[go: up one dir, main page]

US3978240A - Foodstuff containing a diester of monothiocarbonic acid - Google Patents

Foodstuff containing a diester of monothiocarbonic acid Download PDF

Info

Publication number
US3978240A
US3978240A US05/589,481 US58948175A US3978240A US 3978240 A US3978240 A US 3978240A US 58948175 A US58948175 A US 58948175A US 3978240 A US3978240 A US 3978240A
Authority
US
United States
Prior art keywords
sup
foodstuff
tertiary
carbon atoms
butyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US05/589,481
Inventor
Arnoldus van der Heijden
Leonard Schutte
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lever Brothers Co
Original Assignee
Lever Brothers Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lever Brothers Co filed Critical Lever Brothers Co
Priority to US05/589,481 priority Critical patent/US3978240A/en
Application granted granted Critical
Publication of US3978240A publication Critical patent/US3978240A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
    • A23L23/00Soups; Sauces; Preparation or treatment thereof
    • A23L23/10Soup concentrates, e.g. powders or cakes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/20Synthetic spices, flavouring agents or condiments
    • A23L27/202Aliphatic compounds
    • A23L27/2022Aliphatic compounds containing sulfur
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/20Synthetic spices, flavouring agents or condiments
    • A23L27/203Alicyclic compounds
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/20Synthetic spices, flavouring agents or condiments
    • A23L27/205Heterocyclic compounds
    • A23L27/2052Heterocyclic compounds having oxygen or sulfur as the only hetero atoms

