein the organic compound is an alkanal.
13. The process of claim 1 wherein the organic compound contains an activated double bond.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US05/629,338 US3996259A (en) | 1975-11-06 | 1975-11-06 | Oxidation of organic compounds by aqueous hypohalites using phase transfer catalysis |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US05/629,338 US3996259A (en) | 1975-11-06 | 1975-11-06 | Oxidation of organic compounds by aqueous hypohalites using phase transfer catalysis |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3996259A true US3996259A (en) | 1976-12-07 |
Family
ID=24522576
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US05/629,338 Expired - Lifetime US3996259A (en) | 1975-11-06 | 1975-11-06 | Oxidation of organic compounds by aqueous hypohalites using phase transfer catalysis |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US3996259A (en) |
Cited By (20)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4079075A (en) * | 1975-11-06 | 1978-03-14 | The Dow Chemical Company | Primary alkyl esters as mediums for oxidations by phase-transfer catalyzed hypohalites |
| US4146582A (en) * | 1976-01-30 | 1979-03-27 | Brichima S.P.A. | Process for preparing aromatic aldehydes and ketones |
| FR2415614A1 (en) * | 1978-01-27 | 1979-08-24 | Sigma Tau Ind Farmaceuti | PROCESS FOR THE PREPARATION OF ALDEHYDES AND AROMATIC ALCOHOLS, IN PARTICULAR OF BENZALDEHYDE, BENZYL ALCOHOL AND THEIR DERIVATIVES |
| US4185018A (en) * | 1978-08-21 | 1980-01-22 | Ciba-Geigy Corporation | Process for producing benzofurazan-1-oxides |
| US4198351A (en) * | 1977-04-15 | 1980-04-15 | Celanese Corporation | Formaldehyde production process |
| US4225506A (en) * | 1978-05-30 | 1980-09-30 | Hoffmann-La Roche Inc. | Process for manufacturing a diketone |
| EP0028488A1 (en) * | 1979-10-25 | 1981-05-13 | Unilever Plc | Process for bleaching naturally occurring oils and fats |
| JPS5671057A (en) * | 1979-10-26 | 1981-06-13 | Ugine Kuhlmann | Manufacture of 33cyanoo3*5*55trimethyll cyclohexanone |
| US4284573A (en) * | 1979-10-01 | 1981-08-18 | The Dow Chemical Company | Preparation of glycidyl ethers |
| US4328170A (en) * | 1978-11-02 | 1982-05-04 | Matsumoto Seiyaku Kogyo Kabushiki Kaisha | Process for preparing an α-cyanoacrylate |
| JPS57183773A (en) * | 1981-05-06 | 1982-11-12 | Asahi Chem Ind Co Ltd | Preparation of hexafluoropropylene oxide |
| JPS5978176A (en) * | 1982-10-27 | 1984-05-04 | Asahi Chem Ind Co Ltd | Preparation of hexafluoropropylene oxide |
| US4524214A (en) * | 1983-11-03 | 1985-06-18 | Stauffer Chemical Company | Process for forming esters of glyoxylic acids |
| EP0340703A1 (en) * | 1988-05-06 | 1989-11-08 | BASF Aktiengesellschaft | Process for the production of formyl cyclopropane |
| US4902810A (en) * | 1981-05-06 | 1990-02-20 | Asahi Kogaku Kogyo Kabushiki Kaisha | Process for the production of hexafluoropropylene oxide |
| US4965379A (en) * | 1982-07-26 | 1990-10-23 | Asahi Kasei Kogyo Kabushiki Kaisha | Fluoroepoxides and a process for production thereof |
| WO1991011419A1 (en) * | 1990-01-31 | 1991-08-08 | Olin Corporation | Hypochlorous acid as a reagent for the oxidation of organic compounds in two phase systems |
| US5227501A (en) * | 1991-05-14 | 1993-07-13 | Shin-Etsu Chemical Co., Ltd. | Iodine- and fluorine-containing epoxy compound |
| WO1993014054A1 (en) * | 1992-01-21 | 1993-07-22 | Hoechst Schering Agrevo Gmbh | Process for producing trifluoromethyl ketones |
| JP3282338B2 (en) | 1993-12-28 | 2002-05-13 | 宇部興産株式会社 | Manufacturing method of Heliotropin |
-
1975
- 1975-11-06 US US05/629,338 patent/US3996259A/en not_active Expired - Lifetime
Non-Patent Citations (2)
| Title |
|---|
| Starks et al, Chemical Abstracts, vol. 72, 115271t (1970). * |
| starks, J. Amer. Chem. Soc., vol. 93, 195-199 (1971). * |
Cited By (27)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4079075A (en) * | 1975-11-06 | 1978-03-14 | The Dow Chemical Company | Primary alkyl esters as mediums for oxidations by phase-transfer catalyzed hypohalites |
| US4146582A (en) * | 1976-01-30 | 1979-03-27 | Brichima S.P.A. | Process for preparing aromatic aldehydes and ketones |
| US4198351A (en) * | 1977-04-15 | 1980-04-15 | Celanese Corporation | Formaldehyde production process |
| FR2415614A1 (en) * | 1978-01-27 | 1979-08-24 | Sigma Tau Ind Farmaceuti | PROCESS FOR THE PREPARATION OF ALDEHYDES AND AROMATIC ALCOHOLS, IN PARTICULAR OF BENZALDEHYDE, BENZYL ALCOHOL AND THEIR DERIVATIVES |
| US4225506A (en) * | 1978-05-30 | 1980-09-30 | Hoffmann-La Roche Inc. | Process for manufacturing a diketone |
| US4185018A (en) * | 1978-08-21 | 1980-01-22 | Ciba-Geigy Corporation | Process for producing benzofurazan-1-oxides |