Definitions

  • the invention relates to flavoured food products and processes for their preparation.
  • it relates to food products containing certain precursors of flavouring agents having a thiol group which can be represented by the general formula R 1 --SH, in which R 1 represents an optionally substituted alkyl, aryl or heterocyclic radical.
  • flavouring agents compounds which yield the flavouring agents when the food products at issue are being manufactured, stored or prepared for consumption. In the present case, preferably the last possibility is aimed at.
  • flavouring agents having a thiol group in their molecule are known.
  • alkanethiols such as methanethiol, ethanethiol, 1-propanethiol, and butanethiols, substituted alkanethiols such as 1-hydroxypropane-3-thiol, (2-furyl)-methanethiol, aromatic thiols such as benzenethiol, 2-hydroxythiophenol and methylbenzenethiols.
  • Alkylthioalkanethiols such as 1-methylthioethanethiol, 1-methylthiopropanethiol, 1-ethylthioethanethiol and 1-ethylthiopropanethiol, have been disclosed in Tetrahedron Letters, pp. 2321-2322, Pergamon Press, 1971.
  • Heterocyclic mercapto compounds more particularly those having a furane or thiophene structure, such as e.g. 2,5-dimethylfuran-3-thiol, 2,5-dimethyl-4,5-dihydrofuran-3-thiol, 2-methyltetrahydrofuran-3-thiol, have been disclosed in Dutch patent application No. 6,910,103.
  • flavouring agents containing a mercapto group have suitable flavours for various applications. However, they suffer sometimes from instability; they may convert into compounds with no or undesirable flavouring properties. These thiols may e.g. oxidize to disulphides, having different flavours, if at all, which may occur during processing, storage or preparation. These, and e.g. losses due to vaporization of flavour compounds, may necessitate the incorporation of relatively high initial quantities of the desired flavouring thiols in the food products in order to have the correct amount available in the foodstuff which is ready for consumption.
  • certain thiols are applied in the form of a precursor, which releases the flavouring compound at a desired rate, thus avoiding high initial quantities, which is undesirable in the products leaving the factory and more economical as regards the use of flavouring material. It is not necessary that the precursor is converted quantitatively into the thiol flavouring compound but a high conversion is desirable. However, the precursor should not possess interfering flavouring properties.
  • Thiol precursors incorporated according to the present invention can be represented by the general formula
  • R 1 represents an optionally substituted alkyl, homo or heterocyclic radical, which contains 1-10 carbon atoms and not more than two hetero atoms, preferably, the hetero atoms are chosen among oxygen and sulphur.
  • the alkyl, aryl or heterocyclic radical preferably contains from 3-7 carbon atoms and not more than one hetero atom.
  • Substituents of the alkyl, aryl or heterocyclic radical may be C 1 -C 4 alkyl or alkoxy-, hydroxyl-, keto-oxygen or similar sulphur-containing groups.
  • R 1 may represent an optionally substituted alkyl, aryl or heterocyclic radical derived from a thiol as described above.
  • Z is an oxygen or a sulphur atom
  • Y represents two hydrogen atoms, an oxygen atom or a sulphur atom
  • R 3 and R 4 represent hyrogen or an alkyl group, which groups contain 1-4, preferably 1-2 carbon atoms together.
  • R 1 satisfies the general formula ##EQU2## in which R 5 and R 6 represent an alkyl group containing 1-2 carbon atoms, i.e. a methyl or ethyl group.
  • R 1 may represent a radical derived from one of the following alkylthioalkanethiols such as
  • R 2 represents a secondary or tertiary hydrocarbyl group containing 3-20 carbon atoms attached to the oxygen with the secondary or tertiary carbon atom,
  • R 2 preferably represents an alkyl group containing 3-8 carbon atoms, preferably a tertiary one.
  • Examples of the group R 2 are 2-alkyl groups such as the isopropyl and secondary butyl groups, 1,1-dimethylalkyl groups such as the tertiary butyl, tertiary amyl and tertiary hexyl group.
  • the diesters of monothiocarbonic acid which are applied to impart or improve the flavours of foodstuffs according to the present invention, can be incorporated in the foodstuff by addition to the ingredients or the mixture before, during or after the actual manufacture. The conditions prevailing during the manufacture determine the best moment of addition.
  • the quantity of the diester incorporated in the foodstuff will vary from one foodstuff to another and may also be dependent on the actual moment of addition such as to have a suitable quantity of the flavouring thiol in the foodstuff when ready for consumption.
  • quantities of diesters ranging from 1 ⁇ 10.sup. -3 - 1 ⁇ 10.sup. -9 , preferably 1 ⁇ 10.sup. -4 - 1 ⁇ 10.sup. -7 by weight are incorporated.
  • Chugaev reaction It is known in the art to decompose certain esters of monothiocarbonic acid by pyrolysis, (the so-called Chugaev reaction).
  • the conditions under which this Chugaev reaciton takes place differ very much from the conditions under which the foods are prepared for consumption; for example, the temperatures applied in the Chugaev reaction are 200°-300°C, and other products are formed, such as alkenes. There is evidence that the mechanism of the reaction taking place in the food at appreciably lower temperatures is different.
  • esters of the flavouring thiols R 2 SH are selected, viz, the monothiocarbonic acid esters, which have a satisfactory rate of hydrolysis in the food, yielding the flavouring agent in an adequate amount when the food is prepared for consumption, the ester itself not contributing in an interfering manner to the flavour and not being so volatile that too much escapes from the food during preparation and storage.
  • the precursor esters can be prepared by methods known in the art. Two generally applicable methods are outlined below.
  • a base such as pyridine
  • an alkali metal alcoholate derived from that alcohol e.g.:
  • the starting chloroformate can be prepared by the reaction of phosgene and the flavouring thiol, or a salt thereof;
  • the second route is to make the compound R 1 X, in which X represents a suitable halogeno atom, to react with an S-alkali metal salt of the thiocarbonic acid monoester of the alcohol HOR 2 , for instance
  • the starting K-salts can be prepared by the reaction of carbonyl sulphide and the alkali metal alcoholate derived from the alcohol HO--R 2 :
  • the foods in which the precursors (latent flavouring agents) have been incorporated are preferably to be heated before they are ready for consumption.
  • Foodstuffs according to the invention in which an ester of monothiocarbonic acid has been incorporated are, for instance, dry, canned and frozen soups, ready meals, croquettes, sauce cubes, bouillon cubes, baking fats, margarine, bread, cakes, products simulating meat, as texturized vegetable protein, and instant drinks which are prepared with hot water, such as instant coffee. Excellent results have been obtained with meat-simulating products based on vegetable protein, known as texturized vegetable protein or mesophase products.
  • esters can be incorporated as such or dissolved or dispersed in a carrier, such as a fat, or enrobed with maltose-dextrin, gelatin, gum arabic. They can be mixed with the food ingredients ready to be prepared or mixed with one of the ingredients.
  • a carrier such as a fat, or enrobed with maltose-dextrin, gelatin, gum arabic.
  • They can be mixed with the food ingredients ready to be prepared or mixed with one of the ingredients.
  • the amounts incorporated depend on the kind and wanted amount of thiol flavouring agent, the conditions of the manufacture of the food product and of the preparation of the food for consumption, such as the temperature and heating period and also on the composition of the food; the amount to be incorporated can easily be determined experimentally.
  • the compounds incorporated in foodstuffs according to the invention may be used in conjunction with other substances useful for the required purpose.
  • one or more of the compounds belonging to one or more of the classes listed below are present:
  • amino acids which can be obtained by any traditional process from vegetable or animal proteins, such as gluten, casein, zein, soya protein etc.;
  • peptides of similar origin as well as peptides such as alanylalanine, alanylphenylalanine, alanylasparagine, carnosine and anserine;
  • nucleotides such as adenosine, guanosine, inosine, xanthosine, uridine and cytidine 5'-monophosphates, as well as their amides, deoxy derivatives, salts, etc.;
  • monocarboxylic acids such as saturated or unsaturated fatty acids, for example those with 2 to 12 carbon atoms, lactic acid glycollic acid and ⁇ -hydroxybutyric acid, as well as dicarboxylic acids such as succinic acid and glutaric acid;
  • natural sweeteners such as mono- and disaccharides, and artificial sweeteners such as saccharin, cyclamates; and dipeptide esters such as L-aspartyl-L-phenylalanine methyl ester;
  • sulphur compounds such as sulphides and disulphides, for example, dimethyl sulphide and diallyl sulphide; also 2-acetylthiazole and 2-acetyl-2-thiazoline;
  • guanidines such as creatine and creatinine
  • k. salts such as sodium chloride and mono- and disodium and ammonium phosphates
  • organic phosphates such as amino acids containing phosphorus
  • nitrogen compounds which have not been mentioned above, such as ammonia, amines, urea, indole and skatole;
  • 5-alkanolides as well as the esters and salts of the corresponding hydroxy acids such as 5-decanolide, 5-dodecanolide, sodium 5-hydroxydecanoate and the glycerides of 5-hydroxyalkanoic acids, such as the product from the reaction of 5-alkanolides with glycerol;
  • aldehydes such as ethanal, propanal, 4-heptenal; etc.
  • ketones such as methyl ketones with, for example, 5 to 15 carbon atoms, biacetyl, etc.;
  • q. esters of 3-oxoalkanoic acids such as the glycerol esters
  • flavouring compounds such as O-aminoacetophenone, N-acetonylpyrrole, maltol, isomaltol, ethylmaltol, vanillin, ethylvanillin, cyclotene (2-hydroxy-3-methyl-2-cyclopentene-1-one), ethone [1-(p-methoxyphenyl)-1-pentene-3-one], coumarin, ethoxymethylcoumarin, etc.;
  • t. alcohols such as ethanol and octanol
  • u. colourants such as turmeric and caramel
  • v. thickeners such as gelatin and starch
  • emulsifiers such as diacetyltartaric acid esters of fatty acid monoglycerides.
  • the quantity of these substances used depends on the nature of the food and that of the other ingredients added, such as herbs and spices, as well as on the odour or flavour desired.
  • flavouring agents may be incorporated with the flavouring agents according to the invention with the aid of maltose-dextrin, gelatin, gum arabic, or fat.
  • the invention will now be illustrated by the following experiments.
  • gaseous carbonyl sulphide (6 g or 0.1 mole) was introduced into a suspension of potassium isopropoxide (9.9 g or 0.1 mole) in diethyl ether (60 ml).
  • the reaction mixture refluxed by the reaction heat.
  • carbonyl sulphide was completed, the mixture was cooled and the precipitate was collected by filtration and suspended in dichloromethane (100 ml).
  • the suspension was cooled to 0°C and while stirring, 1-methylthio-1-chloroethane (11.0 g or 0.1 mole, prepared according to H. Bohme and H.
  • Infrared absorptions were at 2980, 2939, 2920, 2878, 2862, 2828, 1708, 1700, 1465, 1444, 1436, 1422, 1384, 1373, 1340, 1330, 1230, 1155, 1095, 1055, 974, 951, 911, 847, 810, 728, 697, 673, 520 and 510 cm.sup. -1 .
  • Gaseous carbonyl sulphide (6 g or 0.1 mole) was introduced into a two-necked round bottomed flask containing solid potassium tertiary-butoxide (11.2 g or 0.1 mole). The flask was fitted with a tube for the introduction of the gas and with a cold-finger condenser (at -80°C). The gas introduced condensed on the condenser and dropped from it directly on the potassium tertiarybutoxide. The temperature of the reaction mixture rose rapidly to 60°C.
  • Infrared absorptions were at 3000, 2982, 2930, 2875, 2839, 1719, 1702, 1483, 1466, 1453, 1443, 1430, 1399, 1374, 1254, 1207, 1140, 1130, 1090, 1060, 1040, 957, 858, 840, 740, 730, 700, 679 and 670 cm.sup. -1 .
  • 2-Methyl-2-pentanol (2.2 g or 0.022 mole) was added to a suspension of 0.8 g sodium hydride in a mineral oil (concentration 60%); the mixture was heated until the reaction started. After the reaction was complete, the resulting product was cooled and diethyl ether (10 ml) was added. Through the suspension, gaseous carbonyl sulphide was bubbled until saturation; 1-methylthio-1-chloroethane (2.2 g or 0.02 mole) was added and the mixture stirred for 5 min. the ether was evaporated at 30°C and 10 mm Hg.
  • Infrared absorption were at 3000, 2980, 2963, 2937, 2921, 2910, 2879, 1708, 1700, 1470, 1468, 1457, 1446, 1438, 1422, 1387, 1370, 1319, 1298, 1240, 1230, 1180, 1130, 1091, 1058, 973, 953, 910, 870, 850 and 839 cm.sup. -1 .
  • the compound was prepared in a manner as described in Experiment 2 using 1-ethylthio-1-chloroethane b.p. 88°C at 0.9 mm Hg as a starting material (prepared according to H. Bohme and H. Bentler, Chem. Ber. 89 (1956), pages 1464-1468); The yield was 65%.
  • the mass spectrum has a parent peak at m/e 190 and a base peak at m/e 57, and further principal peaks at m/e 146, 90, 59, 58, 56, 55, 47, 43, and 41.
  • Infrared absorptions were at 3000, 2980, 2960, 2932, 2877, 1716, 1702, 1474, 1464, 1456, 1410, 1392, 1367, 1246, 1197, 1127, 1034, 1008, 856 and 835 cm.sup. -1 .
  • the potassium salt of O-3-methylpentyl monothiocarbonate was prepared in analogous way to its isomer 2-methyl pentyl monothiocarbonate as is described in Experiment 3, now however using 3-methyl 3-pentanol as the tertiary alcohol.
  • the title compound was obtained in 54% yield; b.p. 86°-88°C at 12 mm Hg.
  • the mass spectrum had a parent peak at m/e 214 and further principal peaks at m/e 41, 53, 57, 81, 137 and 158.
  • Phenylthiocarbonyl chloride [17.7 g or 0.102 mole, prepared according to a method described by M. H. Rivier; Bull Soc. Chim. [4] 1 733 (1907)] was added to a pre-cooled (-20°C) suspension of 11.9 g (0.106 mole) of potassium tertiary-butoxide in 150 ml of tetrahydrofuran. The reaction mixture was stirred at room temperature for 1 hour. After filtration and evaporation of the solvent at 30°C and 10 mm Hg. the remaining oil was distilled yielding 5.0 g of O-tertiary-butyl S-phenyl thiocarbonate, b.p. 97°-100° at 1.0 mm Hg.
  • 3-Chloro-2-methyltetrahydrofuran (4.8 g or 0.04 mole; prepared according to a method described by L. Crombie and S. H. Harper, J. Chem. Soc. 1950, pages 1714-1722) was added to a suspension of S-potassium O-tertiary-butyl thiocarbonate (15 g or 0.08 mole, prepared as described in Experiment 2) in dimethylformamide (60 ml). The mixture was stirred at 100°C for 1 hour, and then cooled to 0°C. Water (200 ml) was added and the resulting turbid mixture was extracted with 3 portions of 50 ml pentane each. The extract was dried with anhydrous magnesium sulphate.
  • 3-Chloro-2,5-dimethyl-2-hydroxytetrahydrofuran (150 mg or 0.001 mole; prepared by hydrolysis of the chlorination product of 2-acetyl-4-pentanolide, which was prepared according to E. R. Buchman, J. Am. Chem. Soc. 58 (1936), pages 1803-1805) was added to a suspension of S-potassium O-tertiary-butyl thiocarbonate (260 mg or 0.015 mole) in acetone (10 ml). The mixture was allowed to stand at ambient temperature for 1 hour; the solvent was then evaporated at 30°C and 10 mm Hg.
  • Infrared absorptions were at 3000, 2981, 2928, 2861, 1720, 1697, 1650, 1474, 1453, 1440, 1392, 1377, 1369, 1330, 1245, 1226, 1197, 1122, 1062, 1023, 958, 920, 897 and 838 cm.sup. -1 .
  • Phosgene (7.4 g or 0.075 mole) was bubbled into a solution of 3-mercapto-2,5-dimethylfuran (6, 4 g or 0.050 mole) in 30 ml of toluene, which was cooled to 5°C and vigorously stirred. Then, 5.3 g (or 0.050 mole) of anhydrous sodium carbonate in 65 ml of water was added dropwise. After the addition was complete the cooling bath was removed and stirring was continued for two hours at room temperature. The toluene layer was separated, dried over anhydrous sodium sulphate and after filtration, evaporated to dryness at 30°C and 10 mm Hg.
  • the mass spectrum had a parent peak at m/e 228 and further principal peaks at m/e 128, 127, 113, 85, 57 and 43.
  • a dry soup base was prepared from the following ingredients:
  • thiol was demonstrated by subjecting the contents of the second trap to gas chromatopraphy on a 3 meters ⁇ 2 millimeters (internal diameter) glass columnn packed with 10% polyethylene glycol of molecular weight 20,000 and 80-10 mesh acid-washed silanised diatomaceous earth in a Hewlett Packard 5750 instrument.
  • the compounds were identified by comparison of their retention times with those of model compounds and/or collecting the effluent and by subjection to mass spectrometry.
  • a dry meat and vermicelli soup mixture was prepared from the following ingredients:
  • 500-ml samples can be prepared by boiling 30 g with 0.5 liter water.
  • Soups were prepared from both portions by boiling in 0.5 l water for 7 min. During the first minute of the boiling step a strong, overpowering smell evolved from the soup containing 1-methylthioethanethiol. After boiling, the two soups were subjected to a triangle test. Only 5 out of 17 testers made a corredt distinction between the two samples. Addition of the thiol such to the dry soup mix before boiling consequently does not contribute to the aroma of the soup during consumption. Three experiments were done to indicate the favourable use of the precursor in this product.
  • the instant coffee powder containing the O-t-butyl S-furfuryl thiocarbonate was dissolved in warm water and compared with an instant coffee without addition treated in the same manner. Of 11 tasters 8 preferred the coffee with the addition, 1 preferred the untreated instant coffee, and 2 had no preference.
  • a panel of 11 tasters could not distinguish between the first and third variety, whereas the second variety contaning the thiocarbonate was preferred by all tasters because of its meat-like flavour, due to 1-methylthioethane thiol generated during rehydration in boiling water.
  • a veal ragout was prepared from the following ingredients:
  • the ragout was distributed over 3 cans of 200 ml.
  • To the contents of the first can 1 mg O-t-butyl S-(3-(2-methyltetrahydrofuryl)) thiocarbonate was added.
  • the cans were sealed and sterilised at 120°C for 1 hour. After a week the cans were opened and 0.2 mg of 2-methyltetrahydrofuryl-3-thiol was added to the contents of the second can.
  • the contents of the three cans were then heated and ranked by a panel consisting of 7 trained tasters.
  • the flavour of the contents of the first can was unanimously judged to resemble the flavour of the second can, whereas the ragout of the third can, containing no extra addition, lacked a roast meat-like top note.
  • the precursor added before sterilisation thus gives the same flavour impression as the thiol added as such immediately before consumption.
  • the lumps containing the thiocarbonate and the unflavoured lumps were seperately added to two equivalent soup bases prepared by addition of 200 ml water to 3.5 g of the dry soup base of example 1- 14. Both soups were canned and heat sterilised at 120°C for 60 minutes. After storage for a few days the cans were heated in boiling water for 20 minutes. The cans were opened and the mesophase lumps were picked out.

Landscapes

  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Foodstuffs with improved flavor properties are obtained by incorporation of a diester of monothiocarbonic acid containing radicals characteristic of a flavoring thiol, a secondary or tertiary alcohol and carbonic acid.
These diesters were found to be excellent precursors of flavoring thiols, releasing the thiols at a controlled rate under mild conditions. Particularly suitable diesters have the general formula R1 --S--CO--O--R2, in which
R1 represents an optionally substituted alkyl, homo- or heterocyclic radical which contains 1-10, preferably 3-7 carbon atoms and not more than 2 hetero atoms which are either oxygen or sulphur and
R2 represents a secondary or tertiary hydrocarbyl group containing 3-20 carbon atoms, preferably an alkyl group containing 3-8 carbon atoms.

Description

This is a continuation of application Ser. No. 411,109, filed Dec. 30, 1973, now abandoned, which in turn is a division of application Ser. No. 204,692, now U.S. Pat. No. 3,787,473.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to flavoured food products and processes for their preparation. In particular it relates to food products containing certain precursors of flavouring agents having a thiol group which can be represented by the general formula R1 --SH, in which R1 represents an optionally substituted alkyl, aryl or heterocyclic radical.
By precursors of flavouring agents are to be understood compounds which yield the flavouring agents when the food products at issue are being manufactured, stored or prepared for consumption. In the present case, preferably the last possibility is aimed at.
2. The Prior Art
Many classes of flavouring agents having a thiol group in their molecule are known. Examples are the alkanethiols such as methanethiol, ethanethiol, 1-propanethiol, and butanethiols, substituted alkanethiols such as 1-hydroxypropane-3-thiol, (2-furyl)-methanethiol, aromatic thiols such as benzenethiol, 2-hydroxythiophenol and methylbenzenethiols. Alkylthioalkanethiols, such as 1-methylthioethanethiol, 1-methylthiopropanethiol, 1-ethylthioethanethiol and 1-ethylthiopropanethiol, have been disclosed in Tetrahedron Letters, pp. 2321-2322, Pergamon Press, 1971.
Heterocyclic mercapto compounds, more particularly those having a furane or thiophene structure, such as e.g. 2,5-dimethylfuran-3-thiol, 2,5-dimethyl-4,5-dihydrofuran-3-thiol, 2-methyltetrahydrofuran-3-thiol, have been disclosed in Dutch patent application No. 6,910,103.
The flavouring agents containing a mercapto group have suitable flavours for various applications. However, they suffer sometimes from instability; they may convert into compounds with no or undesirable flavouring properties. These thiols may e.g. oxidize to disulphides, having different flavours, if at all, which may occur during processing, storage or preparation. These, and e.g. losses due to vaporization of flavour compounds, may necessitate the incorporation of relatively high initial quantities of the desired flavouring thiols in the food products in order to have the correct amount available in the foodstuff which is ready for consumption.
SUMMARY OF THE INVENTION
According to the present invention certain thiols are applied in the form of a precursor, which releases the flavouring compound at a desired rate, thus avoiding high initial quantities, which is undesirable in the products leaving the factory and more economical as regards the use of flavouring material. It is not necessary that the precursor is converted quantitatively into the thiol flavouring compound but a high conversion is desirable. However, the precursor should not possess interfering flavouring properties.
DESCRIPTION OF THE INVENTION
It has now been found that foodstuffs with improved flavour properties can be obtained by incorporation of a flavouring quantity of a diester of monothiocarbonic acid containing radicals characteristic of a flavouring thiol, a secondary or tertiary alcohol and carbonic acid in the food products.
Thiol precursors incorporated according to the present invention can be represented by the general formula
R.sup.1 -- S -- CO -- O -- R.sup.2
in which R1 represents an optionally substituted alkyl, homo or heterocyclic radical, which contains 1-10 carbon atoms and not more than two hetero atoms, preferably, the hetero atoms are chosen among oxygen and sulphur. The alkyl, aryl or heterocyclic radical preferably contains from 3-7 carbon atoms and not more than one hetero atom.
Substituents of the alkyl, aryl or heterocyclic radical may be C1 -C4 alkyl or alkoxy-, hydroxyl-, keto-oxygen or similar sulphur-containing groups.
More particularly R1 may represent an optionally substituted alkyl, aryl or heterocyclic radical derived from a thiol as described above.
Precursors in which R1 represents a heterocyclic structure as in the following general formulae are preferably incorporated in foodstuffs according to the present invention ##EQU1##
in which Z is an oxygen or a sulphur atom, Y represents two hydrogen atoms, an oxygen atom or a sulphur atom, and R3 and R4 represent hyrogen or an alkyl group, which groups contain 1-4, preferably 1-2 carbon atoms together.
These radicals are characteristic for the following thiol or mercapto compounds from which the diester precursors can be prepared by one of the synthetic routes described below. the compounds are
4-mercapto-5-methyl-tetrahydrofuran-3-one
4-mercapto-2,5-dimethyl-tetrahydrofuran-3-one
3-mercapto-2-methyl-tetrahydrofuran (cis and trans)
3-mercapto-5-methyl-tetrahydrofuran (cis and trans)
3-mercapto-5-methyl-tetrahydrothiophene (cis and trans)
3-mercapto-2,5-dimethyl-tetrahydrothiophene
3-mercapto-2-ethyl-5-methyl-tetrahydrothiophene
4-mercapto-5-methyl-2,3-dihydrothiophene-3-one
4-mercapto-2,5-dimethyl-2,3-dihydrofuran-3-one
3-mercapto-2-methyl-4,5-dihydrofuran
3-mercapto-2,5-dimethyl-4,5-dihydrofuran
3-mercapto-2-methyl-2,3-dihydrothiophene
3-mercapto-2,5-dimethyl-2,3-dihydrothiophene
3-mercapto-2,5-dimethyl-2,3-dihydrofuran
3-mercapto-5-ethyl-2,3-dihydrothiophene
3-mercapto-2,5-dimethylfuran
3-mercapto-2-methylfuran
3-mercapto-5-methylfuran
3-mercapto-2-ethylfuran
Another group of preferred precursors are those in which R1 satisfies the general formula ##EQU2## in which R5 and R6 represent an alkyl group containing 1-2 carbon atoms, i.e. a methyl or ethyl group.
In this case R1 may represent a radical derived from one of the following alkylthioalkanethiols such as
1-methylthioethanethiol
1-methylthiopropanethiol
1-ethylthioethanethiol and
1-ethylthiopropanethiol
R2 represents a secondary or tertiary hydrocarbyl group containing 3-20 carbon atoms attached to the oxygen with the secondary or tertiary carbon atom,
R2 preferably represents an alkyl group containing 3-8 carbon atoms, preferably a tertiary one.
Examples of the group R2 are 2-alkyl groups such as the isopropyl and secondary butyl groups, 1,1-dimethylalkyl groups such as the tertiary butyl, tertiary amyl and tertiary hexyl group.
The diesters of monothiocarbonic acid, which are applied to impart or improve the flavours of foodstuffs according to the present invention, can be incorporated in the foodstuff by addition to the ingredients or the mixture before, during or after the actual manufacture. The conditions prevailing during the manufacture determine the best moment of addition.
The quantity of the diester incorporated in the foodstuff will vary from one foodstuff to another and may also be dependent on the actual moment of addition such as to have a suitable quantity of the flavouring thiol in the foodstuff when ready for consumption. Usually quantities of diesters ranging from 1 × 10.sup.-3 - 1 × 10.sup.-9, preferably 1 × 10.sup.-4 - 1 × 10.sup.-7 by weight are incorporated.
It is known in the art to decompose certain esters of monothiocarbonic acid by pyrolysis, (the so-called Chugaev reaction). The conditions under which this Chugaev reaciton takes place differ very much from the conditions under which the foods are prepared for consumption; for example, the temperatures applied in the Chugaev reaction are 200°-300°C, and other products are formed, such as alkenes. There is evidence that the mechanism of the reaction taking place in the food at appreciably lower temperatures is different.
In the foodstuff, in the presence of water usually at a pH between 3 and 7, and moderate heating, i.e. between 70°-150°C, usually at about 100°C, it is likely that the following overall reaction takes place:
R.sup.1 --S--CO--O--R.sup.2 + H.sub.2 O → R.sup.1 --SH + HOR.sup.2 + CO.sub.2
according to the present invention such esters of the flavouring thiols R2 SH are selected, viz, the monothiocarbonic acid esters, which have a satisfactory rate of hydrolysis in the food, yielding the flavouring agent in an adequate amount when the food is prepared for consumption, the ester itself not contributing in an interfering manner to the flavour and not being so volatile that too much escapes from the food during preparation and storage.
The precursor esters can be prepared by methods known in the art. Two generally applicable methods are outlined below. In the first chloroformic acid esters of the flavouring thiols can be made to react with the alcohols HOR2 in the presence of a base such as pyridine, or with an alkali metal alcoholate derived from that alcohol, e.g.:
R.sup.1 --S--COCl + KOR.sup.2 → R.sup.1 --S--CO--O--R.sup.2 + KCL
the starting chloroformate can be prepared by the reaction of phosgene and the flavouring thiol, or a salt thereof;
COCl.sub.2 + R.sup.1 SK → R.sup.1 S--COCl + KCl
The second route is to make the compound R1 X, in which X represents a suitable halogeno atom, to react with an S-alkali metal salt of the thiocarbonic acid monoester of the alcohol HOR2, for instance
R.sup.1 Cl + KS--CO--O--R.sup.2 → R.sup.1 --S--CO--O--R.sup.2 + KCl
The starting K-salts can be prepared by the reaction of carbonyl sulphide and the alkali metal alcoholate derived from the alcohol HO--R2 :
kor.sup.2 + cos → k--s--co--o--r.sup.2
although both synthetic routes are applicable for the preparation of most diester precursors for certain diesters one of the two possibilities can be used from a practical point of view. In a few exceptional cases still other synthetic routes are preferred.
The foods in which the precursors (latent flavouring agents) have been incorporated are preferably to be heated before they are ready for consumption. Foodstuffs according to the invention in which an ester of monothiocarbonic acid has been incorporated are, for instance, dry, canned and frozen soups, ready meals, croquettes, sauce cubes, bouillon cubes, baking fats, margarine, bread, cakes, products simulating meat, as texturized vegetable protein, and instant drinks which are prepared with hot water, such as instant coffee. Excellent results have been obtained with meat-simulating products based on vegetable protein, known as texturized vegetable protein or mesophase products. The esters can be incorporated as such or dissolved or dispersed in a carrier, such as a fat, or enrobed with maltose-dextrin, gelatin, gum arabic. They can be mixed with the food ingredients ready to be prepared or mixed with one of the ingredients. The amounts incorporated depend on the kind and wanted amount of thiol flavouring agent, the conditions of the manufacture of the food product and of the preparation of the food for consumption, such as the temperature and heating period and also on the composition of the food; the amount to be incorporated can easily be determined experimentally.