| US4328170A (en) * | 1978-11-02 | 1982-05-04 | Matsumoto Seiyaku Kogyo Kabushiki Kaisha | Process for preparing an α-cyanoacrylate |
| US4284573A (en) * | 1979-10-01 | 1981-08-18 | The Dow Chemical Company | Preparation of glycidyl ethers |
| EP0028488A1 (en) * | 1979-10-25 | 1981-05-13 | Unilever Plc | Process for bleaching naturally occurring oils and fats |
| US4325883A (en) * | 1979-10-25 | 1982-04-20 | Lever Brothers Company | Process for bleaching naturally-occurring oils and fats |
| JPS5671057A (en) * | 1979-10-26 | 1981-06-13 | Ugine Kuhlmann | Manufacture of 33cyanoo3*5*55trimethyll cyclohexanone |
| US4299775A (en) * | 1979-10-26 | 1981-11-10 | Pcuk Produits Chimiques Ugine Kuhlmann | Process for the preparation of 3-cyano-3,5,5-trimethylcyclohexanone |
| JPS57183773A (en) * | 1981-05-06 | 1982-11-12 | Asahi Chem Ind Co Ltd | Preparation of hexafluoropropylene oxide |
| US4902810A (en) * | 1981-05-06 | 1990-02-20 | Asahi Kogaku Kogyo Kabushiki Kaisha | Process for the production of hexafluoropropylene oxide |
| US4925961A (en) * | 1981-05-06 | 1990-05-15 | Asahi Kasei Kogyo Kabushiki Kaisha | Process for the production of hexafluoropropylene oxide |
| US5055601A (en) * | 1982-07-26 | 1991-10-08 | Asahi Kasei Kogyo K.K. | Fluoroepoxides and a process for production thereof |
| US4965379A (en) * | 1982-07-26 | 1990-10-23 | Asahi Kasei Kogyo Kabushiki Kaisha | Fluoroepoxides and a process for production thereof |
| JPS5978176A (en) * | 1982-10-27 | 1984-05-04 | Asahi Chem Ind Co Ltd | Preparation of hexafluoropropylene oxide |
| US4524214A (en) * | 1983-11-03 | 1985-06-18 | Stauffer Chemical Company | Process for forming esters of glyoxylic acids |
| EP0340703A1 (en) * | 1988-05-06 | 1989-11-08 | BASF Aktiengesellschaft | Process for the production of formyl cyclopropane |
| US5053550A (en) * | 1988-05-06 | 1991-10-01 | Basf Aktiengesellschaft | Preparation of formylcyclopropane |
| WO1991011419A1 (en) * | 1990-01-31 | 1991-08-08 | Olin Corporation | Hypochlorous acid as a reagent for the oxidation of organic compounds in two phase systems |
| US5068408A (en) * | 1990-01-31 | 1991-11-26 | Olin Corporation | Hypochlorous acid as a reagent for the oxidation of organic compounds in two phase systems |
| US5227501A (en) * | 1991-05-14 | 1993-07-13 | Shin-Etsu Chemical Co., Ltd. | Iodine- and fluorine-containing epoxy compound |
| WO1993014054A1 (en) * | 1992-01-21 | 1993-07-22 | Hoechst Schering Agrevo Gmbh | Process for producing trifluoromethyl ketones |
| US5608062A (en) * | 1992-01-21 | 1997-03-04 | Hoechst Schering Agrevo Gmbh | Process for preparing trifluoromethyl ketones |
| JP3282338B2 (en) | 1993-12-28 | 2002-05-13 | 宇部興産株式会社 | Manufacturing method of Heliotropin |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3996259A (en) | Oxidation of organic compounds by aqueous hypohalites using phase transfer catalysis | |
| US7091342B2 (en) | Catalyst comprising cyclic acylurea compounds and processes for production organic compounds with the same | |
| US6664423B2 (en) | Two-phase ammoximation | |
| GB1567607A (en) | Process for the preparation of azines | |
| JPS6218540B2 (en) | ||
| JP3229386B2 (en) | Method for producing 2-nitro-5-fluorophenol | |
| EP1302456B1 (en) | Process for oxidation of alcohols catalysed by nitroxyl compounds | |
| US4079075A (en) | Primary alkyl esters as mediums for oxidations by phase-transfer catalyzed hypohalites | |
| Grakauskas | Polynitroalykyl ethers | |
| US4808746A (en) | Preparation of trifluoromethylbenzonitrile from trifluoromethylbenzaldehyde | |
| EP0338666B1 (en) | Method for the preparation of 2,3,5-trimethylbenzoquinone | |
| EP1323705B1 (en) | A process for the nitration of xylene isomers using zeolite beta catalyst | |
| EP0307481A1 (en) | Process for preparing 3-chloro-4-fluoronitrobenzene | |
| JP2001139526A (en) | Method for producing nitrosobenzene | |
| Uemura et al. | The reaction of arylthallium (III) compounds with metal nitrite. Synthesis of nitroarenes. | |
| US3959262A (en) | Method for preparing azines | |
| US6995291B2 (en) | Process for the oxidation of unsaturated alcohols | |
| US5053550A (en) | Preparation of formylcyclopropane | |
| US4301283A (en) | Process for preparing 2-oxo-dihydrobenzo(d)(1,3)-oxazines | |
| JPH0529378B2 (en) | ||
| JPH07173124A (en) | Production of diazomethane derivative | |
| JPH07188132A (en) | Improved process for producing cycloalkyl and haloalkyl o-aminophenyl ketones | |
| JPS6281357A (en) | N-alkyl substituted hydroxyl ammonium chlorides | |
| JPH0447655B2 (en) | ||
| JP2625204B2 (en) | Production method of α, α-dihaloketone |