The compounds incorporated in foodstuffs according to the invention may be used in conjunction with other substances useful for the required purpose. Thus it is possible to use one or more of the compounds belonging to one or more of the classes listed below, although the choice is not restricted to these compounds. Preferably at least one compound of the groups (a) and (b) together with at least one compound of each of the groups, (c), (d) and (e) are present:
a. amino acids, which can be obtained by any traditional process from vegetable or animal proteins, such as gluten, casein, zein, soya protein etc.;
b. peptides of similar origin, as well as peptides such as alanylalanine, alanylphenylalanine, alanylasparagine, carnosine and anserine;
c. nucleotides such as adenosine, guanosine, inosine, xanthosine, uridine and cytidine 5'-monophosphates, as well as their amides, deoxy derivatives, salts, etc.;
d. monocarboxylic acids, such as saturated or unsaturated fatty acids, for example those with 2 to 12 carbon atoms, lactic acid glycollic acid and β-hydroxybutyric acid, as well as dicarboxylic acids such as succinic acid and glutaric acid;
e. pyrrolidonecarboxylic acid and its precursors;
f. natural sweeteners such as mono- and disaccharides, and artificial sweeteners such as saccharin, cyclamates; and dipeptide esters such as L-aspartyl-L-phenylalanine methyl ester;
g. 4-hydroxy-5-methyl-2,3-dihydrofuran-3-one and 4-hydroxy-2,5-dimethyl-2,3-dihydrofuran-3-one;
h. products from the reaction of sulphur-containing amino acids or hydrogen sulphide with reducing sugars or ascorbic acid, or the compounds mentioned under (g) or lower aliphatic aldehydes and ketones;
i. sulphur compounds such as sulphides and disulphides, for example, dimethyl sulphide and diallyl sulphide; also 2-acetylthiazole and 2-acetyl-2-thiazoline;
j. guanidines, such as creatine and creatinine;
k. salts such as sodium chloride and mono- and disodium and ammonium phosphates;
l. organic phosphates, such as amino acids containing phosphorus;
m. nitrogen compounds which have not been mentioned above, such as ammonia, amines, urea, indole and skatole;
n. 4- and 5-alkanolides as well as the esters and salts of the corresponding hydroxy acids such as 5-decanolide, 5-dodecanolide, sodium 5-hydroxydecanoate and the glycerides of 5-hydroxyalkanoic acids, such as the product from the reaction of 5-alkanolides with glycerol;
o. aldehydes such as ethanal, propanal, 4-heptenal; etc.
p. ketones, such as methyl ketones with, for example, 5 to 15 carbon atoms, biacetyl, etc.;
q. esters of 3-oxoalkanoic acids, such as the glycerol esters;
r. tricholominic and ibotenic acid and their salts;
s. flavouring compounds such as O-aminoacetophenone, N-acetonylpyrrole, maltol, isomaltol, ethylmaltol, vanillin, ethylvanillin, cyclotene (2-hydroxy-3-methyl-2-cyclopentene-1-one), ethone [1-(p-methoxyphenyl)-1-pentene-3-one], coumarin, ethoxymethylcoumarin, etc.;
t. alcohols, such as ethanol and octanol;
u. colourants, such as turmeric and caramel;
v. thickeners, such as gelatin and starch;
w. emulsifiers, such as diacetyltartaric acid esters of fatty acid monoglycerides.
The quantity of these substances used depends on the nature of the food and that of the other ingredients added, such as herbs and spices, as well as on the odour or flavour desired.
The substances listed above may be incorporated with the flavouring agents according to the invention with the aid of maltose-dextrin, gelatin, gum arabic, or fat. The invention will now be illustrated by the following experiments.
EXPERIMENT 1
The compound O-isopropyl S-[1-methylthioethyl] thiocarbonate was prepared as follows:
In a two-necked round bottomed flask equipped with a gas introducing tube and a condenser, gaseous carbonyl sulphide (6 g or 0.1 mole) was introduced into a suspension of potassium isopropoxide (9.9 g or 0.1 mole) in diethyl ether (60 ml). The reaction mixture refluxed by the reaction heat. After the addition of carbonyl sulphide was completed, the mixture was cooled and the precipitate was collected by filtration and suspended in dichloromethane (100 ml). The suspension was cooled to 0°C and while stirring, 1-methylthio-1-chloroethane (11.0 g or 0.1 mole, prepared according to H. Bohme and H. Bentler, Chem. Ber. 89 (1956) pages 1464-1468) was added dropwise in 30 min. The mixture was then kept overnight at 0° C and filtered. The filtrate was dried over anhydrous magnesium sulphate. The solvent was evaporated off at 30°C and 10 mm Hg. Fractional distillation of the residue yielded 11.0 g (57%) O-isopropyl S-[1-methylthioethyl] thiocarbonate, b.p. 62-64°C at 0.1 mm Hg. nD 20 = 1.4914. Infrared absorptions (liquid film) were at 2980, 2939, 2920, 2878, 2862, 2828, 1708, 1700, 1465, 1444, 1436, 1422, 1384, 1373, 1340, 1330, 1230, 1155, 1095, 1055, 974, 951, 911, 847, 810, 728, 697, 673, 520 and 510 cm.sup.-1. The NMR spectrum (in CCl4, internal standard Si (CH3)4) had signals at δ = 1.25 (doublet), δ = 1.62 (doublet), δ = 2.14 (singlet), δ = 4.32 (quadruplet) and δ = 5.01 ppm (septet).
EXPERIMENT 2
The compound O-tert.butyl S-[1-methylthioethyl] thiocarbonate was prepared as follows:
Gaseous carbonyl sulphide (6 g or 0.1 mole) was introduced into a two-necked round bottomed flask containing solid potassium tertiary-butoxide (11.2 g or 0.1 mole). The flask was fitted with a tube for the introduction of the gas and with a cold-finger condenser (at -80°C). The gas introduced condensed on the condenser and dropped from it directly on the potassium tertiarybutoxide. The temperature of the reaction mixture rose rapidly to 60°C.
After the required amount of carbonyl sulphide had been introduced, the contents of the flask were cooled to 0°C and acetone (100 ml) was added. The introduction tube was replaced by a stirrer and the cold-finger condenser by a dropping funnel, through which 1-methylthio-1-chloroethane (11.0 g or 0.1 mole) was added to the stirred suspension of S-potassium O-tertiary-butyl thiocarbonate at 0°C. After the addition was complete, the mixture was stirred for another 1.5 hours at 0°C. The suspension was filtered and the solvent evaporated from the filtrate at 20°C and 1 mm Hg. Fractional distillation of the reaction product yielded 14.8 g (70%) O-tertiary-butyl S-[1-methylthioethyl] thiocarbonate, b.p. 68°C at 0.55 mm Hg. nD 20 = 1.4875. The mass spectrum had a parent peak at m/e 208, a base peak at m/e 41, and further principal peaks at m/e 152, 151, 108, 75, 74, 60, 59, 56, 47, 45 and 39.
Infrared absorptions (solvent CCl4) were at 3000, 2982, 2930, 2875, 2839, 1719, 1702, 1483, 1466, 1453, 1443, 1430, 1399, 1374, 1254, 1207, 1140, 1130, 1090, 1060, 1040, 957, 858, 840, 740, 730, 700, 679 and 670 cm.sup.-1.
The NMR spectrum (in tetrachloromethane with tetramethylsilane as an internal standard) had signals at δ = 1.54 (singlet), δ = 1.67 (doublet), δ = 2.22 (singlet), and δ = 4.30 ppm (quadruplet).
EXPERIMENT 3
The compound O-[2-(2-methylpentyl)] S-[1-methylthioethyl] thiocarbonate was prepared as follows:
2-Methyl-2-pentanol (2.2 g or 0.022 mole) was added to a suspension of 0.8 g sodium hydride in a mineral oil (concentration 60%); the mixture was heated until the reaction started. After the reaction was complete, the resulting product was cooled and diethyl ether (10 ml) was added. Through the suspension, gaseous carbonyl sulphide was bubbled until saturation; 1-methylthio-1-chloroethane (2.2 g or 0.02 mole) was added and the mixture stirred for 5 min. the ether was evaporated at 30°C and 10 mm Hg. The resulting oil was subjected to chromatography over a 28 × 2 cm column of alumina, eluent trichloromethane, by which the desired product was separated from the reaction mixture. 2.4 g O-[2-(2-methylpentyl)] S-[1-methylthioethyl] thiocarbonate (= 43%) eluting with the 40-85 ml solvent, was obtained after evaporation of the eluting solvent. Infrared absorption (solvent CCl4) were at 3000, 2980, 2963, 2937, 2921, 2910, 2879, 1708, 1700, 1470, 1468, 1457, 1446, 1438, 1422, 1387, 1370, 1319, 1298, 1240, 1230, 1180, 1130, 1091, 1058, 973, 953, 910, 870, 850 and 839 cm.sup.-1. NMR-spectrum (in CCl4, internal standard Si(CH3)4) had signals at δ = 0.96 (triplet), δ = 1.2 (multiplet), δ = 1.4-1.8 (multiplet), δ = 1.46 (singlet), δ = 1.65 (doublet), δ = 2.17 (singlet), and δ = 4.28 ppm (quadruplet).
EXPERIMENT 4
The compound O-tert.butyl S-[1-(1-ethylthioethyl)] thiocarbonate was prepared as follows:
The compound was prepared in a manner as described in Experiment 2 using 1-ethylthio-1-chloroethane b.p. 88°C at 0.9 mm Hg as a starting material (prepared according to H. Bohme and H. Bentler, Chem. Ber. 89 (1956), pages 1464-1468); The yield was 65%. The NMR-spectrum (in tetrachloromethane with tetramethylsilane as an internal standard) had signals at δ = 1.27 (triplet), δ = 1.45 (singlet), δ = 1.65 (doublet), δ = 2.70 (quartet) and δ = 4.28 (quartet).
EXPERIMENT 5
The compound O-tertiary-butyl S-1-butyl thiocarbonate was prepared as follows:
To a suspension of S-potassium O-tertiary-butyl thiocarbonate (17.2 g or 0.1 mole) in acetone (100 ml) at 20°C, 1-bromobutane (6.9 g or 0.05 mole) was added while stirring. The mixture was then refluxed for 1 min. After cooling to 20°C, the mixture was filtered, and the solvent was evaporated from the filtrate at 30°C and 10 mm Hg. Fractional distillation yielded 7.2 g (76%) O-tertiary-butyl S-butyl thiocarbonate b.p. 82°-84°C at 20 mm Hg. nD 20 = 1,4511. The mass spectrum has a parent peak at m/e 190 and a base peak at m/e 57, and further principal peaks at m/e 146, 90, 59, 58, 56, 55, 47, 43, and 41. Infrared absorptions (solvent: CCl4) were at 3000, 2980, 2960, 2932, 2877, 1716, 1702, 1474, 1464, 1456, 1410, 1392, 1367, 1246, 1197, 1127, 1034, 1008, 856 and 835 cm.sup.-1. The NMR-spectrum (solvent CC14, internal standard Si(CH3)4) had signals at δ = 0.92 (triplet), δ = 1.1-1.8 (multiplet), δ = 1.44 (singlet) and δ = 2.72 ppm (triplet).
EXPERIMENT 6
The compound O-[2-(2-methyl pentyl)] -S-1-butyl thiocarbonate was prepared as follows:
1-Bromobutane (6.9 g or 0.050 mole) was added to a stirred suspension of S-potassium-O-2(2-methyl pentyl) thiocarbonate (10.1 g or 0.055 mole, prepared as described in Experiment 3) in acetone (100 ml). The mixture was stirred and refluxed for ten minutes. After cooling and filtration, the solvent was evaporated at 30°C and 10 mm Hg, yielding 11 g of an oil. Fractional distillation gave 9.6 g (76%) O-[2-(2-methylpentyl)]S-1-butyl thiocarbonate b.p. 63°-65°C at 0.1 mm Hg, nD 20 = 1.4555.
Infrared absorptions (liquid were at: 2960, 2930, 2870, 1710, 1465, 1457, 1385, 1369, 1180, 1130, 850, 840 and 675 cm.sup.-1,
The NMR-spectrum (solvent CCl4, internal standard Si(CH3)4) had signals at δ = 0.91 (triplet), δ = 1.42 (singlet), δ = 1.2-2.0 (multiplet) and δ = 2.71 ppm (multiplet).
EXPERIMENT 7
The compound O-[3-(3-methylpentyl)] S-1-butyl thiocarbonate was prepared as follows:
The potassium salt of O-3-methylpentyl monothiocarbonate was prepared in analogous way to its isomer 2-methyl pentyl monothiocarbonate as is described in Experiment 3, now however using 3-methyl 3-pentanol as the tertiary alcohol. The title compound was obtained in 54% yield; b.p. 86°-88°C at 12 mm Hg. The NMR-spectrum (in tetrachloromethane with tetramethyl silane as an internal standard) had signals at δ = 0.92 (triplet) δ = 1.1-1.8 (multiplet), δ = 1.42 (singlet) and δ = 2.72 (triplet).
EXPERIMENT 8
The compound O-tertiary-butyl S-2-butyl thiocarbonate was prepared as follows:
To a solution of 2-bromobutane (3.45 g or 0.025 mole) in acetone (50 ml) was added S-potassium O-tertiary-butyl thiocarbonate (6.5 g or 0.04 mole). The mixture was refluxed for 1 hour, after which most of the solvent was evaporated at 30°C and 10 mm Hg. To the remaining slurry water (50 ml) was added. The resulting mixture was extracted with 3 portions of 50 ml pentane each. The extracts were dried with anhydrous magnesium sulphate. The solvent was evaporated at 50°C and 10 mm Hg. yielding 2.1 g (44%) O-tertiary-butyl S-secondary-butyl thiocarbonate. Infrared absorptions (liquid film) were at 3000, 2978, 2963, 2926, 2900, 2874, 1715, 1699, 1474, 1453, 1391, 1377, 1367, 1248, 1197, 1120, 1072, 1058, 1034, 1012, 995, 950, 854, 838, 792, 738, 672 and 540 cm.sup.-1. The NMR-spectrum (solvent CCl4, internal standard Si(CH3)4) had signals at δ = 0.95 (triplet), δ = 1.28 (doublet), δ = 1.43 (singlet), δ = 1.4-2.0 (multiplet) and δ = 3.2 ppm (multiplet.
EXPERIMENT 9
The compound O-tertiary-butyl S-furfuryl thiocarbonate was prepared as follows:
To a suspension of S-potassium O-tertiary-butyl thiocarbonate (15.48 g or 0.09 mole) in 150 ml of acetone was added furfurylchloride [10.5 g or 0.09 mole, prepared according to a method described by W. R. Kirner; J. Amer. Chem. Soc. 50 1955 (1928)]. The reaction mixture was stirred and refluxed for 45 minutes. After filtration and evaporation of the solvent at 30°C and 10 mm Hg the remaining oil (14.5 g) was distilled yielding 10.95 g (57%) of O-tertiary-butyl S-furfurylthiocarbonate b.p. 115°-119°at 9 mm Hg; nD 20 = 1.4960.
The mass spectrum had a parent peak at m/e 214 and further principal peaks at m/e 41, 53, 57, 81, 137 and 158.
The NMR-spectrum (solvent CCl4, internal standard Si(CH3)4) had signals at δ = 1.45 (singlet), δ = 3.97 (doublet), δ = 6.20 (multiplet) and δ = 7.26 ppm (multiplet).
EXPERIMENT 10
The compound O-tertiary-butyl S-(3-hydroxypropyl) thiocarbonate was prepared as follows:
To a suspension of S-potassium O-tertiary-butyl thiocarbonate (10.32 g or 0.06 mole) in 100 ml of acetone was added 3-chloro propanol (8.5 g or 0.09 mole). The reaction mixture was stirred and refluxed for 2.5 hours. After filtration and evaporation of the solvent at 30°C and 10 mm Hg the remaining oil (10.58 g) was distilled yielding 5.76 g (50%) of O-tertiary-butyl S-(3-hydroxy propyl) thiocarbonate b.p. 93°-95° at 0.3 mm Hg; nD 20 = 1.4788. The NMR-spectrum (solvent CCl4, internal standard Si(CH3)4) had signals at δ = 1.43 (singlet), δ = 1.82 (quartet), δ = 2.83 (triplet), δ = 3.26 (singlet) and δ = 3.58 ppm (triplet).
EXPERIMENT 11
The compound O-tertiary-butyl S-phenyl thiocarbonate was prepared as follows:
Phenylthiocarbonyl chloride [17.7 g or 0.102 mole, prepared according to a method described by M. H. Rivier; Bull Soc. Chim. [4] 1 733 (1907)] was added to a pre-cooled (-20°C) suspension of 11.9 g (0.106 mole) of potassium tertiary-butoxide in 150 ml of tetrahydrofuran. The reaction mixture was stirred at room temperature for 1 hour. After filtration and evaporation of the solvent at 30°C and 10 mm Hg. the remaining oil was distilled yielding 5.0 g of O-tertiary-butyl S-phenyl thiocarbonate, b.p. 97°-100° at 1.0 mm Hg.
A second fractional distillation was needed to obtain the pure product; yield 3.1 g (14.3%); b.p. 70°-74° 0.2 mm Hg nD 20 = 1.5280.
The NMR-spectrum (solvent CCl4, internal standard Si(CH3)4) had signals at δ = 1.45 (singlet) and δ = 7.2-7.5 ppm (multiplet).
EXPERIMENT 12
The compound O-tertiary-butyl S-[3-(2-methyltetrahydrofuryl)] thiocarbonate was prepared as follows:
3-Chloro-2-methyltetrahydrofuran (4.8 g or 0.04 mole; prepared according to a method described by L. Crombie and S. H. Harper, J. Chem. Soc. 1950, pages 1714-1722) was added to a suspension of S-potassium O-tertiary-butyl thiocarbonate (15 g or 0.08 mole, prepared as described in Experiment 2) in dimethylformamide (60 ml). The mixture was stirred at 100°C for 1 hour, and then cooled to 0°C. Water (200 ml) was added and the resulting turbid mixture was extracted with 3 portions of 50 ml pentane each. The extract was dried with anhydrous magnesium sulphate. The solvent was evaporated at 30°C and 10 mm Hg, yielding 1.2 g of an oil, from which O-tertiary-butyl S-[3-(2-methyltetrahydrofuryl)] thiocarbonate was isolated by gas chromatography over a 300 × 0.4 cm all glass column packed with a diatomaceous earth loaded with 3% silicone gum, the temperature being programmed from 100°-220°C at a rate of 4°C/min. Yield 14%. The mass spectrum had a parent peak at m/e 218, a base peak at m/e 57 and further principal at m/e 85, 84, 74, 73, 56, 55, 45, 43 and 41. Infrared absorptions (solvent: CCl4) were at 3000, 2980, 2930, 2865, 1717, 1702, 1473, 1450, 1392, 1380, 1368, 1244, 1196, 1128, 1015 and 853 cm.sup.-1. The NMR-spectrum (in CCl4, internal standard Si(CH3)4) had signals at δ = 1.17 (doublet), δ = 1.37 (singlet), δ = 1.5-2.7 (multiplet), δ = 3.1 (multiplet) and δ = 3.4-4.0 ppm (multiplet).
EXPERIMENT 13
The compound O-tertiary-butyl S-[3-(2,5-dimethyl4,5-dihydrofuryl)] thiocarbonate was prepared as follows:
3-Chloro-2,5-dimethyl-2-hydroxytetrahydrofuran (150 mg or 0.001 mole; prepared by hydrolysis of the chlorination product of 2-acetyl-4-pentanolide, which was prepared according to E. R. Buchman, J. Am. Chem. Soc. 58 (1936), pages 1803-1805) was added to a suspension of S-potassium O-tertiary-butyl thiocarbonate (260 mg or 0.015 mole) in acetone (10 ml). The mixture was allowed to stand at ambient temperature for 1 hour; the solvent was then evaporated at 30°C and 10 mm Hg. water (25 ml) was added to the residue and the resulting mixture extracted with 3 portions of 25 ml pentane each. The extract was dried with anhydrous magnesium sulphate and the solvent was evaporated at 30°C and 10 mm Hg. The reaction product was purified by thin layer chromatography on 1 mm thick silica gel plates, using trichloromethane as the eluent; 10 mg (4%) of O-tertiary-butyl S-[3-(2,5-dimethyl-4,5-dihydrofuryl)] thiocarbonate was obtained. Infrared absorptions (solvent: CCl4) were at 3000, 2981, 2928, 2861, 1720, 1697, 1650, 1474, 1453, 1440, 1392, 1377, 1369, 1330, 1245, 1226, 1197, 1122, 1062, 1023, 958, 920, 897 and 838 cm.sup.-1. The NMR-spectrum (solvent CCl4, internal standard Si(CH3)4) had signals at δ = 1.38 (doublet), δ = 1.48 (singlet), δ = 1.85 (doublet), δ = 2.37 and 2.80 (both multiplets), and δ = 4.65 ppm (multiplet).
EXPERIMENT 14
The compound O-tertiary-butyl S-[2,5-dimethyl furyl] thiocarbonate was prepared as follows:
Phosgene (7.4 g or 0.075 mole) was bubbled into a solution of 3-mercapto-2,5-dimethylfuran (6, 4 g or 0.050 mole) in 30 ml of toluene, which was cooled to 5°C and vigorously stirred. Then, 5.3 g (or 0.050 mole) of anhydrous sodium carbonate in 65 ml of water was added dropwise. After the addition was complete the cooling bath was removed and stirring was continued for two hours at room temperature. The toluene layer was separated, dried over anhydrous sodium sulphate and after filtration, evaporated to dryness at 30°C and 10 mm Hg. The residue was added dropwise to a suspension of 5.61 g of potassium tertiary-butoxide in 50 ml of tetrahydrofuran. The mixture was stirred and refluxed for half and hour. After cooling and filtration, the solution was evaporated to dryness at 30° and 10 mm Hg leaving 9.5 of an oil. The title compound was isolated by preparation gas chromatography; nD 20 = 1.4970.
The mass spectrum had a parent peak at m/e 228 and further principal peaks at m/e 128, 127, 113, 85, 57 and 43.
EXAMPLES 1-14
A dry soup base was prepared from the following ingredients:
______________________________________                                    
vegetable fat        50 g                                                 
monosodium glutamate 10 g                                                 
casein hydrolysate   20 g                                                 
milk powder          10 g                                                 
herbs and spices     4.6 g                                                
salt                 60 g                                                 
______________________________________                                    
Samples of 10 mg of the compounds listed in the following Table prepared as described above were boiled for 60 min in 1 l water, to which 17.2 g of the above dry soup base has been added. A stream of nitrogen was swept over the surface of the boiling mixture and led through two traps cooled at -30°C and -196°C respectively.
The formation of thiol was demonstrated by subjecting the contents of the second trap to gas chromatopraphy on a 3 meters ×2 millimeters (internal diameter) glass columnn packed with 10% polyethylene glycol of molecular weight 20,000 and 80-10 mesh acid-washed silanised diatomaceous earth in a Hewlett Packard 5750 instrument. The compounds were identified by comparison of their retention times with those of model compounds and/or collecting the effluent and by subjection to mass spectrometry.
______________________________________                                    
                              formation                                   
Example                                                                   
       Thiocarbonate          of thiol.sup.a                              
______________________________________                                    
1      O-isopropyl S-(1-methylthio-                                       
                              +                                           
       ethyl)                                                             
2      O-tert-butyl S-(1methyl-                                           
                               ++                                         
       thioethyl)                                                         
3      O-2(2-methylpentyl) S-(1-                                          
                              +++                                         
       methylthioethyl)                                                   
4      O-tert-butyl S-(1-ethyl-                                           
                               ++                                         
       thioethyl)                                                         
5      O-tert-butyl S-1-butyl +                                           
6      O-2(2-methylpentyl) S-1-                                           
                               ++                                         
       butyl                                                              
7      O-3(3-methylpentyl) S-1-                                           
                               ++                                         
       butyl                                                              
8      O-tert-butyl S-2-butyl +                                           
9      O-tert-butyl S-furfuryl                                            
                              +++                                         
10     O-tert-butyl S-1-(3-hydroxy-                                       
                              +                                           
       propyl)                                                            
11     O-tert-butyl S-phenyl   ++                                         
12     O-tert-butyl S-3-(2-methyl-                                        
                               ++                                         
       tetrahydrofuryl)                                                   
13     O-tert-butyl S-3-(2,5-dimethyl-                                    
                              +                                           
       4,5-dihydrofuryl)                                                  
14     O-tert-butyl S-3-(2,5-dimethyl-                                    
                              +                                           
       furyl)                                                             
______________________________________                                    
 a +++ = good, ++ = distinct, + = slight                                  
EXAMPLE 15
A dry meat and vermicelli soup mixture was prepared from the following ingredients:
______________________________________                                    
                   grams                                                  
______________________________________                                    
dried beef           40                                                   
beef fat             50                                                   
vermicelli           200                                                  
chopped dried carrots                                                     
                     25                                                   
dried onions         30                                                   
dried leek            2                                                   
monosodium glutamate 10                                                   
casein hydrolysate   20                                                   
milk powder          10                                                   
herbs and spices      4.6                                                 
salts                60                                                   
______________________________________                                    
From this mixture 500-ml samples can be prepared by boiling 30 g with 0.5 liter water.
In an introductory experiment 0.05 mg of 1-methylthioethanethiol dissolved in 0.25 g hardened fat was added to 30 g dry mix; and to another 30 g amount only 0.25 g hardened fat was added.
Soups were prepared from both portions by boiling in 0.5 l water for 7 min. During the first minute of the boiling step a strong, overpowering smell evolved from the soup containing 1-methylthioethanethiol. After boiling, the two soups were subjected to a triangle test. Only 5 out of 17 testers made a corredt distinction between the two samples. Addition of the thiol such to the dry soup mix before boiling consequently does not contribute to the aroma of the soup during consumption. Three experiments were done to indicate the favourable use of the precursor in this product.
In the first experiment, to one portion of 30 g dry mix of the previous example was added 0.05 mg O-tert-butyl S-(1-methylthioethyl) thiocarbonate dissolved in 0.25 g hardened fat; to another portion only the same amount of hardened fat was added. Soup was prepared from both portions by boiling for 7 min; they were subjected to a triangle test by a trained panel of 24 persons, of whom 17 (p = 0.001) could distinguish between both samples. In the second experiment, to one portion after boiling for 7 min was added 0.004 mg 1-methylthioethanethiol dissolved in hardened fat. It was tested against the same blank, 14 tasters out of a trained panel of 17 persons could distinguish between both sampels (p = 0.001).
In a third experiment, to one portion 0.05 mg O-tert-butyl S-(1-methylthioethyl) thiocarbonate dissolved in hardened fat was added, which portion was then boiled for 7 min, to a second portion 0.004 mg 1-methylthioethanethiol dissolved in the same amount of hardened fat was added just before testing after the mixture had been boiled for 7 min. In a triangle test by the same trained panel of 24 persons, only 10 could distinguish between the samples.
From these experiments it is concluded that the addition of the precursor thiocarbonate before boiling has the same flavouring effect as the addition of an equivalent quantity of the thiol flavouring agent after boiling.
EXAMPLE 16
In a model experiment, 10 mg O-tert-butyl S-(1-methylthioethyl) thiocarbonate was added to a beef noodle soup in a 500-ml can. The can was sealed and sterilised at 118°C for 1 hour. After the opening of the can, the thiocarbonate ester could be shown to be still present by subjecting the contacts of the can to steam distillation under diminished pressure an trapping the volatiles in a vessel at -196°C. After boiling the sterilised soups for 30 min and sweeping the content with nitrogen, again trapping the volatiles in a vessel at 31 496°C, 1-methylthioethanethiol was shown to be present.
It can be concluded that enough precursor survives sterilisation to yield the thiol flavouring agent when preparing the canned soup for consumption.
EXAMPLE 17
To 25 g instant coffee powder (Nescafe ex Nestle Switzerland) 0.003 mg O-t-butyl S-furfuryl thiocarbonate dissolved in 0.001 ml medium-chain length (C8 -C10) triglyceride was added. This powder was preferred over a powder without addition by 16 out of 20 tasters because of its mild coffee aroma.
The same amount (0.003 mg) of furfurylmercaptan added as a solution in the same triglyceride to 25 g instant coffee powder was unanimously rejected, because of the strong, repellent smell.
The instant coffee powder containing the O-t-butyl S-furfuryl thiocarbonate was dissolved in warm water and compared with an instant coffee without addition treated in the same manner. Of 11 tasters 8 preferred the coffee with the addition, 1 preferred the untreated instant coffee, and 2 had no preference.
EXAMPLE 18
To 9 kg "soya fluff W" a defatted soya bean meal, (ex Central Soya Chigago, Ill. U.S.A.), 1.8 l water and 90 g vegetable fat (mp 38°C) were added. To one 3 kg part of the meal 3.6 g 1-methylthioethanethiol was added and to another 3 kg part 3.0 g O-t-butyl S-(1-methylthioethyl) thiocarbonate, whereas the third part contained no extra addition. The meal was then extruded at 165°C from a normal plastic extruder (internal diameter 30 mm). Three varieties of textured vegetable protien (TVP) chunks (size 8 × 2 mm) were obtained. Of each variety 5 g chunks were rehydrated in 50 ml boiling water containing 350 mg salt and 100 mg monosodium glutamate during 15 minutes.
A panel of 11 tasters could not distinguish between the first and third variety, whereas the second variety contaning the thiocarbonate was preferred by all tasters because of its meat-like flavour, due to 1-methylthioethane thiol generated during rehydration in boiling water.
EXAMPLE 19
A veal ragout was prepared from the following ingredients:
______________________________________                                    
chopped veal         400 gram                                             
mushrooms             80 gram                                             
rice flour           140 gram                                             
vegetable fat         80 gram                                             
herbs and spices     4.7 gram                                             
salt                  12 gram                                             
monosodium glutamate  6 gram                                              
______________________________________                                    
The ragout was distributed over 3 cans of 200 ml. To the contents of the first can 1 mg O-t-butyl S-(3-(2-methyltetrahydrofuryl)) thiocarbonate was added. The cans were sealed and sterilised at 120°C for 1 hour. After a week the cans were opened and 0.2 mg of 2-methyltetrahydrofuryl-3-thiol was added to the contents of the second can. The contents of the three cans were then heated and ranked by a panel consisting of 7 trained tasters. The flavour of the contents of the first can was unanimously judged to resemble the flavour of the second can, whereas the ragout of the third can, containing no extra addition, lacked a roast meat-like top note. The precursor added before sterilisation thus gives the same flavour impression as the thiol added as such immediately before consumption.
EXAMPLE 20
1 kg defatted "soyafluff W" (ex Central Soya, Chicago, Ill. U.S.A.) was mixed with 10 l water containing 0.1% sodium sulphite. The insoluble carbohydrates were removed by centrifugation. The supernatant liquid was then adjusted to pH 4.6-4.9 by addition of hydrochloric acid. The precipitate was collected by centrifugation. Salt and water were added until a final concentration of 30% proteing (w/w) and 2% salt (w/w). To a 50 g portion of this solution 0.25 mg O-tert-butyl S-(1-methylthioethyl) thiocarbonate was added. After thorough mixing a dialysis tube was filled with this portion and closed at both ends with a knot. 50 g of the protein solution without further addition was treated similarly. Both sausages obtained in this way were gelified in boiling water for 30 minutes. The skin was then peeled off and the heat-set protein was cut into lumps of about 1 g each.
The lumps containing the thiocarbonate and the unflavoured lumps were seperately added to two equivalent soup bases prepared by addition of 200 ml water to 3.5 g of the dry soup base of example 1- 14. Both soups were canned and heat sterilised at 120°C for 60 minutes. After storage for a few days the cans were heated in boiling water for 20 minutes. The cans were opened and the mesophase lumps were picked out.
The majority of a panel consisting of 8 tasters preferred the lumps to which the thiocarbonate had been added, because of their more attractive meat-like flavour.

Claims (9)

We claim:
1. An improved foodstuff that is consumed upon heating between a temperature of from 70° to 150°C, having incorporated therein an effective amount of a precursor flavoring ingredient for improving the respective flavor of said foodstuff when the foodstuff is subjected to said heating, the precursor flavoring ingredient comprising a diester of monothiocarbonic acid having the general formula:
R.sup.1 -- S -- CO -- O -- R.sup.2
wherein R1 is a substituted or unsubsituted alkyl, homo or heterocyclic radical having up to 10 carbon atoms and not more than two hetero atoms selected from the group consisting of oxygen and sulphur, and wherein R2 represents a secondary or tertiary hydrocarbyl group containing 3-20 carbon atoms, attached to the oxygen with the secondary or tertiary carbon atom.
2. A foodstuff according to claim 1, in which R1 contains one hetero atom chosen among oxygen and sulphur.
3. A foodstuff according to claim 3, in which R1 contains 3-7 carbon atoms.
4. A foodstuff according to claim 1 in which R1 shows a five-membered heterocyclic structure chosen among the formulae ##EQU3## in which z is an oxygen or sulphur atom, Y represents two hydrogen atoms, an oxygen or sulphur atom and R3 and R4 are hydrogen or a lower alkyl group containing 1-4 carbon atoms.
5. A foodstuff according to claim 1, in which R7 represents a group of the following structure ##EQU4## in which R5 and R6 represents an alkyl group containing 1∝2 carbon atoms.
6. A foodstuff according to claim 1, in which R2 represents an alkyl group which contains 3-8 carbon atoms.
7. A foodstuff according to claim 7, in which R2 represents a tertiary alkyl group attached with the tertiary carbon atom to the oxygen atom.
8. A foodstuff according to claim 1, in which the quantity of diester incorporated in the foodstuff ranges between 1×10.sup.-3 and 1×10.sup.-9 parts by weight.
9. A foodstuff according to claim 1, in which the quantity of diester incorporated in the foodstuff ranges between 1×10.sup.-4 and 1×10.sup.-7 parts by weight.
US05/589,481 1973-12-30 1975-06-23 Foodstuff containing a diester of monothiocarbonic acid Expired - Lifetime US3978240A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US05/589,481 US3978240A (en) 1973-12-30 1975-06-23 Foodstuff containing a diester of monothiocarbonic acid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US41110973A 1973-12-30 1973-12-30
US05/589,481 US3978240A (en) 1973-12-30 1975-06-23 Foodstuff containing a diester of monothiocarbonic acid

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US41110973A Continuation 1973-12-30 1973-12-30

Publications (1)

Publication Number Publication Date
US3978240A true US3978240A (en) 1976-08-31

Family

ID=27021277

Family Applications (1)

Application Number Title Priority Date Filing Date
US05/589,481 Expired - Lifetime US3978240A (en) 1973-12-30 1975-06-23 Foodstuff containing a diester of monothiocarbonic acid

Country Status (1)

Country Link
US (1) US3978240A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3025305A1 (en) * 1980-07-04 1982-01-28 Haarmann & Reimer Gmbh, 3450 Holzminden Flavorings for animal feed
US4332829A (en) * 1978-07-18 1982-06-01 Polak's Frutal Works, B.V. Methylthiomethyl esters as flavor additives
EP0924198A1 (en) * 1997-12-19 1999-06-23 Dragoco Gerberding & Co Aktiengesellschaft 3-Mercapto-2-alkyl-alkan-1-ols and their use as perfuming and flavouring agents
EP1170295A1 (en) * 2000-07-07 2002-01-09 Quest International Nederland Bv Thiocarbonates as flavour precursors
US20030044456A1 (en) * 1998-10-23 2003-03-06 Nippon Meat Packers, Inc. Hypoallergenic gelatin
US20050008678A1 (en) * 1996-05-31 2005-01-13 Howard Alan N. Food compositions containing creatine
US20050136167A1 (en) * 2002-04-29 2005-06-23 Kraklow Harry K. Frozen microwaveable bakery products
US20080248168A1 (en) * 2006-04-20 2008-10-09 John Mark Black Frozen microwaveable dough products
US20080260926A1 (en) * 2003-04-29 2008-10-23 First Products, Inc. Frozen Microwavable Bakery Products
WO2009062800A1 (en) * 2007-11-13 2009-05-22 Nestec S.A. Use of thioester flavors to improve the flavor quality of ready-to-drink coffee upon retorting and storage
CN102365267A (en) * 2009-04-07 2012-02-29 奇华顿股份有限公司 Carbonothioates as flavours and fragrances
US11084785B2 (en) 2017-05-12 2021-08-10 Givaudan Sa Alkenyl carbonothioates as flavour ingredients

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3332428A (en) * 1964-10-01 1967-07-25 Liggett & Myers Tobacco Co Tobacco incorporating carbonate esters of flavorants
US3653920A (en) * 1970-06-18 1972-04-04 Lever Brothers Ltd Thia-alkanethiols as meat flavors
US3702253A (en) * 1965-04-30 1972-11-07 Firmenich & Cie Flavor modified soluble coffee
US3713848A (en) * 1971-04-19 1973-01-30 Int Flavors & Fragrances Inc Flavoring processes and compositions involving branched-chain alkanethiols
US3773524A (en) * 1971-07-12 1973-11-20 Int Flavors & Fragrances Inc Flavoring compositions and processes utilizing alpha-ketothiols
US3787473A (en) * 1970-12-07 1974-01-22 Lever Brothers Ltd Thioether substituted thiolcarbonates
US3803330A (en) * 1972-03-30 1974-04-09 Gen Foods Corp Meat flavor composition and processes

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3332428A (en) * 1964-10-01 1967-07-25 Liggett & Myers Tobacco Co Tobacco incorporating carbonate esters of flavorants
US3702253A (en) * 1965-04-30 1972-11-07 Firmenich & Cie Flavor modified soluble coffee
US3653920A (en) * 1970-06-18 1972-04-04 Lever Brothers Ltd Thia-alkanethiols as meat flavors
US3787473A (en) * 1970-12-07 1974-01-22 Lever Brothers Ltd Thioether substituted thiolcarbonates
US3713848A (en) * 1971-04-19 1973-01-30 Int Flavors & Fragrances Inc Flavoring processes and compositions involving branched-chain alkanethiols
US3773524A (en) * 1971-07-12 1973-11-20 Int Flavors & Fragrances Inc Flavoring compositions and processes utilizing alpha-ketothiols
US3803330A (en) * 1972-03-30 1974-04-09 Gen Foods Corp Meat flavor composition and processes

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4332829A (en) * 1978-07-18 1982-06-01 Polak's Frutal Works, B.V. Methylthiomethyl esters as flavor additives
DE3025305A1 (en) * 1980-07-04 1982-01-28 Haarmann & Reimer Gmbh, 3450 Holzminden Flavorings for animal feed
EP0043486A3 (en) * 1980-07-04 1982-06-30 Haarmann & Reimer Gmbh Flavouring agent for animal food
US20050008678A1 (en) * 1996-05-31 2005-01-13 Howard Alan N. Food compositions containing creatine
US8128955B2 (en) * 1996-05-31 2012-03-06 The Original Creatine Patent Company Food compositions containing creatine
EP0924198A1 (en) * 1997-12-19 1999-06-23 Dragoco Gerberding & Co Aktiengesellschaft 3-Mercapto-2-alkyl-alkan-1-ols and their use as perfuming and flavouring agents
US20030044456A1 (en) * 1998-10-23 2003-03-06 Nippon Meat Packers, Inc. Hypoallergenic gelatin
EP1170295A1 (en) * 2000-07-07 2002-01-09 Quest International Nederland Bv Thiocarbonates as flavour precursors
US20020037349A1 (en) * 2000-07-07 2002-03-28 Wolfgang Fitz Flavour precursors
US6852350B2 (en) * 2000-07-07 2005-02-08 Wolfgang Fitz Flavor precursors
US20080220122A1 (en) * 2002-04-29 2008-09-11 First Products, Inc., A Minnesota Corporation Frozen Microwavable Bakery Products
US20080226780A1 (en) * 2002-04-29 2008-09-18 First Products, Inc., A Minnesota Corporation Frozen Microwavable Bakery Products
US20050136167A1 (en) * 2002-04-29 2005-06-23 Kraklow Harry K. Frozen microwaveable bakery products
US20080260926A1 (en) * 2003-04-29 2008-10-23 First Products, Inc. Frozen Microwavable Bakery Products
US20080248168A1 (en) * 2006-04-20 2008-10-09 John Mark Black Frozen microwaveable dough products
WO2009062800A1 (en) * 2007-11-13 2009-05-22 Nestec S.A. Use of thioester flavors to improve the flavor quality of ready-to-drink coffee upon retorting and storage
US20110027436A1 (en) * 2007-11-13 2011-02-03 Nestec S.A. Use of thioester flavors to improve the flavor quality of ready-to-drink coffee upon retorting and storage
CN102365267A (en) * 2009-04-07 2012-02-29 奇华顿股份有限公司 Carbonothioates as flavours and fragrances
JP2012522826A (en) * 2009-04-07 2012-09-27 ジボダン エス エー Carbonothioates as flavors and fragrances
US8765204B2 (en) 2009-04-07 2014-07-01 Givaudan S.A. Carbonothioates as flavours and fragrances
CN102365267B (en) * 2009-04-07 2014-07-02 奇华顿股份有限公司 Carbonothioates as flavours and fragrances
US11084785B2 (en) 2017-05-12 2021-08-10 Givaudan Sa Alkenyl carbonothioates as flavour ingredients

Similar Documents

Publication Publication Date Title
US4045587A (en) Foodstuff flavoring methods and compositions
US3666495A (en) Novel sulfur-containing compounds and compositions and processes therefor
US3978240A (en) Foodstuff containing a diester of monothiocarbonic acid
US20100143563A1 (en) Flavouring a foodstuff by incorporating an effective amount of at least one compound of the formula r1-s-r2 in which r1 and r2 represent a specific atom or group
US4020170A (en) Certain lower alkyl 4,5-dihydrothiophene-3-thiols
DE2417385A1 (en) WUERZEN WITH COMPOUNDS CONTAINING SULFUR
US3843804A (en) Novel flavoring compositions and processes
US4119737A (en) Sulfur-containing flavoring agents
EP0058870B1 (en) Process for preparing 4-hydroxy-5-methyl-2,3-dihydrofuranone-3 and changing organoleptic properties of foods
US3787473A (en) Thioether substituted thiolcarbonates
CA1038877A (en) Sulfur-containing compositions and processes therefor
AU2001246954A1 (en) Flavouring a foodstuff with compounds containing a sulfur atom linked to two specific atoms or groups
US3904655A (en) Process for the preparation of a flavor substance by reacting a 4-oxy-5-alkyl-3-furanone with a hydrogen sulfide liberating substance
US3879562A (en) Flavoring foodstuffs with a thioester
US4228278A (en) Preparation of 2,4,6-tri-isobutyl dihydro-1,3,5-dithiazine
US4055578A (en) Certain furan-3-thiols, certain dihydro derivatives thereof and 2,5-dimethyltetrahydrofuran-3-thiol
US3873731A (en) Imparting meat flavor with 3-furylthioesters
US3910966A (en) Novel 3-thia furans
US3872111A (en) Esters of 3-furanthiols
US4235938A (en) Flavoring with crystalline pure 2,4,6-tri-isobutyl dihydro-1,3,5-dithiazine
US4020175A (en) Certain 3-furyl sulfides
US3767426A (en) Heterocyclic pyrazine flavoring compositions and processes
US4200741A (en) Use of crystalline pure or substantially pure 2,4,6-tri-isobutyl-1,3,5-dithiazine and process for preparing same
US3989856A (en) 3-Furyl beta-oxoalkyl sulfides and methods for using same for altering, modifying or enhancing the organoleptic properties of foodstuffs
US3723475A (en) Method of making 2-alkylfuran-3-thiol and alkyl, (2-alkyl-3-furyl) di and trisulfides